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Abstract
The space of value functions is a fundamental
concept in reinforcement learning. Characteriz-
ing its geometric properties may provide insights
for optimization and representation. Existing
works mainly focus on the value space for Markov
Decision Processes (MDPs). In this paper, we
study the geometry of the robust value space for
the more general Robust MDPs (RMDPs) set-
ting, where transition uncertainties are consid-
ered. Specifically, since we find it hard to directly
adapt prior approaches to RMDPs, we start with
revisiting the non-robust case, and introduce a
new perspective that enables us to characterize
both the non-robust and robust value space in a
similar fashion. The key of this perspective is to
decompose the value space, in a state-wise man-
ner, into unions of hypersurfaces. Through our
analysis, we show that the robust value space is
determined by a set of conic hypersurfaces, each
of which contains the robust values of all policies
that agree on one state. Furthermore, we find that
taking only extreme points in the uncertainty set
is sufficient to determine the robust value space.
Finally, we discuss some other aspects about the
robust value space, including its non-convexity
and policy agreement on multiple states.

1. Introduction
The space of value functions for stationary policies is a
central concept in Reinforcement Learning (RL), since
many RL algorithms are essentially navigating this space
to find an optimal policy that maximizes the value function,
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Figure 1. The value space can be decomposed in a state-wise man-
ner as an intersection of unions of hypersurfaces. Each union
corresponds to a state and each hypersurface contains the value
functions of policies agreeing on that state.

such as policy gradient (Sutton et al., 1999), policy itera-
tion (Howard, 1960) and evolutionary strategies (de Boer
et al., 2005). Characterizing the geometric properties for
the space of the value function (i.e., the value space) would
offer insights for RL research. A recent work (Dadashi
et al., 2019) shows that the value space for Markov Deci-
sion Processes (MDPs) is a possibly non-convex polytope,
which inspires new methods in representation learning in
RL (Bellemare et al., 2019; Dabney et al., 2021).

Compared to MDPs, Robust MDPs (RMDPs) are more gen-
eral, since they do not assume that the transition dynamics
are known exactly but instead may take any value from a
given uncertainty set (Xu & Mannor, 2006; Iyengar, 2005;
Nilim & El Ghaoui, 2005; Wiesemann et al., 2013). This
makes RMDPs more suitable for real-world problems where
parameters may not be precisely given. Therefore, character-
izing the geometric properties of the value space for RMDPs
(i.e., robust value space) is of interest.

However, we find it hard to directly adapt the prior ap-
proach (Dadashi et al., 2019) from MDPs to RMDPs. Their
method builds upon on a key theorem (the Line Theorem),
but we find it difficult to prove a robust counterpart of this
theorem (see more discussions in Section 5.3).

In this work, we introduce a new perspective for investigat-
ing the geometry of the space of value functions. Specifi-
cally, we start with revisiting the non-robust case due to its
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simplicity. By decomposing the value space in a state-wise
manner (as illustrated in Figure 1), we can give an explicit
form about the value function polytope.

With this decomposition-based perspective, we show that
the robust value space is determined by a set of conic hyper-
surfaces, each of which contains the robust value functions
for policies that agree on one state. Furthermore, from a
geometric perspective, we show that the robust value space
can be fully determined by a subset of the uncertainty set,
which composes of extreme points of the uncertainty set. As
a result, for polyhedral uncertainty set such as ℓ1-ball and
ℓ∞-ball (Ho et al., 2018; 2021; Behzadian et al., 2021), we
can replace the infinite uncertainty set with a finite active
uncertainty subset, without losing any useful information for
policy optimization. Finally, we discuss some other aspects
about the robust value space, including policy agreement on
more than one state, the non-convexity of the robust value
space, and why it is difficult to obtain a Line Theorem for
RMDPs.

All proofs and the specifics of MDPs and RMDPs used for
illustration can be found in Appendix.

2. Preliminaries
We introduce backgrounds for MDPs in Section 2.1 and for
RMDPs in Section 2.2. Importantly, Section 2.3 sets up
some essential concepts and notations for studying the value
space, which will be frequently used in the rest of paper.

Notations. We use 1 and 0 to denote vectors of all ones
and all zeros respectively, and their sizes can be inferred
from the context. For vectors and matrices, <, ≤, > and ≥
denote element-wise comparisons. Calligraphic letters such
as P are mainly for sets. For an index set Z = {1, · · · , k},
(xi)i∈Z denotes a vector (x1, x2, · · · , xk) if xi is a scalar,
or a matrix (x1, x2, · · · , xk)

⊤ if xi is a vector. ∆U is used
to denote the space of probability distributions over a set
U. For a non-empty set U, we denote its polar cone as
U∗(Bertsekas, 2009), given by

U∗ := {y | ⟨y, x⟩ ≤ 0,∀x ∈ U}. (1)

We use conv(·) to denote the convex hull of a set, and
ext(·) to denote the set of extreme points of a non-empty
convex set.

2.1. Markov Decision Processes

We consider an MDP (S,A, P, r, γ, p0) with a finite state
set S and a finite action set A. The number of states |S|
and the number of actions |A| are denoted with S and A,
respectively. The initial state is generated according to
the p0 ∈ ∆S. We use Ps,a ∈ ∆S to specify the proba-
bilities of transiting to new states when taking action a in
state s, and employ P := (Ps,a)s∈S,a∈A ∈ (∆S)

S×A as

a condensed notation. An immediate reward rs,a ∈ R
is given after taking action a in state s, and similarly
r := (rs,a)s∈S,a∈A ∈ RS×A is a condensed notation.
γ ∈ [0, 1) is the discount factor. In addition, we also define
Ps := (Ps,a)a∈A ∈ (∆S)

A and rs := (rs,a)a∈A ∈ RA.

A stationary stochastic policy π := (πs,a)s∈S,a∈A ∈
(∆A)

S specifies a decision making strategy, where πs,a ∈
[0, 1] is the probability of taking some action a in current
state s. We denote πs := (πs,a)a∈A ∈ ∆A as the probabil-
ity vector over actions. In particular, we use ds,a ∈ ∆A to
represent a deterministic πs that is all-zero except πs,a = 1.

Under a given policy π, we define the state-to-state transition
probability as

Pπ := (Pπs)s∈S ∈ (∆S)
S, where

Pπs := Psπs =
∑
a∈A

πs,aPs,a ∈ ∆S.
(2)

The reward function under this policy is defined as

rπ := (rπs)s∈S ∈ RS, where

rπs := r⊤s πs =
∑
a∈A

πs,ars,a ∈ R. (3)

The value V π,P ∈ RS is defined to be the expected cumula-
tive reward from starting in a state and acting according to
the policy π under transition dynamic P :

V π,P (s) := EPπ

[ ∞∑
t=0

γtrst,at
| s0 = s

]
. (4)

2.2. Robust Markov Decision Processes

Robust Markov Decision Processes (RMDPs) generalize
MDPs in that the uncertainty in the transition dynamic P
is considered (Iyengar, 2005; Nilim & El Ghaoui, 2005;
Wiesemann et al., 2013). In an RMDP, the transition dy-
namic P is chosen adversarially from an uncertainty set
P ⊆ (∆S)

S×A. We assume throughout the paper that the
set P is compact. The robust value function for a policy π
and the optimal robust value function are defined as

V π,P(s) := min
P∈P

V π,P (s), (5)

V ⋆,P(s) := max
π∈Π

V π,P(s). (6)

Both the policy evaluation and policy improvement prob-
lems are intractable for generic P (Wiesemann et al., 2013).
However, they become tractable when certain independence
assumptions about P are made. Two common assumptions
are (s, a)-rectangularity (Iyengar, 2005; Nilim & El Ghaoui,
2005) and s-rectangularity (Wiesemann et al., 2013), which
we will use in this paper. The (s, a)-rectangularity assumes
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that the adversarial nature selects the worst transition prob-
abilities independently for each state and action. Under
(s, a)-rectangularity, the uncertainty set P can be factorized
into Ps,a ⊆ ∆S for each state-action pair, i.e.,

