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Abstract
Traditional causal discovery methods mainly fo-
cus on estimating causal relations among mea-
sured variables, but in many real-world problems,
such as questionnaire-based psychometric stud-
ies, measured variables are generated by latent
variables that are causally related. Accordingly,
this paper investigates the problem of discover-
ing the hidden causal variables and estimating
the causal structure, including both the causal
relations among latent variables and those be-
tween latent and measured variables. We relax
the frequently-used measurement assumption and
allow the children of latent variables to be latent
as well, and hence deal with a specific type of
latent hierarchical causal structure. In particular,
we define a minimal latent hierarchical structure
and show that for linear non-Gaussian models
with the minimal latent hierarchical structure, the
whole structure is identifiable from only the mea-
sured variables. Moreover, we develop a princi-
pled method to identify the structure by testing for
Generalized Independent Noise (GIN) conditions
in specific ways. Experimental results on both
synthetic and real-world data show the effective-
ness of the proposed approach.

1. Introduction
Inferring causal relationships from observational (non-
experimental) data is challenging when there exist unob-
served confounders. One typical strategy for handling this
problem is by making use of conditional independence re-
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lations to learn the causal graph over the observed vari-
ables up to an equivalence class (Pearl, 2009; Spirtes
et al., 2000). Well-known algorithms along this line in-
clude FCI (Spirtes et al., 1995), RFCI (Colombo et al.,
2012), and FCI+ (Claassen et al., 2013). Another strategy is
to make use of functional causal model-based approaches in
the linear non-Gaussian setting (Hoyer et al., 2008; Entner
& Hoyer, 2010; Chen & Chan, 2013; Tashiro et al., 2014;
Wang & Drton, 2020; Salehkaleybar et al., 2020; Maeda
& Shimizu, 2020; Chen et al., 2021). These works focus
on estimating the causal relationships among observed vari-
ables rather than those among latent variables. However, in
some real-world scenarios, researchers are usually interested
in the causal relationships between latent variables—the
observed variables may not necessarily be the underlying
causal variables (Bartholomew et al., 2008).

A classical framework for inferring latent factors is Fac-
tor Analysis (Bartholomew et al., 2008). But with fac-
tor analysis-based approaches, the estimated factors may
not be the underlying causal variables and their relations
are usually not modeled (Silva et al., 2006). Silva et al.
(2006) proposed a two-step approach to learn the measure-
ment model and the causal structure among latent variables,
by utilizing the vanishing Tetrad conditions (Spearman,
1928). Later, Kummerfeld & Ramsey (2016) developed the
FindOneFactorClusters (FOFC) algorithm, based on the ex-
tended t-separation theorem (Sullivant et al., 2010; Spirtes,
2013), to learn the pure measurement model. Beyond the
second-order statistics, Shimizu et al. (2009) leveraged non-
Gaussianity and showed that a linear acyclic model for latent
factors is identifiable. Cai et al. (2019) proposed a Triad con-
dition and accordingly developed an LSTC algorithm to dis-
cover the structure over latent variables with non-Gaussian
distributions. Xie et al. (2020) designed a Generalized In-
dependent Noise (GIN) condition to address more general
cases where there may be multiple latent variables behind
any pair of observed variables. Other interesting develop-
ments along this line have been established (Zeng et al.,
2021; Chen et al., 2022). However, the above methods
assume that each latent variable set has a much larger num-
ber of observed variables as children and cannot handle
the situation with latent hierarchical structure (i.e., the chil-
dren of latent variables may still be latent). For instance,
consider a hierarchical latent model illustrated in Figure 1,
where the variables Li, i = 1, ..., 9 are unobserved and Xj ,
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j = 1, ..., 15, are observed. The above methods generally
fail to discover the latent variable L1.

L1

L2 L3

X14 L4 L5 L6 L7 L8 L9 X15

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Figure 1. A hierarchical causal structure involving 9 latent vari-
ables (shaded nodes) and 15 observed variables (unshaded nodes).

