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Abstract

The Stackelberg prediction game (SPG) is popu-
lar in characterizing strategic interactions between
a learner and an attacker. As an important spe-
cial case, the SPG with least squares loss (SPG-
LS) has recently received much research atten-
tion. Although initially formulated as a difficult
bi-level optimization problem, SPG-LS admits
tractable reformulations which can be polynomi-
ally globally solved by semidefinite programming
or second order cone programming. However,
all the available approaches are not well-suited
for handling large-scale datasets, especially those
with huge numbers of features. In this paper,
we explore an alternative reformulation of the
SPG-LS. By a novel nonlinear change of vari-
ables, we rewrite the SPG-LS as a spherically
constrained least squares (SCLS) problem. The-
oretically, we show that an e optimal solution to
the SCLS (and the SPG-LS) can be achieved in
O(N/+/€) floating-point operations, where N is
the number of nonzero entries in the data matrix.
Practically, we apply two well-known methods for
solving this new reformulation, i.e., the Krylov
subspace method and the Riemannian trust region
method. Both algorithms are factorization free
so that they are suitable for solving large scale
problems. Numerical results on both synthetic
and real-world datasets indicate that the SPG-LS,
equipped with the SCLS reformulation, can be
solved orders of magnitude faster than the state
of the art.
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1. Introduction

The big data era has led to an explosion in the availability of
data from which to make decisions. It is thus indispensable
to use machine learning techniques to gain deep insights
from massive data. In practice, many classic data analytic
approaches start by splitting available data into the training
and test sets. Then, learning algorithms are fed with the
training set and are expected to produce results which gener-
alize well to the test set. However, this paradigm only works
under the key implicit assumption that the available data in
both training and test sets are independently and identically
distributed, which, unfortunately, is not always the truth in
practice. For example, in the context of email spam filtering,
an attacker often adversarially generates spam emails based
on his knowledge of the spam filter implemented by the
email service provider (Briickner & Scheffer, 2011; Zhou
etal., 2019). In addition to malicious attacks, sometimes the
data providers may manipulate data for their own interests.
For instance, health insurance policy holders may decide to
modify self-reported data to reduce their premiums. On the
other hand, the insurers (the “defenders” in this scenario)
aim to select a good price model for the true data despite
only seeing the modified data.

In fact, these scenarios can be modeled by the Stackelberg
prediction game (SPG) (Briickner & Scheffer, 2011; Shokri
et al., 2012; Zhou & Kantarcioglu, 2016; Wahab et al., 2016;
Zhou et al., 2019; Bishop et al., 2020) which characterizes
the interactions between two players, a learner (or, a leader)
and a data provider (or, a follower). In this setting, the
learner makes the first move by selecting a learning model.
Then the data provider, with full knowledge of the learner’s
model, is allowed to modify its data. The learner’s goal
is to minimize its own loss function under the assumption
that the training data has been optimally modified from the
data provider’s perspective. From the above description, we
see that the SPG model concerns two levels of optimization
problems: The follower optimally manipulates its data and
the leader makes its optimal decision taking into account
the data manipulation. Formally, it is often formulated as a
hierarchical mathematical problem or a bi-level optimization
problem, which is generally NP-hard even in the simplest
case with linear constraints and objectives (Jeroslow, 1985).
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To overcome this issue, Bishop et al. (2020) take the first
step to focus on a subclass of SPGs that can be reformulated
as fractional programs. Specifically, they assume that all
the loss functions of the leader and the follower are least
squares, and that a quadratic regularizer is added to the fol-
lower’s loss to penalise its manipulation of the data. This
assumption eventually turns the bi-level optimization prob-
lem into a single-level fractional optimization task which is
proven to be polynomially globally solvable. Since no other
assumption is made about the learner and data provider,
this subclass of SPG, termed as the SPG-LS, is general
enough to be applied in wide fields. However, the bisection
algorithm proposed in Bishop et al. (2020) involves solv-
ing several tens of semidefinite programs (SDPs) which are
computationally prohibitive in practice. Later, Wang et al.
(2021b) improves over Bishop et al. (2020) by showing that
the SPG-LS can be globally solved via solving only a single
SDP with almost the same size as the ones in Bishop et al.
(2020). Furthermore, this single SDP can be reduced to a
second order cone program (SOCP). It is shown in Wang
et al. (2021b) that the SOCP approach for solving SPG-LS
can be over 20,000+ times faster than the bisection method
proposed in Bishop et al. (2020). Yet, the SOCP method
is still not well-suited for solving large-scale SPG-LS. In-
deed, the spectral decomposition in the SOCP reformulation
process is time-consuming when the future dimension is
high. This inevitably reduces the practical applicability of
the SOCP approach for the SPG-LS.

In this paper, we present a novel reformulation to resolve the
above mentioned issues of the SOCP method. Specifically, a
nonlinear change of variables is proposed to reformulate the
SPG-LS as a spherically constrained least squares (SCLS)
problem. Then, we prove that an optimal solution to the
SPG-LS can be recovered easily from any optimal solu-
tion to the SCLS under a mild assumption. The SCLS can
be seen as an equality constrained version of the trust re-
gion subproblem (Conn et al., 2000), which admits a large
amount of existing research on practical algorithms and the-
oretical complexity analysis. Based on this, we show that
an ¢ optimal solution' of the SCLS and thus SPG-LS can
be solved in O(N/+/€) flops, where N denotes the number
of nonzero entries of the data matrix and O(-) hides the
logarithmic factors. This means there exits a linear time
algorithm for finding an e optimal solution of the SPG-LS.
Moreover, we demonstrate the empirical efficiency of our
SCLS reformulation when matrix factorization free meth-
ods like the Krylov subspace method (Gould et al., 1999;
Zhang & Shen, 2018) and the Riemannian trust region New-
ton (RTRNewton) method (Absil et al., 2007) are used as
solvers.

'We say X is an e optimal solution for an optimization problem
mingex f(x),if X € X and f(X) < mingex f(x) + €.

We summarise our contributions as follows:

* We derive an SCLS reformulation for the SPG-LS that
avoids spectral decomposition steps (which are expen-
sive when the involved data matrices are large). More-
over, we show that an optimal solution to the SPG-
LS can be recovered from any optimal solution to the
SCLS reformulation under a mild condition.

* Based on the reformulation, we show that an € optimal
solution for the SCLS can be found using O(1/+/€)
matrix vector products. In other words, an € solution
can be obtained in running time O(N/+/€), where N
is the number of nonzeros in the data matrix. Moreover,
we show that an € optimal solution of SCLS can be
used to recover an e optimal solution for the original
SPG-LS.

» Two practically efficient algorithms, which are factor-
ization free, are adopted to solve the SCLS reformu-
lation. We show that the SCLS approach significantly
outperforms the SOCP approach with experiments on
both real and synthetic data sets.

2. Preliminaries

In this section, we elaborate on the SPG-LS problem adopt-
ing the same terminology as in Bishop et al. (2020); Wang
et al. (2021b). To have a better understanding of our refor-
mulation, a brief review of methods in Wang et al. (2021b),
which is the fastest existing method for solving the SPG-LS,
will also be provided.