P = {P | Ps,a ∈ Ps,a,∀ s ∈ S,∀ a ∈ A}, (7)

or in short P = ×
(s,a)∈S×A

Ps,a where × denotes Cartesian

product. The s-rectangularity is less restrictive and assumes
the adversarial nature selects the worst transition probabil-
ities independently for each state. Under s-rectangularity,
the uncertainty set P can be factorized into Ps ⊆ (∆S)

A

for each state, i.e.,

P = {P | Ps ∈ Ps,∀ s ∈ S}, (8)

or in short P = ×
s∈S

Ps. Note that (s, a)-rectangularity is

a special case of s-rectangularity. Below we present a re-
statement of the remark in (Ho et al., 2021) that the optimal
policy for the robust policy evaluation MDP is deterministic.
This restatement will be used later. Under s-rectangularity,
we have for any π,

∃P ∈ P s.t. V π,P (s) = V π,P(s), ∀s ∈ S. (9)

2.3. The Space of Value Functions

The space of value functions (or value space in short) is the
set of value functions for all stationary policies. We use fP
and fP to respectively represent the mapping between a set
of policies and their non-robust and robust value functions,
i.e.,

fP (U) := {V π,P | π ∈ U}, (10)

fP(U) := {V π,P | π ∈ U}. (11)

The set of all stationary stochastic policies is denoted as Π =
(∆A)

S. Then, the non-robust value space for a transition
dynamic P and the robust value space for an uncertainty set
P can be respectively expressed as

VP := fP (Π), (12)

VP := fP(Π). (13)

We then introduce some notations that will be frequently
used later. We use Y πs to denote the set of policies that
agree with π on s, i.e.,

Y πs := {π′ | π′
s = πs}. (14)

Note that policy agreement on state s does not imply dis-
agreement on other states. Thus, π itself is also in Y πs . The
row of the matrix I − γPπ corresponds to state s is denoted
as Lπs,Ps , i.e.,

Lπs,Ps := es − γPπs = es − γPsπs (15)

where es ∈ RS is an all-zero vector except the entry corre-
sponding to s being 1.

Figure 2. Hyperplanes Hπs,Ps corresponding to different s inter-
sect at the value function V π,P .

3. The Value Function Polytope Revisited
In this section, we revisit the non-robust value space from a
new perspective, where the value space is decomposed in
a state-wise manner. This perspective enables us to char-
acterize the polytope shape of the value space in a more
straightforward way, and leads to an explicit form of the
value polytope.

Our first step is to connect a single value function V π,P to
a set of hyperplanes, each of which can be expressed as:

Hπs,Ps := {x ∈ RS | ⟨x, Lπs,Ps⟩ = rπs}. (16)

As shown in Lemma 3 in (Dadashi et al., 2019), the value
functions fP (Y πs) lie in the hyperplane Hπs,Ps .

Specifically, since π ∈ Y πs , we know every hyperplane
Hπs,Ps passes through V π,P (see examples in Figure 2).
The following lemma states that this intersecting point is
unique.

Lemma 3.1. Consider a policy π and a transition dynamic
P , we have

{V π,P } =
⋂
s∈S

Hπs,Ps (17)

Lemma 3.1 bridges between a single value function and
the intersection of S different hyperplanes, each of which
corresponds to a state s. Then, by definition (Eqn. (12)),
we can obtain the value space by taking the union over all
π ∈ Π, i.e.,

VP =
⋃
π∈Π

⋂
s∈S

Hπs,Ps , (18)

as illustrated in Figure 3(a).

From Eqn. (18), we observe that the value space VP can
also be expressed from an alternative perspective (as shown
in Figure 3(b)): 1) for each state s ∈ S, taking the union
of all hyperplanes corresponding to different πs ∈ ∆A; 2)
taking the intersection of the unions obtained in previous
step. The following lemma formalizes this perspective.
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Figure 3. Visualization of the value functions for a 2-state 3-action MDP. (a) For each policy π, we plot the value function V π,P and
the corresponding hyperplanes Hπs,Ps intersecting at V π,P . (b) For each policy π, the hyperplanes Hπs,Ps intersecting at V π,P are
plotted in different colors for different states. (c) For each state s, the union of Hπs,Ps

+ and the union of Hπs,Ps
− over all πs ∈ ∆A are

highlighted respectively. (d) For each state s, the hyperplanes Hds,a,Ps for different actions a are plotted. The union of Hds,a,Ps

+ and the
union of Hds,a,Ps

− over all actions a ∈ A are highlighted as dashed. The entire value space VP is visualized as the purple region.

Lemma 3.2. Consider a transition dynamic P , the value
space VP can be represented as

VP =
⋃
π∈Π

⋂
s∈S

Hπs,Ps =
⋂
s∈S

⋃
πs∈∆A

Hπs,Ps . (19)

As suggested in Lemma 3.2, the core of this perspective is
to decompose the value space in a state-wise manner. In this
way, to study the whole value space, we only need to focus
on the union of hyperplanes corresponding to one state.

Specifically, let us denote the two closed half-spaces deter-
mined by the hyperplane Hπs,Ps as

H
πs,Ps

+ := {x ∈ RS | ⟨x, Lπs,Ps⟩ ≥ rπs},

H
πs,Ps

− := {x ∈ RS | ⟨x, Lπs,Ps⟩ ≤ rπs}.
(20)

Then the value space can be expressed in terms of the half-
spaces:

VP =
⋂
s∈S

⋃
πs∈∆A

H
πs,Ps

+ ∩H
πs,Ps

− . (21)

Recall that in (Dadashi et al., 2019) a convex polyhedron is
defined as a finite intersection of half-spaces, and a polytope
is a bounded finite union of convex polyhedra. So our goal
is to get rid of this infinite union

⋃
πs∈∆A

.

To this end, we first replace the inner union in Eqn. (21) with
an intersection of two unions, as illustrated in Figure 3(c)
and formally stated in the following lemma.

Lemma 3.3. Consider a policy π and a transition dynamic

P , we have for all states s ∈ S,⋃
πs∈∆A

H
πs,Ps

+ ∩ H
πs,Ps

− =[ ⋃
πs∈∆A

H
πs,Ps

+

]
∩

[ ⋃
πs∈∆A

H
πs,Ps

−

]
. (22)

Although these two unions are still taken over infinite set
∆A, the following Lemma 3.4 shows that they actually
coincide with the finite unions of half-spaces that correspond
to ds,a (i.e., deterministic πs). We can get an intuition by
comparing Figure 3(c) and Figure 3(d).
Lemma 3.4. Consider a policy π and a transition dynamic
P , we have for all states s ∈ S,⋃

πs∈∆A

H
πs,Ps

δ =
⋃
a∈A

H
ds,a,Ps

δ , ∀ δ ∈ {+,−}. (23)

Finally, putting everything together, we are able to represent
the value space with finite union and intersection operations
on half-spaces, as stated in Theorem 3.5 and illustrated in
Figure 3(d). Using the distributive law of sets, we can see
that the value space VP immediately satisfies the definition
of polyhedron. Since VP is bounded, we can conclude that
VP is a polytope.
Theorem 3.5. Consider a transition dynamic P , the value
space VP can be represented as

VP =
⋂
s∈S

[[ ⋃
a∈A

H
ds,a,Ps

+

]
∩

[ ⋃
a∈A

H
ds,a,Ps

−

]]

=
⋃

a∈AS

⋃
a′∈AS

⋂
s∈S

[
H

ds,as ,Ps

+ ∩H
ds,a′s

,Ps

−

] (24)
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Figure 4. Visualization of the robust value functions for a 2-state
2-action RMDP with an s-rectangular uncertainty set. We con-
sider P = Ps1 × Ps2 with Ps1 = {P (1)

s1 , P
(2)
s1 } and Ps2 =

{P (1)
s2 , P

(2)
s2 }. Denote P (ij) ∈ P such that P (ij)

s1 = P
(i)
s1 and

P
(ij)
s2 = P

(j)
s2 . We plot with different widths to differentiate over-

lapping lines. (a) For the same set of policies Y πs1 , the set of
non-robust value functions fP (Y

πs1 ) for different P ∈ P and
the set of robust value functions fP(Y

πs1 ) are plotted. (b) For
different P ∈ P, fP (Y πs1 ) are highlighted in different colors.
The hyperplanes corresponding to different Ps1 ∈ Ps1 are plotted.

where a = (as)s∈S, a′ = (a′s)s∈S, and as,a
′
s ∈ A.

