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Abstract
Existing methods of combinatorial pure explo-
ration mainly focus on the UCB approach. To
make the algorithm efficient, they usually use the
sum of upper confidence bounds within arm set
S to represent the upper confidence bound of S,
which can be much larger than the tight upper
confidence bound of S and leads to a much higher
complexity than necessary, since the empirical
means of different arms in S are independent. To
deal with this challenge, we explore the idea of
Thompson Sampling (TS) that uses independent
random samples instead of the upper confidence
bounds, and design the first TS-based algorithm
TS-Explore for (combinatorial) pure exploration.
In TS-Explore, the sum of independent random
samples within arm set S will not exceed the tight
upper confidence bound of S with high proba-
bility. Hence it solves the above challenge, and
achieves a lower complexity upper bound than ex-
isting efficient UCB-based algorithms in general
combinatorial pure exploration. As for pure explo-
ration of classic multi-armed bandit, we show that
TS-Explore achieves an asymptotically optimal
complexity upper bound.

1. Introduction
Pure exploration is an important task in online learning, and
it tries to find out the target arm as fast as possible. In pure
exploration of classic multi-armed bandit (MAB) (Audibert
et al., 2010), there are totally m arms, and each arm i is
associated with a probability distribution Di with mean µi.
Once arm i is pulled, it returns an observation ri, which
is drawn independently from Di by the environment. At
each time step t, the learning policy π either chooses an
arm i(t) to pull, or chooses to output an arm a(t). The goal
of the learning policy is to pull arms properly, such that
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with an error probability at most δ, its output arm a(t) is the
optimal arm (i.e., a(t) = argmaxi∈[m] µi) with complexity
(the total number of observations) as low as possible.

Pure exploration is widely adopted in real applications. For
example, in the selling procedure of cosmetics, there is al-
ways a testing phase before the commercialization phase
(Audibert et al., 2010). The goal of the testing phase is to
help to maximize the cumulative reward collected in the
commercialization phase. Therefore, instead of regret min-
imization (Berry & Fristedt, 1985; Auer et al., 2002), the
testing phase only needs to do exploration (e.g., to inves-
tigate which product is the most popular one), and wants
to find out the target with both correctness guarantee and
low cost. In the real world, sometimes the system focuses
on the best action under a specific combinatorial structure,
instead of the best single arm (Chen et al., 2014). For exam-
ple, a network routing system needs to search for the path
with minimum delay between the source and the destination.
Since there can be an exponential number of paths, the cost
of exploring them separately is unacceptable. Therefore,
people choose to find out the best path by exploring single
edges, and this is a pure exploration problem instance in
combinatorial multi-armed bandit (CMAB). In this setting,
we still pull single arms (base arms) at each time step, and
there is a super arm set I ⊆ 2[m]. The expected reward
of a super arm S ∈ I is

∑
i∈S µi, i.e., the sum of the ex-

pected rewards of its contained base arms. And the goal of
the player is to find out the optimal super arm with error
probability at most δ and complexity as low as possible.

Most of the existing solutions for pure exploration follow
the UCB approach (Audibert et al., 2010; Kalyanakrishnan
et al., 2012; Chen et al., 2014; Kaufmann & Kalyanakrish-
nan, 2013). They compute the confidence bounds for all the
arms, and claim that one arm is optimal only if its lower
confidence bound is larger than the upper confidence bounds
of all the other arms. Though this approach is asymptoti-
cally optimal in pure exploration of classic MAB problems
(Kalyanakrishnan et al., 2012; Kaufmann & Kalyanakrish-
nan, 2013), it faces some challenges in the CMAB setting
(Chen et al., 2014). In the UCB approach, for a super arm
S, the algorithm usually uses the sum of upper confidence
bounds of all its contained base arms as its upper confi-
dence bound to achieve a low implementation cost. This
means that the gap between the empirical mean of super
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arm S and the used upper confidence bound of S is about
Õ(
∑
i∈S
√

1/Ni) (here Ni is the number of observations
on base arm i). However, since the observations of different
base arms are independent, the standard deviation of the
empirical mean of super arm S is Õ(

√∑
i∈S 1/Ni), which

is much smaller than Õ(
∑
i∈S
√

1/Ni). This means that
the used upper confidence bound of S is much larger than
the tight upper confidence bound of S. Combes et al. (2015)
deal with this problem by computing the upper confidence
bounds for all the super arms independently, which leads to
an exponential time cost and is hard to implement in prac-
tice. In fact, existing efficient UCB-based solutions either
suffer from a high complexity bound (Chen et al., 2014;
Gabillon et al., 2016), or need further assumptions on the
combinatorial structure to achieve an optimal complexity
bound efficiently (Chen et al., 2017).

Then a natural solution to deal with this challenge is to use
random samples of arm i (with mean to be its empirical
mean and standard deviation to be Õ(

√
1/Ni)) instead of

its upper confidence bound to judge whether a super arm
is optimal. If we let the random samples of different base
arms be independent, then with high probability, the gap
between the empirical mean of super arm S and the sum of
random samples within S is Õ(

√∑
i∈S 1/Ni), which has

the same order as the gap between the empirical mean of
super arm S and its real mean. Therefore, using independent
random samples can behave better than using confidence
bounds, and this is the key idea of Thompson Sampling
(TS) (Thompson, 1933; Kaufmann et al., 2012; Agrawal &
Goyal, 2013). In fact, many prior works show that TS-based
algorithms have smaller cumulative regret than UCB-based
algorithms in regret minimization of CMAB model (Wang
& Chen, 2018; Perrault et al., 2020). However, there still
lack studies on adapting the idea of TS, i.e., using random
samples to make decisions, to the pure exploration setting.

In this paper, we attempt to fill up this gap, and study using
random samples in pure exploration under the frequentist
setting for both MAB and CMAB instances. We emphasize
that it is non-trivial to design (and analyze) such a TS-based
algorithm. The first challenge is that there is a lot more
uncertainty in the random samples than in the confidence
bounds. In UCB-based algorithms, the upper confidence
bound of the optimal arm is larger than its expected re-
ward with high probability. Thus, the arm with the largest
upper confidence bound is either an insufficiently learned
sub-optimal arm (i.e., the number of its observations is not
enough to make sure that it is a sub-optimal arm) or the
optimal arm, which means that the number of pulls on suffi-
ciently learned sub-optimal arms is limited. However, for
TS-based algorithms that use random samples instead, there
is always a constant probability that the random sample of
the optimal arm is smaller than its expected reward. In this
case, the arm with the largest random sample may be a suffi-

ciently learned sub-optimal arm. Therefore, the mechanism
of the TS-based policy should be designed carefully to make
sure that we can still obtain an upper bound for the number
of pulls on sufficiently learned sub-optimal arms.

Another challenge is that using random samples to make
decisions is a kind of Bayesian algorithm and it loses many
good properties in the frequentist setting. In the Bayesian
setting, at each time step t, the parameters of the game
follow a posterior distribution Pt, and the random samples
are drawn from Pt independently as well. Therefore, using
the random samples to output the optimal arm can explicitly
ensure the correctness of the TS-based algorithm. However,
in the frequentist setting, the parameters of the game are
fixed but unknown, and they have no such correlations with
the random samples. Because of this, if we still choose to
use the random samples to output the optimal arm, then the
distributions of random samples in the TS-based algorithm
need to be chosen carefully to make sure that we can still
obtain the correctness guarantee in the frequentist setting.