We assume that the learner has access to m sample tuples
S = {(x4,¥i, %) } 21, where x; € R™ is input data with n
features, y; and z; are the true output label of x; and the
label that the data provider would like to achieve, respec-
tively. These samples are assumed to follow some fixed
but unknown distribution D. The learner aims at training
a linear predictor w € R to best estimate the true output
label y; given the fake data. Meanwhile, the data provider,
with full knowledge of the learner’s predictive model w, se-
lects its own strategy (i.e., the modified data X;) to make the
corresponding prediction w’'%; close to the desired label z;.
Note that there is also a regularizer, v > 0, to control the
deviation from the original data x;. This hyper-parameter
adjusts the trade-off between data manipulation and close-
ness to the aimed target.

The problem can be modeled as a Stackelberg prediction
game (Briickner & Scheffer, 2011; Bishop et al., 2020). On
the one hand, each data provider aims to minimize its own
loss function with a regularizer that penalizes the manip-
ulation of the data by solving the following optimization
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problem:

. o 2 A .
x; = argmin W% — 2| + 7% — Xng i€ m],
X
where w is the learner’s model parameter that is known

to the data provider. On the other hand, the learner seeks
to minimize the least squares loss with the modified data

{x; iy

w* e argminz Hwaz‘ - yZH2 ,
W=t
To find the Stackelberg equilibrium of the two players, we
focus on the following bi-level optimization problem

min || X*w — y||2
w

st X* = argmin | Xw —z||> + 1| X — x|z, D
X

where the i-th row of X € R™*"™ is the input sample x;
and the ¢-th entries of y,z € R™ are labels y; and z;, re-
spectively.

In the following section, we have a quick review of single
SDP and SOCP methods in Wang et al. (2021b).

2.1. SDP Reformulation

By using the Sherman-Morrison formula (Sherman & Mor-
rison, 1950), the SPG-LS can be rewritten as a quadratic
fractional program (Bishop et al., 2020)

LowTw + Xw
inf ||
w 1+ ;WTW

-y @

Introducing an augmented variable o = w’'w /-y, we have
the following quadratic fractional programming (QFP) re-
formulation.

é az+Xw

2
I YH ?3)

infy, o v(w,a)

s.t. wliw = Y.

Lemma 2.1 (Theorem 3.3 in Wang et al. (2021b)). Problem
(3) is equivalent to the following SDP

Sup, \ M @
st A—puB4AC =0,
xTx  XxT(z—y) —-XTy
where A = (z-)"X z—y|> —(z—y)"y | ,B =
-y'Xx -yT@z-y) y'y
I
(O" 1 %) andC = [ 7 o —-1 | . Here O,, denotes a

1
-1 0
2
n X n matrix with all entries being zeros and I,, denotes the
n X n identity matrix.

2.2. SOCP Reformulation

Wang et al. (2021b) further constructed an invertible matrix
V such that A, B and C are simultaneously congruent to
arrow matrices via the change of variables associated to V,

ie.,
5. y/T _ D b
A = [/ AL = <bT c 5

where D = Diag(dy,...,dy1) € ROFUX(0+) 1 ¢

Rt and ¢ € R, and
Bi=VBV = (O ) and O = VIOV = ().

Therefore the linear matrix inequality (LMI) constraint in
(4) is equivalent to A — uB 4+ AC' = 0. Using the gen-
eralized Schur complement, we further obtain an SOCP
reformulation as follows.

Lemma 2.2 (Theorem 4.1 in Wang et al. (2021b)). With the
same notation in this section, problem (4) is equivalent to
the following SOCP problem

Sup,u,,)\,s 2

s.t. di+$207i€[n+l],
c—dp—A—Y"s >0,
si(d; + %) > b2, 5> 0,4 €[n+1].

&)

To obtain the SOCP reformulation, we need a spectral de-
composition to a matrix of order (n + 1) x (n + 1) (Wang
et al., 2021b), which is expensive when the dimension is
high and may lead to inaccurate solutions when the matrix
is ill-conditioned. To amend this issue, we obtain in the
next section a factorization free method based on a novel
reformulation of problem (2).

3. Main Results

In this section, we show that using a nonlinear change of
variables, we can rewrite (3) as a least squares problem over
the unit sphere. This is the key observation of our paper.

Before presenting our main results, we first make a blanket
assumption on the nonemptiness of the optimal solution set
of (2).

Assumption 3.1. Assume that the optimal solution set of
(2) (or equivalently, (3)) is nonempty.

Our main result is that under Assumption 3.1, the QFP (3)
can be reformulated as a spherical constrained least squares
(SCLS) problem

AL

%z—}—gXVV—(y—%)

st. wiw+a2=1.

2
min (W, &) ’

Q)

A formal statement is deferred to Theorem 3.4.
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Before presenting our main results, we first introduce two
lemmas that show how, given a feasible solution in (3), we
can construct a feasible solution with the same objective
value in (6) and vice versa (up to a minor achievability
issue).

Lemma 3.2. Suppose (w, ) is a feasible solution of (3).
Then (W, &), defined as

2 a—1

W= mw and & = P @)

is feasible to (6) and v(w, ) = O(W, &).

Proof. We first note that (W, &) are well-defined as o > 0
by the feasibility of (w, «) in (3). Next, we check feasibility
of (W, &) in (6):

N 4 (a—1)2
T 2 T
W W+ a” = W W+
V(e +1)? (a+1)2
da+ (a —1)2
= =1.
(a+1)2

Here, the second equality follows from the fact that w” w =
~a. Finally, we see that

o(W, @)
~ 2
& Nai z
== Nixw—(v-2
2+ L xw—(y- %)
2
a—1 2 Z
- vt Llx ~y-2)
2(a+1) 2 (la+1) 2
az + Xw 2 ( )
=|——— =v(w,q
a+1 ’
This completes the proof. O

Lemma 3.3. Suppose (W, &) is feasible to (6) with & # 1.
Then (w, &), defined as

Vi . 1+

—w and o=
11—« 1—

o)

; ®)

W =

joN

is feasible to (3) and O(W, &) = v(w, a).

Proof. We first note that (w, «) are well-defined as & # 1.
Next, we check feasibility of (w, ) in (2):

v _ Y ar. 1-6%) ~(1+a)
WW—(l_d)QW W= 1—a2 g e
Here the second equality follows from the fact that W’ w +
&2 = 1. Finally, we check the objective value of (w,a):

az+Xw (1+a&) Z+wa _
14+« - (1— a)+(1+o¢) O
= |[%z+ %XW —2z/2) H

Let v* and ©* be the optimal values of (3) and (6), respec-
tively. Now we are ready to present our main results.

Theorem 3.4. Given Assumption 3.1, then there exists an
optimal solution (W,@&) to (6) with & # 1. Moreover,
(w, @), defined by (8), is an optimal solution to (3) and
v* =v(w,a) = 0(W,&) = 0.

Proof. Since the feasible region of (6) is compact and v
is continuous, it follows from the well-known Weierstrass
theorem that there exists at least one optimal solution to (6).