Compared to the prior approach (Dadashi et al., 2019), our
work gives an explicit form of the value function polytope,
showing how the value polytope is formed (cf . the proof of
Proposition 1 in (Dadashi et al., 2019)).

4. Value Space Geometry of RMDPs
4.1. Policy Agreement and the Conic Hypersurface

Recall that in Section 3, our new perspective connects the
value space to the hyperplanes where fP (Y

πs) lies. Thus
in order to characterize the robust value space, we start with
studying the geometric properties of robust value functions
for all policies that agree on one state, i.e., fP(Y πs). Unlike
the non-robust case, fP(Y πs) may not lie in a hyperplane,
as shown in Figure 4(a). Nevertheless, it looks like fP(Y πs)
still lies in a hypersurface (also see the example for |S| = 3
in the supplementary). In what follows, we are going to
characterize this hypersurface.

First, as shown in Figure 4(b), for different P ∈ P that
share the same Ps, their fP (Y πs) lie in the same hyperplane
Hπs,Ps . Comparing Figure 4(a) and (b), it seems that the
robust value functions fP(Y πs) always lie in the lower half-
space H

πs,Ps

− for different P ∈ P. On the other hand, from
Eqn. (9), we know that there exists Ps ∈ Ps such that V π,P

lies in the hyperplane Hπs,Ps . Putting it together, we have
the following lemma about fP(Y πs).

Lemma 4.1. Consider an s-rectangular uncertainty set P

Figure 5. (a) For different Ps ∈ Ps, the hyperplanes Hπs,Ps in-
tersect at one point. (b) Illustration of the conic hypersurface in
which fP(Y

πs) lies.

and a policy π, we have for all states s ∈ S,

fP(Y
πs) ⊆

[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩

[ ⋃
Ps∈Ps

Hπs,Ps

]
. (25)

Note that the right hand side (RHS) of above Eqn. (25) is
essentially the boundary of the intersection of half-spaces⋂

Ps∈Ps
H

πs,Ps

− . To further characterize the geometry, we
need to know how these half-spaces intersect (equivalently
how the hyperplanes intersect). One interesting observation
is that when Ps contains more then 2 elements, the hyper-
planes still intersect at one point, as illustrated in Figure 5(a).
The following lemma states this property and also gives the
intersecting point.

Lemma 4.2. Consider an s-rectangular uncertainty set P
and a policy π, we have for all states s ∈ S,

rπs

1− γ
1 ∈

⋂
Ps∈Ps

Hπs,Ps . (26)

Since the hyperplanes intersect at the same point, the inter-
section of the half-spaces will be a convex cone. We denote

C
πs,Ps

+ = {x ∈ RS | ⟨x, Lπs,Ps⟩ ≥ rπs , ∃Ps ∈ Ps},

C
πs,Ps

− = {x ∈ RS | ⟨x, Lπs,Ps⟩ ≤ rπs , ∀Ps ∈ Ps}.
(27)

The following corollary characterizes the hypersurface that
fP(Y

πs) lies in. Figure 5(b) gives an illustration.

Corollary 4.3. Consider an s-rectangular uncertainty set
P and a policy π, we have for all states s ∈ S,

fP(Y
πs) ⊆ Cπs,Ps (28)

where Cπs,Ps = C
πs,Ps

+ ∩ C
πs,Ps

− is a conic hypersurface.
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Figure 6. Visualizations of the robust value functions for a 2-state
2-action RMDP with an s-rectangular uncertainty set. (a) For a
fixed π, the conic hypersurfaces Cπs,Ps corresponding to different
s intersect at the robust value function V π,P. (b) For each policy
π, the robust value function V π,P is plotted, and the corresponding
conic hypersurfaces Cπs,Ps intersecting at V π,P are plotted in
different colors for different states. (c) For each state s, the union of
C
πs,Ps
+ and the union of Cπs,Ps

− over all πs ∈ ∆A are highlighted
respectively. (d) For each state s, the union of Cds,a,Ps

+ and the
union of Cds,a,Ps

− over all a ∈ A are highlighted respectively.

4.2. The Robust Value Space

With the knowledge about the geometry of fP(Y πs), we
are now ready to characterize the entire robust value space
VP. Similar to Section 3, we first connect the single robust
value function to the intersection of S different conic hy-
persurfaces by the following lemma (see Figure 6(a) for an
illustration).

Lemma 4.4. Consider an s-rectangular uncertainty set P
and a policy π, we have

{V π,P} =
⋂
s∈S

Cπs,Ps . (29)

Then from the introduced perspective, we show that the
robust value space can also be viewed as an intersection of
state-wise unions of conic hypersurfaces, as illustrated in
Figure 6(b) and formally stated in Lemma 4.5.

Lemma 4.5. Consider an s-rectangular uncertainty set P,

Figure 7. The robust value space VP and the conic hypersurfaces
Cds,a,Ps under s-rectangularity (a) and (s, a)-rectangularity (b).

the robust value function space VP can be represented as

VP =
⋃
π∈Π

⋂
s∈S

Cπs,Ps =
⋂
s∈S

⋃
πs∈∆A

Cπs,Ps . (30)

Next, we show the equivalence between each inner union in
RHS of the above equation and an intersection of two unions
in Lemma 4.6. Figure 6(c) gives an illustration. Similar to
the non-robust case, Lemma 4.6 will help us characterize
the relationship between the robust value space VP and the
conic hypersurfaces corresponding to ds,a.

Lemma 4.6. Consider an s-rectangular uncertainty set P,
we have for all states s ∈ S,

⋃
πs∈∆A

Cπs,Ps =

[ ⋃
πs∈∆A

C
πs,Ps

+

]
∩

[ ⋃
πs∈∆A

C
πs,Ps

−

]
. (31)

As shown in Figure 6(d), unlike the non-robust case, the
infinite union

⋃
πs∈∆A

C
πs,Ps

− does not necessarily coin-

cides with the finite union
⋃

a∈A C
ds,a,Ps

− . The following
Lemma 4.7 characterizes their relationship.

Lemma 4.7. Consider an s-rectangular uncertainty set P,
we have for all states s ∈ S,⋃

πs∈∆A

C
πs,Ps

+ =
⋃
a∈A

C
ds,a,Ps

+ , (32)

⋃
πs∈∆A

C
πs,Ps

− ⊇
⋃
a∈A

C
ds,a,Ps

− , (33)

where the equality in the second line holds when P is (s, a)-
rectangular.

Putting it together, the robust value space can be character-
ized in Theorem 4.8. Figure 7 highlights the difference in
the robust value space between s-rectangularity and (s, a)-
rectangularity, by using the same set of probability values
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Figure 8. A closer look at the “extra” region under s-rectangularity.
Here Ps2 = {P (1)

s2 , P
(2)
s2 }. We highlight the hyperplanes in (a),

and the upper and lower bounds of the region
⋃

πs∈∆A
Cπs,Ps in

(b). Note that the black boundaries in (b) are composed by the
hyperplanes in (a).

(see Appendix A). Our results also provide a geometric per-
spective on why the optimal policies under s-rectangularity
might be stochastic, which is only exemplified in prior
works (Wiesemann et al., 2013). The robust value functions
of deterministic policies always lie in the region defined by
RHS of Eqn. (34) but the optimal value might lie outside.

Theorem 4.8. Consider an s-rectangular uncertainty set P,
the robust value function space VP satisfies

VP =
⋂
s∈S

[[ ⋃
a∈A

C
ds,a,Ps

+

]
∩

[ ⋃
πs∈∆A

C
πs,Ps

−

]]

⊇
⋂
s∈S

[[ ⋃
a∈A

C
ds,a,Ps

+

]
∩

[ ⋃
a∈A

C
ds,a,Ps

−

]] (34)

where the equality in the second line holds when P is (s, a)-
rectangular.