Besides, the analysis of the TS-based algorithm in pure
exploration is also very different from that in regret mini-
mization. In regret minimization, at each time step, we only
need to draw one sample for each arm (Thompson, 1933;
Agrawal & Goyal, 2013; Wang & Chen, 2018; Perrault et al.,
2020). However, in pure exploration, one set of samples at
each time step is not enough, since the algorithm needs to i)
check whether there is an arm that is the optimal one with
high probability; ii) look for an arm that needs exploration.
None of these two goals can be achieved by only one set of
samples. Therefore, we must draw several sets of samples
to make decisions, and this may fail the existing analysis of
TS in regret minimization.

In this paper, we solve the above challenges, and design a
TS-based algorithm TS-Explore for (combinatorial) pure
exploration under the frequentist setting with polynomial
implementation cost. At each time step t, TS-Explore
first draws independent random samples θki (t) for all the
(base) arms i ∈ [m] and k = 1, 2, · · · ,M (i.e., totally
M independent samples for each arm). Then it tries to
find out the M best (super) arms S̃kt ’s under sample sets
θk(t) = [θk1 (t), θk2 (t), · · · , θkm(t)] for k = 1, 2, · · · ,M . If
in all these sample sets, the best (super) arm is the same
as the empirically best (super) arm Ŝt (i.e., the best arm
under the empirical means), then the algorithm will output
that this (super) arm is optimal. Otherwise, for all k ∈ [M ],
the algorithm will check the reward gap between S̃kt and Ŝt
under parameter set θk(t). Then it focuses on the (super)
arm S̃

k∗t
t with the largest reward gap, i.e., it chooses to pull

a (base) arm in the exchange set of Ŝt and S̃k
∗
t
t .

Recording such reward gaps and focusing on S̃k
∗
t
t is the key

mechanism we used to solve the above challenges. On the
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one hand, our analysis shows that with a proper value M
(the number of sample sets) and proper random sample dis-
tributions, S̃k

∗
t
t has some similar properties with the (super)

arm with the largest upper confidence bound. These proper-
ties play a critical role in the analysis of UCB approaches.
Thus, we can also use them to obtain an upper bound for the
number of pulls on sufficiently learned sub-optimal arms
in TS-Explore as well as the correctness guarantee of TS-
Explore. On the other hand, this novel mechanism saves
the key advantage of Thompson Sampling, i.e., the sum of
random samples within S will not exceed the tight upper
confidence bound of S with high probability. Hence, TS-
Explore can achieve a lower complexity upper bound than
existing efficient UCB-based solutions. These results indi-
cate that our TS-Explore policy is correct, efficient (with low
implementation cost), and effective (with low complexity).

In the general CMAB setting, we show that TS-Explore is
near optimal and achieves a lower complexity upper bound
than existing efficient UCB-based algorithms (Chen et al.,
2014). The optimal algorithm in (Chen et al., 2017) is only
efficient when the combinatorial structure satisfies some
specific properties (otherwise it suffers from an exponential
implementation cost), and is less general than our results.
We also conduct experiments to compare the complexity
of TS-Explore with existing baselines. The experimental
results show that TS-Explore outperforms the efficient base-
line CLUCB (Chen et al., 2014), and behaves only a little
worse than the optimal but non-efficient baseline NaiveG-
apElim (Chen et al., 2017). As for the MAB setting, we
show that TS-Explore is asymptotically optimal, i.e., it has
a comparable complexity to existing optimal algorithms
(Kalyanakrishnan et al., 2012; Kaufmann & Kalyanakrish-
nan, 2013) when δ → 0. All these results indicate that
our TS-based algorithm is efficient and effective in dealing
with pure exploration problems. To the best of our knowl-
edge, this is the first result of using this kind of TS-based
algorithm (i.e., always making decisions based on random
samples) in pure exploration under the frequentist setting.

2. Related Works
Pure exploration of the classic MAB model is first proposed
by Audibert et al. (2010). After that, people have designed
lots of learning policies for this problem. The two most rep-
resentative algorithms are successive-elimination (Even-Dar
et al., 2006; Audibert et al., 2010; Kaufmann & Kalyanakr-
ishnan, 2013) and LUCB (Kalyanakrishnan et al., 2012;
Kaufmann & Kalyanakrishnan, 2013). Both of them adopt
the idea of UCB (Auer et al., 2002) and achieve an asymptot-
ically optimal complexity upper bound (i.e., it matches with
the complexity lower bound proposed by Kalyanakrishnan
et al. (2012)). Compared to these results, our TS-Explore
policy uses a totally different approach, and can achieve an

asymptotically optimal complexity upper bound as well.

Combinatorial pure exploration is first studied by Chen et al.
(2014). They propose CLUCB, an LUCB-based algorithm
that is efficient as long as there is an offline oracle to output
the best super arm under any given parameter set. Chen
et al. (2017) then design an asymptotically optimal algo-
rithm for this problem. However, their algorithm can only
be implemented efficiently when the combinatorial struc-
ture follows some specific constraints. Recently, based on
the game approach, Jourdan et al. (2021) provide another
optimal learning policy for pure exploration in CMAB. But
their algorithm still suffers from an exponential implemen-
tation cost. Compared with these UCB-based algorithms,
our TS-Explore policy achieves a lower complexity bound
than CLUCB (Chen et al., 2014) (with a similar polynomial
time cost), and has a much lower implementation cost than
the optimal policies (Chen et al., 2017; Jourdan et al., 2021)
in the most general combinatorial pure exploration setting.

There also exist some researches about applying Thompson
Sampling to pure exploration. For example, Russo (2016)
considers a frequentist setting of pure exploration in clas-
sic MAB, and proposes algorithms called TTPS, TTVS,
and TTTS; Shang et al. (2020) extend the results in (Russo,
2016), design a T3C algorithm, and provide its analysis for
Gaussian bandits; Li et al. (2021) study Bayesian contex-
tual pure exploration, propose an algorithm called BRE and
obtain its corresponding analysis. However, these results
are still very different from ours. The first point is that they
mainly use random distributions but not random samples
to decide the next chosen arm or when to stop, which may
cause a high implementation cost when we extend them to
the combinatorial setting, since it is much more complex
to deal with random distributions than to deal with random
samples. Moreover, our results are still more general even
if we only consider pure exploration in classic MAB under
the frequentist setting. For example, Russo (2016) does not
provide a correct stopping rule, and Shang et al. (2020) only
obtain the correctness guarantee for Gaussian bandits. Be-
sides, their complexity bounds are asymptotic ones (which
require δ → 0), while ours works for any δ ∈ (0, 1).

3. Model Setting
3.1. Pure Exploration in Multi-armed Bandit

A pure exploration problem instance of MAB is a tuple
([m],D, δ). Here [m] = {1, 2, · · · ,m} is the set of arms,
D = {D1, D2, · · · , Dm} are the corresponding reward dis-
tributions of the arms, and δ is the error constraint. In this
paper, we assume that all the distributions Di’s are sup-
ported on [0, 1]. Let µi , EX∼Di [X] denote the expected
reward of arm i, and a∗ = argmaxi∈[m] µi is the optimal
arm with the largest expected reward. Similar to many ex-
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isting works (e.g., (Audibert et al., 2010)), we assume that
the optimal arm is unique. At each time step t, the learning
policy π can either pull an arm i(t) ∈ [m], or output an arm
a(t) ∈ [m]. If it chooses to pull arm i(t), then it will receive
an observation ri(t)(t), which is drawn independently from
Di(t). The goal of the learning policy is to make sure that
with probability at least 1− δ, its output a(t) = a∗. Under
this constraint, it aims to minimize the complexity

Zπ ,
m∑
i=1

Ni(T
π),

where Tπ denotes the time step t that policy π chooses to
output a(t), and Ni(t) denotes the number of observations
on arm i until time step t.