Several contributions have been made to learn the latent
hierarchical structure other than the measurement model.
For instance, Zhang (2004) generalized the classic latent
cluster models and proposed hierarchical latent class mod-
els (also known as latent tree models) for discrete variables.
Poon et al. (2010) extended this model and proposed Pouch
Latent Tree Models, which allow each leaf node to consist
of one or more continuous observed variables. Later, Choi
et al. (2011) proposed more general latent tree models for
both discrete and Gaussian random variables and provided
efficient estimation algorithms. Other interesting develop-
ments along this line include (Harmeling & Williams, 2010;
Mourad et al., 2013; Zhang & Poon, 2017; Etesami et al.,
2016; Drton et al., 2017). Although these methods have
been used in a range of fields, they usually assume a tree-
structured graph, i.e., there is only one path between every
pair of variables in the system. However, in many settings,
e.g., with the structure in Figure 1, it may be violated.

In this paper, we consider causal structure identification in a
more challenge scenario where the variables form a hierar-
chical structure and some latent variables may have no ob-
served variables as children. Recently, Adams et al. (2021)
established necessary and sufficient conditions for structure
identifiability in linear non-Gaussian setting, which is ex-
citing. However, it does not provide a practical estimation
procedure, which we aim to achieve in this work. Besides,
their work need to give the number of latent factors at the
beginning while our work does not need this information.
Specifically, we make the following contributions:

1. We introduce a constrained causal structure involving la-
tent variables, the minimal latent hierarchical structure,
under which the hierarchical causal structure is identifi-
able without including any redundant latent nodes.

2. We propose an efficient algorithm for estimating the la-
tent hierarchical structure by using Generalized Indepen-
dent Noise (GIN) conditions. The proposed algorithm
can recover the correct structure asymptotically, includ-
ing both the causal relations among latent variables and
those between latent and observed variables, under the
linear, non-Gaussian model assumption.

3. We demonstrate the efficacy of our algorithm on both
synthetic and real-word data.

2. Latent Hierarchical Causal Model
We first give notations and graph terminologies that will be
used throughout the paper. Then we provide the definition
of the Linear Non-Gaussian Latent Hierarchical Model and
corresponding graphical constraints, under which the graph
structure is identifiable.

2.1. Notation and Graph Terminology

Denote by G a Directed Acyclic Graph (DAG) with a set of
variables V and a set of directed edges E. The set of parents
and children of Vi are denoted by Pa(Vi) and Ch(Vi), re-
spectively. Furthermore, Pa(Y) denotes the set of common
parents of a variable set Y, and |Y| denotes the number
of elements in the set Y. Other commonly-used concepts
in graphical models, such as path and d-separation, can be
found in Pearl (2009); Spirtes et al. (2000).

2.2. Linear Non-Gaussian Latent Hierarchical Model

In this paper, we focus on a particular type of linear non-
Gaussian causal model with variables V = X ∪ L, where
each observed variable Xi ∈ X and latent variable Lj ∈ L
are generated according to the following linear structural
equation models:

Xi =
∑

Lj∈Pa(Xi)

bijLj + εXi
, (1)

Lj =
∑

Lk∈Pa(Lj)

cjkLk + εLj
, (2)

where bij and cjk represent the causal strength from Lj to
Xi and from Lk to Lj , respectively. All noise terms εXi

and εLj
are continuous random variables with non-Gaussian

distributions, and are independent of each other. We assume
that the generating process is recursive (Bollen, 1989). That
is to say, the causal relationships over variables V can be
represented by a DAG (Pearl, 2009; Spirtes et al., 2000).

Definition 1 (Linear Non-Gaussian Latent Hierarchi-
cal Model (LiNGLaH)). A model is called a linear non-
Gaussian latent hierarchical model, with graph structure
G = (V,E), if

• V = X
⋃

L, where X is the set of observed variables
and L is the set of latent variables,

• each variable in X and L is generated by the structural
equation models (1) and (2), respectively, and

• the distribution over V is Markov and faithful to the
DAG G.

Here, the non-Gaussinaity of noise terms is essential to
identifying causal directions between two variables in a
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linear model and has been extensively studied in recent
years (Shimizu et al., 2006; Shimizu, 2019). Moreover,
it has been argued that the non-Gaussian distributions are
ubiquitous (Spirtes & Zhang, 2016). In this paper, our goal
is to establish the identifiability of the latent hierarchical
structure and show how to estimate it only from observed
variables X.