Note that if (W, &) with & = 1 is a feasible solution in (6),
we must have w = 0. Now we claim that (0, 1) cannot be
the unique optimal solution to (6). Suppose on the contrary
that (0, 1) is the unique optimal solution to (6). Let (w*, a*)
be any optimal solution to (3). Then, from Lemma 3.2, we
have

v(w*, a*) = o(W*, &%), ©)

* a’—1

2 S
ﬁ(a*—&-l)w , = a1 < 1, and
(w*, &*) is feasible to (6). Since (0, 1) is the unique optimal
solution to (6), it holds that

o(w*,a@") > 0(0,1) = [|lz — y|*. (10)

where w*

On the other hand, for any w # 0 and ¢ > 0, the pair
(tw, t>wTw/v) is clearly feasible to (3) with objective
value
v(tw, t*wTw/v)
o t2 T / t
- ‘ 1+t‘;vw7vyw’;'yz + 1+t2wTw /vy
— |lz—yl?, ast — oo.

2
Xw—yH (11)

Consequently, for sufficiently large ¢, we must have from
(9), (10) and (11) that

v(w*,a*) > v(tw, t*wlw/~),
which contradicts the optimality of (w*, a*) to (3).

The above claim shows that there exists an optimal solu-
tion (W, &) to (6) with & # 1. Then, Lemma 3.3 yields
(W, &) = 0% = v(w, ) > v* with (w, ) defined in (8).
Similarly, under Assumption 3.1, from Lemma 3.2, we see
that v* > v*. Thus, v* = v*. The proof is completed. [

We remark that the other direction of above theorem also
holds. That is, under Assumption 3.1, there exists an optimal
solution (w, @) to (3), and, furthermore, (W, &), defined
by (7), is optimal to (6). We also remark that using the
relationship (8) and the equivalence of (2) and (3), an €
optimal solution of the SCLS can be used to recover an e
optimal solution of the SPG-LS.

Letting L = (@X %) andr = (%), we can rewrite
problem (6) in a more compact form

min ¢(r) st.rlr=1, (12)
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where ¢(r) is a least squares
a(r) = |[Lxr = (y = 2/2)[3 =x"Hr + 2g"r +p (13)

with H = LTL, g = LT (z/2—y), p = (z/2—y) " (z/2—
y)-

In the following of this paper, we focus on solving (12).
Problem (12) is closed related to the well-known trust region
subproblem (TRS), where the sphere constraint is replaced
by a unit ball constraint. There exist various methods for
solving (12) from the literature on TRS (Moré & Sorensen,
1983; Gould et al., 1999; Conn et al., 2000; Hazan & Ko-
ren, 2016; Ho-Nguyen & Kilinc-Karzan, 2017; Zhang et al.,
2017; 2018; Zhang & Shen, 2018; Carmon & Duchi, 2018),
or the generalized trust region subproblem (GTRS) (Moré,
1993; Pong & Wolkowicz, 2014; Jiang & Li, 2019; 2020;
Wang & Kiling-Karzan, 2020; Wang et al., 2021a), which
minimizes a (possible nonconvex) quadratic function over a
(possible nonconvex) quadratic inequality or equality con-
straint. Note that the TRS differs from the SCLS in the
constraint, and the GTRS contains the SCLS as a special
case.

4. Complexity and Algorithms

In this section, we first show that in theory there exists a
linear time algorithm to find an € optimal solution for the
SPG-LS. After that, we introduce two practically efficient
algorithms to solve (12) (and thus recover a solution for the
SPG-LS).

We point out that the linear time algorithms for the TRS
(Hazan & Koren, 2016; Ho-Nguyen & Kilinc-Karzan, 2017)
can be adapted to design a linear time algorithm with com-
plexity O(N/+/€) for the SCLS to achieve an e optimal
solution, and the linear time algorithms for the GTRS (Jiang
& Li, 2020; Wang & Kiling-Karzan, 2020; Wang et al.,
2021a) indicate that the SCLS, as a special case of the
GTRS, can also be solved in linear time O(N/+/€). Here
N denotes the number of nonzero entries in the data matrix,
and the logarithm in the runtime comes from the probability
of success in Lanczos type methods for finding the small-
est eigenvalue of a matrix. Once we obtain a solution 1
such that ||F]] = 1 and ¢(¥) < ¢(r*) + €, where r* is an

optimal solution of (12), we can set W) = Fand (w, )
a

as in (8). Then w is an e optimal solution to (2) because
v(w,a) = 9(w,a&) = ¢(r) and ¢(r*) = v* for the same
reasoning . Thus, one can obtain an € optimal solution to
SPG-LS in runtime O (N/+/€) as the main cost is in solving
the SCLS (12).

However, in practice the computation of even an approxi-
mate minimum eigenvalue may be expensive. Instead, we
will introduce two highly efficient algorithms to solve (6)

without computing approximate eigenvalues. One is the
Krylov subspace method (adapted to the spherically con-
strained case) proposed in Gould et al. (1999), and the
other is the Riemannian trust region Newton (RTRNewton)
method proposed in Absil et al. (2007).

4.1. The Krylov Subspace Method

The simplest idea of the Krylov subspace method (Section
5 in Gould et al. (1999)) solves a sequence of smaller di-
mensional problems in the same form of (12). Specifically,
define (k 4 1)st Krylov subspace
’Ck = {gaHg7H2g7 s 7Hkg}'

Let Q. = [q0, 91, - - -, qx] € RO*TD*(++1) be an orthonor-
mal basis produced by the generalized Lanczos process.
Then assuming dim Kj, = k + 1, we have that Q] HQ,
is a tridiagonal matrix with QY Qy = Ij41. Each itera-
tion of the Krylov subspace method solves the following
subproblem (adapted to the spherical constrained case)

rTHr 4+ 2g7r + p. (14)
€Kk, |r]|=1

Gould et al. (1999) proved that the above subproblem can
be solved efficiently in O(k) flops, if we use a safeguarded
Newton’s method, where the most expensive cost is k
matrix-vector products for H'g, with ¢ € [k]. We remark
that though Gould et al. (1999) considered the case ||r|| < 1,
the two cases ||r|| < 1 and ||r|] = 1 are essentially the
same if the inequality in the TRS is active, which occur
if ||(H — Aminl)Tg|| > 1%. Here ()" denotes the Moore-
Penrose pseudoinverse of a matrix (-).

To achieve better practical performance, Gould et al. (1999)
proposed the generalized Lanczos trust-region (GLTR)
method, which is an efficient implementation of the above
Krylov subspace method. Based on an efficient nested
restarting strategy, Zhang & Shen (2018) further proposed
a nested Lanczos method for TRS (LTRSR), which is an
improvement for GLTR.

The convergence behavior of the Krylov subspace method is
also well analyzed in the literature. The optimality condition
of problem (12) is characterized as follows (adapted from
Chapter 7 in Conn et al. (2000))

0, 15)
1

where A\* is the corresponding Lagrangian multiplier. It is
shown that there always exists an optimal solution r* and
a unique Lagrangian multiplier \*, because different A*s
yield different values for ||r*||, contradicting ||r*| = 1.