Let ∆i,m , µa∗ − µi denote the expected reward gap be-
tween the optimal arm a∗ and any other arm i 6= a∗. For the
optimal arm a∗, its ∆a∗,m is defined as µa∗ −maxi6=a∗ µi.
We also define Hm ,

∑
i∈[m]

1
∆2
i,m

, and existing works
(Kalyanakrishnan et al., 2012) show that the complex-
ity lower bound of any pure exploration algorithm is
Ω(Hm log 1

δ ).

3.2. Pure Exploration in Combinatorial Multi-armed
Bandit

A pure exploration problem instance of CMAB is an ex-
tension of the MAB setting. The arms i ∈ [m] are called
base arms, and there is also a super arm set I ⊆ 2[m]. For
each super arm S ∈ I, its expected reward is

∑
i∈S µi. Let

S∗ = argmaxS∈I
∑
i∈S µi denote the optimal super arm

with the largest expected reward, and we assume that the
optimal super arm is unique (as in (Chen et al., 2014)). At
each time step t, the learning policy π can either pull a base
arm i(t) ∈ [m], or output a super arm S(t) ∈ I. The goal
of the learning policy is to make sure that with probability
at least 1− δ, its output S(t) = S∗. Under this constraint,
it also wants to minimize its complexity Zπ .

As in many existing works (Chen et al., 2013; 2014; Wang
& Chen, 2018), we also assume that there exists an offline
Oracle, which takes a set of parameters θ = [θ1, · · · , θm]
as input, and outputs the best super arm under this parameter
set, i.e., Oracle(θ) = argmaxS∈I

∑
i∈S θi.

In this paper, for i /∈ S∗, we use ∆i,c ,
∑
j∈S∗ µj −

maxS∈I:i∈S
∑
j∈S µj to denote the expected reward gap

between the optimal super arm S∗ and the best super arm
that contains i. As for i ∈ S∗, its ∆i,c is defined as
∆i,c ,

∑
j∈S∗ µj − maxS∈I:i/∈S

∑
j∈S µj , i.e., the ex-

pected reward gap between S∗ and the best super arm
that does not contain i. We also define S ⊕ S′ = (S \
S′) ∪ (S′ \ S) and width , maxS 6=S′ |S ⊕ S′|, and let
H1,c , width

∑
i∈[m]

1
∆2
i,c

, H2,c , width2∑
i∈[m]

1
∆2
i,c

.

Chen et al. (2017) prove that the complexity lower bound
for combinatorial pure exploration is Ω(H0,c log 1

δ ), where
H0,c is the optimal value of the following convex program
(here ∆S∗,S =

∑
i∈S∗ µi −

∑
i∈S µi):

min
∑
i∈[m]

Ni

s.t.
∑

i∈S∗⊕S

1

Ni
≤ ∆2

S∗,S , ∀S ∈ I, S 6= S∗

The following result shows the relationships between H0,c,
H1,c and H2,c.

Proposition 3.1. For any combinatorial pure exploration
instance, H0,c ≤ H1,c ≤ H2,c.

Proof. Since width ≥ 1, we have that H1,c ≤ H2,c. As
for the first inequality, note that ∀i ∈ [m], Ni = width

∆2
i,c

is a
feasible solution of the above convex program. Hence we
have that H0,c ≤ H1,c.

4. Thompson Sampling-based Pure
Exploration Algorithm

Note that pure exploration of classic multi-armed bandit
is a special case of combinatorial multi-armed bandit (i.e.,
I = {{1}, {2}, · · · , {m}}). Therefore, in this section, we
mainly focus on the TS-based pure exploration algorithm in
the combinatorial multi-armed bandit setting. Its framework
and analysis can directly lead to results in the classic multi-
armed bandit setting.

In the following, we let Φ(x, µ, σ2) , PrX∼N (µ,σ2)[X ≥
x]. For any x ∈ (0, 0.5), we also define φ(x) as a function
of x such that Φ(φ(x), 0, 1) = x.

4.1. Algorithm Framework

Our Thompson Sampling-based algorithm (TS-Explore) is
described in Algorithm 1. We use Ni to denote the number
of observations on arm i, Ri to denote the sum of all the
observations from arm i, and Ni(t), Ri(t) to denote the
value of Ni, Ri at the beginning of time step t.

At each time step t, for any i ∈ [m], TS-Explore first
draws M(δ, q, t) , 1

q log(12|I|2t2/δ) random samples

{θki (t)}M(δ,q,t)
k=1 independently from a Gaussian distribu-

tion with mean µ̂i(t) , Ri(t)
Ni(t)

(i.e., the empirical mean

of arm i) and variance C(δ,q,t)
Ni(t)

(i.e., inversely proportional

toNi(t)), where C(δ, q, t) , log(12|I|2t2/δ)
φ2(q) . Then it checks

which super arm is optimal in the empirical mean pa-
rameter set µ̂(t) = [µ̂1(t), µ̂2(t), · · · , µ̂m(t)] and the k-
th sample set θk(t) = [θk1 (t), θk2 (t), · · · , θkm(t)] for all k
by using the offline Oracle, i.e., Ŝt = Oracle(µ̂(t)) and
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Algorithm 1 TS-Explore
1: Input: Error constraint δ, q ∈ [δ, 0.1], t← m, Ni ←

0, Ri ← 0 for all i ∈ [m].
2: Pull each arm once, update their number of pulls Ni’s,

the sum of their observations Ri’s.
3: while true do
4: t← t+ 1.
5: For all base arm i ∈ [m], µ̂i(t)← Ri

Ni
.

6: µ̂(t)← [µ̂1(t), µ̂2(t), · · · , µ̂m(t)].
7: Ŝt ← Oracle(µ̂(t)).
8: for k = 1, 2, · · · ,M(δ, q, t) do
9: For each arm i, draw θki (t) independently from

distribution N (µ̂i(t),
C(δ,q,t)
Ni

).
10: θk(t)← [θk1 (t), θk2 (t), · · · , θkm(t)].
11: S̃kt ← Oracle(θk(t)).
12: ∆̃k

t ←
∑
i∈S̃kt

θki (t)−
∑
i∈Ŝt θ

k
i (t).

13: end for
14: if ∀1 ≤ k ≤M(δ, q, t), S̃kt = Ŝt then
15: Return: Ŝt.
16: else
17: k∗t ← argmaxk ∆̃k

t , S̃t ← S̃
k∗t
t .

18: Pull arm i(t) ← argmini∈Ŝt⊕S̃t Ni, update its
number of pulls Ni(t) and the sum of its observa-
tions Ri(t).

19: end if
20: end while

S̃kt = Oracle(θk(t)). If all the best super arms S̃kt ’s are
the same as Ŝt, then TS-Explore outputs that this super arm
is the optimal one. Otherwise, for all 1 ≤ k ≤ M(δ, q, t),
it will compute the reward gap between S̃kt and Ŝt under
the k-th sample set θk(t), and focus on k∗t with the largest
reward gap, i.e., TS-Explore will choose to pull the base
arm with the least number of observations in Ŝt ⊕ S̃

k∗t
t (in

the following, we use S̃t to represent S̃k
∗
t
t to simplify nota-

tions). Note that Ŝt 6= S̃t (otherwise we will output Ŝt as
the optimal super arm), thus the rule of choosing arms to
pull is well defined.

