
Robustness Verification for Contrastive Learning

Zekai Wang 1 Weiwei Liu 1

Abstract
Contrastive adversarial training has successfully
improved the robustness of contrastive learning
(CL). However, the robustness metric used in
these methods is linked to attack algorithms, im-
age labels and downstream tasks, all of which
may affect the consistency and reliability of ro-
bustness metric for CL. To address these prob-
lems, this paper proposes a novel Robustness
Verification framework for Contrastive Learning
(RVCL). Furthermore, we use extreme value the-
ory to reveal the relationship between the ro-
bust radius of the CL encoder and that of the
supervised downstream task. Extensive exper-
imental results on various benchmark models
and datasets verify our theoretical findings, and
further demonstrate that our proposed RVCL is
able to evaluate the robustness of both models
and images. Our code is available at https:
//github.com/wzekai99/RVCL.

1. Introduction
While neural networks (NNs) have achieved remarkable per-
formance in various applications, many studies (Goodfellow
et al., 2015; Madry et al., 2018) have demonstrated that NNs
are vulnerable when dealing with imperceptibly perturbed
images. A rapidly growing body of work therefore aims to
investigate how a robust NN model might be obtained.

One successful method in this field is based on adversar-
ial training (AT) (Moosavi-Dezfooli et al., 2016; Carlini
& Wagner, 2017), which improves the robustness of NN
by augmenting the training set with adversarial samples
(Szegedy et al., 2014). Schmidt et al. (2018) show that AT
requires a large amount of data, while the labels of this
data are expensive to obtain. Thus, several existing works
have attempted to improve the robustness of adversarially
trained models through the use of additional unlabeled data

1School of Computer Science, Wuhan University, China. Cor-
respondence to: Weiwei Liu <liuweiwei863@gmail.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

(Alayrac et al., 2019; Carmon et al., 2019; Zhai et al., 2019).
Recently, attempts have been made to combine AT with con-
trastive learning (CL) (Kim et al., 2020; Fan et al., 2021).
CL (Chen et al., 2020; He et al., 2020) has demonstrated
superior abilities in unsupervised learning: specifically, it
can surpass the standard accuracy of supervised learning on
downstream image classification tasks by utilizing a large-
scale unlabeled dataset. It is therefore of primary interest
to study the robust performance achieved by contrastive AT
(Gowal et al., 2021).

However, existing contrastive AT methods use the empirical
robustness metric (e.g. robust accuracy) to evaluate the
robustness of encoders, an approach that relies on attack
algorithms, image labels and downstream tasks. Three key
questions naturally arise from this kind of measurement:

1. Attack algorithm: Robust accuracy is related to a spe-
cific attack algorithm (e.g. PGD attack (Madry et al.,
2018)); thus, the results may not be consistent with
powerful adversaries.

2. Image label: It is farfetched to train with unlabeled im-
ages while evaluating the encoder with labeled images.

3. Downstream task: We do not know whether the robust-
ness benefits from the encoder or the linear classifier.

In fact, the first question has already been considered in
supervised learning. To explore the first question in more
detail, the robustness analysis of NN is entangled with the
specific attack algorithms used for evaluation (Weng et al.,
2018). Most defense heuristics have subsequently been
shown to fail against suitably powerful attack algorithms
(Carlini & Wagner, 2017; Uesato et al., 2018). Even if the
model is made robust to the attack algorithm used by evalu-
ation, there is no guarantee that will remain robust to other
unseen attacks. This has encouraged researchers to develop
robustness verification (Katz et al., 2017; Wong et al., 2018):
i.e., classifiers whose prediction at point x is verified to be
constant within a neighborhood of x, regardless of what
attack algorithm is applied. The key concept is to find the
largest radius of this neighborhood, referred to as the robust
radius, which is an important metric for use in studying the
robustness of NN.

Unfortunately, previous works on robustness verification
have used only supervised learning; i.e., true labels of data
are required for both the supervised classifier and verifier.

https://github.com/wzekai99/RVCL
https://github.com/wzekai99/RVCL

Robustness Verification for Contrastive Learning

A naive approach would be to apply a current verification
framework to supervised downstream tasks, although this
method would also suffer from the issues highlighted in
Questions 2 & 3, which prompts us to ask the following
questions:

• Can we design a robustness verification framework for
contrastive learning that does not require class labels
and downstream tasks?

• Is there any relationship between the robust radius of
the CL encoder and that of the downstream task?

Our work attempts to conduct a rigorous and comprehen-
sive study that addresses the above questions. Our main
contributions are summarized below.

1. We propose RVCL, a novel Robustness Verification
framework for Contrastive Learning. We then define
the robust radius for CL such that no points inside this
radius can be recognized as negative samples; this is
a robustness metric for encoders that does not require
the involvement of an attack algorithm, image label
and downstream task.

2. We use extreme value theory to prove that the robust
radius of the CL encoder is the upper bound of the
robust radius of the downstream task. This implies
that robust data representations rendered by the CL
encoder (with a large robust radius) can benefit from
the model’s robust performance on downstream tasks.

3. To verify the efficacy of the proposed RVCL, we
validate our proposed framework on two verification
benchmark datasets (MNIST and CIFAR-10). Our
experimental results illustrate that the proposed RVCL
is a suitable robustness metric for models without la-
bels, and accordingly validate our theoretical analy-
sis. Moreover, RVCL is also able to evaluate the anti-
disturbance ability for distinct images.

2. Related work
Self-supervised Contrastive Learning Self-supervised
learning (Jing & Tian, 2021), which involves training mod-
els using unlabeled data and various pretext tasks, has be-
come popular as a means of extracting feature representation
for deep NNs. Early advances have been used to solve image
jigsaw puzzles (Noroozi & Favaro, 2016), predict rotation
angles (Gidaris et al., 2018), fill image patches (Doersch
et al., 2015), etc. Recently, contrastive learning (CL) (Wu
et al., 2018; Chen et al., 2020; He et al., 2020; Tian et al.,
2020) has been proposed by maximizing the agreement be-
tween positive samples while contrasting with negative sam-
ples, and has further been shown to work well in learning
effective representations. Some theoretical works have also
been proposed; for example, Saunshi et al. (2019) provide
the first generalization bound for CL, while Nozawa et al.
(2020) extend it by means of a PAC-Bayesian approach.

Contrastive Adversarial Training Due to the brittleness
of NNs when faced with tiny input perturbations, AT (Madry
et al., 2018) is one of the most powerful robust training meth-
ods used to enhance model robustness. Several recent works
(Kim et al., 2020; Ho & Vasconcelos, 2020; Jiang et al.,
2020; Fan et al., 2021) have explored how to improve ro-
bustness using contrastive AT. To obtain more robust data
representations, AT is used on contrastive pretraining tasks
following the “contrastive adversarial pretraining + super-
vised finetuning” paradigm. However, existing methods use
an empirical robustness metric; the systematic study of the
verified robustness of CL have been less explored.

Robustness Verification In this paper, we focus on de-
terministic verification, following the taxonomy of Li et al.
(2020). When the given input is non-robust against the
attack, deterministic verification is guaranteed to identify
this nonrobustness. The literature for this setting can be
broadly divided into several categories: complete verifiers
using satisfiability modulo theory (SMT) (Katz et al., 2017;
Ehlers, 2017), mixed integer programming (MIP) (Tjeng
et al., 2019; Anderson et al., 2020) and branch and bound
(BaB) (Bunel et al., 2018; Wang et al., 2021); incomplete
verifiers using bound propagation (Zhang et al., 2018; Xu
et al., 2020), and convex relaxation by linear programming
(Wong et al., 2018; Wong & Kolter, 2018). However, these
works focus on supervised settings; verification with CL
settings remain unknown.

Extreme Value Theory Extreme value theory (EVT) has
been recognized as a powerful tool, since it enables the limit
distribution of properly normalized maxima to be effectively
modeled (Scheirer et al., 2011). This success has produced
strong empirical results for describable visual attributes
(Scheirer et al., 2012), visual inspection tasks (Gibert et al.,
2015) and open set recognition problems (Rudd et al., 2018),
etc. Recently, CLEVER (Weng et al., 2018) estimates the
robust radius of supervised verification using EVT. The
difference is discussed in more detail in Appendix B. In this
paper, we creatively use EVT to theoretically analyze the
relationship between the robust radius of the CL encoder
and that of the downstream task.

3. Preliminaries
We first present notations and describe the frameworks for
contrastive learning and supervised verification problem that
will be essential for our analysis.

Notions Let ‖ · ‖2 and ‖ · ‖∞ denote the Euclidean norm
`2 and infinity norm `∞, respectively. 1[Boolean expression]

is the indicator function (equal to 1 if the expression is True
and 0 otherwise). B∞(x0, ε) := {x | ‖x − x0‖∞ ≤ ε}
denotes that the input x is constrained into the `∞ ball. We

Robustness Verification for Contrastive Learning

let sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0.
If S is a set, |S| denotes its cardinality. The transpose of
the vector/matrix is represented by the superscript >. Given
point x, the `2 normalization is defined as ρ̃(u) = u/‖u‖2.
Given points u and v, the instance similarity is defined as
ρ(u, v) = u>v/‖u‖2‖v‖2, which is the dot product be-
tween the `2 normalized u and v (i.e., cosine similarity).
We use [n] to represent the set {1, 2, . . . , n}.

Neural network Consider an input vector x ∈ Rd0 for a
neural network with L layers. Let the number of neurons
in the k-th layer be dk, while Wk ∈ Rdk×dk−1 and bk ∈
Rdk (k ∈ [L]) represent the weights and biases of NN. Let
φk : Rd0 → Rdk be the operator mapping the input layer
to layer k. σ(v) is the activation function, while the ReLU
activation is σ(v) = max(v, 0). For each k ∈ [L], φk(x) =

Wkφ̂k−1(x) + bk, φ̂k(x) = σ(φk(x)), φ̂0(x) = x. We
simply use φ(j)

k and φ̂(j)
k to represent the pre-activation and

post-activation values of the k-th layer and j-th neuron. The
output of the neural network is φL(x) ∈ RdL . dL further
denotes the number of input classes.