Furthermore, we take a closer look at this “extra” region
under s-rectangularity. Since the space can be decomposed
state-wisely, we focus on a single state s. Recall the defini-
tion of Cπs,Ps in Eqn. (27), i.e.,

Cπs,Ps =
⋂

Ps∈Ps

H
πs,Ps

− . (35)

From our results in Section 3, we know

H
πs,Ps

− ⊆
⋃
a∈A

H
ds,a,Ps

− . (36)

Therefore, we can obtain

Cπs,Ps ⊆
⋂

Ps∈Ps

⋃
a∈A

H
ds,a,Ps

− , (37)

Figure 9. Visualization of the convex cone C
πs,Ps
− for a fixed πs

and different Ps. The translation rπs1 is ignored since πs is fixed.
(a) We set Ps = {P (1)

s , P
(2)
s }. (b) We set Ps = {P (µ)

s | P (µ)
s =

µP
(1)
s + (1− µ)P

(2)
s , 0 ≤ µ ≤ 1} and also plot the hyperplanes

Hπs,P
(µ)
s for different µ.

and accordingly⋃
πs∈∆A

Cπs,Ps ⊆
⋂

Ps∈Ps

⋃
a∈A

H
ds,a,Ps

− . (38)

The RHS of the above equation gives us an upper bound
of the region

⋃
πs∈∆A

Cπs,Ps while the RHS of Eqn. (33)
provides a lower bound. The “extra” region lies within the
gap between them. Figure 8 gives an illustration using the
same RMDP example as in Figure 7.

4.3. Active Uncertainty Subsets

In above sections, we have shown that the robust value space
VP depends on P in the form of a set of conic hypersurfaces
Cπs,Ps . In this section, by taking a closer look at how Ps

and Cπs,Ps are related, we will show that only a subset
P† ⊆ P is sufficient to determine the robust value space,
i.e.,

VP = VP†
. (39)

We term P† as active uncertainty subset, analogous to ac-
tive constraints, in the sense that all P ∈ P† are active in
determining the shape of the robust value space VP.

First, let us keep πs fixed, and note that the conic hyper-
surface Cπs,Ps is uniquely determined by the convex cone
C
πs,Ps

− . We then focus on the relationship between Ps and
C
πs,Ps

− . Denote the set

Lπs,Ps := {Lπs,Ps | Ps ∈ Ps}. (40)

From the definition of Cπs,Ps

− , we can see C
πs,Ps

− is exactly
the polar cone of Lπs,Ps (plus a translation), denoted with

C
πs,Ps

− = (Lπs,Ps)∗ + {rπs1}. (41)



The Geometry of Robust Value Functions

Figure 10. A spectrum of the spaces of value functions.

Here + denotes the Minkowski addition. Figure 9(a) gives
an illustration. Note that for fixed πs, Lπs,Ps is the image
of Ps under a fixed affine transformation. We denote this
affine transformation as g, i.e., Lπs,Ps = g(Ps). Then we
are able to obtain the following lemma:

Lemma 4.9. Consider a s-rectangular uncertainty set P
and a policy π, we have

(Lπs,Ps)∗ = (g(Ps))
∗ = (g(ext(conv(Ps))))

∗. (42)

This lemma implies that, in order to determine the conic
hypersurface Cπs,Ps , we only need to care about those Ps ∈
Ps that are extreme points of the convex hull. Figure 9(b)
gives an illustration. We then generalize it to the whole
robust value space and present the following theorem:

Theorem 4.10. Consider a s-rectangular uncertainty set P,
we have

VP = VP†
(43)

where P† = ext(conv(P)) ⊆ P.

If the P (or more generally conv(P)) is polyhedral, such as
ℓ1-ball and ℓ∞-ball (Ho et al., 2018; 2021; Behzadian et al.,
2021), then we can reduce P to a finite set without losing
any useful information for policy optimization. In addition,
conv(P) being polyhedral implies that Cπs,Ps

− is a polyhe-
dral cone. Combining with Theorem 4.8, it means that the
robust value space for an (s, a)-rectangular uncertainty set
will be a polytope.

5. Discussion
5.1. Policy Agreement on More States

We already know that the value functions for policies that
agree on a single state lie in a hyperplane for MDPs (Dadashi
et al., 2019), and a conic hypersurface for s-rectangular
RMDPs (Section 4.1). One natural question is how the space
of value functions looks like when we fix the policies at
more states. With our new decomposition-based perspective,
the results are immediately available from Lemma 3.2 and
Lemma 4.5.

Figure 11. (a) The intersection between the robust value space and
axis-parallel lines are line segments. (b) An example showing that
the robust value space is not star-convex.

In Figure 10, we show the space of value functions for
policies agree on states in S∗ ⊆ S, under both non-robust
and robust setting. Moreover, as illustrated in Figure 10,
our perspective reveals a spectrum of the spaces of value
functions. When the policies agree on all states, then it
reduces to a single value function. When the policies are free
to vary on all states, then it is the whole value space. This
perspective enables us to characterize every point on this
spectrum in an explicit form. In comparison, for non-robust
case, prior works (Dadashi et al., 2019) only prove that the
spaces are polytopes without giving a clear characterization.

5.2. The Non-convexity of the Robust Value Space

Like the non-robust case, the robust value space VP is
also possibly non-convex (e.g., Figure 7). Despite the non-
convexity, VP exhibits some interesting properties analo-
gous to monotone polygons. As shown in Figure 11(a), for
any point in the robust value space VP, if we draw an axis-
parallel line passing this point, the intersection will be a line
segment (or a point in degenerated case). We formalize this
observation in the following corollary.

Corollary 5.1. Consider an s-rectangular uncertainty set
P, if an axis-parallel line intersects with the robust value
space VP, then the intersection will be a line segment.

From the examples in Figure 7, one may wonder if the
robust value function space VP is a star-convex set. For
many randomly generated RMDPs, VP does look like a
star-convex set (see Figure 12 in Appendix C). However, we
show a carefully crafted counter-example in Figure 11(b),
which is clearly not star-shaped. Nevertheless, it seems to
be a rare case. One interesting question to explore in the
future is, how non-convex the robust value space can be
and how likely it exhibits such non-convexity. If it is nearly
convex for most time, then we might be able to design some
efficient algorithms tailored for such case.
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5.3. The Line Theorem for RMDPs

As mentioned before, one major obstacle that prevents us
from adapting the prior method (Dadashi et al., 2019) from
MDPs to RMDPs is that deriving a robust counterpart of
the Line Theorem is highly challenging. Here we elaborate
on this issue, with the help of our findings about the robust
value space. Without loss of generality, suppose the set
of policies only differ on s1. From the discussions in Sec-
tion 5.1, we know the resulting set of robust value functions
is [

S⋂
i=2

Cπsi
,Psi

]
∩

 ⋃
πs1

∈∆A

Cπs1
,Ps1

 . (44)

The first term is an intersection of S−1 conic hypersurfaces
and the second term is an infinite union of conic hypersur-
faces. Both are hard to further characterize. For example,
though we know the first term could be a curve, it is challeng-
ing to give a closed-form expression for it. In comparison,
for MDPs, the first term is just a line and its direction is
known (see the proof of Lemma 4 (ii) in (Dadashi et al.,
2019)).

6. Related Works
The geometry of the space of value functions has been stud-
ied only recently. Dadashi et al. (2019) first investigate it,
and establish that for MDPs the value space is a possibly
non-convex polytope. Their results provide a geometric
perspective to help understand the dynamics of different
RL algorithms (Kumar et al., 2019; Chan et al., 2020; Harb
et al., 2020; Chan et al., 2021), and also inspire new meth-
ods in representation learning in RL (Bellemare et al., 2019;
Dabney et al., 2021). In RMDP literature, some works take
advantage of the geometric properties of special uncertainty
sets to design efficient algorithms (Ho et al., 2018; Behza-
dian et al., 2021; Ho et al., 2021), but no prior works studies
the geometry of the robust value space.

