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Abstract

Disease-related representations play a crucial role
in image-based disease prediction such as cancer
diagnosis, due to its considerable generalization
capacity. However, it is still a challenge to iden-
tify lesion characteristics in obscured images, as
many lesions are obscured by other tissues. In this
paper, to learn the representations for identifying
obscured lesions, we propose a disentanglement
learning strategy under the guidance of alpha
blending generation in an encoder-decoder frame-
work (DAB-Net). Specifically, we take mammo-
gram mass benign/malignant classification as an
example. In our framework, composite obscured
mass images are generated by alpha blending and
then explicitly disentangled into disease-related
mass features and interference glands features.
To achieve disentanglement learning, features of
these two parts are decoded to reconstruct the
mass and the glands with corresponding recon-
struction losses, and only disease-related mass fea-
tures are fed into the classifier for disease predic-
tion. Experimental results on one public dataset
DDSM and three in-house datasets demonstrate
that the proposed strategy can achieve state-of-the-
art performance. DAB-Net achieves substantial
improvements of 3.9%~4.4% AUC in obscured
cases. Besides, the visualization analysis shows
the model can better disentangle the mass and
glands in the obscured image, suggesting the ef-
fectiveness of our solution in exploring the hidden
characteristics in this challenging problem.

!Center for Data Science, Peking University, Beijing, China
2Center on Frontiers of Computing Studies, School of Computer
Science, Peking University, Beijing,China *School of Computer
Science, Peking University, Beijing, China *School of Artificial
Intelligence, Peking University, Beijing, China * Al lab, Deepwise
Healthcare, Beijing, China ®Department of Computer Science,
The University of Hong Kong, Hong Kong ’Inst. for Artificial

Intelligence, Peking University, Beijing, China.
Correspondence to: Fangwei Zhong <zfw1226@gmail.com>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Clear Mass

Normal Glands

Figure 1. Masses with different obscured degrees. Columnl: the
mass is clearer when overlaid by fatty tissues; Column2: masses
(marked by the red rectangles) are hidden in glands due to that
the dense glands and the mass both look white on mammograms;
Column3: the normal glands with diverse appearances and density,
which can make masses with various obscured degrees.

1. Introduction

For disease benign/malignant diagnosis, exploring the
disease-related representations is essential to the clinical
practice. It can not only help to promote trustworthiness
from patients but also to provide interpretability for clini-
cians (Wang et al., 2021a). However, in clinical practice, a
considerable proportion of lesions are obscured by other
normal tissues (Gassert et al., 2021; Diekmann & Bick,
2007) such as glandular and fibrous tissues, especially in the
imaging modality of X-ray with the principle of projection
overlay imaging as shown in the 2nd column in Fig. 1. As a
result, for the task of image-based lesions (Dai et al., 2018;
Liu et al., 2019) or disease characteristics identification (Li
et al., 2018; Lee et al., 2019; Chen et al., 2020), a common
obstacle is formed, which makes lesion attributes more dif-
ficult to be recognized. For this problem, the key is to find a
way to eliminate the effect of redundant content (inter-
ference of other tissues) and mine the essential content
(disease-related features) hidden in the image.
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Figure 2. The results listed in the table show the considerable supe-
riority of our method on obscured cases in mammogram benign/-
malignant classification.

With the advances of computer vision, a number of meth-
ods in natural images processing, particularly for image
restore (Cheng et al., 2021; Wang et al., 2021b; Luthra et al.,
2021; Wu et al., 2021; Yi et al., 2021), are designed to re-
move the redundant noise (such as haze, rain, and etc.) and
enhance the main content in the image. Intuitively, they
provide a possible solution to address this problem with
supervised paired data. However, most of these methods
focus on learning the distribution of image content or redun-
dant content rather than the hidden structured relationship
between image content and noise. Moreover, as the patterns
of tissues/glands are diverse and complex, it is challenging
to precisely model the redundant content. Therefore, it re-
mains difficult for these methods to explore disease-related
features from dense glands.

In clinical diagnosis, doctors usually observe obscured
disease-related features by disentangling the structural re-
lationships between lesions and glands empirically, since
obscured patterns can be diverse and the surrounding glands
can be kind of dense. Taking the breast mammogram (McK-
inney et al., 2020; Lotter et al., 2021; Rodriguez-Ruiz et al.,
2019) as an example, it is reported that dense glands are
common among women, especially more than half of their
breasts have dense glands in Asian women (D’Orsi et al.,
2018). As shown in the 1st and the 2nd column in Fig.1,
masses can be hidden behind the breast glands in varying
degrees. The 3rd column shows different types of normal
glands (without lesions). The density and distribution of
breast glands determine the obscured degree and conse-
quently make the identification of disease-related features
with different difficulties. To disentangle disease-related
features, the recent method (Wang et al., 2021a) designs a
disentangle mechanism guided by attribute learning using
Graph Convolutional Network (GCN). However, it remains
limitations in this method for obscured lesions, as the lesion
attributes are frequently hidden in the dense glands.