3.1. Contrastive Learning

Let X denote the set of all possible data points. Let Y de-
note the label set of the downstream task, which is a discrete
and finite set. F is a class of feature encoder f : X → Rd.
To highlight the key ideas, we present the CL framework
proposed by Saunshi et al. (2019) in a simplified binary
scenario, i.e., Y = {−1, 1}. CL assumes that we obtain
the similar data in the form of pairs (x, x+) and K inde-
pendent and identically distributed (i.i.d.) negative samples
x−1 , x

−
2 , . . . , x

−
K . Given an unlabeled dataset U = {zi}mi=1,

where zi = (xi, x
+
i , x

−
i1, . . . , x

−
iK), we aim to learn an en-

coder f that makes f(x) similar to f(x+), while keeping
away from f(x−1), . . . , f(x−K) at the same time.

Linear evaluation One standard method for evaluating
the performance of the CL model is linear evaluation (Chen
et al., 2020; Kim et al., 2020), which learns a downstream
linear layer after the base encoder, then uses a modified
model for class-level classification. The test accuracy on
the downstream task is used as a proxy for representation
quality. The model with downstream layer is fine-tuned
from a labeled dataset S = {(xi, yi)}ni=1. Both U and S
are assumed to be i.i.d. collections.

Data distributions Let C denote the set of latent classes
(Saunshi et al., 2019) that are all possible classes for points
in X . For each class c ∈ C, there is a probability Dc over
X that captures the probability that a point belongs to class
c. The distribution on C is denoted by η. Let c+, c− denote
the positive and negative latent class drawn from η; thus,
Dc+ and Dc− are the distributions to sample positive and

negative samples, respectively. The process for generating
an unlabeled sample z = (x, x+, {x−i }Ki=1) ∈ U as follows:
1. Draw two latent classes (c+, c−) ∼ η2 ; 2. Draw two
positive samples (x, x+) ∼ D2

c+ and K negative samples
{x−i ∼ Dc− | i ∈ [K]} .

To set up the labeled dataset S for binary scenario, we build
the binomial distribution ηsup by fixing two classes c+, c−:
ηsup(c

+) = η(c+)
η(c−)+η(c+) , ηsup(c

−) = η(c−)
η(c−)+η(c+) . We fix

yc+ = +1 and yc− = −1, then generate a labeled sample
(x, y) ∈ S as follows: 1. Draw a class c ∼ ηsup and set the
label y = yc ; 2. Draw a sample x ∼ Dc .

Loss function The learning process is divided into two
steps: minimizing the contrastive loss on the encoder and
fine-tuning on the downstream layer using supervised loss.
We focus on logistic loss: `(v) = log2(1 +

∑
j exp(−vj))

for v ∈ RK . Thus, the contrastive loss (Chen et al., 2020;
He et al., 2020) associated with the encoder f in this frame-
work is defined as follows:

Lun(f) = E
c+,c−

∼η2

E
x,x+∼D2

c+

x−i ∼Dc−

`
({
f(x)T

(
f(x+)− f(x−j)

)})
.

(1)
For linear evaluation, the supervised learning algorithm is
given the mapped dataset Ŝ := {(f(xi), yi)}ni=1 and returns
a predictor g : Rd → R. The label of x̂ ∈ Ŝ is obtained
from ŷ = sign(g(x̂)), ŷ ∈ {−1, 1}. The logistic loss in
(2) is `(v) = log2(1 + exp(−v)) for v ∈ R. We aim to
minimize the supervised loss as follows:

Lsup(g ◦ f) = E
c∼ηsup

E
x∼Dc

` (yc · g(f(x))) . (2)

3.2. Supervised Verification

In this section, we set up the verification problem for super-
vised learning. For simlicity, we here outline the simplified
binary scenario. The supervised algorithm is given the la-
beled dataset S = {(xi, yi)}ni=1. Let the dimension of NN
output dL = 1. H contains a class of supervised predic-
tor h : X → R with h := φL(x). Thus, the label of x is
predicted by ŷ = sign(h(x)), ŷ ∈ {−1, 1}.

Verification problem We refer to x′ = x+ δ as an adver-
sarial sample of x for classifier h if h correctly classifies
x but assigns a different label to x′. Because many pow-
erful attack methods (Goodfellow et al., 2015; Carlini &
Wagner, 2017) and adversarial training frameworks (Madry
et al., 2018; Zhang et al., 2019) use `∞ norm, this paper
also focuses on the setting in which δ satisfies the `∞ norm
constraint ‖δ‖∞ ≤ ε. We say that model h is lε∞-verified
at (x, y) if it correctly classifies both x and x′ as y for any
x′ ∈ B∞(x, ε), i.e., there are no adversarial samples around

Robustness Verification for Contrastive Learning

x. The supervised verification at (x, y), y ∈ {−1, 1} seeks
the solution of the following optimization problem:

h̃(x, y, ε) := min
x′

y · h(x′)

s.t. φk(x′) = Wkφ̂k−1(x′) + bk, k ∈ [L],

φ̂k(x′) = σ(φk(x′)), k ∈ [L− 1],

h(x′) = φL(x′),

x′ ∈ B∞(x, ε).

(3)

If h̃ ≤ 0, ∃x′ ∈ B∞(x, ε) fools the model into producing
an incorrect label. h is lε∞-verified if h̃(x, y, ε) > 0. The
complete verifier aims to solve (3) and calculates h̃ exactly.
Unfortunately, the complete verification is proven to be an
NP-complete problem (Katz et al., 2017; Sinha et al., 2018).
Therefore, many previous works (Wong & Kolter, 2018;
Zhang et al., 2018; Xu et al., 2020) propose incomplete
verifiers that relax the non-convexity part of NN to derive
a lower bound h̃ ≥ h. If h(x, y, ε) > 0 is given by the
incomplete verifier, model h is also lε∞-verified at (x, y).

Robust radius The lε∞-verified of h at (x, y) depends on
the radius of the largest `∞ ball centered at x in which h
does not change its prediction. This radius is called the
robust radius, which is formally defined as follows:

R(h;x, y) := inf
sign(h(x′)) 6=y

‖x′ − x‖∞

= sup
ε
ε s.t. h̃(x, y, ε) > 0.

(4)

If h(x) 6= y, then R(h;x, y) := 0. It is natural to regard the
robust radius as a robustness metric. Recall that computing
the robust radius is an NP-hard problem due to the need
for complete verification. We can thus derive a tight lower
bound of R given by h, referred to as the certified radius,
which is formally defined as

R(h;x, y) := sup
ε
ε s.t. h(x, y, ε) > 0. (5)

The certified radius satisfies 0 ≤ R(h;x, y) ≤ R(h;x, y).

4. RVCL: Robustness Verification Framework
for Contrastive Learning

In this section, we first introduce the verification problem
on supervised downstream tasks by simply modifying super-
vised verification (3), and further present several weaknesses
of adopting (3) in CL. We go on to propose a novel RVCL
framework to solve these issues.

4.1. Verification Problem for Linear Evaluation

By defining the supervised verification problem on linear
evaluation, we can regard the robust radius R as a proxy
robustness metric for CL.

We denote the encoder f : Rd0 → RdL with f := φL(x),
where d0 and dL are the dimensions of the encoder’s input
and output, while WLE ∈ R1×dL and bLE ∈ R are the
weight and bias of the downstream linear predictor g(x).
The optimization problem for linear evaluation is defined by
simply modifying the constraints of (3), as follows:

g̃(x, y, ε) := min
x′

y · g(x′)

s.t. φk(x′) = Wkφ̂k−1(x′) + bk, k ∈ [L],

φ̂k(x′) = σ(φk(x′)), k ∈ [L− 1],

g(x′) = WLEφL(x′) + bLE,

x′ ∈ B∞(x, ε).

(6)

The difference between (3) and (6) is that there is no active
function σ(·) between the encoder and downstream layer.
There is no barrier to applying incomplete verifiers on (6).
Thus, the definition of robust radius RLE(g;x, y) and certi-
fied radius RLE(g;x, y) on the downstream task are similar
to (4) and (5), respectively.

We can therefore regard RLE as a proxy robust radius at
data point x. However, this approach has serious problems:

1. RLE cannot be computed directly without a label.
2. Even if we have the label to compute RLE, and use

RLE to evaluate the model robustness, we do not know
whether the robustness benefits from the encoder or
downstream layer.

These problems motivate us to propose RVCL, a novel
framework for verifying the robustness of encoders without
the need for labels and downstream tasks.

4.2. RVCL Framework

Many existing works have studied the supervised verifica-
tion problem stated in § 3.2. However, the performing of
robustness verification for CL has received less research
attention. In this section, we present the formal definition
of the robustness verification problem on the encoder f ,
after which we provide two robustness metrics to study the
performance of the CL encoder and incomplete verifier.

4.2.1. VERIFICATION PROBLEM FOR CL

The core concept behind supervised verification is that the
points in the small B∞(x, ε) ball should have the same label
as x. Inspired by this idea, we define the conditions under
which the disturbance successfully attacks the encoder.

Given a positive sample x+, let the negative sample x−

be the attack target of x+. We hope that the points x′ ∈
B∞(x+, ε) will be more similar to x+ than any other nega-
tive samples x−, while the instance-wise attack algorithm
generates an adversarial sample x′ ∈ B∞(x+, ε) with the
attack strength ε, in order to fool the model by judging x′

as similar to x−.

Robustness Verification for Contrastive Learning

𝑥𝑥−

𝑥𝑥′

𝑥𝑥+𝜃𝜃1

𝜃𝜃2

Figure 1. θ is the angle between
features given by f . If θ1 < θ2,
f is not attacked successfully by
the adversarial sample x′.