4.2. Analysis of TS-Explore

Theorem 4.1. In the CMAB setting, for q ∈ [δ, 0.1],
with probability at least 1 − δ, TS-Explore will output
the optimal super arm S∗ with complexity upper bounded
by O(H1,c(log 1

δ +log(|I|H1,c))
log 1

δ

log 1
q

+H1,c
log2(|I|H1,c)

log 1
q

).

Specifically, if we choose q = δ, then the complexity upper
bound is O(H1,c log 1

δ +H1,c log2(|I|H1,c)).

Remark 4.2. When the error constraint δ ∈ (0.1, 1),
we can still let the parameters (δ, q) in TS-Explore be
(δ0, q0) = (0.1, 0.1). In this case: i) its error probabil-
ity is upper bounded by δ0 = 0.1 < δ; and ii) since
δ
δ0

< 1
0.1 = 10, the complexity of TS-Explore is still

upper bounded by O(H1,c log 1
δ0

+H1,c log2(|I|H1,c)) =

O(H1,c log 1
δ +H1,c log2(|I|H1,c)).

By Theorem 4.1, we can directly obtain the correctness
guarantee and the complexity upper bound for applying TS-
Explore in pure exploration of classic multi-armed bandit.

Corollary 4.3. In the MAB setting, for q ∈ [δ, 0.1],
with probability at least 1 − δ, TS-Explore will output
the optimal arm a∗ with complexity upper bounded by
O(Hm(log 1

δ +log(mHm))
log 1

δ

log 1
q

+Hm
log2(mHm)

log 1
q

). Specif-

ically, if we choose q = δ, then the complexity upper bound
is O(Hm log 1

δ +Hm log2(mHm)).

Remark 4.4. The value q in TS-Explore is used to con-
trol the number of times that we draw random samples at
each time step. Note that M(δ, q, t) = 1

q log(12|I|2t2/δ).
Hence when q becomes larger, we need fewer samples, but
the complexity bound becomes worse. Here is a trade-off
between the algorithm’s complexity and the number of ran-
dom samples it needs to draw. Our analysis shows that using
q = δ

1
β for some constant β ≥ 1 can make sure that the

complexity upper bound remains the same order, and reduce
the number of random samples significantly.

Remark 4.5. If the value |I| is unknown (which is common
in real applications), we can use 2m instead (in M(δ, q, t)
and C(δ, q, t)). This only increases the constant term in the
complexity upper bound and does not influence the major
term O(H1,c log 1

δ ).

Theorem 4.1 shows that the complexity upper bound of TS-
Explore is width lower than the CLUCB policy in (Chen
et al., 2014). To the best of our knowledge, TS-Explore is
the first algorithm that efficiently achieves an O(H1,c log 1

δ )
complexity upper bound in the most general combinatorial
pure exploration setting. Besides, this is also the first the-
oretical analysis of using a TS-based algorithm (i.e., using
random samples to make decisions) to deal with combinato-
rial pure exploration problems under the frequentist setting.

Though the complexity bound of TS-Explore still has some
gap with the optimal one O(H0,c log 1

δ ), we emphasize that
this is because we only use the simple offline oracle and
do not seek more detailed information about the combina-
torial structure. This makes our policy more efficient. As a
comparison, the existing optimal policies (Chen et al., 2017;
Jourdan et al., 2021) either suffer from an exponential time
cost, or require the combinatorial structure to satisfy some
specific constraints so that they can adopt more powerful
offline oracles that explore detailed information about the
combinatorial structure efficiently (please see Appendix C
for discussions about this). Therefore, our algorithm is more
efficient in the most general CMAB setting, and can be at-
tractive in real applications with large scale and complex
combinatorial structures.
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On the other hand, the gap between the complexity upper
bound and the complexity lower bound does not exist in
the MAB setting. Corollary 4.3 shows that the complexity
upper bound of applying TS-Explore in the classic MAB
setting matches the complexity lower bound Ω(Hm log 1

δ )
(Kalyanakrishnan et al., 2012) when δ → 0, i.e., TS-Explore
is asymptotically optimal in the classic MAB setting.

Now we provide the proof of Theorem 4.1.

In this proof, we denote J = {U : ∃S, S′ ∈ I, U = S\S′}.
Note that |J | ≤ |I|2 and for any U ∈ J , |U | ≤ width.
We also denote L1(t) = log(12|I|2t2/δ) and L2(t) =
log(12|I|2t2M(δ, q, t)/δ) to simplify notations.

We first define three events as follows: E0,c is the event that
for all t > 0, U ∈ J ,

|
∑
i∈U

(µ̂i(t)− µi)| ≤
√∑
i∈U

1

2Ni(t)
L1(t);

E1,c is the event that for all t > 0, 1 ≤ k ≤ M(δ, q, t),
U ∈ J ,

|
∑
i∈U

(θki (t)− µ̂i(t))| ≤
√∑
i∈U

2C(δ, q, t)

Ni(t)
L2(t);

and E2,c is the event that for all t > 0, S, S′ ∈ I. there
exists 1 ≤ k ≤M(δ, q, t) such that∑

i∈S
θki (t)−

∑
i∈S′

θki (t) ≥
∑
i∈S

µi −
∑
i∈S′

µi.

Roughly speaking, E0,c means that for any U ∈ J , the gap
between its real mean and its empirical mean lies in the
corresponding confidence radius; E1,c means that for any
U ∈ J , the gap between its empirical mean and the sum
of its random samples lies in the corresponding confidence
radius; and E2,c means that for any two super arms S 6= S′,
at each time step, there is at least one sample set such that
the gap between the sum of their random samples is larger
than the gap between their real means.

We will first prove that E0,c ∧ E1,c ∧ E2,c happens with high
probability, and then show the correctness guarantee and
complexity upper bound under E0,c ∧ E1,c ∧ E2,c.
Lemma 4.6. In Algorithm 1, we have that

Pr[E0,c ∧ E1,c ∧ E2,c] ≥ 1− δ.

Proof. Note that the random variable (µ̂i(t)− µi) is zero-
mean and 1

4Ni(t)
sub-Gaussian, and for different i, the

random variables (µ̂i(t) − µi)’s are independent. There-
fore,

∑
i∈U (µ̂i(t)−µi) is zero-mean and

∑
i∈U

1
4Ni(t)

sub-
Gaussian. Then by concentration inequality of sub-Gaussian

random variables (see details in Appendix D),

Pr

|∑
i∈U

(µ̂i(t)− µi)| >
√∑
i∈U

1

2Ni(t)
L1(t)


≤ 2 exp(−L1(t))

=
δ

6|I|2t2
.

This implies that

Pr[¬E0,c] ≤
∑
U,t

δ

6|I|2t2
≤
∑
t

δ

6t2
≤ δ

3
,

where the second inequality is because that |J | ≤ |I|2, and
the third inequality is because that

∑
t

1
t2 ≤ 2.

Similarly, the random variable (θki (t) − µ̂i(t)) is a zero-
mean Gaussian random variable with variance C(δ,q,t)

Ni(t)
, and

for different i, the random variables (θki (t) − µ̂i(t))’s are
also independent. Then by concentration inequality,

Pr

[
|
∑
i∈U

(θki (t)− µ̂i(t))| >
√∑
i∈U

2C(δ, q, t)

Ni(t)
L2(t)

]
≤ 2 exp(−L2(t))

=
δ

6|I|2t2M(δ, q, t)
.

This implies that

Pr[¬E1,c] ≤
∑
U,t,k

δ

6|I|2t2M(δ, q, t)
≤
∑
U,t

δ

6|I|2t2
≤ δ

3
,

where the second inequality is because that there are totally
M(δ, q, t) sample sets at time step t.