2.3. Structural Conditions for Identifiability

It is noteworthy that one may not be able to determine
the locations and number of the latent nodes in LiNGLaH
without further assumptions. Several approaches have at-
tempted to handle this issue under specific assumptions, e.g.,
the measurement assumption (each latent variable Li has
a certain number of pure measurement variables as chil-
dren 1). Representative methods along this line include
BPC (Silva et al., 2006), noisy ICA-based method (Shimizu
et al., 2009), FOFC (Kummerfeld & Ramsey, 2016), CFPC
algorithm (Cui et al., 2018), and GIN (Xie et al., 2020).
In this paper, we consider a clearly more general scenario
where some latent variables have only latent variables as
children (i.e., no observed children), such as the latent vari-
able L1 in Figure 1. In the following, we will give a suffi-
cient graphical condition that render the causal structure of
a latent hierarchical model identifiable. Specifically, with
this condition the structure among latent variables does not
include any “redundant” latent nodes, and we call such
structure the Minimal Latent Hierarchical Structure.

Condition 1 (Minimal Latent Hierarchical Structure).
A structure is a minimal latent hierarchical structure if (1)
each latent variable has at least three neighbors, and (2)
each latent variable has at least two pure children (which
can be either latent or observed).

Note that this condition is milder than that in the minimal
latent tree model (Pearl, 1988; Choi et al., 2011), where
the latent tree model only allows one path between any two
latent variables, while here we do not have such a restric-
tion. Figure 2(a) shows an example of a minimal latent
hierarchical structure satisfying Condition 1. In contrast,
the structure in Figure 2(b) does not satisfy Condition 1
because the number of neighbor nodes of both L6 and L7 is
fewer than 3. Intuitively, for L6, all paths from L6 to its ob-
servable descendants {X3, X4} go through L3 and L6 does
not have no additional and unique observable descendant
relative to L3 to help recover L6. This implies that L6 is a
redundant variable. A similar reasoning procedure applies
to L7.

In the next section, we will propose an algorithm to esti-
mate the structure of LiNGLaH from observed variables

1A set C is the set of pure children (measurement variables) of
Li if each node in C has only one latent parent Li, and each node
in C is neither the cause nor the effect of other nodes in C.

L1

L2

L3 L4 L5

X1 X2 X3 X4 X5 X6 X7 X8

(a)

L1

L2

L3 L4 L5

L6 L7

X1 X2 X3 X4 X5 X6 X7 X8

(b)

Figure 2. (a) An example of the minimal latent hierarchical struc-
ture, where the whole structure is identifiable. (b) A counter-
example of the minimal latent hierarchical structure, where the
structure is not identifiable because L6 and L7 have neighbor
nodes fewer than 3.

X and show that the graph structure of LiNGLaH is fully
identifiable under Condition 1.

3. Structure Identification of LiNGLaH
In this section, we propose an efficient algorithm, Latent
Hierarchical Model Estimation (LaHME), for estimating
the structure of LiNGLaH. The LaHME algorithm consists
of two steps. It first locates all latent variables (Step 1),
and then it infers the causal structure among the identified
latent variables (Step 2). The details of these two steps are
described in Section 3.1 and 3.2, respectively. Furthermore,
we analyze the complexity of Steps 1 and 2, respectively in
Section 3.3. Finally, in Section 4, we show the soundness of
the LaHME algorithm; that is, it outputs the correct causal
structure asymptotically.

Before describing the identification algorithm, we first pro-
duce the GIN condition (Xie et al., 2020).

Definition 2 (GIN condition). Let Z and Y be sets of
variables in a linear non-Gaussian acyclic causal model.
We say that (Z,Y) follows GIN condition if and only if
ω⊺Y are statistically independent of Z, where ω satisfies
ω⊺E[YZ⊺] = 0 and ω ̸= 0.

The GIN condition is essential to locating latent variables
and identifying structure among latent variables in the
LaHME algorithm.

3.1. Step 1: Locating Latent Variables

We adopt a recursive procedure to locate latent variables
from observed variables. More specifically, at each iteration,
it contains the following three phases:

• P1. Identifying the group of variables that share the same
set of latent parents (we call such group a global causal
cluster 2) from the active variable set 3.

• P2. Determining the number of new latent variables that
need to be introduced for these clusters.

• P3. Updating the active variable set.

2Please refer to the Section 3.1.1 for a precise description.
3We say a set is active if it is selected in the current iteration.
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The three phases P1 ∼ P3 are repeated iteratively until all
latent variables of the system are discovered. The complete
procedure is summarized in Algorithm 1, and an illustrative
example for each phase will be given immediately after
introducing each phase in the following subsections, and a
complete example is given in Appendix D.