Motivated by the diagnosis prior to clinical practice, we pro-
pose a Network (DAB-Net) to Disentangle disease-related
representation from obscure with Alpha Blending. It can
better disentangle the obscured mass from the image and
learn the disease-related features for benign/malignant clas-

sification. To realize it, we argue that the key is to design
a suitable learning mechanism for the disentanglement of
masses and glands. We build a mechanism based on com-
posite and disentanglement for reconstruction. Since tissues
grow naturally and are irreversible for re-scanning, there is
no supervision data for de-obscure learning in the real clini-
cal scenario. Thus, compositing obscured masses is firstly
necessary for disentanglement learning. To composite ob-
scured mass, we employ alpha blending (Wallace, 1981),
a classic image processing method, to mix the clear mass
patch and the gland patch into an image without adding
any additional learning parameter. And then the composite
images are encoded as composite features and disentangled
into two hidden factors (h,, for masses, h, for surround-
ing glands). To achieve disentanglement, the two hidden
factors are then respectively decoded and constrained by
reconstructed loss supervised by corresponding clear mass
patches and gland patches. Moreover, only h,, is fed into
classification layer for learning better disease-related fea-
tures. In this way, the disease-related mass features and
glands features are disentangled. Note that the real images
are also fed into DAB-Net during training, but only used
for the training of the malignancy classification instead of
reconstruction, as the lack of disentangled ground truth. In
this way, our DAB-Net can essentially learn to model the
structural relationship between masses and glands, instead
of just ostensibly reducing the redundant information as in
previous works (Cheng et al., 2021; Wang et al., 2021b;
Luthra et al., 2021; Wu et al., 2021; Yi et al., 2021).

To verify the utility and effectiveness of our DAB-Net, we
conduct experiments on the mammogram mass benign/ma-
lignant classification task, a common and important medical
problem (D’Orsi et al., 2018). Specifically, we apply our
model on Digital Database for Screening Mammography
(DDSM) (Bowyer et al., 1996)) and three in-house datasets
in mammogram mass benign/malignant diagnosis. The Area
Under the Curve (AUC) of receiver operating characteris-
tic (ROC) results on obscured cases show the superiority
of our DAB-Net, 4.4% improvement over the recent state-
of-the-art (SOTA) method shown in Fig.2. We also calcu-
late the AUC results on the whole dataset. Without any
attribute annotations, DAB-Net still achieves comparable
results with the SOTA method. When combining with the
SOTA method (Wang et al., 2021a), ours can further get
1.3% to 2.9% improvements on AUC.

In summary, our contributions are mainly three-fold: a)
we propose Disease-related Representation Disentangling
Network with Alpha Blending (DAB-Net) to learn the
features of obscured lesions. b) We develop a classifica-
tion method based on disentanglement learning to achieve
disease-related features learning in disease prediction. ¢)
Our method achieves state-of-the-art performance on one
public and three in-house datasets.
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Figure 3. The schematic overview of our method. The whole framework is based on the encoder-decoder structure and disentanglement
mechanism. The composite obscured mass images are generated by alpha blending using the clear (margin) mass and glands images.
Then the composite and real images are encoded into hidden factor h. and disentangled into ., hy. The two-branch decoders decode
hm, hg of composite images to reconstruct the clear mass and glands with £, and L£7... The classifier conducts the disease prediction
via L5 by using h,, of both composite and real data. Note the dashed lines represent procedures only in the training phase, i.e. the alpha
blending generation and two-branch reconstruction. The solid lines denote procedures both in training and inference phases.

2. Related Work

2.1. Learning Representation for Disease Prediction

For disease prediction (McKinney et al., 2020; Lotter et al.,
2021; Rodriguez-Ruiz et al., 2019), feature representation
learning from region of interests is very important (Zhao et
al., 2018; Lei et al., 2020). Since during diagnosis, radiol-
ogists are more tending to identify the local features from
the most discriminated regions rather than the full image.
Take mammogram as an example, previous approaches used
to learn feature representation for mammogram mass be-
nign/malignant classification are roughly categorized into
three classes: (i) the GAN-based methods, e.g., Li et al. (Li
et al., 2019). They propose an adversarial generation to aug-
ment training data for better prediction. However, lacking
the guidance of medical knowledge descents their perfor-
mance. (ii) the attribute-guided methods, e.g., Chen et al.
(Chen et al., 2019), ICADx (Kim et al., 2018). Attribute
prior (D’Orsi et al., 2018) is considered into their methods
and can provide little benefit for obscured mass classifica-
tion. (iii) the disentangle-based methods, e.g., Guided-VAE
(Ding et al., 2020), DAE-GCN (Wang et al., 2021a). The
disentangle mechanism provides effective disease-related
representation learning when lesions are relatively visible.
However, in obscured cases they lack the mechanism to dis-
entangle lesion features under the dense glands. In summary,