Our work can be viewed as an extension of (Dadashi et al.,
2019) to RMDPs. We introduce a new perspective to char-
acterize the geometric properties of the value space for
RMDPs. Our approach also leads to a finer characterization
of the value function polytope in MDPs setting.

7. Conclusion and Future Work
In this work, we characterize the geometry of the space of
robust value functions from a new perspective, where the
value space is decomposed in a state-wise manner. We show
that the robust value space is determined by a set of conic
hypersurfaces. Furthermore, we can reduce the uncertainty
set to a subset of extreme points without sacrificing any
useful information for policy optimization.

There remain some interesting open questions. As discussed
in Section 5, it is worth studying how non-convex the ro-
bust value space can be (i.e., can it be approximated as
a convex set?). A further question is whether the level
of non-convexity increases or decreases with the number
of states/actions. Another direction is to investigate the
geometry for other uncertainty set, such as coupled uncer-
tainty (Mannor et al., 2012), r-rectangular sets (Goyal &
Grand-Clément, 0) or more general ones. In addition, as in
the non-robust case, it is interesting to study the geometry
of robust value functions when the state space is very large
and some approximation is needed. We will leave these
questions to future works.
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A. Details of MDPs and RMDPs
In this section, we give the specifics of the MDPs and the RMDPs used for illustrations in this work.

Figure 2(a) and Figure 3:

S = 2, A = 3

rs1 = (0.0199, 0.6097, 0.8313), rs2 = (0.4044, 0.5534, 0.8319)

Ps1,a1
= (0.7793, 0.2207), Ps1,a2

= (0.9713, 0.0287), Ps1,a3
= (0.0668, 0.9332)

Ps2,a1
= (0.0676, 0.9324), Ps2,a2

= (0.5929, 0.4071), Ps2,a3
= (0.2497, 0.7503)

πs1 = (0.2, 0.3, 0.5), πs2 = (0.3, 0.1, 0.6)

Figure 2(b):

S = 3, A = 2

rs1 = (0.5, 0.8), rs2 = (0.4, 0.2), rs3 = (0.2, 0.6)

Ps1,a1 = (0.14, 0.75, 0.11), Ps1,a2 = (0.44, 0.45, 0.11)

Ps2,a1 = (0.23, 0.19, 0.58), Ps2,a2 = (0.44, 0.32, 0.24)

Ps3,a1 = (0.45, 0.43, 0.12), Ps3,a2 = (0.14, 0.54, 0.32)

πs1 = (0.46, 0.54), πs2 = (0.38, 0.62), πs3 = (0.49, 0.51)

Figure 4:

S = 2, A = 2

rs1 = (0.5, 0.6), rs2 = (0.4, 0.7)

Ps1 =

{(
0.78 0.22
0.79 0.21

)
,

(
0.85 0.15
0.99 0.01

)}
Ps2 =

{(
0.59 0.41
0.92 0.08

)
,

(
0.60 0.40
0.39 0.61

)}
πs1 = (0.45, 0.55), πs2 = (0.10, 0.90)

Figure 5:

S = 2, A = 2

rs1 = (0.5, 0.6), rs2 = (0.4, 0.7)

Ps1 =

{(
0.78 0.22
0.79 0.21

)
,

(
0.85 0.15
0.99 0.01

)
,

(
0.92 0.08
0.99 0.01

)
,

(
0.92 0.08
0.83 0.17

)}
Ps2 =

{(
0.59 0.41
0.92 0.08

)}
πs1 = (0.45, 0.55), πs2 = (0.10, 0.90)

Figure 6, Figure 7(a), Figure 8, Figure 9 and Figure 11(a):

S = 2, A = 2

rs1 = (0.27, 0.9398), rs2 = (0.3374, 0.2212)

Ps1 =

{(
0.95 0.05
0.17 0.83

)
,

(
0.24 0.76
0.05 0.95

)}
Ps2 =

{(
0.07 0.93
0.83 0.17

)
,

(
0.70 0.30
0.23 0.77

)}
πs1 = (0.8, 0.2), πs2 = (0.9, 0.1)
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Figure 7(b):

S = 2, A = 2

rs1 = (0.27, 0.9398), rs2 = (0.3374, 0.2212)

Ps1,a1
= {(0.95, 0.05), (0.24, 0.76)}

Ps1,a2
= {(0.17, 0.83), (0.05, 0.95)}

Ps2,a1
= {(0.07, 0.93), (0.70, 0.30)}

Ps1,a1
= {(0.83, 0.17), (0.23, 0.77)}

Figure 11(b):

S = 2, A = 2

rs1 = (0.24, 0.998), rs2 = (0.3574, 0.412)

Ps1 =

{(
0.95 0.05
0.05 0.95

)
,

(
0.24 0.76
0.95 0.05

)}
Ps2 =

{(
0.2 0.8
0.99 0.01

)
,

(
0.2 0.8
0.01 0.99

)}

B. Proofs
Lemma 3.1. Consider a policy π and a transition dynamic P , we have

{V π,P } =
⋂
s∈S

Hπs,Ps (17)

Proof. Observe that
Hπs,Ps = {x ∈ RS | ⟨x, Lπs,Ps⟩ = rπs} (45)

is the set of vectors that satisfy the s-th equation of the following system of linear equations:

(I − γPπ)x = rπ. (46)

Since (I − γPπ) is invertible, this system of linear equations has a unique solution V π,P . Hence, we have

{V π,P } =
⋂
s∈S

Hπs,Ps (47)

which completes the proof.

Lemma 3.2. Consider a transition dynamic P , the value space VP can be represented as

VP =
⋃
π∈Π

⋂
s∈S

Hπs,Ps =
⋂
s∈S

⋃
πs∈∆A

Hπs,Ps . (19)

Proof. By the definition of VP and Lemma 3.1, we have

VP =
⋃
π∈Π

{V π,P } =
⋃
π∈Π

⋂
s∈S

Hπs,Ps . (48)

We can break the union into nested unions by fixing πs for each s:⋃
π∈Π

⋂
s∈S

Hπs,Ps =
⋃

πsS
∈∆A

· · ·
⋃

πs2
∈∆A

⋃
πs1

∈∆A

⋂
s∈S

Hπs,Ps . (49)
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Then, we have

VP =
⋃

πsS
∈∆A

· · ·
⋃

πs2
∈∆A

⋃
πs1

∈∆A

⋂
s∈S

Hπs,Ps

=
⋃

πsS
∈∆A

· · ·
⋃

πs2∈∆A

⋃
πs1∈∆A

[
Hπs1 ,Ps1 ∩

[
S⋂

i=2

Hπsi
,Psi

]]

=
⋃

πsS
∈∆A

· · ·
⋃

πs2
∈∆A

 ⋃
πs1

∈∆A

Hπs1 ,Ps1

 ∩

[
S⋂

i=2

Hπsi
,Psi

] . (distributive law of sets)

(50)

By iteratively applying the distributive law of sets, we can obtain

VP =
⋂
s∈S

⋃
πs∈∆A

Hπs,Ps (51)

which completes the proof.

Lemma 3.3. Consider a policy π and a transition dynamic P , we have for all states s ∈ S,⋃
πs∈∆A

H
πs,Ps

+ ∩ H
πs,Ps

− = [ ⋃
πs∈∆A

H
πs,Ps

+

]
∩

[ ⋃
πs∈∆A

H
πs,Ps

−

]
. (22)

Proof. First, by the distributive property of sets, it is trivial to obtain LHS ⊆ RHS. Next, we will show RHS ⊆ LHS. For
any x ∈ RHS, we have

∃π′
s, π

′′
s ∈ ∆A s.t. x ∈ H

π′
s,Ps

+ ∩H
π′′
s ,Ps

− . (52)

When π′
s = π′′

s , it is trivial to obtain x ∈ LHS. When π′
s ̸= π′′

s , then there exists α, β ≥ 0 such that

⟨x, Lπ′
s,Ps⟩ − rπ

′
s = α,

⟨x, Lπ′′
s ,Ps⟩ − rπ

′′
s = −β.