2This can be easily derived from the proof of Proposition 4.1.
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Define
)\max + )\*

K= N (16)
for \* > —Anin and use the convention % = 0o0. Here
k is regarded as the condition number of (12) (Carmon &
Duchi, 2018). Zhang & Shen (2018) and Carmon & Duchi
(2018) demonstrated that when x < oo, the Krylov subspace
method satisfies

fler) = f(r") < O(exp(—k/Vk)),

where ry, is an optimal solution of (14), and r* is an optimal
solution for (12). Carmon & Duchi (2018) further proved
that for all cases including A* = — A\, a variant of the
Krylov subspace method where g is perturbed with random
vector will output a solution ry, satisfies

frr) = F(r") < O(1/K?).

for the SCLS (adapted from their analysis for the TRS). This
indeed gives another O(N/+/€) time algorithm for solving
the SPG-LS up to € tolerance; see also Wang et al. (2021a)
for extensions of this idea to the GTRS.

Next we relate the existing convergence results with problem
(12).

Proposition 4.1. If ||(H — A\uinl)'g|| > 1, we must have
A* > —Anin and thus

flry) = f(xr") < O(exp(—k/VK)),
for k defined in (16).

Proof. Note that if \* = —\,;y, then the first equation
in (15) implies that r* = —(H + \*I)'g and thus the
assumption in the proposition implies ||r*|| > 1. However,
this violates the constraint ||r*|| = 1. Therefore we must
have \* > —A;n and thus k < oo. O

In fact, we checked the data in the experiments in Section 5
and found that ||| > 1 always holds in real-world datasets
and our synthetic datasets.

4.2. The Riemannian Trust Region Newton
(RTRNewton) Method

The feasible set in Problem (12) forms a unit sphere S™ =
{r € R"*! : rTr = 1}. When 8" is endowed with the
Euclidean metric (v, u) = v, the unit sphere is a Rieman-
nian manifold (Absil et al., 2008). Therefore, the RTRNew-
ton method proposed in Absil et al. (2007) can be used.
The RTRNewton method for Problem (6) is summarized in
Algorithm 1.

Algorithm 1 relies on the notion of Riemannian gradient,
Riemannian Hessian, and retraction. We refer to Absil et al.

Algorithm 1 A Riemannian Trust Region Newton Method

Require: Initial iterate rg, real numbers A >0, Ay €
(0,A), c € (0,0.25), 71 € (0,1),and T2 > 1;
1: fork=0,1,2,...do
2:  Obtain s € R? by (approximately) solving

Sk ~ argmin mg(s), 17
lIsll2 <Ak

where my(s) = q(ry) + sTgradq(ry) +
1sTHess ¢(r1,)[s], grad g denotes the Riemannian
gradient of ¢ in (18), and Hess g denotes the Rieman-
nian Hessian of ¢ in (19);

) q(ri)—q(Rr (sk))
3: Set Pk' <*' Wm:(%)’
retraction in (20);

where R denotes the

4:  if p;, > c then

5: Ty < Rrk (Sk);

6: else

7: Tp41 < Tk

8: endif

9: if p, > 3 then

10: If ||Sk|| > 0.8A}, then Ak+1 — min(TgAk,Z);

otherwise Ag 1 < Ag;
11:  elseif p; < 0.1 then

12: Apy1 — 1A
13:  else

14: Ak+1 — Ayg;
15:  endif

16: end for

(2008) for their rigorous definitions. Here, we give the Rie-
mannian gradient, the Riemannian Hessian for Problem (12)
and the used retraction.

The Riemannian gradient of ¢ is given by
grad q(r) = Pr,s-Vq(r) = (I —rr?)(2Hr +2g), (18)

where Pr_s» denotes the orthogonal projection onto the
tangent space at r with T,8" = {s : s”r = 0}, and V¢(r)
denotes the Euclidean gradient of ¢, i.e., Vg(r) = 2Hr+2g.
The action of the Riemannian Hessian of ¢ at r along v €
T,S™ is given by

Hess q(r)[v] =Pr s+ (VZq(r)v — vrTVq(r)),
=(I —rr")(2Hv — 2vrT (Hr + g)), (19)

where V2¢(r) = 2H denotes the Euclidean Hessian of ¢ at
r. The retraction R that we use is given by

. r+v
[r+ v’

Re(v) (20)

wherer € S" and v € T,.S".
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The subproblem (17) is approximately solved by the trun-
cated conjugate gradient method. We use the implementa-
tions in ROPTLIB (Huang et al., 2018).

The global convergence and local superlinear convergence
rate of RTRNewton have been established by Theorem 7.4.4
and Theorem 7.4.11 of Absil et al. (2008). We state the
results in the theorem below.

Theorem 4.2. Let {r;} be a sequence of iterates generated
by Algorithm 1. It follows that

lim grad ¢(rx) = 0.
k—oo

Suppose r* is a nondegenerate local minimizer of q, i.e.,
grad q(r*) = 0 and Hess q(r*) is positive definite. Then
there exists ¢ > 0 such that for all sequence {ry} generated
by Algorithm I converging to r*, there exists K > 0 such
that forall k > K,

dist(rpy1,r*) < cdist(ry, r*)2. (21)

The proof for the theorem is deferred to Appendix A. The
global convergence rate has also been established where
the iteration complexity is O (e, ?) for || grad q(z)|| < e,.
We refer interested readers to Theorem 3.9 of Boumal et al.
(2019).

4.3. Time complexity comparisons

In this section, we give a theoretical worst case time com-
plexity of different methods for solving the SPG-LS. First
we point out that the RTRNewton cannot be guaranteed to
converge to the global minimum of SPG-LS. In the worst
case, the RTRNewton needs to solve O (¢, 2) many trust
region subproblems. This means the time complexity is
much worse than the Krylov subspace method (Carmon &
Duchi, 2018) studied in Section 4.1.

Next we compare the time complexity of the Krylov sub-
space method and the SOCP method. In the case of dealing
with a sparse data matrix, the time complexity of the Krylov
subspace method is O (N/+/€), where N is the number of
nonzero entries in the data matrix X . Here, we use the fact
that the cost of the matrix-vector product in the Krylov sub-
space method is O(N) as we can compute Hr by LT (Lr)
for any given r € R". If Kk < oo, then the complexity can
be further improved to O(N log(1/¢)). In the dense case
with m = O(n), the complexity is O (N/+/€) and can be
improved to O(n?log(1/€) if & < oo. Next we consider the
time complexity for the SOCP method, which consists of the
time complexity of formulating the matrix A, the spectral
decomposition and the IPM for solving the SOCP. Since the
spectral decomposition and the IPM can not benefit much
from the data sparsity, we do not distinguish the sparse and
dense cases for the SOCP method. Particularly, the cost

of formulating the matrix A is lower bounded by O(N)
and upper bounded by O(n?) and the spectral decomposi-
tion takes O (n*) flops for some w satisfying 2 < w < 3
(Demmel et al., 2007). Meanwhile, the iteration complex-
ity for solving the SOCP reformulation is O(y/nlog(1/¢))
according to Monteiro & Tsuchiya (2000). As per iteration
in cost in the IPM is O(n), the total cost of the IPM is

(@] (n% log(1/ e)) Therefore the worst case complexity of
the SOCP method is O (nw +n? log(l/e)) .