Finally we consider the probability Pr[¬E2,c|E0,c]. In the
following, we denote ∆S,S′ ,

∑
i∈S µi −

∑
i∈S′ µi =∑

i∈S\S′ µi−
∑
i∈S′\S µi as the reward gap (under the real

means) between S and S′.

For any fixed S 6= S′, we denote A(t) =
∑
i∈S\S′

1
2Ni(t)

,
B(t) =

∑
i∈S′\S

1
2Ni(t)

and C(t) = C(δ, q, t) to sim-
plify notations. Then under event E0,c, we must have
that

∑
i∈S\S′ µ̂i(t) −

∑
i∈S′\S µ̂i(t) ≥ (

∑
i∈S\S′ µi −√

A(t)L1(t))− (
∑
i∈S′\S µi +

√
B(t)L1(t)) ≥ ∆S,S′ −√

A(t)L1(t)−
√
B(t)L1(t).

Since
∑
i∈S\S′ θ

k
i (t) −

∑
i∈S′\S θ

k
i (t) is a Gaussian ran-

dom variable with mean
∑
i∈S\S′ µ̂i(t) −

∑
i∈S′\S µ̂i(t)

and variance 2A(t)C(t) + 2B(t)C(t), then under event
E0,c, (recall that Φ(x, µ, σ2) = PrX∼N (µ,σ2)[X ≥ x]):

Pr

[∑
i∈S

θki (t)−
∑
i∈S′

θki (t) ≥ ∆S,S′

]
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= Pr

 ∑
i∈S\S′

θki (t)−
∑

i∈S′\S

θki (t) ≥ ∆S,S′


= Φ

∆S,S′ ,
∑

i∈S\S′
µ̂i(t)−

∑
i∈S′\S

µ̂i(t), 2A(t)C(t) + 2B(t)C(t)


≥Φ(∆S,S′ ,∆S,S′ −

√
A(t)L1(t)−

√
B(t)L1(t),

2A(t)C(t) +2B(t)C(t))

= Φ(
√
A(t)L1(t) +

√
B(t)L1(t), 0, 2A(t)C(t) +2B(t)C(t))

= Φ

(√
L1(t)

C(t)
·
√
A(t) +

√
B(t)√

2A(t) + 2B(t)
, 0, 1

)

≥Φ

(√
L1(t)

C(t)
, 0, 1

)
= q,

where the last equation is because that we choose C(t) =
L1(t)
φ2(q) and Φ(φ(q), 0, 1) = q (by definition of φ).

Note that the parameter sets {θk(t)}M(δ,q,t)
k=1 are chosen

independently, therefore under event E0,c, we have that

Pr

[
∀k,
∑
i∈S

θki (t)−
∑
i∈S′

θki (t) < ∆S,S′

]
≤ (1− q)M(δ,q,t)

≤ δ

12|I|2t2
,

where that last inequality is because that we choose
M(δ, q, t) = 1

q log(12|I|2t2/δ).

This implies that

Pr[¬E2,c|E0,c] ≤
∑
t,S,S′

δ

12|I|2t2
≤
∑
t

δ

12t2
≤ δ

3
.

All these show that Pr[E0,c ∧ E1,c ∧ E2,c] ≥ 1− δ.

Then it is sufficient to prove that under event E0,c∧E1,c∧E2,c,
TS-Explore works correctly with complexity upper bound
shown in Theorem 4.1.

Firstly, we prove that TS-Explore will output S∗. The proof
is quite straightforward: if Ŝt 6= S∗, then under event
E2,c, there exists k such that

∑
i∈S∗ θ

k
i (t)−

∑
i∈Ŝt θ

k
i (t) ≥

∆S∗,Ŝt
> 0. Therefore S̃kt 6= Ŝt and we will not output Ŝt.

Because of this, TS-Explore can only return S∗ under event
E0,c ∧ E1,c ∧ E2,c, and we finish the proof of its correctness.

Then we come to bound the complexity of TS-Explore, and
we will use the following lemma in our analysis.
Lemma 4.7. Under event E0,c ∧ E1,c ∧ E2,c, a base arm i

will not be pulled if Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

.

Due to space limit, we only prove Lemma 4.7 for the case
that (Ŝt = S∗) ∨ (S̃t = S∗) in our main text, and defer the
complete proof to Appendix A.

Proof. We will prove this lemma by contradiction.

First we consider the case that (Ŝt = S∗) ∧ (S̃t 6=
S∗). In this case, i ∈ S∗ ⊕ S̃t, which implies that
∆i,c ≤ ∆S∗,S̃t

. If we choose a base arm i with

Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

≥ 98 widthC(t)L2(t)
∆2
S∗,S̃t

to pull,

we know that ∀j ∈ S∗ ⊕ S̃t, Nj(t) ≥ 98 widthC(t)L2(t)
∆2
S∗,S̃t

.

This implies that
√∑

j∈S∗\S̃t
2

Nj(t)
≤ ∆S∗,S̃t

7
√
C(t)L2(t)

and√∑
j∈S̃t\S∗

2
Nj(t)

≤ ∆S∗,S̃t

7
√
C(t)L2(t)

.

By E2,c, there exists k such that
∑
j∈S∗\S̃t θ

k
j (t) −∑

j∈S̃t\S∗ θ
k
j (t) ≥ ∆S∗,S̃t

. By E1,c, |
∑
j∈S∗\S̃t(θ

k
j (t) −

µ̂j(t))| ≤
√∑

j∈S∗\S̃t
2C(t)
Nj(t)

L2(t) ≤ ∆S∗,S̃t
7 and similarly

|
∑
j∈S̃t\S∗(θ

k
j (t)− µ̂j(t))| ≤

∆S∗,S̃t
7 . Hence∑

j∈S∗\S̃t

µ̂j(t)−
∑

j∈S̃t\S∗
µ̂j(t)

≥
∑

j∈S∗\S̃t

θkj (t)−
∑

j∈S̃t\S∗
θkj (t)

−|
∑

j∈S∗\S̃t

(θkj (t)− µ̂j(t))| − |
∑

j∈S̃t\S∗
(θkj (t)− µ̂j(t))|

≥
5∆S∗,S̃t

7
.

E1,c also means |
∑
j∈S∗\S̃t(θ

k∗t
j (t)− µ̂j(t))| ≤

∆S∗,S̃t
7 and

|
∑
j∈S̃t\S∗(θ

k∗t
j (t)− µ̂j(t))| ≤

∆S∗,S̃t
7 . Thus we know that∑

j∈S∗\S̃t

θ
k∗t
j (t)−

∑
j∈S̃t\S∗

θ
k∗t
j (t)

≥
∑

j∈S∗\S̃t

µ̂j(t)−
∑

j∈S̃t\S∗
µ̂j(t)

−|
∑

j∈S∗\S̃t

(θ
k∗t
j (t)− µ̂j(t))| − |

∑
j∈S̃t\S∗

(θ
k∗t
j (t)− µ̂j(t))|

≥
3∆S∗,S̃t

7
.

This contradicts with the fact that S̃t is the optimal super
arm under the k∗t -th sample set θk

∗
t (t).

Then we come to the case that (Ŝt 6= S∗) ∧ (S̃t = S∗). In
this case, i ∈ S∗ ⊕ Ŝt, which implies that ∆i,c ≤ ∆S∗,Ŝt

.