Algorithm 1 LocateLatentVariables
Input: A set of observed variables X
Output: Partial causal structure G
1: Initialize active set A := X, and let G = ∅;
2: while A ≠ ∅ do
3: ClusterList← FindGlobalCausalClusters(A); // P1
4: (L,G) ← DetermineLatentVariables(ClusterList,

A, G); // P2
5: A ← UpdateActiveData(L, A, G) // P3
6: end while
7: Return: G

3.1.1. P1: FINDING GLOBAL CAUSAL CLUSTERS

In this section, we deal with the identification of global
causal clusters. We first give the definitions of causal cluster
and global causal cluster that help quickly locate the latent
variables, with the global causal cluster as a special kind of
causal cluster .
Definition 3 (Causal Cluster & Global Causal Cluster). Let
A be the active variable set. We say a set C1 ⊂ A is a
causal cluster if the variables in C1 share the same latent
parent, denoted by L1. Furthermore, C1 is a global causal
cluster if (1) C1 and A\C1 are d-separated by L1, and (2)
there is no proper subset C̃1 ⊂ C1 such that C̃1 andA\C̃1

are d-separated by L1.
Definition 4 (Pure Causal Cluster). Let A be the active
variable set and that the set C1 ⊂ A be a causal cluster.
We say C1 is a pure causal cluster if any variable in C1

is neither the cause nor the effect of other variables in C1.
Otherwise, C1 is an impure causal cluster.

For instance, consider the causal structure in Figure 1.
65Suppose the active variable set A = X and C1 =
{X1, X2}. C1 is a causal cluster and its common latent par-
ent is L1. In addition, C1 is a global cluster because C1 and
A\C1 are d-separated by L1. Suppose the active variable
set A = {L1, L2, L3, L5, ..., L8} and C1 = {L2, L6, L7}.
C1 is a causal cluster and its common latent parent is L1.
However, C1 is not a global causal cluster because C1 and
A\C1 are not d-separated by L1 (there is a directed path
between L2 and L5). Furthermore, C1 is a pure cluster be-
cause any variable in C1 is neither the cause nor the effect
of other variables in C1.

The global causal clusters in the current active variable set
A can be identified by appropriately testing for the GIN
condition, as formally stated in the following proposition.

Proposition 1 (Identifying Global Causal Clusters). Let
A be the active variable set and Y be a proper subset of
A. Then Y is a global causal cluster if and only if the
following two conditions hold: 1) for any subset Ỹ of Y
with |Ỹ| = 2, (A\Y, Ỹ) follows the GIN condition, and 2)
no proper subset of Y satisfies condition 1).

To identify global causal clusters efficiently, we start with
finding clusters with size |Y| = 2, and then increase the
size of group Y until it satisfies condition 1 of Proposition
1 or |Y| = |A| − 1. The details of the search procedure are
given in Algorithm 2, and an illustrative example is given
accordingly.

Algorithm 2 FindGlobalCausalClusters
Input: A set of active variables A
Output: ClusterList
1: Initialize cluster set ClusterList = ∅ and the group size

GrLen = 2;
2: while |A| ≥ GrLen + 1 do
3: repeat
4: Select a subset Y fromA such that |Y| = GrLen;
5: if (A\Y, Ỹ) follows GIN condition for any Ỹ ∈

Y with |Ỹ| = 2 then
6: Add Y into ClusterList;
7: end if
8: until all subsets with size GrLen in A selected;
9: A = A\ClusterList, and GrLen← GrLen + 1;

10: end while
11: Return: ClusterList

Example 1. Consider the causal structure in Figure 1. Sup-
pose the active variable set is A = {X1, ..., X15}. Setting
GrLen = 2, one can find 8 clusters: C1 = {X1, X2},
C2 = {X3, X4}, C3 = {X5, X6}, C4 = {X7, X8},
C5 = {X9, X10},C6 = {X11, X12},C7 = {X11, X13},
and C8 = {X12, X13}.

3.1.2. P2: DETERMINING LATENT VARIABLES

We then determine how many new latent variables need to
be introduced for these clusters identified in Algorithm 2.
To this end, we will deal with the following two issues:

• which clusters of variables share the common latent par-
ent and should be merged, and

• which clusters of variables are the children of the latent
variables that have been introduced in previous iterations.

We first give the following lemma on identifying pure and
impure clusters with GIN conditions, which will help us
address the above two issues.