If the instance similar-
ity ρ(f(x+), f(x′)) >
ρ(f(x−), f(x′)) , then
x′ is similar to x+ (i.e.,
θ1 < θ2 in Figure 1),
which means that the en-
coder f is not success-
fully attacked by x′. We
say that the encoder f is
lε∞-verified at (x+, x−)
if x′ is more similar to
x+ than to x− for any x′ ∈ B∞(x+, ε), i.e., there are no
adversarial samples similar to x− around x+. Note that the
comparison of instance similarity has an equivalent form:

ρ(f(x+), f(x′)) > ρ(f(x−), f(x′)) ⇐⇒ (7)(
ρ̃(f(x+))− ρ̃(f(x−))

)>
f(x′) > 0 (8)

Judging whether or not (8) is True can be regarded as a part
of forward propagation; thus, we can define the optimization
problem for CL by adding a linear layer after f with weight
WCL = (ρ̃(f(x+))− ρ̃(f(x−)))

>.

Definition 4.1 (Verification problem for CL). Given two
positive and negative samples x+, x− ∈ Rd0 , respectively,
the feature encoder f : Rd0 → RdL with f := φL(x), `2
normalization ρ̃(u) = u/‖u‖2, for any fixed ε, the robust-
ness verification problem for CL is defined as follows:

f̃(x+, x−, ε) := min
x′

WCLf(x′)

s.t. φk(x′) = Wkφ̂k−1(x′) + bk, k ∈ [L],

φ̂k(x′) = σ(φk(x′)), k ∈ [L− 1],

WCL =
(
ρ̃(f(x+))− ρ̃(f(x−))

)> ∈ R1×dL ,

f(x′) = φL(x′), x′ ∈ B∞(x+, ε).

(9)

Moreover, the robust radius RCL and certified radius RCL

for CL are defined as follows:

RCL(f ;x+, x−) := inf
ρ(f(x′),f(x+))

<ρ(f(x′),f(x−))

∥∥x′ − x+
∥∥
∞

= sup
ε
ε s.t. f̃(x+, x−, ε) > 0,

RCL(f ;x+, x−) := sup
ε
ε s.t. f(x+, x−, ε) > 0,

(10)

where f is the verified lower bound of f̃ given by the ver-
ifier; thus, 0 ≤ RCL(f ;x+, x−) ≤ RCL(f ;x+, x−). For
verified prediction, f(x+, x−, ε) > 0 for a given strength ε
implies that f is lε∞-verified at (x+, x−). The pseudocode
is presented as PREDICT in Appendix C.2.

To compute RCL, we can apply binary search, because
f(x+, x−, ε) is non-increasing with increasing ε. The pseu-
docode is presented as CERTIFY in Appendix C.2.

Certified Radius

Robust Radius

𝑥𝑥+

𝑥𝑥′

Instance-wise
Adversarial Image

Instance Margin

𝑥𝑥+
𝑥𝑥−𝑥𝑥−

Figure 2. Illustration for RVCL. ‖x′ − x+‖∞ must be larger than
the robust radius RCL if x′ is an instance-wise adversarial sample.
In this case, the latent class of x′ is “dog”, while the feature of x′ is
similar to that of x−, which is an “elephant”. The certified radius
RCL is provided by the incomplete verifier, which is the lower
bound of robust radius RCL. It is verified that no instance-wise
adversarial sample exists in B∞(x+,RCL).

Note that (9) and (10) are both defined directly on the CL
encoder without reference to any labels or downstream tasks,
which resolves the issue articulated in § 4.1.

4.2.2. ROBUSTNESS METRICS FOR CL

This subsection provides two robustness metrics used to
study the robustness of the CL encoder and the performance
of incomplete verifiers.

Average certified radius (ACR) For supervised verifica-
tion, ACR (Zhai et al., 2020) is an important metric used
in evaluating robustness. Specifically, it is the average of
the certified radius on the test dataset. We can define it
directly on the supervised downstream task: ACRLE :=

1
|Stest|

∑
(x,y)∈Stest

RLE(g;x, y), where Stest is a labeled
test dataset satisfying g(x) = y for all (x, y) ∈ Stest. How-
ever, ACRLE still suffers from the problems discussed in
§ 4.1. We therefore define ACR for CL based on RCL,
which directly reflects the robustness of CL encoder without
the label:

Definition 4.2 (Average certified radius for CL). Given
an unlabeled test dataset Utest generated following § 3.1,
z = (x+, {x−i }Ki=1) ∈ Utest, RCL is defined in (10). The
average certified radius for CL is defined as follows:

ACRCL :=
1

K|Utest|
∑

z∈Utest

K∑
i=1

RCL(f ;x+, x−i). (11)

Certified instance accuracy For supervised verification,
certified accuracy is a metric used to evaluate the perfor-
mance of incomplete verifiers. Wang et al. (2021) state that
the verifier will be stronger if the certified accuracy is the
tighter lower bound of supervised robust accuracy. Since
there is no definition of “robust accuracy” provided for the
CL encoder, we propose a novel robust accuracy without

Robustness Verification for Contrastive Learning

label and downstream task for CL — called robust instance
accuracy — based on (7):

Definition 4.3 (Robust instance accuracy). Given an un-
labeled test dataset Utest, z = (x+, x−) ∈ Utest, we use
instance-wise PGD attack (Kim et al., 2020) to generate
the adversarial point x′ ∈ B(x+, ε) by maximizing the con-
trastive loss (1). The robust instance accuracy with strength
ε is defined as follows:

AεCL =
1

|Utest|
∑

z∈Utest

1[ρ(f(x′),f(x+))−ρ(f(x′),f(x−))>0].

(12)
We then define the certified instance accuracy with strength
ε, which is the fraction of the test dataset for which f is
lε∞-verified at (x+, x−), i.e., f > 0.

Definition 4.4 (Certified instance accuracy). Given an un-
labeled test dataset Utest, z = (x+, x−) ∈ Utest. The
certified instance accuracy with strength ε is defined as

AεCL =
1

|Utest|
∑

z∈Utest

1[f(x+,x−,ε)>0]. (13)

f being lε∞-verified at (x+, x−) is the sufficient but not nec-
essary condition of correctly classifying x′ generated by a
specific attack algorithm with attack strength ε. This means
that the hold of the judgement condition in (13) implies the
hold of that in (12), but not vice versa. Thus, (13) is the
lower bound of (12).
Remark 4.5. The certified instance accuracy AεCL is used
to compare the verifiers on the CL encoder without labels.
The smaller gap between robust instance accuracy AεCL and
AεCL implies a stronger incomplete verifier (see experiments
in § 6.3). However, as AεCL is a function of the fixed attack
strength ε, it is difficult to compare the robustness of two
models unless one is uniformly better than the other for all
strength ε. Thus, ACRCL is a more suitable choice than
AεCL for evaluating the robustness of CL encoders.

5. Theoretical Analysis for Robust Radius
What is the relationship between the robust radius RCL

and RLE? This section demonstrates that RCL is the upper
bound of RLE, which is further verified by the experimental
results in § 6.1.

To provide the main insights, we first consider the situation
in which only one positive sample is used. Formally, given
an unlabeled sample z = (x+, {x−i }Ki=1), we introduce the
margin distance of x+ as half of the minimum distance
between f(x+) and f(x−i), defined as M := mini∈[K]Di,
where Di := (1− ρ(f(x+), f(x−i))/2.

The idea is to estimate the lower tail of the distribution of
M by fitting the λ smallest Di of the negative samples x−i .
We can then use this estimated distribution to produce the
probability of a new point x falling into the margin of x+,

which can be interpreted as the probability of x being a
positive sample of x+. x is classified as a positive sample
of x+ if it is inside the margin of x+ with high probability.

To estimate the distribution of the margin distance, we turn
to the Fisher-Tippett-Gnedenko Theorem in extreme value
theory (see the complete statement in Appendix A.1).

Lemma 5.1 (Fisher-Tippett-Gnedenko theorem (Coles et al.,
2001)). Let X1, X2, . . . be a sequence of independent
random variables with common distribution function F .
Let Mn = sup(X1, . . . , Xn). If there exists a sequence
an > 0, bn ∈ R such that

lim
n→∞

P(
Mn − bn

an
≤ z) = G(z),

where G is a non-degenerate distribution function, then G
belongs to either the Gumbel family, the Fréchet family or
the Reverse Weibull family.

The theorem states that the maximum of a sequence of
i.i.d. random variables after proper normalization can only
converge to one of three possible distributions.

Theorem 5.2 (Margin distribution). Assume a continuous
non-degenerate margin distribution exists. The distribution
for margin distance M is then given by the Reverse Weibull
distribution. The probability of x being a positive sample of
x+ is given by the following:

Ψ(x;x+, α, σ) = exp

{
−
(

1− ρ(f(x), f(x+))

σ

)α}
,

where ρ(f(x), f(x+)) is the instance similarity between x
and x+. α, σ > 0 are Weibull shape and scale parameters,
obtained from fitting to the λ smallest margin distances Di.

See proof in Appendix A.2. Theorem 5.2 demonstrates that
the probability of x being a positive sample can be given
by the Reverse Weibull distribution fitting on finite samples.
This enables us to compare the robust radius of the encoder
and that of the downstream task. Intuitively, if the classifier
can predict correctly with higher confidence, this implies
that the classifier provides better certified robustness.

Theorem 5.3 (Robust radius bound). Given an encoder
f : X → Rd and an unlabeled sample z = (x+, {x−i }Ki=1),
the downstream predictor g : Rd → R is trained on
Ŝ = {(f(x+), yc+), (f(x−i), yc−)Ki=1}. Then, for different
negative samples x−i , we have

RCL(f ;x+, x−i) ≥ RLE(g;x+, yc+).