If we choose a base arm i with Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

≥
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98 widthC(t)L2(t)
∆2
S∗,Ŝt

to pull, we have that
√∑

j∈S∗\Ŝt
2

Nj(t)
≤

∆S∗,Ŝt

7
√
C(t)L2(t)

and
√∑

j∈Ŝt\S∗
2

Nj(t)
≤ ∆S∗,Ŝt

7
√
C(t)L2(t)

.

By E2,c, there exists k such that
∑
j∈S∗\Ŝt θ

k
j (t) −∑

j∈Ŝt\S∗ θ
k
j (t) ≥ ∆S∗,Ŝt

. By E1,c, |
∑
j∈S∗\Ŝt(θ

k
j (t) −

µ̂j(t))| ≤
∆S∗,Ŝt

7 and |
∑
j∈Ŝt\S∗(θ

k
j (t) − µ̂j(t))| ≤

∆S∗,Ŝt
7 . All these imply∑

j∈S∗\Ŝt

µ̂j(t)−
∑

j∈Ŝt\S∗
µ̂j(t)

≥
∑

j∈S∗\Ŝt

θkj (t)−
∑

j∈Ŝt\S∗
θkj (t)

−|
∑

j∈S∗\Ŝt

(θkj (t)− µ̂j(t))| − |
∑

j∈Ŝt\S∗
(θkj (t)− µ̂j(t))|

≥
5∆S∗,Ŝt

7
.

This contradicts with the fact that Ŝt is the empirically opti-
mal super arm.

Lemma 4.7 is similar to Lemma 10 in (Chen et al., 2014).
Both of them give an upper bound for the number of pulls
on base arm i. The key difference is that in (Chen et al.,
2014), for an arm set U ∈ J , the gap between its real
mean and its upper confidence bound is Õ(

∑
i∈U

√
1
Ni

),

which means that we require all the Ni’s to be Θ̃(width2

∆2
i,c

)

to make sure that this gap is less than ∆i,c. In our paper,
based on event E0,c ∧ E1,c, the gap between U ’s real mean

and the sum of random samples in U is Õ(
√∑

i∈U
C(t)
Ni

).

Therefore, we only require all the Ni’s to be Θ̃(widthC(t)
∆2
i,c

)

to make sure that this gap is less than ∆i,c, and this reduces
a factor of width in the number of pulls on base arm i (our
analysis shows that C(t) is approximately a constant). In
fact, reducing a width factor in Lemma 4.7 is the key reason
that the complexity upper bound of TS-Explore is width
lower than the CLUCB policy in (Chen et al., 2014).

The novelty of our proof for Lemma 4.7 mainly lies in
the event E2,c (as well as the mechanism of recording all
the ∆̃k

t ’s and focusing on the largest one), i.e., we show
that under event E2,c, S̃t has some similar properties as
the super arm with the largest upper confidence bound
(which is used in LUCB-based policies such as CLUCB).
For example, when Ŝt does not equal the optimal super
arm S∗, E2,c tells us that there must exist k such that∑
i∈S∗ θ

k
i (t) −

∑
i∈Ŝt θ

k
i (t) ≥ ∆S∗,Ŝt

. Along with the

fact k∗t = argmaxk ∆̃k
t , we know ∆̃

k∗t
t ≥ ∆S∗,Ŝt

. This

means that the reward gap between Ŝt and S̃t (S̃k
∗
t
t ) could

be larger than ∆S∗,Ŝt
, which implies that S̃t is either an in-

sufficiently learned sub-optimal arm or the optimal arm (see
details in the complete proof in Appendix A). This method
solves the challenge of the uncertainty in random samples,
and allows us to use similar analysis techniques (e.g., (Chen
et al., 2014)) to prove Lemma 4.7.

By Lemma 4.7, if ∀i,Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

, then TS-
Explore must terminate (and output the correct answer).
Thus, the complexity Z satisfies

Z ≤
∑
i∈[m]

98 widthC(Z)L2(Z)

∆2
i,c

= 98H1,cC(Z)L2(Z).

For q ≤ 0.1, 1
φ2(q) = O( 1

log 1
q

). Then with C(Z) =

log(12|I|2Z2/δ)
φ2(q) , L2(Z) = log(12|I|2Z2M(Z)/δ) and

M(Z) = log(12|I|2Z2/δ)
q , we have that (note that q ≥ δ):

Z ≤ O

(
H1,c

(
log(|I|Z) + log 1

δ

)2
log 1

q

)
. (1)

Therefore, after some basic calculations (the details are
deferred to Appendix B), we know that

Z = O

(
H1,c

(
log(|I|H1,c) + log 1

δ

)2
log 1

q

)
.

5. Experiments
In this section, we conduct some experiments to compare the
complexity performances of efficient learning algorithms
(i.e., TS-Explore and CLUCB (Chen et al., 2014)) and the
optimal but non-efficient algorithm NaiveGapElim (Chen
et al., 2017) in the CMAB setting. We consider the follow-
ing combinatorial pure exploration problem instance with
parameter n ∈ N+, and always choose q = δ in TS-Explore.
All the results (average complexities and their standard de-
viations) take an average of 100 independent runs.

Problem 5.1. For fixed value n, there are totally 2n base
arms. For the first n base arms, their expected rewards equal
0.1, and for the last n base arms, their expected rewards
equal 0.9. There are only two super arms: S1 contains the
first n base arms and S2 contains the last n base arms.

We first fix δ = 10−3, and compare the complexity of the
above algorithms under different n’s (Fig. 1(a)). We can
see that when n increases, the complexities of TS-Explore
and NaiveGapElim do not increase a lot, while the com-
plexity of CLUCB increases linearly. This accords with our
analysis, since H0,c(n) = H1,c(n) = 2n · 2n

(0.8n)2 = 6.25

is a constant but H2,c(n) = 2n · (2n)2

(0.8n)2 = 12.5n is linear
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Figure 1. Comparison of TS-Explore, CLUCB and NaiveGapElim.

with n (here H0,c(n), H1,c(n), H2,c(n) are the values of
H0,c, H1,c, H2,c under the problem instance with parameter
n, respectively).

Then we fix n = 2, and compare the complexity of the
above algorithms under different δ’s (Fig. 1(b)). We can see
that when δ is large, the complexity of TS-Explore decreases
as δ decreases, and when δ is small, the complexity of TS-
Explore increases as δ decreases. Moreover, the complexi-
ties of TS-Explore and NaiveGapElim increase much slower
than CLUCB (when δ decreases). This also accords with
our analysis. Note that there is a term O(H1,c

log2(|I|H1,c)

log 1
q

)

in our complexity bound. Since we choose q = δ, this term
decreases as δ decreases. When δ = 10−1, this term is very
large and becomes the majority term in complexity, and
therefore the complexity decreases when δ decreases from
10−1 to 10−3. When δ = 10−3, the term O(H1,c log 1

δ )
becomes the majority term in complexity, therefore the com-
plexity increases when δ decreases from 10−3 to 10−5.

All the experimental results indicate that TS-Explore outper-

forms CLUCB (especially when the size of the problem is
large or the error constraint δ is small). On the other hand,
the complexity of our efficient algorithm TS-Explore is only
a little higher than the optimal but non-efficient algorithm
NaiveGapElim. These results demonstrate the effectiveness
of our algorithm.

6. Conclusions
In this paper, we explore the idea of Thompson Sampling
to solve the pure exploration problems under the frequentist
setting. We first propose TS-Explore, an efficient policy
that uses random samples to make decisions, and then show
that: i) in the combinatorial multi-armed bandit setting, our
policy can achieve a lower complexity bound than existing
efficient policies; and ii) in the classic multi-armed bandit
setting, our policy can achieve an asymptotically optimal
complexity bound.