Lemma 1 (Identifying Pure/Impure Clusters). Let A be the
active variable set and C1 be a global causal cluster. Then
the following statements hold: (1) If |C1| > 2, C1 is an
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impure cluster; (2) If |C1| = 2 and for any Vi, Vj ∈ C1,
there does not exist Vk, Vt ∈ A ∪ Ch(A)\C1 such that
({Vi, Vt}, {Vi, Vj , Vk}) follows the GIN condition while
({Vj , Vt}, {Vi, Vj , Vk}) violates the GIN condition, then C1

is a pure cluster. Otherwise, C1 is an impure cluster.

We now provide the conditions under which the clusters
of variables share the common latent parent and should be
merged to solve the first issue.

Proposition 2 (Merging Rules). Let A be the active vari-
able set and C1 and C2 be two global causal clusters. C1

and C2 share the common latent parent, if one of the fol-
lowing rules holds.

R1. 1) C1 and C2 are both pure clusters, and 2) for any
subset C̃ ⊆ C1∪C2 with |C̃| = 2, (A\C̃, C̃) follows
the GIN condition.

R2. 1) One of the clusters is a pure cluster and the other
is not, e.g., C1 is pure and C2 is impure, and 2) for
any variable Vi ∈ C1 and any variable Vj ∈ C2,
(A\{C2, Vi}, {Vi, Vj}) follows the GIN condition.

R3. 1) C1 and C2 both are impure clusters, and 2) for
any subset C̃ ⊆ C1 ∪C2 with |C̃| = 2, (A\{C1 ∪
C2}, C̃) follows the GIN condition.

Otherwise, C1 and C2 do not share the common latent
parent.

Next, we discuss the solution for the second issue. Due to
the property of hierarchical structure, we can not guarantee
that all children of a latent variable are identified at the
same iteration. Thus, we need to identify whether a new
cluster’s parents have been introduced in previous iterations.
Fortunately, for any latent variable L1 that was introduced
in previous iterations, we know that all nodes in the active
variable set A in the current iteration are causally earlier
than the children of L1 found in previous iteration. That is to
say, Ch(L1) are leave nodes in the subgraph with variables
A ∪Ch(L1). This yields the following corollary derived
from Proposition 2.

Corollary 1. Let L1 be a latent variable that was introduced
in previous iterations, C2 be a new cluster, and A be the
active variable set in the current iteration. Suppose cluster
C1 was a subset of Ch(L1) found in previous iterations.
Then C1 and C2 share the common latent parent L1 if
setting A = A ∪C1\L1 be the active set, one of the three
rules in Proposition 2 holds. Otherwise, C1 and C2 do not
share the common latent parent.

Below, we give an example to illustrate ruleR3 in Proposi-
tion 2 and Corollary 1 to identify the clusters of variables
that share a common latent parent. Please see Appendix C
for more analyses of the three rules.

Example 2 (Rule 3). Consider the causal graphs in Fig-
ure 3. We first check R3 of Proposition 2 in subgraph

(a), where clusters C1 and C2 are identified in the same
iteration and they are two impure causal clusters. Let
A = {V1, ..., V6}. For any subset of C1 ∪ C2, e.g.,
C̃1 = {V1, V3}, we have ({V5, V6}, {V1, V3}) follows the
GIN condition. This implies that C1 and C2 share the
same latent parent L1. We next check Corollary 1 in sub-
graphs (b), where L1 is a latent variable introduced in
the first iteration, C1 is a subset of its children, C2 is a
new causal cluster, and A = {L1, V3, ..., V6}. We first set
A = A ∪C1\L1 = {V1, ..., V6}. Then, we check R3 and
find that C1 and C2 share the common parent.

L1

V1 V2 V3 V4

V5 V6

C1 C2

(a)

L1

V1 V2
V3

V4

V5
V6

V7 V8

V9 V10

C1

C2

(b)
Figure 3. The illustrative examples for R3 in Proposition 2 and
Corollary 1.

The complete procedure of determining latent variables for
the current active variable set is summarized in Algorithm
3, and an illustrative example is given in Example 3.