(53)

When either α = 0 or β = 0, we have x ∈ Hπ′
s,Ps or x ∈ Hπ′′

s ,Ps , and accordingly x ∈ LHS. Therefore, we only focus on
the case where α, β > 0. If we set

π†
s =

β

α+ β
π′
s +

α

α+ β
π′′
s , (54)

then we have
⟨x, Lπ†

s ,Ps⟩ − rπ
†
s

= ⟨x, β

α+ β
Lπ′

s,Ps +
α

α+ β
Lπ′′

s ,Ps⟩ − β

α+ β
rπ

′
s − α

α+ β
rπ

′′
s

= ⟨x, β

α+ β
Lπ′

s,Ps⟩ − β

α+ β
rπ

′
s + ⟨x, α

α+ β
Lπ′′

s ,Ps⟩ − α

α+ β
rπ

′′
s

=
β

α+ β

(
⟨x, Lπ′

s,Ps⟩ − rπ
′
s

)
+

α

α+ β

(
⟨x, Lπ′′

s ,Ps⟩ − rπ
′′
s

)
=0.

(55)

Note that π†
s ∈ ∆A. The above result implies x lies in the hyperplane Hπ†

s ,Ps . Thus x ∈ LHS and accordingly RHS ⊆ LHS.
Putting it together, we obtain LHS = RHS.
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Lemma 3.4. Consider a policy π and a transition dynamic P , we have for all states s ∈ S,⋃
πs∈∆A

H
πs,Ps

δ =
⋃
a∈A

H
ds,a,Ps

δ , ∀ δ ∈ {+,−}. (23)

Proof. We first prove
⋃

a∈A H
ds,a,Ps

+ =
⋃

πs∈∆A
H

πs,Ps

+ . It is trivial that LHS ⊆ RHS. We then focus on proving
RHS ⊆ LHS. For any x ∈ RHS, we have

∃π′
s ∈ ∆A s.t. x ∈ H

π′
s,Ps

+ . (56)

Note that any πs ∈ ∆A can be written as a convex combination of ds,a, a ∈ A. In our case, we write

π′
s =

∑
a∈A

π′
s,ads,a, (57)

then we have
⟨x, Lπ′

s,Ps⟩ − rπ
′
s ≥ 0

⟨x,
∑
a∈A

π′
s,aL

ds,a,Ps⟩ −
∑
a∈A

π′
s,ar

ds,a ≥ 0∑
a∈A

π′
s,a

(
⟨x, Lds,a,Ps⟩ − rds,a

)
≥ 0.

(58)

Since π′
s,a ≥ 0 for all a ∈ A, the above inequality implies

∃ a′ ∈ A s.t. ⟨x, Lds,a′ ,Ps⟩ − rds,a′ ≥ 0. (59)

This is equivalent to x ∈ LHS. Putting it together, we obtain LHS = RHS.

The second part
⋃

a∈A H
ds,a,Ps

− =
⋃

πs∈∆A
H

πs,Ps

− can be proved in the same way.

Theorem 3.5. Consider a transition dynamic P , the value space VP can be represented as

VP =
⋂
s∈S

[[ ⋃
a∈A

H
ds,a,Ps

+

]
∩

[ ⋃
a∈A

H
ds,a,Ps

−

]]

=
⋃

a∈AS

⋃
a′∈AS

⋂
s∈S

[
H

ds,as ,Ps

+ ∩H
ds,a′s

,Ps

−

] (24)

where a = (as)s∈S, a′ = (a′s)s∈S, and as,a
′
s ∈ A.

Proof. The first equality follow immediately from Lemma 3.2, Lemma 3.3 and Lemma 3.4. The second equality can be
obtained using the distributive law of sets.

Lemma 4.1. Consider an s-rectangular uncertainty set P and a policy π, we have for all states s ∈ S,

fP(Y
πs) ⊆

[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩

[ ⋃
Ps∈Ps

Hπs,Ps

]
. (25)

Proof. For any π′ ∈ Y πs , from Eqn. (9), we know that

∃P† ∈ P, s.t. ∀P ∈ P, V π′,P† ≤ V π′,P . (60)

Using the Bellman equation (Bellman, 1957), we can obtain

V π′,P† − V π′,P = γPπ′

† V π′,P† − γPπ′
V π′,P

= γ(Pπ′

† − Pπ′
)V π′,P† − γPπ′

(V π′,P† − V π′,P )

= (I − γPπ′
)−1γ(Pπ′

† − Pπ′
)V π′,P†

(61)
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Note that (I − γPπ′
)−1 =

∑∞
t=0(γP

π′
)t ≥ 0. Thus, we have

∀P ∈ P, γ(Pπ′

† − Pπ′
)V π′,P† ≤ 0 (62)

Rearranging the above inequality, we obtain

∀P ∈ P, (I − γPπ′
)V π′,P† ≤ (I − γPπ′

† )V π′,P† . (63)

Since (I − γPπ′

† )V π′,P† = rπ
′

and V π′,P = V π′,P† , we have

∀P ∈ P, (I − γPπ′
)V π′,P ≤ rπ

′
. (64)

Taking the s-th inequality and noting that π′
s = πs, we have

∀Ps ∈ Ps, ⟨V π′,P, Lπs,Ps⟩ ≤ rπs . (65)

Therefore, we have
fP(Y

πs) ⊆
⋂

Ps∈Ps

H
πs,Ps

− . (66)

On the other hand, from Eqn. (9) we know

∃Ps ∈ Ps, ⟨V π′,P, Lπs,Ps⟩ = rπs , (67)

which is equivalent to

fP(Y
πs) ⊆

⋃
Ps∈Ps

Hπs,Ps . (68)

Putting it together, we get

fP(Y
πs) ⊆

[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩

[ ⋃
Ps∈Ps

Hπs,Ps

]
, (69)

which completes the proof.

Lemma 4.2. Consider an s-rectangular uncertainty set P and a policy π, we have for all states s ∈ S,

rπs

1− γ
1 ∈

⋂
Ps∈Ps

Hπs,Ps . (26)

Proof. Recall that
Hπs,Ps = {x ∈ RS | ⟨x, Lπs,Ps⟩ = rπs}. (70)

From the definition of Lπs,Ps , we know

⟨1, Lπs,Ps⟩ = 1

1− γ
. (71)

Thus, it is easy to verify that ⟨ rπs

1−γ1, L
πs,Ps⟩ = rπs for all Ps ∈ Ps, which concludes the proof.

Corollary 4.3. Consider an s-rectangular uncertainty set P and a policy π, we have for all states s ∈ S,

fP(Y
πs) ⊆ Cπs,Ps (28)

where Cπs,Ps = C
πs,Ps

+ ∩ C
πs,Ps

− is a conic hypersurface.
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Proof. This corollary is a restatement of Lemma 4.1. Note that[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩

[ ⋃
Ps∈Ps

Hπs,Ps

]
=
⋃

Ps∈Ps

[[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩Hπs,Ps

]

=
⋃

Ps∈Ps

[[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩H

πs,Ps

+

]

=

[ ⋂
Ps∈Ps

H
πs,Ps

−

]
∩

[ ⋃
Ps∈Ps

H
πs,Ps

+

]
= C

πs,Ps

− ∩ C
πs,Ps

+ .

(72)

From Lemma 4.2, we know all halfspaces Hπs,Ps

− intersect at the same point. Then their intersection C
πs,Ps

− will be a convex
cone. Note that each Hπs,Ps is a supporting hyperplane of the cone C

πs,Ps

− and all Hπs,Ps determine this cone. Thus the
intersection of

⋃
Ps∈Ps

Hπs,Ps and C
πs,Ps

− is exactly the surface of Cπs,Ps

− .