above all methods do not consider tackling the problem of
hard cases of obscured lesions, which will cause their per-
formances directly drop. Motivated by above, we attempt
to realize a disentangling mechanism for learning repre-
sentation about obscured mass. To do this, we composite
obscured masses for better learning disease-related lesion
features on obscured cases to further improve benign/malig-
nant classification performance.

2.2. Disentanglement Learning

Disentangled representation learning aims to identify and
disentangle the underlying explanatory factors (Bengio et al.,
2013; Burgess et al., 2018; Ridgeway, 2016). Peng et al.
(Peng et al., 2017) propose to disentangle identity and pose
information in the latent feature space. Lin er al. (Lin
et al., 2019) explore to obtain domain-specific features and
domain-independent features by using feature disentangle-
ment. Recent classification-related works such as Ding et
al. (Ding et al., 2020) and Wang et al. (Wang et al., 2021a),
attempt to learn a transparent representation by introducing
the guidance to the latent variables in VAE/AE (Doersch,
2016). They prove the effectiveness of the disentangle mech-
anism in learning transparent features and disease-related
features in malignancy classification. Inspired by this, in
this work, we further enhance the disentangle mechanism
with alpha blending.
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3. Methodology

As analysis in Sec.1, it is crucial to learn disease-related
representation for benign/malignant classification. How-
ever, the disease-related lesions are often obscured by other
tissues, e.g., glands, which are of diverse patterns in ap-
pearance. Thus it is helpful but difficult to identify actual
characteristics of obscured lesions for disease diagnosis.
Motivated by this, we focus on discovering the de-obscured
features hidden in the glands.

In this section, we introduce a network to Disentangle
Disease-related Representation from Obscure with Al-
pha Blending (DAB-Net) for interpretable disease diag-
nosis. Fig. 3 outlines the overall network architecture of
our framework. There are mainly three steps in the train-
ing phase. (i) (Sec. 3.2), we blend the clear mass patches
and the normal gland patches based on alpha blending to
obtain realistic composite obscured images. Note that the
obscured masses, the clear masses and the normal gland are
annotated by the doctors following the guidelines (D’Orsi
et al., 2018). Through blending, we can provide paired im-
ages for disentanglement learning and learn the structural
relationship between the masses and the glands in the ob-
scured cases. (ii) (Encoder and Two-Branch Decoders
in Sec. 3.3), composite images and original real training
data are both fed into disentangle network to learn disen-
tangled mass features and glands features. (iii) (Disease
Classifier in Sec. 3.3), the disentangled mass features from
all source data are fed into the classification layer for be-
nign/malignant classification. The whole network is trained
in an end-to-end manner. In the inference stage, DAB-Net
not only can output a high-accuracy classification result for
diagnosis but also provide disentangled features of the input
image for better interpretability.

Next, we will briefly introduce the problem setup and nota-
tions at first, then provide the details of frameworks in the
following, including 1) how to composite obscured images
with alpha blending, and 2) how to build and train the DAB-
Net to learn the disentangled disease-related representations
from obscure.

3.1. Problem Setup & Notations.

Denote x € X',y € ) respectively as the images and dis-
ease benign/malignant labels in the real dataset. We collect
the training data {z,,, Yn }nein) With [N] = {1,..,N}.
Our goal is to learn a prediction model f : X — ) based
on disentangled disease-related features h,, from their sur-
rounding glands h,4 no matter the mass is clear or obscured
for interpretable disease benign/malignant diagnosis.

3.2. Compositing by Alpha Blending

As for the particularity of medical tissues, de-obscured
masses can not be obtained by re-scanning (Ancuti et al.,

2019) or adjustment of imaging parameters (Anaya & Barbu,
2018; Plotz & Roth, 2017) as in natural scenes since the
masses are obscured inherently (D’Orsi et al., 2018). This
problem results in that the real data can not provide super-
vision in disentanglement learning. For learning disease-
related features of obscured masses, we try to composite
obscured data and get disentangle training supervision mean-
while. Blending mass and glands directly (Zhang et al.,
2018) is rigid, and GAN-based methods (Li et al., 2020)
have large additional parameters on blending generation.
Thus we employ a parsimonious mechanism, alpha blend-
ing, for obscured mass generation. The comparison among
different blending methods will be discussed in Sec. 4.4.