Theortically, it is hard to compare the Krylov subspace
method and the SOCP method as the result depends on x,
N, w and e. In practice, it usually holds that x < oo and the
spectral decomposition step in the SOCP methods usually
costs O(n?). In fact, our experiments show that the spectral
decomposition step often needs more time than the IPM for
the SOCP. Thus, the Krylov subspace method, which can
effectively utilize the data sparsity, is much faster than the
SOCP approach especially for solving large-scale problems.

5. Experiment Results

In this section, we present numerical results on both syn-
thetic and real-world datasets to verify the superiority of our
proposed reformulation in terms of computational costs. We
refer a nested Lanczos Method for TRS (LTRSR) (Zhang &
Shen, 2018) to perform the GLTR method, and use the im-
plementation of Riemannian trust-region Newton (RTRNew-
ton) (Absil et al., 2007) from Riemannian Manifold Opti-
mization Library (ROPTLIB) (Huang et al., 2018). Similar
as the setting in Wang et al. (2021b), we compare the run-
ning time of above two methods with the SDP and SOCP
approaches in Wang et al. (2021b), averaged over 10 trials,
to evaluate the performance of our new reformulation. All
the four methods solve the SDP, SOCP or the SCLS refor-
mulations to their default precision and the solutions to the
SPG-LS are recovered accordingly.

All simulations are implemented using MATLAB R2021b
on a PC running Windows 10 Intel(R) Xeon(R) E5-2650 v4
CPU (2.2GHz) and 64GB RAM. We report the results of
two real datasets and six synthetic datasets and defer other
results to the supplementary material. In all following tests,
the parameter - is set as 0.1.

5.1. Real-world Dataset

We first compare four methods on the red wine dataset
(Cortez et al., 2009), which consist of 1599 instances each
with 11 features. The output label is a physiochemical
measurement ranged from O to 10, where a higher score
means that the corresponding wine sample has better quality.
Wine producers would like to manipulate the data to fool
the learner to predict a higher score when the raw label is
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smaller than some threshold ¢. We consider the case that
there are two kinds of providers Apodest and Ageyere, Where
the details of the manipulation are set the same as Wang
et al. (2021Db).
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Figure 1. Comparison of four different algorithms on the red wine
dataset. The left and right plots correspond to Amodest and Asevere,
respectively.
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Figure 2. Comparison of four different algorithms on the residen-
tial building dataset. The left and right plots correspond to Amodest
and Ajevere, respectively.

We also compare four methods on the residental building
dataset® from the UCI data repository (Dua & Graff, 2017)
as well. The building dataset includes 372 samples with
107 features. Each feature reflects information of a certain
session such as project date, physical and financial elements.
The output label is the sale prices to real estate single-family
residential apartments. We consider a scenario where the
seller wants to manipulate the price to higher level. As a
buyer, our task is to predict the fair price under fake data.
We still consider two types of sellers: Ajodest With & = 20
and Agevere With 6 = 40.

The computational time for both datasets is reported in
Figures 1 and 2. It show that LTRSR method outperforms
others and follows by the SOCP and RTRNewton. One can
also observe that RTRNewton is even more expensive than
the SDP approach in Figure 1. The main reason is that in
the red wine dataset, the number of features n is quite small
(n = 11). Thus, the spectral decomposition step, as well
as the iterations of the interior point method, in the SOCP
approach is cheap.

We then report the relative errors of objective values (MSEs)

*https://archive.ics.uci.edu/ml/datasets/
Residential+Building+Data+Set

of the SOCP method and our methods in Table 1 for red wine
and residental building datasets. Indeed, all the methods
have a very high accuracy as the relative errors are only
up to 3.37e-5. More MSE comparisons can be found in
Appendix 2.1.

Table 1. Relative error of objective values

(fsoce — frrrsr)/|fsoce| (fsocp — frrrNew)/|fsoce|
AVG MIN MAX AVG MIN MAX

Wine Modest 6.17E-10 3.94E-12 4.23E-09 -8.26E-10 -4.66E-09 3.62E-09
Wine Severe 1.32E-10 3.39E-12 1.84E-09 -8.30E-11 -4.07E-10 1.80E-09
Build Modest 1.49E-07 1.93E-09 5.91E-07 -2.19E-05 -3.37E-05 -1.28E-05
Build Severe 3.02E-08 4.02E-10 1.25E-07 -1.96E-06 -3.06E-06 -1.14E-06

Dataset

5.2. Synthetic Dataset

From the previous subsection, we also see that SOCP,
LTRSR and RTRNewton are much faster than the SDP ap-
proach. To have a comprehensive comparison on wall-clock
time among SOCP, LTRSR and RTRNewton, we test these
methods on synthetic experiments.

5.2.1. DENSE DATA

Table 2. Time (seconds) on synthetic data without sparsity

m = 2n

m n SOCP (eig time) RTRNew LTRSR Ratio
2000 1000 0.585(0.064) 0.743 0.034 17
4000 2000 1.957 (0.317) 2459 0.177 11
8000 4000 10.693 (2.758) 9.269 0.931 11
12000 6000 29.304 (9.444) 18.824 2.120 14
16000 8000 58.561 (21.634) 40.711 3.982 15
20000 10000 114.376 (49.754) 59.768 6.099 19

m=n

m n SOCP (eig time) RTRNew LTRSR Ratio
1000 1000 0.454 (0.065) 0.594 0.017 27
2000 2000 2.104 (0.325) 2.600 0.097 22
4000 4000 10.795 (2.698) 6.958 0.478 23
6000 6000 28.391 (9.481) 17.835 1.083 26
8000 8000 55.263 (21.555) 35.510 2.011 27
10000 10000 97.383 (40.091) 58.009 3.065 32

m = 0.5n

m n SOCP (eig time) RTRNew LTRSR Ratio
500 1000 0.536 (0.059) 0.523 0.022 24
1000 2000 1.748 (0.309) 1.432 0.057 31
2000 4000 9.928 (2.526) 6932 0.251 40
3000 6000 27.230 (8.848) 19.179 0.532 51
4000 8000 54.174(20.258) 28.953 0.928 58
5000 10000 94.548 (37.771) 52756 1.558 61

We first conduct experiments on dense synthetic dataset. To
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have better validation of the effectiveness of our proposed
reformulation, we use the same artificial dataset in Wang
et al. (2021b), which employs make_regression func-
tion in scikit-learn (Pedregosa et al., 2011) with setting the
noise as 0.1 and other parameters as default.

Table 2 summarises the comparison of time on different
scales with m = In, [ € {0.5,1,2}. Here, “SOCP” repre-
sents total time needed for the SOCP approach (including
“eig time”), “eig time” represents the spectral decomposi-
tion time in the SOCP approach, “RTRNew” represents
the RTRNewton method, “LTRSR” represents the LTRSR
method, “Ratio” represents the ratio of times of SOCP
method and LTRSR.