Lemma 4.4. Consider an s-rectangular uncertainty set P and a policy π, we have

{V π,P} =
⋂
s∈S

Cπs,Ps . (29)

Proof. For any x ∈ RHS, we have that for all s ∈ S

∃Ps ∈ Ps, ⟨x, Lπs,Ps⟩ = rπs ; (73)

∀Ps ∈ Ps, ⟨x, Lπs,Ps⟩ ≤ rπs . (74)

Since P is s-rectangular, we have

∃P ∈ P, (I − γPπ)x = rπ; (75)
∀P ∈ P, (I − γPπ)x ≤ rπ. (76)

Since the Bellman equation has a unique solution, the first line implies ∃P† ∈ P,x = V π,P† . Suppose V π,P† ̸= V π,P, then
from Eqn. (9) we have

∃P‡ ∈ P, s.t. V π,P‡ = V π,P < V π,P† . (77)

On the other hand, from Eqn. (76), we know

(I − γPπ
‡ )V

π,P† − rπ ≤ 0

(I − γPπ
‡ )V

π,P† − (I − γPπ
† )V

π,P† ≤ 0

γ(Pπ
† − Pπ

‡ )V
π,P† ≤ 0

(I − γPπ
‡ )

−1γ(Pπ
† − Pπ

‡ )V
π,P† ≤ 0 (see the proof of Lemma 4.1)

V π,P† − V π,P‡ ≤ 0

V π,P† ≤ V π,P‡ .

(78)

We have an contradiction. Therefore, we can conclude x = V π,P and accordingly {V π,P} =
⋂

s∈S C
πs,Ps .

Lemma 4.5. Consider an s-rectangular uncertainty set P, the robust value function space VP can be represented as

VP =
⋃
π∈Π

⋂
s∈S

Cπs,Ps =
⋂
s∈S

⋃
πs∈∆A

Cπs,Ps . (30)
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Proof. The proof below follows exactly the same procedure as the proof of Lemma 3.2. By the definition of VP and
Lemma 4.4, we have

VP =
⋃
π∈Π

{V π,P} =
⋃
π∈Π

⋂
s∈S

Cπs,Ps . (79)

We can break the union into nested unions by fixing πs for each s:⋃
π∈Π

⋂
s∈S

Cπs,Ps =
⋃

πsS
∈∆A

· · ·
⋃

πs2
∈∆A

⋃
πs1

∈∆A

⋂
s∈S

Cπs,Ps . (80)

Then, we have

VP =
⋃

πsS
∈∆A

· · ·
⋃

πs2
∈∆A

⋃
πs1

∈∆A

⋂
s∈S

Cπs,Ps

=
⋃

πsS
∈∆A

· · ·
⋃

πs2
∈∆A

⋃
πs1

∈∆A

[
Cπs1

,Ps1 ∩

[
S⋂

i=2

Cπsi
,Psi

]]

=
⋃

πsS
∈∆A

· · ·
⋃

πs2∈∆A

 ⋃
πs1∈∆A

Cπs1 ,Ps1

 ∩

[
S⋂

i=2

Cπsi
,Psi

] . (distributive law of sets)

(81)

By iteratively applying the distributive law of sets, we can obtain

VP =
⋂
s∈S

⋃
πs∈∆A

Cπs,Ps , (82)

which completes the proof.

Lemma 4.6. Consider an s-rectangular uncertainty set P, we have for all states s ∈ S,

⋃
πs∈∆A

Cπs,Ps =

[ ⋃
πs∈∆A

C
πs,Ps

+

]
∩

[ ⋃
πs∈∆A

C
πs,Ps

−

]
. (31)

Proof. Recall that Cπs,Ps = C
πs,Ps

+ ∩ C
πs,Ps

− , then we need to prove

⋃
πs∈∆A

C
πs,Ps

+ ∩ C
πs,Ps

− =

[ ⋃
πs∈∆A

C
πs,Ps

+

]
∩

[ ⋃
πs∈∆A

C
πs,Ps

−

]
. (83)

First, by the distributive property of sets, it is trivial to obtain LHS ⊆ RHS. Next, we will show RHS ⊆ LHS. For any
x ∈ RHS, we have

∃π′
s, π

′′
s ∈ ∆A s.t. x ∈ C

π′
s,Ps

+ ∩ C
π′′
s ,Ps

− . (84)

When π′
s = π′′

s , it is trivial to obtain x ∈ LHS. When π′
s ̸= π′′

s , then we have

∃Ps ∈ Ps, ⟨x, Lπ′
s,Ps⟩ − rπ

′
s ≥ 0;

∀Ps ∈ Ps, ⟨x, Lπ′′
s ,Ps⟩ − rπ

′′
s ≤ 0.

(85)

If there exists Ps ∈ Ps such that ⟨x, Lπ′′
s ,Ps⟩ − rπ

′′
s = 0, then we will get x ∈ Hπ′′

s ,Ps ⊆ C
π′′
s ,Ps

+ and accordingly x ∈ LHS.
Therefore, we only consider the case where

∃Ps ∈ Ps, ⟨x, Lπ′
s,Ps⟩ − rπ

′
s ≥ 0;

∀Ps ∈ Ps, ⟨x, Lπ′′
s ,Ps⟩ − rπ

′′
s < 0.

(86)
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We denote

αPs := ⟨x, Lπ′
s,Ps⟩ − rπ

′
s ,

βPs := rπ
′′
s − ⟨x, Lπ′′

s ,Ps⟩,
Ps := {Ps | αPs ≥ 0, βPs > 0, Ps ∈ Ps},

λ := min
Ps∈Ps

αPs

αPs + βPs
.

(87)

and accordingly

1− λ = max
Ps∈Ps

βPs

αPs + βPs
. (88)

We construct

π†
s := (1− λ)π′

s + λπ′′
s . (89)

Note that 0 ≤ λ ≤ 1. We have π†
s ∈ ∆A since π†

s is a convex combination of π′
s and π′′

s . Then we are going to show that

x ∈ C
π†
s ,Ps

+ ∩ C
π†
s ,Ps

− , i.e.,

∃Ps ∈ Ps, ⟨x, Lπ†
s ,Ps⟩ − rπ

†
s ≥ 0;

∀Ps ∈ Ps, ⟨x, Lπ†
s ,Ps⟩ − rπ

†
s ≤ 0.

(90)

On the one hand, denoting

P †
s := argmin

Ps∈Ps

αPs

αPs + βPs
, (91)

we have

⟨x, Lπ†
s ,P

†
s ⟩ − rπ

†
s = ⟨x, (1− λ)Lπ′

s,P
†
s + λLπ′′

s ,P †
s ⟩ − (1− λ)rπ

′
s − λrπ

′′
s

= (1− λ)
(
⟨x, Lπ′

s,P
†
s ⟩ − rπ

′
s

)
− λ

(
rπ

′′
s − ⟨x, Lπ′′

s ,P †
s ⟩
)

= (1− λ)αP †
s − λβP †

s

=
βP †

s αP †
s

αP †
s + βP †

s

− αP†sβP†s

αP†s + βP†s

= 0.

(92)

On the other hand, for all Ps ∈ Ps we have

⟨x, Lπ†
s ,Ps⟩ − rπ

†
s = ⟨x, (1− λ)Lπ′

s,Ps + λLπ′′
s ,Ps⟩ − (1− λ)rπ

′
s − λrπ

′′
s

= (1− λ)
(
⟨x, Lπ′

s,Ps⟩ − rπ
′
s

)
− λ

(
rπ

′′
s − ⟨x, Lπ′′

s ,Ps⟩
)

= (1− λ)αPs − λβPs

≤ βPsαPs

αPs + βPs
− λβPs

≤ βPsαPs

αPs + βPs
− αPsβPs

αPs + βPs

≤ 0.

(93)
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⟨x, Lπ†
s ,Ps⟩ − rπ

†
s = ⟨x, (1− λ)Lπ′

s,Ps + λLπ′′
s ,Ps⟩ − (1− λ)rπ

′
s − λrπ

′′
s

= (1− λ)
(
⟨x, Lπ′

s,Ps⟩ − rπ
′
s

)
− λ

(
rπ

′′
s − ⟨x, Lπ′′

s ,Ps⟩
)

= (1− λ)αPs − λβPs

≤ βPsαPs

αPs + βPs
− λβPs

≤ βPsαPs

αPs + βPs
− αPsβPs

αPs + βPs

≤ 0.

(94)

Putting it together, we obtain x ∈ C
π†
s ,Ps

+ ∩ C
π†
s ,Ps

− and thus x ∈ LHS.