Alpha blending is a classic image processing technique that
is more likely to be used in computer graphics and visualiza-
tion (Wallace, 1981; Alashkar et al., 2017; Li et al., 2020).
Generally, it combines two colors to produce a new blending
color for transparency effects.Under our task, we attempt
to utilize disentanglement learning to explore the disease-
related features hidden in the glands. Alpha blending can
provide a parsimonious composite way for obscured cases
and can be used to construct a learning mechanism for dis-
entanglement. The composite results are employed to learn
to disentangle the masses under dense glands supervised by
the inputs of alpha blending.

Specifically, the alpha blending combines two images and
produces a new blended image. The value of the alpha chan-
nel is range from 0.0 to 1.0, representing the transparency
of the pixel, , 0.0: fully transparent, 1.0: fully opaque. We
manipulate the alpha values, A%, of the image by a 2D
Gaussian distribution, as (Najibi et al., 2018). The Gaus-
sian distribution is located at the center of the bounding
box, which annotates the region of lesions. The co-variance
of the Gaussian distribution is determined by the bounding
box’s height and width. It acts as spatial weighting to the
region of lesions, so that the region can be highlighted in the
composited image. To this end, the composited image x.. is
generated by alpha blending acting on clear mass image x,,
and glands image z, as:

a =l (1— AY) + 2] AY (1)

where 2%/ is a vector of pixel values in position (4, j) and
A is a scalar alpha value of the same position.

3.3. Learning Disentanglement with Composite

To better explore the disease-related features, we introduce
disentangle mechanism. Specifically, there contains the fol-
lowing components: (Encoder) an encoding network fg
to encode the whole image into two hidden factors, h,, de-
noting for de-obscured mass features and h, denoting for
obscuring glands features; (Two-Branch Decoder) two de-
coding networks for reconstruction of de-obscured masses
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and glands and named fp,, and fp, respectively to con-
struct disentangle learning; (Disease Classifier & Training)
a disease classifier fco to prompt the disentanglement of
disease-related features and for final disease classification.

Encoder. In the encoder, both composite and original real
data are as inputs. The input image is encoded into hid-
den factor h. including mixed mass and glands features
through the encoder fr with parameters 0. To extract
the effective disease-related features for benign/malignant
classification, we disentangle h, into two parts h,, and h,
with the same size to capture the features of de-obscured
masses and glands. We construct three constraints for such
disentanglement learning. The constraints are based on two
image reconstruction branches and one disease classifica-
tion branch respectively employing different hidden factors.
The details of the training strategy will be introduced in the
last paragraph of this section.

Two-Branch Decoder. In disentangle training, h,, and h,
aim to represent features of de-obscured masses and ob-
scuring glands respectively. Thus, h,, and h, need to have
the ability of reconstructing de-obscured masses and glands.
Based on above, two-branch decoder is designed, which
contains decoder fp, for disentangled mass reconstruction:
Tm = [p,, (hm) with parameters 6p , and decoder fp,
for disentangled glands reconstruction: Z, = fp, (hy) with
parameters ¢ . The reconstruction losses L7 ., L, . of the
mass and the glands are as:

Lye(08,0p,,) = ||Tm — Tm(0E, 9D7n)||1 (2)
££66(9E79Dg) = ||x9 _/x\g(eE’eDy)Hl (3)

Disease Classifier. The purpose of our design is to ex-
plore actual disease-related features from obscuring glands
to boost the disease diagnosis performance. Therefore, the
disentangled mass features h,, is also supervised by benign/-
malignant classification label. h,, is used as the input to
classification branch f¢ for disease prediction with a binary
cross-entropy loss L.;s(0g, 0¢).

Training Strategy. Finally, the whole network is trained in
an end-to-end manner by combining L.;s and £ ., L9, . as
follows:

L=L.08,0p,,)+L(08,0p,)+ Las(0r,0c) (4)

Note that the training data consists of composite obscured
mass images (by alpha blending) and real images (from real
data). In the training stage, only composite obscured images
participate in the computation of £ and £9_.. That is
because the reconstruction supervision is only provided
from the inputs of alpha blending, while real data does not
have such disentangled supervision. For the loss of L,
all data among composite obscured images and real images

are utilized. The classification labels of composite obscured

images are the same as the disease labels of corresponding
clear masses while blending.

4. Experiments
4.1. Datasets & Implementation

To evaluate the effectiveness of our model, take mammo-
gram mass benign/malignant classification as an example,
we consider both the public dataset DDSM (Bowyer et al.,
1996) and three in-house datasets (Inhl, Inh2, Inh3). For fair
comparison, all settings of datasets are the same as (Wang
et al., 2021a), i.e., the region of interests (ROIs) (malig-
nant/benign masses) are cropped based on the annotations
of radiologists the same as (Kim et al., 2018; Wang et al.,
2021a) and the number of ROIs and patients and the data
division of each dataset are the same as (Wang et al., 2021a),
which are already shared by (Wang et al., 2021a). More
details of each dataset we use are shown in Appendix. A.