Proof sketch. The possibility of downstream layer predict-
ing x as positive can be given by ΨLE, which is fitted from
margin distances {Di}Ki=1 computed by Ŝ. ΨCL is fitted
from specific Di, since RCL(f ;x+, x−i) is the robust radius
between specific pair of positive and negative sample.

Robustness Verification for Contrastive Learning

Figure 3 plots the cumulative distribution function (CDF)
of ΨCL and ΨLE. Ψ → 1 when x → x+, which means
x is very likely to be the positive sample of x+. If there
exists negative samples between x−i and x+ (“−” in Fig-
ure 3), then ΨLE will fit to these negative samples and
make CDF grows slower than ΨCL, i.e., ΨCL(x) ≥ ΨLE(x).
Lemma A.4 offers the correspondence that a higher proba-
bility to be a positive sample implies a larger robust radius,
which recovers the theorem statement. See complete proof
in Appendix A.3.

Figure 3. Probability
of x as a positive
sample. “−” means
the negative sample
other than x−i . 0

𝑥𝑥+

ΨCL ΨLE

𝑥𝑥𝑖𝑖− 𝑥𝑥

1 Probability

Remark 5.4. Theorem 5.3 implies that improving the ro-
bustness of the CL encoder enlarges the robust radius RCL,
which can benefit the robustness of the downstream layer
by providing a large upper bound of RLE. A larger RCL

implies that the model will achieve a higher robust perfor-
mance on the downstream task; thus, it is reasonable to
regard RCL as a robustness metric.

In the above, we discuss the decision margin by analyzing
the case with single x+ and multiple x−. Here, we discuss
the robust radius of different x+ by making the following
theroem:

Theorem 5.5. Given an encoder f : X → Rd, two
positive samples x+

1 , x
+
2 and one negative sample x−, if

ρ(f(x+
1), f(x−)) ≥ ρ(f(x+

2), f(x−)), then

RCL(f ;x+
1 , x

−) ≤ RCL(f ;x+
2 , x

−).

See proof in Appendix A.4. Theorem 5.5 proves that if
f(x+) is similar to f(x−), it is easy to recognize the adver-
sarial sample x′ of x+ as a negative sample. In § 6.2, we
empirically show that a vague image for which it is difficult
to identify the class characteristic is easy to attack.

6. Experiments
In this section, we verify the effectiveness of our proposed
RVCL by means of numerical experiments.

More specifically, § 6.1 demonstrates the effectiveness of the
average certified radius for CL. § 6.2 shows that ACRCL can
evaluate the anti-disturbance ability of individual images.
§ 6.3 compares the strength of incomplete verifiers by means
of certified instance accuracy. § 6.4 illustrates the verified
lower bound f given by the verifiers. § 6.5 provides the
sensitivity analysis for parameters in RVCL. Due to space
limitations, we compare the efficiency of different verifiers
in Appendix E.2.

Set-up. Our main experiments utilize four architectures:
Base, Deep from Wang et al. (2021), CNN-A, CNN-B
from Dathathri et al. (2020), from which the last layer is
removed to form the CL encoders. SimCLR (Chen et al.,
2020) and RoCL (Kim et al., 2020) are used in this paper
for CL training and contrastive AT, respectively. Contrastive
AT is trained with instance-wise adversarial samples with
different attack strengths εtrain; εtrain = 0 indicates that
the encoder is trained with benign images. Using the same
dataset as in previous deterministic verification works, all
CL encoders are trained on MNIST (LeCun & Cortes, 2010)
and CIFAR-10 (Krizhevsky & Hinton, 2009).

We utilize two incomplete verifiers with different verified
tightness in the RVCL framework: CROWN (Zhang et al.,
2018) and CBC (β-CROWN (Wang et al., 2021) for CL).
A more detailed introduction to incomplete verifiers is pre-
sented in Appendix C.1.

Further details of the models and experimental settings are
presented in Appendix D. The code can be found in the
supplementary materials and GitHub.

6.1. Average certified radius
In this subsection, we compute the average certified radius
(ACR in § 4.2.2) over 100 test samples (i.e., |Stest| =
|Utest| = 100) following previous verification works. For
ACRCL, we set the number of negative samples K = 10.
In the interests of efficiency, we use CROWN to compute
the ACRCL, which is discussed further in Appendix E.2.

To determine whether the model robustness benefits from
the encoder or linear classifier, we fix the encoder and fine-
tune the downstream layer with benign images without per-
turbations. For the empirical robust test, we utilize super-
vised robust accuracy on the whole test dataset; this is the
downstream classification accuracy over adversarial sam-
ples via label-wise PGD attack (Madry et al., 2018) with
attack strength εtest.

Note that a larger value of εtrain implies that a more ro-
bust encoder is obtained by contrastive AT. The results in
Figure 4(a,b) show that ACRCL and ACRLE increase with
increasing εtrain on the two datasets. Meanwhile, those in
Figure 4(c,d) show that with different values of εtest, the
robust accuracy of the downstream classifier increases as
εtrain increases. We therefore conclude that:

1. It is effective to measure the robustness using ACRCL

without labels and downstream tasks, because both the
ACRCL and supervised metric (ACRLE and robust
accuracy) grow consistently with increasing εtrain.

2. Figure 4(a,b) show that ACRCL is larger than ACRLE

with the same εtrain, which supports our Theorem 5.3.
Theorem 5.3 demonstrates that RCL is the upper bound
of RLE, while ACRCL and ACRLE are related to RCL

and RLE, respectively.

Robustness Verification for Contrastive Learning

0 0.1 0.2
trian

0.00
0.05
0.10
0.15
0.20
0.25

AC
R

ACRCL
ACRLE

(a) ACR for MNIST

0 2.2
255

4.4
255

8.8
255

trian

2

4

6

8

AC
R C

L

1e 2

6

7

8

9

AC
R L

E

1e 3
ACRCL
ACRLE

(b) ACR for CIFAR-10

0 0.1 0.2
trian

0

25

50

75

100

Ac
cu

ra
cy

(%
)

98 96 94

0

83
89

0 0.62

87

clean test = 0.15 test = 0.2

(c) MNIST Robust Test

0 4.4
255

8.8
255

trian

0

25

50

75

Ac
cu

ra
cy

(%
) 63 61 59

20

37 40

2.7

17
23

clean test = 8
255 test = 16

255

(d) CIFAR-10 Robust Test

Figure 4. (a,b) ACRCL and ACRLE on MNIST and CIFAR-10
with different values of εtrain. (c,d) Supervised robust accuracy
on the downstream classifier. On MNIST, attack strengths εtest
are 0.15, 0.2; on CIFAR-10, attack strengths εtest are 8/255, 16/255.
Clean represents testing with benign images. (a,c) run on CNN-A,
(b,d) run on CNN-B.

3. Figure 4(a,b) show that a robust encoder can signif-
icantly improve the model’s robust performance on
downstream tasks, since ACRLE grows with increas-
ing εtrain even though the downstream layer is learned
on benign images.

6.2. Anti-disturbance ability of images

To study the robustness property of each image, in this sub-
section, we compute ACRCL for a single test sample; i.e.,
|Utest| = 1, then ACRCL := 1

K

∑K
i=1 RCL(f ;x+, x−i).

We sample two images from CIFAR-10, as shown in Fig-
ure 5(b). The above image is labeled as deer, which is vague
and makes it difficult to identify the latent class. The below
image is labeled as dog, which is much clearer than deer.
We calculate RCL with fifty negative samples (K = 50).
Our findings suggest that the RCL of deer is significantly
smaller than that of dog; this means that the distance be-
tween the feature of deer and its negative samples is smaller
than that between the feature of dog and its negative sam-
ples, which supports our Theorem 5.5. We can therefore
conclude that the anti-disturbance ability of dog is stronger
than that of deer, which means that dog is lε∞-verified with
a larger ε than deer. These results verify that ACRCL is
able to quantify the anti-disturbance ability of images.

We sample 10 more images from CIFAR-10, and plot the
images and their ACRCL in Figure 5(a). It comes to the

cat 0.0364 horse 0.0443 bird 0.0511 horse 0.0589 cat 0.0640

bird 0.0721 truck 0.0802 truck 0.0858 dog 0.0906 airplane 0.0972

(a) ACRCL for 10 images chosen from CIFAR-10

Dear Dog
0

2

4

6

8

10

R C
L

1e 2
Dear = 0.039
Dog = 0.094

(b) RCL for deer and dog

0.04 0.06 0.08 0.10 0.12
ACRCL

0
10
20
30
40
50
60
70

Co
un

t

KDE for 500 Images

(c) KDE of ACRCL

Figure 5. (a,b,c) run on CNN-B with εtrain = 4.4/255. (a) ACRCL

for images, which are randomly chosen from CIFAR-10; K = 50.
(b) RCL for two images from CIFAR-10; K = 50. (c) Frequency
distribution histogram and kernel density estimation (KDE) of
ACRCL for 500 images from CIFAR-10; K = 20.

same conclusion: the vague image which is difficult to iden-
tify the latent class has a low ACRCL. We further visualize
the distribution of ACRCL for 500 images from CIFAR-
10 by calculating ACRCL with K = 20, and additionally
provide the kernel density plot to show the distribution (see
Figure 5(c)). About 90% of images’ ACRCL are distributed
within the range [0.044, 0.093], concentrated around 0.07.

6.3. Certified instance accuracy
Table 1. Comparison of certified instance accuracy across various
networks and attack strength εtest on CIFAR-10. The number of
test samples |Utest| = 100.