Lemma 4.7. Consider an s-rectangular uncertainty set P, we have for all states s ∈ S,⋃
πs∈∆A

C
πs,Ps

+ =
⋃
a∈A

C
ds,a,Ps

+ , (32)

⋃
πs∈∆A

C
πs,Ps

− ⊇
⋃
a∈A

C
ds,a,Ps

− , (33)

where the equality in the second line holds when P is (s, a)-rectangular.

Proof. First, we are going to prove ⋃
πs∈∆A

C
πs,Ps

+ =
⋃
a∈A

C
ds,a,Ps

+ . (95)

It is trivial that RHS ⊆ LHS. We then focus on proving LHS ⊆ RHS. For any x ∈ LHS, we have

∃π′
s ∈ ∆A s.t. x ∈ C

π′
s,Ps

+ . (96)

Note that πs ∈ ∆A can be written as a convex combination of ds,a, a ∈ A. In our case, we write

π′
s =

∑
a∈A

π′
s,ads,a. (97)

Also note that for any Ps ∈ Ps,

⟨x, Lπ′
s,Ps⟩ − rπ

′
s = ⟨x,

∑
a∈A

π′
s,aL

ds,a,Ps⟩ −
∑
a∈A

π′
s,ar

ds,a =
∑
a∈A

π′
s,a

(
⟨x, Lds,a,Ps⟩ − rds,a

)
. (98)

Therefore, we can write x ∈ C
π′
s,Ps

+ as

∃Ps ∈ Ps,
∑
a∈A

π′
s,a

(
⟨x, Lds,a,Ps⟩ − rds,a

)
≥ 0. (99)

Since π′
s,a ≥ 0 for all a ∈ A, the above statement implies

∃Ps ∈ Ps, ∃ a′ ∈ A s.t. ⟨x, Lds,a′ ,Ps⟩ − rds,a′ ≥ 0. (100)

This is equivalent to x ∈ RHS. Putting it together, we obtain LHS = RHS.

Second, we are going to prove ⋃
πs∈∆A

C
πs,Ps

− ⊇
⋃
a∈A

C
ds,a,Ps

− , (101)
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where the equality holds when P is (s, a)-rectangular. Again, it is trivial that RHS ⊆ LHS. We then focus on proving
LHS ⊆ RHS when P is (s, a)-rectangular. For any x ∈ LHS, we have

∃π′
s ∈ ∆A s.t. x ∈ C

π′
s,Ps

− . (102)

Similarly, we can obtain
∀Ps ∈ Ps,

∑
a∈A

π′
s,a

(
⟨x, Lds,a,Ps⟩ − rds,a

)
≤ 0. (103)

This is equivalent to
max
Ps∈Ps

∑
a∈A

π′
s,a

(
⟨x, Lds,a,Ps⟩ − rds,a

)
≤ 0. (104)

Due to (s, a)-rectangularity of P, we have∑
a∈A

π′
s,a max

Ps,a∈Ps,a

(
⟨x, Lds,a,Ps⟩ − rds,a

)
≤ 0. (105)

Since π′
s,a ≥ 0 for all a ∈ A, the above statement implies

∃ a′ ∈ A, s.t. max
Ps,a′∈Ps,a′

⟨x, Lds,a′ ,Ps⟩ − rds,a′ ≤ 0, (106)

which is equivalent to
∃ a′ ∈ A, ∀Ps,a′ ∈ Ps,a′ s.t. ⟨x, Lds,a′ ,Ps⟩ − rds,a′ ≤ 0. (107)

This is essentially saying x ∈ RHS. Putting it together, we obtain LHS = RHS when P is (s, a)-rectangular.

Theorem 4.8. Consider an s-rectangular uncertainty set P, the robust value function space VP satisfies

VP =
⋂
s∈S

[[ ⋃
a∈A

C
ds,a,Ps

+

]
∩

[ ⋃
πs∈∆A

C
πs,Ps

−

]]

⊇
⋂
s∈S

[[ ⋃
a∈A

C
ds,a,Ps

+

]
∩

[ ⋃
a∈A

C
ds,a,Ps

−

]] (34)

where the equality in the second line holds when P is (s, a)-rectangular.

Proof. The proof follows immediately from Lemma 4.5, Lemma 4.6 and Lemma 4.7.

Lemma 4.9. Consider a s-rectangular uncertainty set P and a policy π, we have

(Lπs,Ps)∗ = (g(Ps))
∗ = (g(ext(conv(Ps))))

∗. (42)

Proof. Since affine transformations preserve affine hulls (Dattorro, 2005), we have

conv(g(Ps)) = g(conv(Ps)),

conv(g(ext(conv(Ps)))) = g(conv(ext(conv(Ps)))).
(108)

Using Krein-Milman Theorem (Krein & Milman, 1940), we can obtain

g(conv(ext(conv(Ps)))) = g(conv(Ps)). (109)

Putting it together, we have
conv(g(Ps)) = conv(g(ext(conv(Ps)))). (110)

Then by the properties of polar cones (Proposition 2.2.1 in (Bertsekas, 2009)), we can get

(g(Ps))
∗ = (g(ext(conv(Ps))))

∗, (111)

which completes the proof.
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Theorem 4.10. Consider a s-rectangular uncertainty set P, we have

VP = VP†
(43)

where P† = ext(conv(P)) ⊆ P.

Proof. From Eqn. (41) and Lemma 4.9, we know that each conic hypersurface Cπs,Ps only depends on ext(conv(Ps)).
Then we have

VP = VP†
, where P† =×

s∈S

ext(conv(Ps)). (112)

By the definition of extreme points, it is straightforward to show that

×
s∈S

ext(conv(Ps)) = ext

(
×
s∈S

conv(Ps)

)
. (113)

Using the properties of Cartesian products (Bertsekas et al., 2003), we can get

×
s∈S

conv(Ps) = conv

(
×
s∈S

Ps

)
= conv(P). (114)

Putting it together, we have P† = ext(conv(P)). Since P is assumed to be compact, then P† ⊆ P.

Corollary 5.1. Consider an s-rectangular uncertainty set P, if an axis-parallel line intersects with the robust value space
VP, then the intersection will be a line segment.

Proof. Without loss of generality, consider a line parallel to the axis corresponding to state s1, and denote it as

K = {u+ tes1 | t ∈ R} (115)

where u ∈ RS is fixed. Then the intersection between this line and the robust value space is

K ∩

[⋂
s∈S

[[ ⋃
πs∈∆A

C
πs,Ps

+

]
∩

[ ⋃
πs∈∆A

C
πs,Ps

−

]]]
. (116)

On the line K, denote the direction of the ray {u+ tes1 | t ≤ 0} as negative and the opposite direction as positive.

First, we have
K ∩H

πs,Ps

+ =
{
u+ tes1 | t⟨es1 , Lπs,Ps⟩ ≤ rπs − ⟨u, Lπs,Ps⟩

}
(117)

For s ̸= s1, since ⟨es1 , Lπs,Ps⟩ ≤ 0, the intersection K ∩H
πs,Ps

+ is either the line K or a negative ray. Thus, the intersection

K ∩

 ⋂
s∈S,s̸=s1

[ ⋃
πs∈∆A

C
πs,Ps

+

] (118)

is either the line K or a negative ray.

For s = s1, since ⟨es1 , Lπs,Ps⟩ > 0, then the intersection K ∩H
πs,Ps

+ is a positive ray. Thus, the intersection

K ∩

[ ⋃
πs∈∆A

C
πs,Ps

+

]
(119)

is also a positive ray.

Putting it together, we can obtain that the intersection

K ∩

[⋂
s∈S

[ ⋃
πs∈∆A

C
πs,Ps

+

]]
(120)
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is either empty or a line segment (or a point in degenerated case).

Similarly, we can show that the intersection

K ∩

[⋂
s∈S

[ ⋃
πs∈∆A

C
πs,Ps

−

]]
(121)

is either empty or a line segment (or a point in degenerated case).

Finally, taking the intersection, we have that the intersection between K and the robust value space is either empty or a line
segment (or a point in degenerated case).
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C. Additional Figures
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Figure 12. Visualization of the robust value space for several randomly generated s-rectangular RMDPs.