From Table 2, we find that in large scale setting, the
two methods RTRNewton and LTRSR are more efficient.
LTRSR is of orders faster than the other two methods. From
the “Ratio” values we also see that the time cost of SOCP
approach is several tens times of that of LTRSR. We also
observe that the spectral decomposition time in formulating
SOCEP is expensive and takes about 40% of total time. In-
deed, the spectral decomposition time becomes much larger
as n increases, which is also evidenced from our experi-
ments for the sparse data setting in Table 3 below.

5.2.2. SPARSE DATA

To further show the efficacy of our proposed reformulation,
we conduct experiments on synthetic data with high feature
dimension and various sparsity. We apply the sprandn
function in MATLAB to obtain the data matrix X € R™*",
whose i-th row is input vector {x;}7 . The noise measure-
ments {&;}7", i.i.d from the uniform distribution [0, 0.5].
Then the output label {y; }™, via y; = x7 8 + &;. Follow-
ing Wang et al. (2021b), we set the fake output label as

Zi = max{yi, yo.25}-

Table 3 summarises time comparisons on synthetic datasets
with different sparsity and different dimension for m =
0.5n. From these tables, we find that LTRSR and RTRNew-
ton perform much better than the dense case, and their su-
periority over the SOCP approach becomes larger. This is
mainly because both methods are the matrix free methods
that require only matrix vector products in each iteration.
However, the SOCP do not benefit from sparsity as well
as the other two methods. We find that, by comparing the
“eig time” for different instances with the same dimension
but different sparsity, the “eig time” dominates the time of
SOCP approach as the spectral decomposition cannot uti-
lize the sparsity of the data. From the “Ratio” values, we
find that the outperformance of LTRSR grows considerably
when the sparsity and problem size increase. In the case
of (m,n) = (15000, 30000) and sparsity = 0.0001, LTRSR
takes up to 26,000+ times faster than the SOCP approach.
Moreover, our LTRSR takes less than 0.05 second for all the

Table 3. Time (seconds) on synthetic data with sparsity

sparsity = 0.01

m n SOCP (eig time) RTRNew LTRSR Ratio
5000 10000 71.601 (39.432) 13.124 0.225 318
7500 15000 217.529 (120.456) 26.551 0.534 407
10000 20000 513.751 (288.490) 47.411 1.049 490
12500 25000 941.394 (539.619) 69.421 1.606 586
15000 30000 1539.443 (865.813) 113.223 2.416 637

sparsity = 0.001

m n SOCP (eig time) RTRNew LTRSR Ratio
5000 10000 61.587 (45.253) 1.416 0.028 2200
7500 15000 153.075(117.389) 2.379 0.053 2888
10000 20000 335.956 (259.671) 5.453 0.113 2973
12500 25000 638.175(491.391) 7.715 0.168 3799
15000 30000 1082.261 (832.413) 12.090 0.235 4605

sparsity = 0.0001

m n SOCP (eig time) RTRNew LTRSR Ratio
5000 10000 49.869 (45.462) 0391  0.009 5541
7500 15000 141.507 (134.525) 0.716 0.014 10108
10000 20000 310.991 (289.447) 0.979  0.020 15550
12500 25000 587.124 (540.314) 1.301  0.030 19571
15000 30000 991.070 (912.015) 2.171  0.037 26786

instances with sparsity = 0.0001. More reports on relative
errors of all methods are reported in Appendix 2.2.

6. Conclusion

We propose an SCLS reformulation for the SPG-LS and
show its optimal solution can be used to recover an optimal
solution of the SPG-LS. We further show that an e optimal
solution of the SPG-LS can be also recovered from an e
optimal solution of the SCLS. Moreover, such an € optimal
solution obtained in runtime O(N/+/€). We also introduce
two practical efficient methods, LTRSR and RTRNewton,
for solving the SCLS. Experiments show that the SCLS
approach is much faster than the existing best approach. In
particular, the performance of the LTRSR dominates both
RTRNewton and SOCP methods.
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Appendix

A. Deferred proof for Theorem 4.2
Proof. We only need to verify the assumptions of Theorem 7.4.4 and Theorem 7.4.11 of Absil et al. (2008).

By definition, the function ¢ is bounded below. Since the unit sphere is a compact manifold, we have that the Riemannian
Hessian Hess ¢(r) is bounded above for any r € 8™, that g o R is radially Lipschitz continuously differentiable, and that ¢
is Lipschitz continuously differentiable by Proposition 7.4.5 and Corollary 7.4.6 of Absil et al. (2008). The implementation
in ROPTLIB for the subproblem (17) is Algorithm 11 of Absil et al. (2008) with 8§ = 1. Therefore, the Cauchy decrease
inequality is satisfied. It follows that all the assumptions of Theorem 7.4.4 are satisfied.

Since Retraction (20) is second order, the assumption of (7.36) in Theorem 7.4.11 of Absil et al. (2008) holds with 8¢ = 0.
Since the function ¢ is C°° and the manifold is compact, the assumption of (7.37) in Theorem 7.4.11 of Absil et al. (2008)
holds. The local quadratic convergence rate in (21) thus follows. O

B. Additional Experiments

In this section, we provide additional numerical results to further show the efficiency of our proposed reformulation.

1. Real-world Dataset

We demonstrate the speed of our methods on two other real-world datasets, the insurance dataset* and the blogfeedback
dataset®. Similar as the setting in previous section, we compare the wall-clock time of RTRNewton (Absil et al., 2007) and
LTRSR (Zhang & Shen, 2018) approaches with the SDP and SOCP methods proposed in Wang et al. (2021b).

We still apply four methods on the insurance dataset that has 1,338 instances with 7 features. Each feature shows information
on certain aspects such as age, sex, bmi and region. The output labels are individual medical costs by buying health insurance.
For model accuracy, we transform categorical features such as sex into a one-hot vector. We assume that the individuals
incline to modify self-related data to reduce their insurance costs. Formally, the individual’s desired outcome can be defined
as z; = max{y; + 9, 0}. We have two types of individual: Aogest With § = —100 and Ageyere With 6 = —300. All the
hyperparameters are the same as those in Wang et al. (2021b). As an insurer, our goal is to select a good price model to
predict the insurance costs as true as possible.

To further illustrate the effectiveness of our new reformulation, we compare four methods on the blogfeedback dataset. The
blog dataset contains 52,397 samples each with 281 features processed from raw feedback materials on the Internet. Each
feature represents information of a certain session. The output label is the number of comments. As a learner, our task is to
predict the future comments of blog. Similarly, we assume that the true output label y would be modified by data providers
in order to achieve the goal of increasing blog comments. For example, public media intend to manipulate data to add the
blog comments and enhance its news popularity. Formally, we define the altered label as z; = y; + 6. We still have two
types of data providers: Apodesc With § = 5 and Ageyere with § = 10.

The wall-clock time comparison can be found in Figure 3. Similar to the previous cases, LTRSR outperforms other
approaches. However, as the dimension in this problem is too small, the comparison of the other three methods does not
match their performance for large scale problems.

2. Synthetic Dataset

To further demonstrate the efficiency and adaptiveness to high dimension problems of our proposed reformulation, we
conduct experiments on more synthetic datasets with different hyperparameters and various dimensions and sparsity.