There remain many interesting topics to be further stud-
ied, e.g., how to achieve the optimal complexity bound in
the combinatorial multi-armed bandit setting by seeking
detailed information about the combinatorial structure in
TS-Explore; and what are the complexity bounds of us-
ing our TS-Explore framework in other pure exploration
problems (e.g., dueling bandit and linear bandit). It is also
worth studying how to design TS-based pure exploration
algorithms for the fixed budget setting.
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A. The Complete Proof of Lemma 4.7

Lemma 4.7 (restated) Under event E0,c ∧ E1,c ∧ E2,c, a base arm i will not be pulled if Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

.

Proof. We still prove this lemma by contradiction.

Assume that arm i is pulled with Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

, then there are four probabilities: (i ∈ Ŝt) ∧ (i ∈ S∗),

(i ∈ Ŝt) ∧ (i /∈ S∗), (i ∈ S̃t) ∧ (i ∈ S∗), (i ∈ S̃t) ∧ (i /∈ S∗).

Case i): (i ∈ Ŝt) ∧ (i ∈ S∗) or (i ∈ S̃t) ∧ (i /∈ S∗). In this case, i ∈ S∗ ⊕ S̃t and therefore ∆i,c ≤ ∆S∗,S̃t
.

Since Ŝt = Oracle(µ̂(t)), we have that
∑
j∈S̃t\Ŝt µ̂j(t) ≤

∑
j∈Ŝt\S̃t µ̂j(t). By event E1,c, we also have that for any

k, |
∑
j∈S̃t\Ŝt(θ

k
j (t) − µ̂j(t))| ≤

√
C(t)

∑
j∈S̃t\Ŝt

2
Nj(t)

L2(t) ≤ ∆i,c

7 , and similarly |
∑
j∈Ŝt\S̃t(θ

k
j (t) − µ̂j(t))| ≤√

C(t)
∑
j∈Ŝt\S̃t

2
Nj(t)

L2(t) ≤ ∆i,c

7 (recall that Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

and i = argminj∈Ŝt⊕S̃t Nj(t)).

Therefore, for any k, we have that∑
j∈S̃t\Ŝt

θkj (t)−
∑

j∈Ŝt\S̃t

θkj (t)

=

 ∑
j∈S̃t\Ŝt

µ̂j(t)−
∑

j∈Ŝt\S̃t

µ̂j(t)

+

 ∑
j∈S̃t\Ŝt

(θkj (t)− µ̂j(t))

−
 ∑
j∈Ŝt\S̃t

(θkj (t)− µ̂j(t))


≤

 ∑
j∈S̃t\Ŝt

µ̂j(t)−
∑

j∈Ŝt\S̃t

µ̂j(t)

+

| ∑
j∈S̃t\Ŝt

(θkj (t)− µ̂j(t))|

+

| ∑
j∈Ŝt\S̃t

(θkj (t)− µ̂j(t))|


≤ 0 +

2

7
∆i,c

≤ 2

7
∆i,c.

This means that ∆̃
k∗t
t =

∑
j∈S̃t\Ŝt θ

k∗t
j (t)−

∑
j∈Ŝt\S̃t θ

k∗t
j (t) ≤ 2

7∆i,c.

Moreover, since
∑
j∈S̃t\Ŝt θ

k∗t
j (t) ≥

∑
j∈Ŝt\S̃t θ

k∗t
j (t), we have that∑

j∈S̃t\Ŝt

µ̂j(t)−
∑

j∈Ŝt\S̃t

µ̂j(t)

=

 ∑
j∈S̃t\Ŝt

θ
k∗t
j (t)−

∑
j∈Ŝt\S̃t

θ
k∗t
j (t)

−
 ∑
j∈S̃t\Ŝt

(θ
k∗t
j (t)− µ̂j(t))

+

 ∑
j∈Ŝt\S̃t

(θ
k∗t
j (t)− µ̂j(t))


≥

 ∑
j∈S̃t\Ŝt

θ
k∗t
j (t)−

∑
j∈Ŝt\S̃t

θ
k∗t
j (t)

−
| ∑

j∈S̃t\Ŝt

(θ
k∗t
j (t)− µ̂j(t))|

−
| ∑

j∈Ŝt\S̃t

(θ
k∗t
j (t)− µ̂j(t))|


≥ 0− 2

7
∆i,c

≥ −2

7
∆i,c. (2)

On the other hand, by event E2,c, we know that ∃k′ such that
∑
j∈S∗ θ

k′

j (t)−
∑
j∈S̃t θ

k′

j (t) ≥ ∆S∗,S̃t
. Then∑

j∈S∗
θk
′

j (t)−
∑
j∈Ŝt

θk
′

j (t)
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=

∑
j∈S∗

θk
′

j (t)−
∑
j∈S̃t

θk
′

j (t)

+

∑
j∈S̃t

θk
′

j (t)−
∑
j∈Ŝt

θk
′

j (t)


≥ ∆S∗,S̃t

+

∑
j∈S̃t

θk
′

j (t)−
∑
j∈Ŝt

θk
′

j (t)


= ∆S∗,S̃t

+

 ∑
j∈S̃t\Ŝt

θk
′

j (t)−
∑

j∈Ŝt\S̃t

θk
′

j (t)


= ∆S∗,S̃t

+

 ∑
j∈S̃t\Ŝt

µ̂j(t)−
∑

j∈Ŝt\S̃t

µ̂j(t)

+

 ∑
j∈S̃t\Ŝt

(θk
′

j (t)− µ̂j(t))

−
 ∑
j∈Ŝt\S̃t

(θk
′

j (t)− µ̂j(t))


≥ ∆S∗,S̃t

− 2

7
∆i,c −

| ∑
j∈S̃t\Ŝt

(θk
′

j (t)− µ̂j(t))|

−
| ∑

j∈Ŝt\S̃t

(θk
′

j (t)− µ̂j(t))|

 (3)

≥ ∆S∗,S̃t
− 4

7
∆i,c

>
2

7
∆i,c,

where Eq. (3) is because of Eq. (2). This means that ∆̃k′

t > 2
7∆i,c, which contradicts with ∆̃

k∗t
t ≤ 2

7∆i,c (since
k∗t = argmaxk ∆̃k

t ).

Case ii): (i ∈ Ŝt) ∧ (i /∈ S∗) or (i ∈ S̃t) ∧ (i ∈ S∗). In this case, i ∈ S∗ ⊕ Ŝt and therefore ∆i,c ≤ ∆S∗,Ŝt
.

By event E2,c, we know that ∃k,
∑
j∈S∗ θ

k
j (t) −

∑
j∈Ŝt θ

k
j (t) ≥ ∆S∗,Ŝt

. Hence ∆̃k
t ≥ ∆S∗,Ŝt

. Moreover, since

k∗t = argmaxk ∆̃k
t , we have that

∑
j∈S̃t θ

k∗t
j (t) −

∑
j∈Ŝt θ

k∗t
j (t) ≥ ∆S∗,Ŝt

, which is the same as
∑
j∈S̃t\Ŝt θ

k∗t
j (t) −∑

j∈Ŝt\S̃t θ
k∗t
j (t) ≥ ∆S∗,Ŝt

. On the other hand, by event E1,c, we have that |
∑
j∈S̃t\Ŝt(θ

k∗t
j (t) − µ̂j(t))| ≤√

C(t)
∑
j∈S̃t\Ŝt

2
Nj(t)

L2(t) ≤ ∆i,c

7 , and similarly |
∑
j∈Ŝt\S̃t(θ

k∗t
j (t)− µ̂j(t))| ≤

√
C(t)

∑
j∈Ŝt\S̃t

2
Nj(t)

L2(t) ≤ ∆i,c

7

(recall that Ni(t) ≥ 98 widthC(t)L2(t)
∆2
i,c

and i = argminj∈Ŝt⊕S̃t Nj(t)).