εtest Model εtrain

Instance Certified
Accuracy Instance Accuracy

PGD CBC CROWN

2
255

CNN-B

0 100% 97% 96%

2.2
255

100% 100% 100%

4
255

91% 26% 11%
4.4
255

100% 55% 34%
8.8
255

100% 68% 52%

Based
4.4
255

100% 99% 95%

Deep 100% 96% 84%

CNN-A 99% 91% 81%
8

255
CNN-B 8.8

255
1% 0% 0%

In this subsection, we study the performance of incomplete
verifers on the CL encoder via certified instance accuracy
(AεCL in Definition 4.4). Table 1 summarizes some of the
results on CIFAR-10. Due to space limitations, we provide
detailed settings and explanations for more experimental
results (on MNIST) in Appendix E.1. The two incomplete

Robustness Verification for Contrastive Learning

verifiers we utilize herein are CROWN and CBC; CBC is
the state-of-the-art verifier, which is more powerful than
CROWN for supervised verification (Wang et al., 2021).

AεCL is the lower bound of the robust instance accuracy
AεCL (Definition 4.3, obtained by instance-wise PGD attack
(Kim et al., 2020)). The tighter lower bound given by AεCL

indicates a stronger incomplete verifier. Table 1 shows
that the gap between AεCL given by CBC and AεCL given
by PGD is smaller than that between CROWN and PGD,
which shows that CBC is a stronger verifier than CROWN.

We further illustrate the verified lower bound f given by
these two incomplete verifiers in § 6.4, from which the same
conclusions can be drawn. All these results demonstrate
the efficacy of our proposed RVCL: a stronger supervised
verifier can still achieve a tighter certified radius in the
RVCL framework.

6.4. Tightness of verification

0.6 0.8 1.0 1.2 1.4
PGD adversarial upper bound

1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

Ve
rif

ie
d

lo
we

r b
ou

nd

CNN-A
CBC
CROWN
PGD(y=x)

(a) MNIST, εtrain = 0.3, εtest = 0.3

0.0 0.5 1.0 1.5 2.0 2.5 3.0
PGD adversarial upper bound

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

Ve
rif

ie
d

lo
we

r b
ou

nd

CNN-B
CBC
CROWN
PGD(y=x)

(b) CIFAR-10, εtrain = 4.4
255

, εtest = 4
255

Figure 6. Comparing the tightness of verifiers. For 100 test
samples on MNIST and CIFAR-10. (a) runs on CNN-A, (b) runs
on CNN-B. We plot the verified lower bound f(x+, x−, ε) against
PGD upper bound f . Some points exceed the plotted axes limits.

Instance-wise PGD attack (Kim et al., 2020) provides the
upper bound of minimum distortion, f ≥ f̃ , while RVCL
provides the lower bound, f̃ ≥ f(x+, x−, ε). It should be
noted that, unlike with supervised verification (Dathathri
et al., 2020; Wang et al., 2021), all distortion here is instance-
wise. (x+, x−) is verified if f(x+, x−, ε) > 0, meaning that
x+ cannot be disturbed to x− with attack strength εtest. The
closer the verified lower bound f(x+, x−, ε) is to the PGD
upper bound f (y = x in Figure 6), the stronger the verifier
would be.

One hundred test samples (|Utest| = 100) are used to illus-
trate the tightness of the verification. As Figure 6 shows,
the points above the dotted line are successfully verified.
CBC achieves tight verification across all samples, and fur-
thermore consistently outperforms CROWN on MNIST and
CIFAR-10. This result is consistant with supervised ver-
ification in Wang et al. (2021), which demonstrates the
effectiveness of RVCL.

6.5. Sensitivity analysis

50 100 150 200 250
Featrue dimension

0.06
0.07
0.08
0.09
0.10
0.11

AC
R C

L

trian = 8.8
255

trian = 4.4
255

5 10 20 50
Negative samples K

0.06

0.07

0.08

0.09

0.10

AC
R C

L

trian = 8.8
255

trian = 4.4
255

Figure 7. Left: Sensitivity analysis of feature dimension influenc-
ing ACRCL. Right: Sensitivity analysis of the number of negative
samples K influencing ACRCL. Experiments run on CNN-B with
different εtrain on CIFAR-10.

Feature dimension We investigate the influence of the
feature dimension on ACRCL (see Left of Figure 7). From
the result, we can determine that ACRCL increases slightly
with the growing feature dimension, then remains stable
on dimensions larger than 150. The results illustrate that
ACRCL is not sensitive to feature dimension.

Number of negative samples We validate the influence
of the number of negative samplesK on ACRCL (see Right
of Figure 7). The result shows that ACRCL is not sensitive
to K with different values of εtrain, which means that we
can use small values of K to efficiently evaluate the model
robustness or the anti-disturbance ability of an image.

7. Conclusion
In this paper, we tackle the robustness verification problem
for CL without any labels, and accordingly propose a novel
RVCL framework that does not depend on any class labels,
downstream tasks or specific attack algorithms. We then use
extreme value theory to reveal the quantitative relationship
between the robust radius of the CL encoder and that of
the downstream task. All our experiments show that RVCL
is an efficient robustness framework for CL encoders, and
can also be used to evaluate the anti-disturbance ability
of images. Moreover, our experimental results verify our
theory. We believe that RVCL is a novel perspective from
which to understand robustness on contrastive learning.

Acknowledgements
This work is supported by the National Natural Science
Foundation of China under Grant 61976161.

Robustness Verification for Contrastive Learning

References
Alayrac, J., Uesato, J., Huang, P., Fawzi, A., Stanforth, R.,

and Kohli, P. Are labels required for improving adversar-
ial robustness? In NeurIPS, pp. 12192–12202, 2019.

Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C.,
and Vielma, J. P. Strong mixed-integer programming
formulations for trained neural networks. Math. Program.,
183(1):3–39, 2020.

Bunel, R., Turkaslan, I., Torr, P. H. S., Kohli, P., and
Mudigonda, P. K. A unified view of piecewise linear
neural network verification. In NeurIPS, pp. 4795–4804,
2018.

Carlini, N. and Wagner, D. A. Towards evaluating the
robustness of neural networks. In SP, pp. 39–57, 2017.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and
Liang, P. Unlabeled data improves adversarial robustness.
In NeurIPS, pp. 11190–11201, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E.
A simple framework for contrastive learning of visual
representations. In ICML, volume 119, pp. 1597–1607,
2020.

Coles, S., Bawa, J., Trenner, L., and Dorazio, P. An intro-
duction to statistical modeling of extreme values, volume
208. 2001.

Dathathri, S., Dvijotham, K., Kurakin, A., Raghunathan, A.,
Uesato, J., Bunel, R., Shankar, S., Steinhardt, J., Goodfel-
low, I. J., Liang, P., and Kohli, P. Enabling certification
of verification-agnostic networks via memory-efficient
semidefinite programming. In NeurIPS, 2020.

Doersch, C., Gupta, A., and Efros, A. A. Unsupervised
visual representation learning by context prediction. In
ICCV, pp. 1422–1430, 2015.

Ehlers, R. Formal verification of piece-wise linear feed-
forward neural networks. In Automated Technology for
Verification and Analysis, volume 10482, pp. 269–286,
2017.

Fan, L., Liu, S., Chen, P.-Y., Zhang, G., and Gan, C. When
does contrastive learning preserve adversarial robustness
from pretraining to finetuning? In NeurIPS, 2021.

Gibert, X., Patel, V. M., and Chellappa, R. Sequential score
adaptation with extreme value theory for robust railway
track inspection. In ICCV, pp. 131–138, 2015.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised
representation learning by predicting image rotations. In
ICLR, 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In ICLR, 2015.

Gowal, S., Huang, P., van den Oord, A., Mann, T., and
Kohli, P. Self-supervised adversarial robustness for the
low-label, high-data regime. In ICLR, 2021.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. Mo-
mentum contrast for unsupervised visual representation
learning. In CVPR, pp. 9726–9735, 2020.

Ho, C. and Vasconcelos, N. Contrastive learning with ad-
versarial examples. In NeurIPS, 2020.

Jiang, Z., Chen, T., Chen, T., and Wang, Z. Robust pre-
training by adversarial contrastive learning. In NeurIPS,
2020.

Jing, L. and Tian, Y. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE Trans. Pattern
Anal. Mach. Intell., 43(11):4037–4058, 2021.

Katz, G., Barrett, C. W., Dill, D. L., Julian, K., and Kochen-
derfer, M. J. Reluplex: An efficient SMT solver for
verifying deep neural networks. In CAV, volume 10426,
pp. 97–117, 2017.

Kim, M., Tack, J., and Hwang, S. J. Adversarial self-
supervised contrastive learning. In NeurIPS, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. 2009.

LeCun, Y. and Cortes, C. Mnist handwritten
digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2010.

Li, L., Qi, X., Xie, T., and Li, B. Sok: Certified robustness
for deep neural networks. CoRR, abs/2009.04131, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In ICLR, 2018.

Moosavi-Dezfooli, S., Fawzi, A., and Frossard, P. Deep-
fool: A simple and accurate method to fool deep neural
networks. In CVPR, pp. 2574–2582, 2016.

Noroozi, M. and Favaro, P. Unsupervised learning of visual
representations by solving jigsaw puzzles. In ECCV,
volume 9910, pp. 69–84, 2016.

Nozawa, K., Germain, P., and Guedj, B. Pac-bayesian
contrastive unsupervised representation learning. In UAI,
volume 124, pp. 21–30, 2020.

Robustness Verification for Contrastive Learning

Rudd, E. M., Jain, L. P., Scheirer, W. J., and Boult, T. E.
The extreme value machine. IEEE Trans. Pattern Anal.
Mach. Intell., 40(3):762–768, 2018.

Saunshi, N., Plevrakis, O., Arora, S., Khodak, M., and Khan-
deparkar, H. A theoretical analysis of contrastive unsu-
pervised representation learning. In ICML, volume 97,
pp. 5628–5637, 2019.

Scheirer, W. J., Rocha, A., Micheals, R. J., and Boult, T. E.
Meta-recognition: The theory and practice of recognition
score analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
33(8):1689–1695, 2011.

Scheirer, W. J., Kumar, N., Belhumeur, P. N., and Boult,
T. E. Multi-attribute spaces: Calibration for attribute
fusion and similarity search. In CVPR, pp. 2933–2940,
2012.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In NeurIPS, pp. 5019–5031, 2018.