We implement Adam to train our model. For a fair com-
parison, all methods are conducted under the same setting
and share the same encoder backbone, i.e., ResNet34 (He
et al., 2016). Area Under the Curve (AUC) is used as eval-
uation metrics in image-wise. To remove the randomness,
we run for ten times and report the average value of them.
For disentangle learning, we first use only composite ob-
scured data to pretrain for 500 epochs while the number of
samples is the same as the real dataset. Then we add com-
posite obscured data to original real data for classification
training, and the number of added composite data is 30%
of the original datasets. For implementation of compared
baselines, we directly load the published codes of ERM (He
et al., 2016), Chen et al. (Chen et al., 2019), NBNet (Cheng
et al., 2021), Uformer (Wang et al., 2021b), SPDNet (Yi
et al., 2021), AECRNet (Wu et al., 2021) and shared code
of DAE-GCN (Wang et al., 2021a) during test; while we
re-implement methods of Guided-VAE (Ding et al., 2020),
Eformer (Luthra et al., 2021), ICADx (Kim et al., 2018) and
Li et al. (Li et al., 2019) for lacking published source codes.

4.2. Comparison with Baselines

Compared Baselines. In this section, we conduct infor-
mative experiments to verify the effectiveness of DAB-Net.
Firstly, we compare with several representation learning
methods including SOTA patch level mammogram benign/-
malignant classification method (He et al., 2016; Wang et al.,
2021a), other related disentangle-based method (Ding et al.,
2020) and the attribute-based method (Chen et al., 2019) that
can be extended to our task. Secondly, GAN-based meth-
ods (Li et al., 2019; Kim et al., 2018) are also compared
with our method. Thirdly, the SOTA algorithms related to
image restore (denoising (Cheng et al., 2021; Wang et al.,
2021b; Luthra et al., 2021), dehazing (Wu et al., 2021) and
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Table 1. The AUC evaluation on public DDSM (Bowyer et al., 1996) and three in-house datasets. The first column notes the methods
we compared. The second column represents the AUC on overall testing sets. We additionally report results on the obscured cases that
appeared in the testing sets. Results based on our methods are boldfaced and the best results among baselines are underlined.

Methodology AUC AUC only on obscured cases

Inhl Inh2 Inh3 | DDSM | Inhl Inh2 Inh3 | DDSM
ERM (He et al., 2016) 0.888 | 0.847 | 0.776 | 0.847 | 0.739 | 0.707 | 0.630 | 0.728
Chen et al. (Chen et al., 2019) 0.924 | 0.878 | 0.827 | 0.871 | 0.790 | 0.748 | 0.669 | 0.777
Guided-VAE (Ding et al., 2020) 0.921 | 0.867 | 0.809 | 0.869 | 0.782 | 0.751 | 0.673 | 0.782
DAE-GCN (Wang et al., 2021a) 0.963 | 0901 | 0.857 | 0.919 | 0.871 | 0.837 | 0.783 | 0.880
Lietal (Lietal., 2019) 0.908 | 0.859 | 0.828 | 0.875 | 0.767 | 0.726 | 0.648 | 0.771
ICADx (Kim et al., 2018) 0911 | 0.871 | 0.816 | 0.879 | 0.801 | 0.793 | 0.665 | 0.782
NBNet (Cheng et al., 2021) 0912 | 0.875 | 0.824 | 0.877 | 0.839 | 0.821 | 0.749 | 0.826
Uformer (Wang et al., 2021b) 0.923 | 0.879 | 0.832 | 0.872 | 0.845 | 0.813 | 0.757 | 0.834
Eformer (Luthra et al., 2021) 0.928 | 0.883 | 0.838 | 0.875 | 0.849 | 0.815 | 0.760 | 0.839
SPDNet (Yi et al., 2021) 0.908 | 0.862 | 0.814 | 0.866 | 0.823 | 0.791 0.739 | 0.816
AECRNet (Wu et al., 2021) 0911 | 0.870 | 0.826 | 0.870 | 0.846 | 0.818 | 0.752 | 0.825
DAB-Net (Ours) 0.956 | 0907 | 0.849 | 0913 | 0.910 | 0.878 | 0.826 | 0.924
DAB-Net(Ours) + (Chen et al., 2019) | 0.964 | 0913 | 0.861 | 0.920 | 0.916 | 0.883 | 0.835 | 0.934
DAB-Net(Ours) + (Ding et al., 2020) | 0.959 | 0.903 | 0.855 | 0918 | 0.913 | 0.882 | 0.829 | 0.932
DAB-Net(Ours) + (Wang et al., 2021a) | 0.976 | 0.930 | 0.878 | 0.943 | 0.921 | 0.891 | 0.847 | 0.945

deraining (Yi et al., 2021)) are compared with our method
to demonstrate that it is crucial to model and disentangle
the structural relationship between image content and inter-
ference instead of only image content. Finally, integrating
our strategy to the first group methods is also compared to
indicate the extensibility and additional value.