‘nttps://www.kaggle.com/mirichoi0218/insurance
Shttps://archive.ics.uci.edu/ml/datasets/BlogFeedback
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Figure 3. Performance comparison between different algorithms on the insurance and blog dataset. The left two plots correspond to the
wall-clock time comparison of insurance dataset generated by Amodest and Agevere, Whilst the right two plots correspond to the wall-clock
time comparison of blog dataset generated by Amodest and Asevere-

2.1. DENSE DATA

We first perform experiments with v = 0.01 on synthetic datasets without sparsity to show the superiority of our reformulation
under different hyperparameter. All the other settings are the same as in Section 5.2.1.

Table 4 shows the comparison of wall-clock time on different scales with m = In, € {0.5,1, 2}, which is similar to the
case of v = 0.1. We observed that both SCLS approaches are faster than the SOCP approach. Moreover, all the LTRSR is
less than 6 seconds while the SOCP can take up to about 110 seconds.

Table 4. Time (seconds) on synthetic data without sparsity, v = 0.01

m=2n m=n ‘ m = 0.5n

n |
SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio

1000 0.619 (0.087) 0.712  0.031 20 0.564 (0.086) 0.704  0.020 28 0.466 (0.078) 0.649 0.012 39
2000  2.244 (0.419) 2519 0.138 16 1.900 (0.471) 1.828 0.098 19 2.438 (0.401) 2.092 0.060 41
4000  12.123 (3.448) 5179 0.956 13 11.597 (3.539) 6.789 0.499 23 11.645 (3.212) 6.778 0.249 47
6000 33.093 (11.903) 15.857 2.135 16 | 31.262(11.691) 18.617 1.053 30 | 32.812(11.008) 11.070 0.561 58
8000 66.816 (27.466) 38501 3.768 18 | 63.983(27.512) 34.655 1.984 32 | 59.725(25.061) 27.201 0.961 62
10000 118.044 (49.477) 59.551 5.916 20 |109.516(50.018) 54.060 3.048 36 |104.251 (47.261) 39.611 1.529 68

2.2. SPARSE DATA

We proceed to perform experiments on large-scale sparse dataset of various scales m = In, | € {1,2,3} with different
sparsity. All the other settings are the same as in Section 5.2.2.

From Table 5, we observed the great superiority of our SCLS reformulation since all the LTRSR and RTRNewton method
faster than SOCP method. LTRSR is of several orders faster than the SOCP approach, especially when the sparsity and
dimension grow. The spectral time of decomposition in formulating SOCP is quite expensive as the problem size grows. In
the case (m,n) = (90000, 30000), sparsity = 0.01, the decomposition time is up about 1000 seconds, while the LTRSR
method only takes about 22 seconds to solve the problem.

C. Relative Error

This section reports relative errors of function values and MSEs between SOCP and our methods for all our experiments in
Tables 6, 7, 8 and 9.

1. Real-world Dataset

In Tables 6 and 7, we show the relative errors of MSEs on training sets and test sets, respectively. Here, abbreviations “Insur”
represents insurance dataset, “Build” represents building dataset, “f” represents the function value of related methods and
“M” represents its MSE. In Table 6, We observe that LTRSR is more accurate than SOCP as its relative error preserves
positive. Indeed, all the methods have a very high accuracy as the relative errors are only up to to 3. 37e-5. Table 7 shows
that all methods have similar test accuracy as the relative errors of the test MSEs of all the methods are upto 5.27e-4.
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Table 5. Time (seconds) on synthetic data with different sparsity

m=n

sparsity = 0.01 sparsity = 0.001 ‘ sparsity = 0.0001

|
n

SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio
10000  84.547 (40.602) 21947 0.487 174 | 56.101 (40.322) 1.892 0.061 920 | 41.854 (38.038) 0.499 0.012 3488
15000 254.85(126.365)  50.797 1.142 223 | 160.486 (125.064) 5.166 0.131 1225| 130.071 (118.582) 0.540 0.018 7226
20000 550.191 (281.018) 107.358 2.088 264 | 355.746 (278.687) 10.932 0.222 1603 | 299.496 (265.987) 1.075 0.029 10327
25000 1090.231 (581.289) 159.592 3.502 311 | 728.118 (560.429) 15.543 0.357 2040| 591.172 (509.912) 1.285 0.038 15557
30000 1726.133 (963.081) 248.325 5.393 320 | 1240.319 (979.66) 19.947 0.528 2349|1040.441 (888.321) 2.323 0.056 18579

m = 2n

sparsity = 0.0001

sparsity = 0.001

SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio

10000 108.861 (48.901)  50.508 1.096 99 | 64.521 (48.604) 5765 0.119 542 | 45.599(39.977) 0.326  0.016 2850
15000 316.424 (151.406) 117.217 2.609 121 | 173.231(132.098) 12.230 0.257 674 | 148.608 (127.759) 0.947 0.028 5307
20000 643.464 (324.073) 219.622 5.056 127 | 379.145 (289.701) 23.199 0.457 830 | 338.119 (283.882) 1.241 0.048 7044
25000 1149.663 (605.581) 395.202 7.818 147 | 720.837 (561.652) 43.718 0.725 994 | 684.654 (563.812) 2.254 0.061 11224
30000 2026.088 (1080.883) 598.468 12.022 169 | 1217.779 (937.93) 45.074 1.100 1107 |1106.028 (899.099) 3.869 0.083 13326

sparsity = 0.01

m = 3n

sparsity = 0.01 sparsity = 0.001 ‘ sparsity = 0.0001

|
n

SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio‘ SOCP (eig time) RTRNew LTRSR Ratio
10000 113.978 (51.388)  76.183 1.592 72 | 56.434 (41.871) 8.557 0.171 330 | 46.739 (39.697) 0.446 0.022 2125
15000 298.498 (143.174) 200.29 3.932 76 | 171.902(129.377) 22.335 0.396 434 | 150.666 (123.946) 0.774 0.037 4072
20000 596.182(288.772) 356.849 7.750 77 | 417.155(312.681) 42.438 0.718 581 |339.114 (274.737) 1.713  0.061 5559
25000 1152.428 (606.097) 614.192 13.592 85 | 782.197 (587.333) 43.646 1.151 680 | 641.319 (518.51) 2.678 0.085 7545
30000 1949.035 (1039.845) 948.449 21.749 90 |1298.734 (971.861) 93.219 1.698 765 |1085.053 (876.409) 5.526 0.119 9118

Table 6. Relative error of objective values on training sets

Dataset (fsoce — frrrsr)/[fsoce| (fsocp — frrrew)/ [fsoce| Dataset (fsoce — frrrsr)/|fsoce| (fsocp — frrrNew)/[fsoce
AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX

Wine Modest 6.17E-10 3.94E-12 4.23E-09 -8.26E-10 -4.66E-09 3.62E-09 Insur Modest 1.01E-05 1.40E-06 3.31E-05 1.01E-05 1.40E-06 3.31E-05
Wine Severe  1.32E-10 3.39E-12 1.84E-09 -8.30E-11 -4.07E-10 1.80E-09 Insur Severe 2.57E-06 4.90E-07 9.56E-06 2.57E-06 4.90E-07 9.56E-06
Build Modest 1.49E-07 1.93E-09 5.91E-07 -2.19E-05 -3.37E-05 -1.28E-05 Blog Modest 8.07E-09 3.33E-10 3.82E-08 8.07E-09 3.33E-10 3.82E-08
Build Severe  3.02E-08 4.02E-10 1.25E-07 -1.96E-06 -3.06E-06 -1.14E-06 Blog Severe  3.55E-08 2.80E-10 2.24E-07 3.55E-08 2.80E-10 2.24E-07