Sinha, A., Namkoong, H., and Duchi, J. C. Certifying
some distributional robustness with principled adversarial
training. In ICLR, 2018.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing properties
of neural networks. In ICLR, 2014.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview
coding. In ECCV, volume 12356, pp. 776–794, 2020.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
In ICLR, 2019.

Uesato, J., O’Donoghue, B., Kohli, P., and van den Oord,
A. Adversarial risk and the dangers of evaluating against
weak attacks. In ICML, volume 80, pp. 5032–5041, 2018.

Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C.,
and Kolter, J. Z. Beta-crown: Efficient bound propagation
with per-neuron split constraints for complete and incom-
plete neural network verification. In NeurIPS, 2021.

Weng, T., Zhang, H., Chen, P., Yi, J., Su, D., Gao, Y., Hsieh,
C., and Daniel, L. Evaluating the robustness of neural
networks: An extreme value theory approach. In ICLR,
2018.

Wong, E. and Kolter, J. Z. Provable defenses against adver-
sarial examples via the convex outer adversarial polytope.
In ICML, volume 80, pp. 5283–5292, 2018.

Wong, E., Schmidt, F. R., Metzen, J. H., and Kolter, J. Z.
Scaling provable adversarial defenses. In NeurIPS, pp.
8410–8419, 2018.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. Unsupervised fea-
ture learning via non-parametric instance discrimination.
In CVPR, pp. 3733–3742, 2018.

Xu, K., Shi, Z., Zhang, H., Wang, Y., Chang, K., Huang,
M., Kailkhura, B., Lin, X., and Hsieh, C. Automatic
perturbation analysis for scalable certified robustness and
beyond. In NeurIPS, 2020.

Yang, G., Duan, T., Hu, J. E., Salman, H., Razenshteyn, I. P.,
and Li, J. Randomized smoothing of all shapes and sizes.
In ICML, volume 119, pp. 10693–10705, 2020.

Zhai, R., Cai, T., He, D., Dan, C., He, K., Hopcroft, J. E.,
and Wang, L. Adversarially robust generalization just
requires more unlabeled data. CoRR, abs/1906.00555,
2019.

Zhai, R., Dan, C., He, D., Zhang, H., Gong, B., Ravikumar,
P., Hsieh, C., and Wang, L. MACER: attack-free and
scalable robust training via maximizing certified radius.
In ICLR, 2020.

Zhang, H., Weng, T., Chen, P., Hsieh, C., and Daniel, L.
Efficient neural network robustness certification with gen-
eral activation functions. In NeurIPS, pp. 4944–4953,
2018.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and
Jordan, M. I. Theoretically principled trade-off between
robustness and accuracy. In ICML, volume 97, pp. 7472–
7482, 2019.

Robustness Verification for Contrastive Learning

A. Proofs
A.1. Extreme Value Theory

Before provding the proofs of main results, we first provide two important lemmas in extreme value theory (EVT).

Lemma A.1 (Fisher-Tippett-Gnedenko theorem (Coles et al., 2001)). Let X1, X2, . . . be a sequence of independent random
variables with common distribution function F . Let Mn = max(X1, . . . , Xn). If there exists a sequence an > 0, bn ∈ R
such that

lim
n→∞

P(
Mn − bn

an
≤ z) = G(z), (A.1)

where G is a non-degenerate distribution function, then G belongs to either the Gumbel family (Type I), the Fréchet family
(Type II) or the Reverse Weibull family (Type III) with their CDFs as follows:

Gumbel family (Type I): G(z) = exp
{
− exp

[
−
(z − b

a

)]}
, z ∈ R,

Fréchet family (Type II): G(z) =
{ 0, if z < b,

exp
{
−
(
z−b
a

)−α}
, if z ≥ b,

Reverse Weibull family (Type III): G(z) =
{

exp
{
−
(
b−z
a

)α}
, if z < b,

1, if z ≥ b,

where a > 0, b ∈ R and α > 0 are the scale, location and shape parameters, respectively.
Lemma A.1 states that the rescaled sample maxima (Mn−bn)/an converge in distribution to a variable that has a distribution
within one of three families. Furthermore, these three families can be combined into a single family called generalized
extreme value (GEV) distribution, which is a family of continuous probability distributions developed within extreme value
theory. The Gumbel, Fréchet and Reverse Weibull families are special cases of GEV distribution.

Lemma A.2 (Generalized Extreme Value (GEV) distribution (Coles et al., 2001)). Let X1, X2, . . . be a sequence of
i.i.d. samples from the distribution function F . Let Mn = max(X1, . . . , Xn). If there exists a sequence an > 0, bn ∈ R
such that limn→∞ P(Mn−bn

an
≤ z) = G(z), then if G is a non-degenerate distribution function, it belongs to the class of

generalized extreme value (GEV) distributions with

G(z) = exp

[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ
]
, z ∈ R : 1 + ξ

(
z − µ
σ

)
> 0, (A.2)

where ξ ∈ R, µ ∈ R and σ > 0 are the shape, location and scale parameters, respectively.

As the special case, the Reverse Weibull family in Lemma A.1 can be derived by Lemma A.2, which let ξ < 0 and the upper
endpoint of F be denoted by b, then α = −1/ξ > 0.

A.2. Proof of Theorem 5.2

Theorem 5.2 (Margin distribution). Assume a continuous non-degenerate margin distribution exists. The distribution for
margin distance M is then given by the Reverse Weibull distribution. The probability of x being a positive sample of x+ is
given by the following:

Ψ(x;x+, α, σ) = exp

{
−
(

1− ρ(f(x), f(x+))

σ

)α}
, (A.3)

where ρ(f(x), f(x+)) is the instance similarity between x and x+. α, σ > 0 are Weibull shape and scale parameters,
obtained from fitting to the λ smallest margin distances Di.

Proof. From the assume we know that G(z) in Lemma A.1 exists. Since Lemma A.1 applies to maxima, we transform
the variables via M = maxi∈[K]−Di, Di := (1 − ρ(f(x+), f(x−i))/2. Because −Di is bounded (−Di < 0), so the
asymptotic distribution of M converges to the Reverse Weibull distribution:

W (z) =

{
exp

{
−
(
− z
σ

)α}
, if z < 0,

1, if z ≥ 0,
(A.4)

Robustness Verification for Contrastive Learning

where α > 0, b is the upper endpoint of F , σ is the scale parameters. b = 0 in (A.4) since M is bounded above by 0 as a
negative distance. We use margin distances Di of the λ closest samples with x+ to estimate the parameters α and σ, which
means to estimate Ŵ of the distribution funstion W .

The margin distance between x and x+ defined as 1− ρ(f(x), f(x+)). Then we focus on the probability of x included in
the margin of x+, which can be written as:

P(1− ρ(f(x), f(x+)) < min(D1, . . . , Dn)) = P(−min(D1, . . . , Dn) < ρ(f(x), f(x+))− 1)

= P(max(−D1, . . . ,−Dn) < ρ(f(x), f(x+))− 1)

= P(M < ρ(f(x), f(x+))− 1)

= Ŵ (ρ(f(x), f(x+))− 1).

(A.5)

Since ρ(f(x), f(x+))− 1 < 0, we can rewrite (A.5) as (A.3). Overall, we conclude our proof.

A.3. Proof of Theorem 5.3

Theorem 5.3 (Robust radius bound). Given an encoder f : X → Rd and an unlabeled sample z = (x+, {x−i }Ki=1),
the downstream predictor g : Rd → R is trained on Ŝ = {(f(x+), yc+), (f(x−i), yc−)Ki=1}. Then, for different negative
samples x−i , we have

RCL(f ;x+, x−i) ≥ RLE(g;x+, yc+). (A.6)

Before we formally prove Theorem 5.3, we first provide the following two lemmas.

Lemma A.3 focuses on a model for the k largest order statistics. It extends the result in Lemma A.1 to extreme order
statistics, by defining M (k)

n = k-th largest of {X1, . . . , Xn} and further identifying the limiting behavior of this variable,
for fixed k, as n→∞. Lemma A.3 implies that, if the k-th largest order statistic is normalized in exactly the same way as
the maximum, then its limiting distribution is of the form given by (A.8).

Lemma A.3 (k-th largest order statistic (Coles et al., 2001)). Let X1, X2, . . . be a sequence of i.i.d. samples from
the distribution function F . Let Mn = max(X1, . . . , Xn). If there exists a sequence an > 0, bn ∈ R such that
limn→∞ P(Mn−bn

an
≤ z) = G(z) for a non-degenerate distribution function G, so that G is the GEV distribution function

given by (A.2), then, for fixed k,
lim
n→∞

P((M (k)
n − bn)/an) = Gk(z) (A.7)

on {z : 1 + ξ(z−µ)
σ > 0}, where

Gk(z) = exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
(A.8)

with τ(z) =
{

1 + ξ
(
z−µ
σ

)}−1/ξ
.

Intuitively, the classifier predicting correctly with higher confidence implies that the classifier can provide better certified
robustness. Lemma A.4 provides this relationship directly.

Lemma A.4 (Robust radius (Yang et al., 2020)). The robust radius in any norm ‖ · ‖ is at least

R :=

∫ 1/2

1−λ

1

Φ(p)
dp, (A.9)

where Φ(p) := sup‖v‖=1 supU⊆Rd:q(U)=p limr↘0
q(U−rv)−p

r , λ is the probability that the binary classifier predicts the
right label under perturbation, q(U) is the measure of U under q, i.e. q(U) = Prδ∼q(δ ∈ U), v is the perturbation vector.

Finally, we prove Theorem 5.3.