These methods are briefly introduced as following: a)
ERM (He et al., 2016) directly trains the classifier via
ResNet34 by Empirical Risk Minimization (ERM); b) Chen
et al. (Chen et al., 2019) achieves multi-label classifica-
tion with GCN; ¢) Guided-VAE (Ding et al., 2020) also
implements disentangle network but lacks the medical prior
knowledge of attributes during learning; d) Li et al. (Lietal.,
2019) improves performance by generating more benign/-
malignant images via adversarial training; ¢) ICADx (Kim
et al., 2018) proposes the adversarial learning method and
additionally introduces shape/margins information for recon-
struction; f) DAE-GCN (Wang et al., 2021a) also develops a
disentanglement learning framework with graph neural net-
work to boost benign/malignant classification performance
g) NBNet (Cheng et al., 2021) proposes a denoising network
with subspace projection; h) Uformer (Wang et al., 2021b)
constructs a U-shaped Transformer for image restoration;
i) Eformer (Luthra et al., 2021) additionally introduces an
edge enhancement in medical image denoising; j) SPDNet
(Yi et al., 2021) introduces a residue channel prior for rain
removal; k) AECRNet (Wu et al., 2021) develops a compact
dehazing network based on contrastive learning.

Results & Analysis. As shown in Tab. 1, the second to
the fifth lines are the representation learning methods in-
cluding the attribute-based and disentangle-based. The next

two lines are the GAN-based methods. The eighth to the
twelfth lines are related to image restore, such as denoising,
deraining and dehazing. The final four lines are our method
and our method combining different representation learning
methods. We calculate AUC performance not only on over-
all testing sets (Tab. 1-AUC) but also on only obscured cases
in the testing sets (Tab. 1-AUC only on obscured cases).

Specifically, Li et al. (Li et al., 2019) generate more data to
improve the performance compared with ERM (He et al.,
2016), but the generated data does not consider hard cases,
i.e., obscured masses and is distributed close to real clearer
data which limits its diversity and performance. The ad-
vantage of Chen et al. (Chen et al., 2019) predominantly
lies in the attributes modeling of GCN. ICADx (Kim et al.,
2018) also uses the information of attributes and combines
with GAN to make image enhancement. Nevertheless, GCN
is also limited when mass characteristics are hidden due
to lacking modeling obscured masses. Guided-VAE (Ding
et al., 2020) can find disease-related features relying on
the capability of disentanglement learning. By integrat-
ing attributes learning via GCN into disentanglement learn-
ing, DAE-GCN (Wang et al., 2021a) further boosts the per-
formance of representation learning and helps to explore
more powerful disease-related features. Whereas, it is still
challenging to extract obscured mass features. Compared
with the methods mentioned above, the critical point of
our method is smart modeling of structural relationship of
masses and glands utilizing disentanglement learning, which
is lacking in those methods even with the powerful disentan-
glement learning and GCN. The results of only DAB-Net
(the fourth-to-last line) show a substantial improvement
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Table 2. Ablation Studies: overall AUC evaluation on public dataset DDSM (Bowyer et al., 1996) and three in-house datastes.

Alpha Blending Disentangle DAE-GCN | Inhl | Inh2 | Inh3 | DDSM
X X X 0.888 | 0.847 | 0.776 | 0.847
AD X X 0.886 | 0.843 | 0.771 | 0.836
Simple v X 0.936 | 0.882 | 0.839 | 0.893
GAN-based v X 0.950 | 0.906 | 0.847 | 0.902
v No Mass Decoder X 0.921 | 0.878 | 0.818 | 0.869
v No Glands Decoder X 0.925 | 0.884 | 0.824 | 0.873
v One branch X 0.939 | 0.887 | 0.831 | 0.889
v v X 0.956 | 0.907 | 0.849 | 0.913
v v v 0.976 | 0.930 | 0.878 | 0.943

over these representation learning methods except for DAE-
GCN that uses extra attributes information effectively. And
even compared with this strong competitor DAE-GCN, our
method shows a comparable performance.