Table 7. Relative error of MSEs on test sets
(Msocp — Mrrrsr)/[Msoce| (Msoce — Mrrrnew)/[Msoce| Dataset (Msocp — Mirrsr)/|Msoce| (Msoce — Mrrrnew) /| Msoce|
AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX
Wine Modest 1.99E-07 -9.55E-07 4.31E-06 1.74E-07 -9.54E-07 3.99E-06 Insur Modest 1.05E-05 7.69E-07 421E-05 1.02E-05 -7.09E-07 4.28E-05
Wine Severe 2.03E-07 -1.79E-07 2.57E-06 2.64E-07 -4.55E-07 2.79E-06 Insur Severe 2.43E-06 -3.36E-07 1.01E-05 2.45E-06 -3.27E-07 1.01E-05

Build Modest -4.52E-06 -1.25E-04 1.23E-04 -1.25E-04 -5.27E-04 5.01E-04 Blog Modest -2.59E-09 -5.66E-07 2.99E-07 1.92E-09 -5.62E-07 3.03E-07
Build Severe 2.65E-07 -2.63E-05 2.54E-05 8.27E-06 -8.02E-05 1.47E-04 Blog Severe -2.06E-08 -8.12E-07 3.24E-07 -5.02E-09 -7.81E-07 3.06E-07

Dataset

2. Synthetic Dataset
2.1. DENSE DATA

Table 8 summarises relative errors of objective values on synthetic datasets without sparsity. Comparing to the result in
real-world dataset, we find that all the methods have high accuracy as the relative errors of the MSEs are up to 4. 60e—5.
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Table 8. Relative error on synthetic dataset without sparsity

(fsocp — frrrsr)/ |fsoce

(fsocp — frrrNew)/|fsoce|

(fsocp — frrsr)/|fsoce|

(fsocp — frrrNew)/|fsoce|

=01 =0.01

AVG MIN MAX AVG MIN  MAX AVG MIN MAX AVG MIN MAX
m=2n 1.01E-09 9.58E-11 3.41E-09 1.01E-09 9.58E-11 3.41E-09 m =2n 151E-05 5.39E-08 4.60E-05 1.51E-05 5.39E-08 4.60E-05
m=n  226E-08 337E-11 1.34E-07 2.26E-08 3.36E-11 1.34E-07 m=n  2.11E-06 3.26E-07 7.40E-06 2.11E-06 3.26E-07 7.40E-06

m = 0.5n 8.27E-09 2.54E-12 4.82E-08 8.27E-09 2.05E-12 4.82E-08 m = 0.5n 2.21E-06 3.44E-07 6.87E-06 2.21E-06 3.44E-07 6.87E-06

2.2. SPARSE DATA

Table 9 summarises relative error of objective values in synthetic dataset with different sparsity. Similar to the previous
cases, both of our methods have high accuracy in terms of MSEs. These consistent results further prove the validity of our

SCLS reformulation.

Table 9. Relative error on synthetic dataset without sparsity

sparsity = 0.0001

(fsoce — furrsr)/[fsoce|

(fsocp — frrrnew)/|fsoce]

(fsoce — furrsr)/|[fsoce|

(fsocp — frrrnew)/|fsoce]

v=0.1 v =0.01
AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX
m=3n 124E-09 1.48E-11 5.58E-09 1.24E-09 1.45E-11 5.58E-09 m =3n 3.98E-09 5.27E-11 1.19E-08 3.97E-09 3.19E-11 1.19E-08
m =2n  T7.49E-11 3.53E-13 1.55E-10 7.47E-11 3.20E-13 1.54E-10 m =2n  2.25E-09 2.62E-12 4.88E-09 2.24E-09 -3.51E-12 4.87E-09
m=n 9.10E-10 9.93E-12 2.01E-09 9.10E-10 9.73E-12 2.01E-09 m =n 7.95E-09 1.83E-10 2.34E-08 7.94E-09 1.16E-10 2.34E-08
m = 0.5n 3.06E-10 3.81E-12 6.60E-10 3.06E-10 3.70E-12 6.60E-10 m = 0.5n 3.07E-09 7.96E-13 6.28E-09 3.06E-09 -4.52E-12 6.28E-09
sparsity = 0.001
y =01 (fsoce — furrsr)/|fsoce| (fsocp — frrrnew)/ [fsoce] — 001 (fsoce — furrsr)/|fsoce| (fsocp — frrrnew)/ [fsoce]
AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX
m=3n 136E-09 5.73E-11 2.58E-09 1.36E-09 5.64E-11 2.58E-09 m =3n 1.92E-08 5.04E-10 8.89E-08 1.92E-08 5.04E-10 8.89E-08
m =2n  1.66E-09 6.00E-11 5.06E-09 1.66E-09 5.91E-11 5.06E-09 m = 2n  5.14E-08 9.80E-12 2.05E-07 5.14E-08 9.74E-12 2.05E-07
m=n 5.76E-10 1.53E-09 1.13E-12 6.19E-09 1.53E-09 -2.03E-13 m=n 1.96E-08 1.14E-10 4.83E-08 1.96E-08 1.14E-10 4.83E-08
m = 0.5n 1.90E-09 1.02E-10 6.68E-09 1.90E-09 1.01E-10 6.68E-09 m = 0.5n 4.42E-08 4.91E-09 1.34E-07 4.42E-08 4.91E-09 1.34E-07
sparsity = 0.01
Y =01 (fsoce — furrsr)/|fsoce| (fsocp — frrrnvew)/ [fsoce] —0.01 _ Ssoce — furrsr)/|fsoce| (fsocp — frrrnew)/ [fsoce]
AVG MIN MAX AVG MIN MAX AVG MIN MAX AVG MIN MAX
m=3n 2.19E-08 2.64E-11 1.70E-08 2.19E-08 2.63E-11 1.70E-08 m = 3n  1.05E-07 2.15E-09 2.51E-07 1.05E-07 2.15E-09 2.51E-07
m =2n  8.23E-08 8.23E-08 3.74E-07 1.02E-07 4.80E-11 3.74E-07 m =2n  6.94E-07 3.99E-10 3.10E-06 6.94E-07 3.99E-10 3.10E-06
m=n 1.27E-08 9.14E-10 3.37E-08 1.27E-08 9.14E-10 3.37E-08 m =n 2.21E-06 7.78E-09 1.00E-05 2.21E-06 7.78E-09 1.00E-05
m = 0.5n 1.90E-08 3.52E-12 4.50E-08 1.90E-08 3.45E-12 4.50E-08 m = 0.5n 6.52E-06 6.40E-08 2.95E-05 6.52E-06 6.40E-08 2.95E-05