Robustness Verification for Contrastive Learning

Proof. ΨLE is obtained from fitting to margin distances {Di}Ki=1, Di := (1− ρ(f(x+), f(x−i))/2. From Lemma A.1 we
know that (A.3) is the Reverse Weibull distribution and can be written as the form of (A.2):

ΨLE(x;x+, α, σ) = exp

[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ
]

(A.10)

with z = −D = ρ(f(x), f(x+))− 1.

RCL(f ;x+, x−i) is defined on the positive and negative sample pair (x+, x−i); it means that ΨCL is fitted from specific
(x+, x−i). We denote −D(k) for x−i is the k-th largest order statistic of {−D1, . . . ,−DK}. By Lemma A.3, the distribution
function ΨCL for −D(k) can be written as:

ΨCL(x;x+, α, σ, k) = exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
(A.11)

with τ(z) =
{

1 + ξ
(
z−µ
σ

)}−1/ξ
, z = ρ(f(x), f(x+))− 1. ξ, µ, σ are the same with (A.10).

Let x ∼ Dc+ be the positive test sample of x+. As we discuss in § 3.1, the latent label for unlabeled positive sample can
be given by yc+ . In § 4, we propose that judging positive sample correctly on CL encoder and downstream task can be
transformed to judge whether or not WCLf(x) > 0 and yc+ · g(x) > 0 are True, respectively. Thus, for every negative
sample x−i , we have

P(WCLf(x) > 0 | x)− P(yc+ · g(x) > 0 | x) = ΨCL(x;x+, α, σ, k)−ΨLE(x;x+, α, σ)

= exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
− exp

[
−
{

1 + ξ

(
z − µ
σ

)}−1/ξ
]

= exp{−τ(z)}
k−1∑
s=1

τ(z)s

s!

≥ 0

(A.12)

with τ(z) =
{

1 + ξ
(
z−µ
σ

)}−1/ξ
, z = ρ(f(x), f(x+)) − 1. Equality holds if and only if k = 1. Recall that x =

x+ + δ, ‖δ‖∞ ≤ ε, i.e. x ∈ B∞(x+, ε), which is in the constraints of (6) and (9).

By Lemma A.4, we have:

RCL(f ;x+, x−i)− RLE(g;x+, yc+) =

∫ 1/2

1−ΨCL(x;x+,α,σ,k)

1

Φ(p)
dp−

∫ 1/2

1−ΨLE(x;x+,α,σ)

1

Φ(p)
dp

=

∫ 1−ΨLE(x;x+,α,σ)

1−ΨCL(x;x+,α,σ,k)

1

Φ(p)
dp

≥ 0,

(A.13)

which recovers the theorem statement. Equality holds if and only if k = 1.

A.4. Proof of Theorem 5.5

Theorem 5.5. Given an encoder f : X → Rd, two positive samples x+
1 , x

+
2 and one negative sample x−, if

ρ(f(x+
1), f(x−)) ≥ ρ(f(x+

2), f(x−)), then

RCL(f ;x+
1 , x

−) ≤ RCL(f ;x+
2 , x

−). (A.14)

Proof. In this proposition, we consider the situation in which multiple positive samples x+ and only one negative sample
x− are used. Formally, given an unlabeled sample z = ({x+

i }Ki=1, x
−), we define the margin distance of x− as M− :=

mini∈[K]D
−
i , where D−i := (1− ρ(f(x+

i), f(x−))/2.

Robustness Verification for Contrastive Learning

We denote the lower tail of the distribution of M− as Ψneg. Similar to the idea of Theorem 5.2, we use Ψneg to produce
the probability of x falling into the margin of x−, which can be interpreted as the probability of x being a negative sample.
From Lemma A.1, we know that Ψneg also converges to the Reverse Weibull distribution, and can be written to the form as
following:

Ψneg(x;x−, α, σ) = exp

{
−
(

1− ρ(f(x), f(x−))

σ

)α}
, (A.15)

where ρ(f(x), f(x−)) is the instance similarity between x and x−. α, σ > 0 are Weibull shape and scale parameters,
obtained from fitting to the λ smallest margin distances D−i .

Cumulative distribution function Ψneg is monotonic increasing. Given two positive samples x+
1 , x

+
2 , if ρ(f(x+

1), f(x−)) ≥
ρ(f(x+

2), f(x−)), we have:
Ψneg(x+

1 ;x−, α, σ) ≥ Ψneg(x+
2 ;x−, α, σ) (A.16)

x being the positive sample of x+ means that x is more similar to x+ than to x−. From Lemma A.4 we have:

RCL(f ;x+
1 , x

−)− RCL(f ;x+
2 , x

−) =

∫ 1/2

Ψneg(x+
1 ;x−,α,σ)

1

Φ(p)
dp−

∫ 1/2

Ψneg(x+
2 ;x−,α,σ)

1

Φ(p)
dp

= −
∫ Ψneg(x+

1 ;x−,α,σ)

Ψneg(x+
2 ;x−,α,σ)

1

Φ(p)
dp

≤ 0,

(A.17)

which recovers the theorem statement. Equality holds if and only if ρ(f(x+
1), f(x−)) = ρ(f(x+

2), f(x−)).

B. Difference with CLEVER
CLEVER (Cross-Lipschitz Extreme Value for nEtwork Robustness) (Weng et al., 2018) estimates the robust radius R using
extreme value theory (EVT). In this paper, we utilize EVT in a totally different way compared with CLEVER:

1. To produce the probability of x being a positive sample of x+, we utilize EVT to estimate the lower tail of the margin
distance (Theorem 5.2); thus, we can compare the probability given by the CL encoder and the downstream task. While
CLEVER focuses on estimating R by proposing a sampling based approach with EVT to estimate the local Lipschitz
constant; it is based on a theoretical analysis of formal robustness guarantee with Lipschitz continuity assumption.

2. We use EVT to reveal the quantitative relationship between the robust radius of the CL encoder and that of the
downstream task. While CLEVER only focuses on the robust radius for supervised verification.

C. Complete Implementation
We first introduce two incomplete verifiers with different verified tightness used for RVCL. Then we present the complete
implementation for verified prediction and certification.

C.1. Incomplete verifiers

Due to the nonlinear activations σ(·), the feasible set of (6) and (9) is nonconvex. One intuitive idea is to perform the convex
relaxation of the feasible set to build incomplete verifiers. This paper discusses ReLU networks with CROWN (Zhang
et al., 2018), which is a method used to relax the nonconvex equality constraints φ̂k(·) = σ(φk(·)) to convex inequality
constraints.

Let l(j)k and u(j)
k be the lower and upper bound of φ(j)

k , i.e. l(j)k < φ
(j)
k < u

(j)
k , k ∈ [L]. Given the ReLU activation function

σ(y) = max(y, 0), CROWN uses linear constraints to relax ReLU: α(i)
j φ

(j)
k ≤ φ̂

(j)
k ≤ u

(j)
k

u
(j)
k −l

(j)
k

(
φ

(j)
k − l

(j)
k

)
, where

0 ≤ α(i)
j ≤ 1. After convex relaxation, (6) and (9) can be efficiently solved, as follows:

Lemma C.1 (CROWN bound (Zhang et al., 2018)). Given an L-layer NN φL : Rd0 → R with weights Wk and bias bk,
and the pre-activation bound l(j)k < φ

(j)
k < u

(j)
k (k ∈ [L], j ∈ [dk]), x′ ∈ B(x, ε), we have:

min
x′

WLφ̂L−1(x′) + bL ≥ min
x′
c>x′ + c0 (C.18)

where c and c0 can be computed by Wk, bk, l(j)k , u(j)
k .

Robustness Verification for Contrastive Learning

Another incomplete verifier stronger than CROWN is β-CROWN (Wang et al., 2021) which is the state-of-the-art verification
method. β-CROWN uses a few steps of gradient ascent to achieve bounds as tight as possible but suffer from high time cost.

Lemma C.2 (β-CROWN bound (Wang et al., 2021)). Given an L-layer NN φL : Rd0 → R with weights Wk and bias bk,
the pre-activation bound l(j)k < φ

(j)
k < u

(j)
k , x′ ∈ B(x, ε), and split constraints z ∈ Z , we have:

min
x′,z∈Z

WLφ̂L−1(x′) + bL ≥ max
β≥0

min
x′

(a+ Pβ)>x′ + q>β + c0 (C.19)

where a,P , q and c0 can be computed by Wk, bk, l(j)k , u(j)
k , β is the multiplier of Lagrange function.

We modify two supervised verifiers with different verification tightness in order to show that: a stronger verifier can still
achieve a tighter certified radius RCL in RVCL framework, which illustrates the efficacy of RVCL. The related experiment
results are in § 6.3.

The procedure of incomplete verifier is denoted by INCOMPLETEVERIFIER in the next subsection, which aims to give the
verified lower bound f(x+, x−, ε) of the function f̃ in (9).

C.2. Pseudocode

In terms of verified prediction for CL, (x+, x−) being verified as “correct” with strength ε means that f is lε∞-verified
at (x+, x−). Similar to the discussion of supervised verification in § 3.2, if f(x+, x−, ε) given by the procedure IN-
COMPLETEVERIFIER is greater than 0, (x+, x−) is verified to be “correct”. The procedure of verified prediction is
presented in pseudocode as PREDICT. We utilize PREDICT to obtain the certified instance accuracy (AεCL in Defini-
tion 4.4) for the test dataset Utest, since AεCL is the fraction of the test dataset for which f is lε∞-verified at (x+, x−), i.e.,
PREDICT(f, x+, x−, ε) = True.

In addition to prediction, we are also interested in the certified radius RCL for a given (x+, x−). Apparently, f(x+, x−, ε)
is non-increasing with ε because of the inf operator. Thus, we can apply binary search to obtain RCL. The procedure is
presented as CERTIFY. More precisely, we determine whether f is lε∞-verified at (x+, x−) with current ε. If yes, it means
that (x+, x−) is lε∞-verified with an ε larger than the current one, then we increase ε; otherwise, we decrease ε. The final
solution of ε is the certified radius RCL.