With regard to the methods related to image restore, the
mass characteristics can be emphasized for disease predic-
tion. The targets of denoising (Cheng et al., 2021; Wang
et al., 2021b; Luthra et al., 2021), dehazing (Wu et al., 2021)
and deraining (Yi et al., 2021) are kind of similar to our task,
each of which can be generalized as interference removal,
and we try to extend them to our task. In principle, com-
pared with our proposed method, these methods show the
same disadvantage of lacking medical prior knowledge, i.e.
modeling the structural relationship between image content
and interference.

The combination of our method with the representation
learning methods mentioned above (Chen et al., 2019; Ding
et al., 2020; Wang et al., 2021a) (the last four lines) demon-
strate that our method can be easily embedded into repre-
sentation learning frameworks and show considerable ad-
ditional performance improvements which achieve SOTA
performances.

Tab. 1-AUC only on obscured cases can further reveal the
superiority of our method. Our method obtains state-of-
the-art performance and it shows a large margin gap even
compared with the strong competitor DAE-GCN which
uses extra attributes. This proves the attribute representation
learning fails in invisible or obscured data and our disen-
tangle representation mechanism from obscure is effective.
Moreover, combined with effective representation learning,
our method can get further improvement. These results fur-
ther demonstrate the tremendous advantage of our method
on obscured masses due to the effective design.

4.3. Ablation Study

To verify the effectiveness of each component in our model,
we evaluate some variant models. Tab. 2 shows the ablation
study results on DDSM and three in-house datasets. Here

Clear Mass Dense Glands Simple GAN-based

Alpha Blending
'

Figure 4. The blending results of three different methods. Each
row indicates different instances. The first column shows the
original clear masses from DDSM dataset (Bowyer et al., 1996)
and the second column shows the dense glands. The third to the
fifth columns show the blending results combining the first and the
second columns by using simple add (Zhang et al., 2018), GAN-
based method (Li et al., 2020) and alpha blending respectively.

are some interpretations for the variants: AD means sim-
ply adding generated data into original training data and
increasing the number of inputs in ERM (He et al., 2016);
Simple denotes using blending mechanism (Zhang et al.,
2018) without using the alpha map as pixel weight; No
Mass Decoder denotes the setting without mass decoder
fp,, and thus without loss of L] .. No Glands Decoder
denotes the setting without glands decoder fp, and thus
without loss of LY, ; One branch denotes Mass Decoder
and Glands Decoder share the same weights; GAN-based
denotes using GAN-based method replace alpha blending

for data generation (Li et al., 2020).

The results demonstrate that alpha blending is more pow-
erful than all other methods and the disentanglement learn-
ing of both masses and glands shows the best performance
among different disentanglement settings. Specifically, the
second row is to verify that the improvement of DAB-Net is
not simply by adding more training data. It shows that AD
even degrades performance with more training data due to a
large amount of hard cases in training which is harmful to
learning. The third and the fourth rows compared with the
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Image Restore-based Methods

Uformer Eformer

SPDNet

Original Input NBNet

AECRNet

Disentangle-based Methods DAB-Net (Ours)-

DAB-Net (Ours)- Disentangled
Disentangled Mass Surrounding Glands

DAE-GCN-
Disentangled Mass

Ground Truth

Figure 5. Restored/Disentangled masses visualization. Each row denotes different cases. The first column is original obscured masses
from real data; the second to the sixth columns are restored masses by using recent SOTA image restore-based methods: NBNet (Cheng
et al., 2021), SPDNet (Yi et al., 2021), Uformer (Wang et al., 2021b), Eformer (Luthra et al., 2021), AECRNet (Wu et al., 2021);
the seventh column is the ground truth of masses location; the eighth to the tenth columns are the disentangled mass results by using
disentangle-based methods. The eighth column is the results using the SOTA method DAE-GCN(Wang et al., 2021a). The redundant
glands disentangled by DAE-GCN are marked by blue rectangles in the ninth column. The tenth and the eleventh columns are the masses
and the surrounding glands disentangled from the obscured cases by using DAB-Net respectively. See Fig. 8 for more examples.

eighth row can investigate the effectiveness of alpha blend-
ing and suggest that alpha blending is more effective. The
fifth and the sixth rows indicate only modeling of masses
or glands is limited to explore the hidden mass features due
to the diversity and complexity of masses and glands. The
simultaneous modeling of masses and glands is the essence
of our method. This result also implies the drawbacks of
image restore-based methods. The seventh row indicates
that the decoders of mass and glands are to learn different ca-
pabilities. Channels of decoders in One Branch are doubled
to eliminate the effect of different learnable parameters. The
last two rows demonstrate DAE-GCN integrating attributes
modeling can bring additional performance improvements,
which is also indicated in Tab. 1.

4.4. Visualization

To further evaluate the validity of our DAB-Net on the blend-
ing mechanism and the ability of exploring disease-related
features from dense glands, we visualize the blending results
(Fig. 4) and the explored disease-related results (Fig. 5).