Therefore, ∑
j∈S̃t\Ŝt

µ̂j(t)−
∑

j∈Ŝt\S̃t

µ̂j(t)

=

 ∑
j∈S̃t\Ŝt

θ
k∗t
j (t)−

∑
j∈Ŝt\S̃t

θ
k∗t
j (t)

−
 ∑
j∈S̃t\Ŝt

(θ
k∗t
j (t)− µ̂j(t))

+

 ∑
j∈Ŝt\S̃t

(θ
k∗t
j (t)− µ̂j(t))


≥

 ∑
j∈S̃t\Ŝt

θ
k∗t
j (t)−

∑
j∈Ŝt\S̃t

θ
k∗t
j (t)

−
| ∑

j∈S̃t\Ŝt

(θ
k∗t
j (t)− µ̂j(t))|

−
| ∑

j∈Ŝt\S̃t

(θ
k∗t
j (t)− µ̂j(t))|


≥ ∆S∗,Ŝt

− 2

7
∆i,c

> 0.

This means that
∑
j∈S̃t µ̂j(t)−

∑
j∈Ŝt µ̂j(t) > 0, which contradicts with the fact that Ŝt = Oracle(µ̂(t)).

B. How to Obtain Complexity Upper Bound by Eq. (1)

Eq. (1) is restated below:
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Z ≤ O

(
H1,c

(
log(|I|Z) + log 1

δ

)2
log 1

q

)
.

We can then use the following lemma to find an upper bound for complexity Z.

Lemma B.1. Given K functions f1(x), · · · , fK(x) and K positive values X1, · · · , XK , if ∀x ≥ Xk,Kfk(x) < x holds
for all 1 ≤ k ≤ K, then for any x ≥

∑
kXk,

∑
k fk(x) < x.

Proof. Since X1, · · · , XK are positive values, for any x ≥
∑
kXk, we must have that x ≥ Xk. Therefore Kfk(x) < x,

which implies that ∑
k

Kfk(x) <
∑
k

x.

This is the same as
∑
k fk(x) < x.

To apply Lemma B.1, we set f1(Z) = H1,c
log2(|I|Z)

log 1
q

, f2(Z) = H1,c
log(|I|Z) log 1

δ

log 1
q

, and f3(Z) = H1,c
log2 1

δ

log 1
q

. After

some basic calculations, we get that X1 ≤ c1H1,c
log2(|I|H1,c)

log 1
q

, X2 ≤ c2,1H1,c
log(|I|H1,c) log 1

δ

log 1
q

+ c2,2H1,c
log2 1

δ

log 1
q

and

X3 ≤ c3H1,c
log2 1

δ

log 1
q

. Here c1, c2,1, c2,2, c3 are universal constants.

Then we know that for Z ≥ Θ(H1,c(log 1
δ + log(|I|H1,c))

log 1
δ

log 1
q

+ H1,c
log2(|I|H1,c)

log 1
q

), f1(Z) + f2(Z) + f3(Z) < Z (by

Lemma B.1). This contradicts with Eq. (1). Therefore, we know that

Z = O

(
H1,c

(
log(|I|H1,c) + log 1

δ

)2
log 1

q

)
= O

(
H1,c

(
log

1

δ
+ log(|I|H1,c)

)
log 1

δ

log 1
q

+H1,c
log2(|I|H1,c)

log 1
q

)
,

and this is the complexity upper bound in Theorem 4.1.

C. Discussions about the Optimal Algorithms for Combinatorial Pure Exploration
Chen et al. (2017) prove that the complexity lower bound for combinatorial pure exploration is Ω(H0,c log 1

δ ), where H0,c

is the optimal value of the following convex program (here ∆S∗,S =
∑
i∈S∗ µi −

∑
i∈S µi):

min
∑
i∈[m]

Nm

s.t.
∑

i∈S∗⊕S

1

Ni
≤ ∆2

S∗,S , ∀S ∈ I, S 6= S∗

In other words, for any correct combinatorial pure exploration algorithm, [E[N1]

log 1
δ

, E[N2]

log 1
δ

, · · · , E[Nm]

log 1
δ

] must be a feasible
solution for the above convex program, where E[Ni] represents the expected number of pulls on base arm i. We say base
arm i needs exploration the most at time t if αN∗i log 1

δ −Ni(t) is positive, where α is some universal constant and N∗i is
the value of Ni in the optimal solution H0,c (note that there may be several base arms that need exploration the most in one
time step). By this definition, if we always pull a base arm that needs exploration the most, then the frequency of pulling
each base arm converges to the optimal solution of H0,c, which leads to an optimal complexity upper bound.

However, the simple offline oracle used in TS-Explore (as described in Section 3.2) is not enough to look for a base arm
that needs exploration the most. In fact, both the existing optimal policies (Chen et al., 2017; Jourdan et al., 2021) not only
need to use this simple offline oracle, but also require some other mechanisms to explore detailed information about the
combinatorial structure of the problem instance to look for a base arm that needs exploration the most. The algorithms in
(Chen et al., 2017) need to record all the super arms in I with an empirical mean larger than some threshold η. This is one
kind of information about the combinatorial structure that can help to find out a base arm that needs exploration the most.
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Nevertheless, the authors only provide an efficient way to do this when the combinatorial structure satisfies some specific
constraints. In the most general setting, the algorithms in (Chen et al., 2017) must pay an exponential time cost for collecting
the detailed information. As for (Jourdan et al., 2021), the best-response oracle used by the λ-player needs to return a super
arm within set N(St) that has the shortest distance to a fixed target. Here St is a super arm, N(St) represents the set of
super arms whose cells’ boundaries intersect the boundary of the cell of St, and the cell of a super arm St is defined as
all the possible parameter sets [θ1, θ2, · · · , θm] in which St is the optimal super arm. This is another kind of information
about the combinatorial structure that can help to find out a base arm that needs exploration the most. Nevertheless, this
best-response oracle also has an exponential time cost (which is scaled with |N(St)|). By using these exponential time cost
mechanisms, the optimal algorithms (Chen et al., 2017; Jourdan et al., 2021) can find out a base arm that needs exploration
the most, which is critical to achieving the optimal complexity upper bound.

In this paper, to make TS-Explore efficient in the most general setting, we only use the simple offline oracle in our algorithm
and our mechanism can only inform us of one of the violated constraints in the optimization problem (if all the constraints
are not violated, TS-Explore will output the correct optimal arm). This means that we know nothing about the combinatorial
structure of the problem instance. Therefore, the best thing we can do is to treat all the base arms in the violated constraint
equally, i.e., we choose to pull the base arm (in the violated constraint) with the smallest number of pulls. This leads
to a complexity upper bound of O(H1,c log 1

δ ). If we want TS-Explore to achieve an optimal complexity upper bound
O(H0,c log 1

δ ), then we need to know which base arm needs exploration the most, e.g., by applying a powerful offline oracle
that takes the empirical means and random samples as input and outputs a base arm that needs exploration the most. How to
design such offline oracles and how to implement them efficiently is one of our future research topics.

D. Concentration Inequality of Sub-Gaussian Random Variables
Fact D.1. If X is zero-mean and σ2 sub-Gaussian, then

Pr[|X| > ε] ≤ 2 exp(− ε2

2σ2
).