Pseudocode prediction and certification for CL

judge f is lε∞-verified at (x+, x−) or not
function PREDICT(f , x+, x−, ε)

Input: encoder f , positive sample x+, negative sample x−, perturbation bound ε
Output: True: f is lε∞-verified at (x+, x−); False: f is not lε∞-verified at (x+, x−)
f = INCOMPLETEVERIFIER(f, x+, x−, ε)
if f > 0 then return True
else return False

compute the certified radius of (x+, x−) on encoder f
function CERTIFY(f , x+, x−, τ , Rl, Ru)

Input: encoder f , positive sample x+, negative sample x−, tolerance τ , lower bound Rl, upper bound Ru

Output: certified radius RCL

Initialization: τ = 10−6, Rl = 0, Ru = 1
while |Ru − Rl| > τ do
ε = (Rl+Ru)/2
f is lε∞-verified at (x+, x−), the answer should be larger than current ε
if PREDICT(f , x+, x−, ε) then Rl = ε
else Ru = ε

end while
return ε

Robustness Verification for Contrastive Learning

D. Experimental Settings
D.1. Datasets and model architectures

Datasets For model training, we use MNIST (LeCun & Cortes, 2010) and CIFAR-10 (Krizhevsky & Hinton, 2009).
MNIST is a dataset of 28× 28 pixel grayscale images of handwritten single digits between 0 and 9, which contains 60,000
training images and 10,000 testing images with 10 classes. CIFAR-10 contains 50,000 training and 10,000 testing images
with 10 classes. Size for color image in CIFAR-10 is 32× 32.

Model architectures Table D.1 summarizes the CNN encoder architectures. Each layer (except the last linear layer) is
followed by ReLU activation function. Based and Deep are used in Wang et al. (2021), CNN-A and CNN-B are used in
Dathathri et al. (2020). To study the sensitivity of featrue dimension, the ouput dimension of encoder can be changed from
50 to 250 on CNN-B.

Table D.1. Model structures used in our experiments. For example, Conv(1, 8, 4) stands for a conventional layer with 1 input channel, 8
output channels and a 4× 4 kernel. Linear(754, 100) stands for a fully connected layer with 754 input features and 100 output features.

Datasets Model name Encoder structure

MNIST
Base Conv(1, 8, 4) - Conv(8, 16, 4) - Linear(784, 100)

CNN-A Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100)

CIFAR-10

Base Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(1024, 100)
Deep Conv(3, 8, 4) - Conv(8, 8, 3) - Conv(8, 8, 3) - Conv(8, 8, 4) - Linear(412, 100)

CNN-A Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100)
CNN-B Conv(3, 32, 5) - Conv(32, 128, 4) - Linear(8192, 100)

D.2. Training setup

All NNs are trained with verification-agnostic setting (Dathathri et al., 2020), which means without using any tricks to
promote verifiability. We use the model mentioned in Appendix D.1 as the base encoder network and 2-layer multi-layer
perceptron as the projection head (Chen et al., 2020). We set the step size of instance-wise attack α = 0.007, the number of
PGD maximize iteration as K = 10. For the rest, we follow the similar setup of SimCLR (Chen et al., 2020) and RoCL
(Kim et al., 2020).

For optimization, we train the encoder with 500 epochs under Adam (Kingma & Ba, 2015) optimizer with the learning rate
of 0.001. For the learning rate scheduling, the learning rate is dropped by a factor of 10 for every 100 epochs. The batch size
in training is 256.

D.3. Evaluation setup

Linear evaluation We train the downstream linear layer on the top of the frozen encoder, and the training images are
clean. We train the linear layer for 100 epochs with the learning rate of 0.001, and use the cross-entropy loss. The learning
rate is dropped by a factor of 10 for every 50 epochs.

Robust test To evaluate the adversarial robustness, we use white-box project gradient descent (PGD) attack. We set `∞
attack with 20 iteration steps. εtest = 0, 0.15, 0.2 is set for MNIST, and εtest = 0, 8/255, 16/255 is set for CIFAR-10.

Incomplete verifiers If not special specified, CBC (β-CROWN (Wang et al., 2021) for CL) working as an incomplete
verifier uses three minutes for each image.

D.4. Training efficiency

Our experiments are conducted on a Ubuntu 64-Bit Linux workstation, having 10-core Intel Xeon Silver CPU (2.20 GHz)
and Nvidia GeForce RTX 2080 Ti GPUs with 11GB graphics memory. For adversarial contrastive learning on base encoder,
it takes about 12 hours to train 500 epochs on MNIST CNN-A and CIFAR-10 CNN-B with a single GPU. And it takes
about 150 minutes to train 100 epochs on downstream linear layer.

Robustness Verification for Contrastive Learning

E. Additional Experiments
E.1. Certified instance accuracy
Table E.2. Complete comparison of certified instance accuracy across various networks and attack strength εtest. All accuracy is computed
on 100 test samples on MNIST and CIFAR-10. CBC uses 3 minutes for each sample.

Dataset εneg εtest Model εtrain

Instance Certified
Accuracy Instance Accuracy

PGD CBC CROWN

MNIST

0.3 0.1

Based
0

20% 2% 0%
CNN-A 6% 0% 0%
Based

0.1
100% 100% 100%

CNN-A 100% 100% 99%

0.5 0.3
Based

0.3
100% 98% 42%

CNN-A 100% 85% 3%

CIFAR-10
16
255

2
255

CNN-B

0 100% 97% 96%

2.2
255

100% 100% 100%

4
255

91% 26% 11%
4.4
255

100% 55% 34%
8.8
255

100% 68% 52%
Based

4.4
255

100% 99% 95%
Deep 100% 96% 84%

CNN-A 99% 91% 81%
8

255

CNN-B

8.8
255

1% 0% 0%

24
255

6
255

4.4
255

100% 8% 2%
8.8
255

100% 24% 11%

Appendix E.1 summarizes the complete results of certified instance accuracy provided by our proposed RVCL on MNIST
and CIFAR-10. In order to control the similarity ρ(f(x−), f(x′)) between x′ and x−, we generate the negative sample x−

via instance-wise PGD attack (Kim et al., 2020) with strength εneg which is much larger than εtest. In § 6.3, we present
some of the results on CIFAR-10 with εneg = 16/255.

As shown by the results in Appendix E.1, the gap between CBC and PGD is smaller than that between CROWN and PGD
on both MNIST and CIFAR-10 datasets. This is consistent with the experimental results in Wang et al. (2021), and further
illustrates the effectiveness of our proposed RVCL. From Appendix E.1, we can also make the following observations and
remarks:

Influence of εtest If εtest is small, the certified instance accuracy AεCL of both CROWN and CBC approach the robust
instance accuracy AεCL given by instance-wise PGD. However, the gap between CROWN and CBC becomes large as εtest
increases. The results show that CBC is a more powerful verifer than CROWN. The reason for this is that CBC optimizes
the intermediate layer bounds and then iteratively tightens the lower bound. We can further observe that instance-wise PGD
successfully attacks the model on all images of CIFAR-10 under εtest = 8/255.
Remark E.1. The results in Appendix E.1 often achieve a high robust instance accuracy AεCL. The direct reason is that the
instance-wise attack is more difficult than the label-wise attack. Theoretically, Theorem 5.3 shows that the robust radius
RCL ≥ RLE. This implies that one may label-wise attack an image successfully with a small εtest, but that it is nearly
impossible to successfully instance-wise attack with the same small εtest, which results in a high robust instance accuracy.
Figure 4(b) experimentally certifies this conclusion, ACRCL is an order of magnitude larger than ACRLE. However, without
loss of effectiveness, we can still evaluate the tightness of verifiers by comparing the gap between AεCL and AεCL.

Influence of εtrain The certified instance accuracy AεCL increases with increasing εtrain (consistent with Figure 4(c,d)),
which demonstrates that AεCL can also evaluate the model robustness. Howerver, as we discuss in Remark 4.5, AεCL is a
function of specific attack strength εtest, it’s hard to compare the robustness of two models by comparing AεCL of various
values of εtest. Thus ACRCL is a more suitable choice to campare models with different robust performance.

Robustness Verification for Contrastive Learning

E.2. Efficiency of incomplete verifiers

0 0.1 0.2
trian

0.05

0.10

0.15

0.20

0.25
AC

R C
L

CBC
CROWN

(a) ACRCL for MNIST

0 2.2
255

4.4
255

8.8
255

trian

0.03
0.04
0.05
0.06
0.07
0.08
0.09

AC
R C

L

CBC
CROWN

(b) ACRCL for CIFAR-10

Figure E.1. ACRCL calculated by CBC and CROWN on
MNIST and CIFAR-10. |Utest| = 100, K = 10.

Table E.3. Average calculation time of ACRCL,
the number of negative samples K = 5, and
timeout is set to 0.3.

Time(s) CROWN CBC

MNIST 1.16 464.52
CIFAR-10 3.66 921.78

§ 6.1 and § 6.2 use CROWN to compute the certified radius ACRCL in the interests of efficiency. This subsection shows
that CBC achieves similar ACRCL with CROWN, but takes more time than CROWN.

Timeout is set to 0.3s for each step of CBC binary search. CNN-A is run on MNIST and CNN-B is run on CIFAR-10. The
experimental setting of Figure E.1 is the same with that in § 6.1. Table E.3 provides the average time to caculate ACRCL

defined in § 6.2 over 20 images.

The results in Figure E.1 show that ACRCL over Utest provided by CBC and CROWN is nearly the same, and both of them
show the tendency of robust performance. This is because the time for each step of binary search is too short for CBC to
tighten the lower bound. However, Table E.3 shows that the time cost of CBC is about 300 times slower than CROWN,
even using a small value of timeout for CBC. Therefore, we conclude that CBC is able to achieve a tight bound, but CBC is
time-consuming in computing RCL, and it is reasonable to use CROWN to compute ACRCL of models and images.