Visualization of Blending. We visualize three different
blending methods as shown in Fig. 4. Blending with simple

Table 3. Parameters of different blending methods.

Blending Methodology Parameters
Simple (Zhang et al., 2018) oM
GAN-based (Li et al., 2020) | 100.848M

Alpha Blending(Ours) oM

add (Zhang et al., 2018) (the 3rd column) shows rigid results
and the structural relationship between masses and glands
is unreal. When glands are kind of dense, the mass is hard
to identify and it is unusual challenging to learn disease-
related features. When glands are clearer, simple add does
not provide an effective occlusion. With weighting map
around lesion, the adopted alpha blending (the 5th column)
shows better fusion effect. GAN-based blending (Li et al.,
2020) (the 4th column) shows the comparable results with
ours alpha blending and achieve the purpose of occlusion.
However, GAN-based method needs large parameters to
learn as shown in Tab. 3 while our alpha blending do not
need parameters during generation.

Visualization of Disease-related Features. We also visu-
alize the explored disease-related results in Fig. 5. The ex-
plored results based on image restore-based methods (Cheng
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et al., 2021; Wang et al., 2021b; Luthra et al., 2021; Wu
et al., 2021; Yi et al., 2021) are shown in the 2nd to the
6th columns. The results they restore are more like edge
enhancement for all information or increased contrast of
the image. Though such restore operation helps to provide
partial features that are not easy to identify with the naked
eye, they does not disentangle real disease-related features
and it remains much other unnecessary redundant informa-
tion. Based on disentangle mechanism, disentangle-based
methods (Wang et al., 2021a) and ours are trying to explore
only disease-related features for diagnosis in the 8th to the
11th columns. However, without considering to learn de-
obscured features, DAE-GCN(Wang et al., 2021a) learns
redundant glands in disease-related features as shown in the
blue bounding boxes in the 9th column.

5. Conclusion

We propose a novel framework for Disentangling Disease-
related Representation from Obscure with Alpha Blending
(DAB-Net) for medical diagnosis. Obscured cases are com-
mon in clinical practice and limit the performance of recent
image-based disease diagnosis methods. We design dis-
entangle mechanism with alpha blending to help explore
interpretable disentangling de-obscured lesion features. We
evaluate our method on both public and in-house datasets for
mammogram mass benign/malignant classification. Poten-
tial results demonstrate the effectiveness of our DAB-Net,
especially on obscured cases. In the future, we will try to
generalize our framework to other medical imaging prob-
lems such as lung cancer, liver cancer, and efc.
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A. Details about Each Dataset

The details of training/validating/testing data we use for experiments are shown in Fig. 7. And the details of the number of
the obscured/non-obscured masses in each dataset we use are shown in Fig. 6. All settings are the same as (Wang et al.,
2021a) for fair comparison.

The Number of Obscured/Non-obscured Masses The Number of Obscured/Non-obscured Masses
(DDSM) (Inh1)
1191 622
Non-obscure = Obscure Non-obscure = Obscure
The Number of Obscured/Non-obscured Masses The Number of Obscured/Non-obscured Masses
(Inh2) (Inh3)

831 511

Non-obscure = Obscure Non-obscure = Obscure

Figure 6. The number of Obscured/Non-obscured Masses in each dataset. Each pie chart denotes a each dataset.
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Figure 7. The number of ROIs in each dataset. Each histogram denotes a each dataset and each dataset is divided into training, validating
and testing by 8:1:1.
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Figure 8. Disentangled masses visualization. Each row denotes a different case. The 1st column: the original obscured masses from
real data; the 2nd column: the ground truth of masses location; the 3rd column: the masses disentangled from the obscured cases by
DAB-Net.
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B. More Visualization

We visualize more disentangled masses from the obscured images by our DAB-Net in Fig. 8. Each case contains three
images, the original input, the ground truth of mass location marked by the red rectangle and the mass disentangled from the
obscured image. The original inputs are the obscured cases. As we can see, the masses are obscured by glands in different
degrees. Though some glands are around the mass, our method can still disentangle the true mass from the glands.

C. More Implementation Details

We aim at mammogram mass classification. The inputs are resized into 224 x 224 with random horizontal flips and fed into
networks. We implement all models with PyTorch. For all experiments, we select the best model on the validation set for
testing. The final results are the average results over ten times for each image. The proportion of added composite obscured
images is 30% of the original dataset, since the proportion of obscured images in original data is roughly 30%.

If the proportion of added composite obscured images is too large, it will influence the original data distribution, while if
this proportion is too small it will not be capable to learn from the hard cases. The proportion of the obscured masses in the
real datasets we use is around 20~30%, thus we add composite data by nearly the same amount.