Algorithm 3 DetermineLatentVariables
Input: ClusterList, A, and Partial structure G
Output: New latent set L and partial structure G

1: Initialize G′ = G and L = ∅;
2: C ←Merge clusters from ClusterList according to

RulesR1 ∼ R3 of Proposition 2;
3: for each Ci ∈ C do
4: if there exists Lj ∈ G′ such that Ci and Lj satisfy

the conditions of Corollary 1 then
5: G = G ∪ {Lj → Vi|Vi ∈ Ci};
6: else
7: Introduce a new latent variable Lk into L;
8: G = G ∪ {Lk → Vi|Vi ∈ Ci};
9: end if

10: end for
11: Return: L and G

Example 3. Continue to consider the structure in Figure
1, we have found 8 clusters by Algorithm 2. Now, we find
that C6, C7 and C8 are merged base onR1 of Proposition
2. For any other two clusters, we can not merge them by
Proposition 2. Furthermore, because there exist no latent
variables introduced in the previous iterations, we do not
need to verify the rules of Corollary 1. Overall, we can
determine there are six latent variables, i.e., L4, ..., L9.

3.1.3. P3: UPDATING ACTIVE VARIABLE SET

When the active variable set A is the observed variable
set X, one can identify some specific latent variables that
are the parents of observed variables, with Algorithm 2
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and Algorithm 3. However, one may have the follow-
ing concerns: for a hierarchical structure, how can we
further find latent variables that are the parents of latent
variables and how can we check the GIN conditions over
latent variables without observing them? Thanks to the
linearity assumption and the transitivity of linear causal
relations, we can use their observed descendants to test
for the GIN conditions. For instance, consider the struc-
ture in Figure 1. Suppose Y = {L4, X14}, and then
(X\{X1, X2}, {L4, X14}) follows the GIN condition if
and only if (X\{X1, X2}, {X1, X14}) follows it, where
the measured descendant X1 acts as a surrogate of the latent
variable L4. Thus, we can check subsequent GIN conditions
over latent variables by using their proper pure observed de-
scendants. The following proposition shows how to update
the active variable set and how to test for the GIN condition
over latent variables.

Proposition 3 (Active Variable Set Update). Let A be the
current active variable set and L be the latent variable sets
discovered in the current iteration. Then the new active
variable set A′ = A ∪ L\Ch(L). Moreover, the GIN
conditions over variables in A′ are equivalent to those that
replace V ∈ A′ by any variable in its corresponding cluster
identified in the latest iteration.

The above proposition says that when testing for the GIN
condition over latent variables, we can initialize the value
of the latent variable with the value of any variable in its
corresponding cluster found in the latest iteration, without
recovering the distribution of latent variables. The complete
update procedure based on Proposition 3 is summarized in
Algorithm 4, and an illustrative example is given below.

Algorithm 4 UpdateActiveData
Input: New latent set L, A, and partial structure G
Output: New active data A
1: if L = ∅ then
2: A = ∅;
3: else
4: for each new latent variable Li ∈ L do
5: Initialize Li with the value of any variable in its

corresponding cluster identified in the latest itera-
tion.

6: Add Li into A and remove all children of Li from
A;

7: end for
8: end if
9: Return: A

Example 4. We now continue identifying the structure in
Figure 1. In Phase 2, we have determined that there are six
latent variable sets, including L4, ..., L9. Now, we update
the active variable set A by Algorithm 4. For each new la-
tent variable, e.g., L4, we initialize L4 with the value of any

variable in {X1, X2}, e.g., X1. Meanwhile, we add L4 into
A and remove {X1, X2} fromA. The similar reasoning pro-
cedure applies to other latent variables. Thus, we obtain the
new active variable set A = {X14, X15, L4, ..., L9}, where
the values of X1, X3, X5, X7, X9, X11 act as surrogate of
the values of latent variables L4, ..., L9, respectively.

3.2. Step 2: Inferring Causal Structure among Latent
Variables

With step 1, we can identify latent variables, as well as the
causal structure among the latent parents of pure clusters
(see Lemma 2). In this section, we show how to further
identify the causal structure among latent variables within
an impure cluster, so that the latent hierarchical causal struc-
ture is fully identifiable. The basic idea is to first identify
the causal order among latent variables and then remove
redundant edges.

Below, we first show how to identify the causal order be-
tween any two latent variables by appropriately testing for
GIN conditions, when their latent confounder is given.

Proposition 4 (Identifying Causal Order). Let Lp and Lq

be two latent variables in an impure cluster, and denote by
{P1, P2} and {Q1, Q2} subsets of pure children of Lp and
Lq , respectively. Suppose Lt is the set of latent confounders
of Lp and Lq. Let T1 and T2 contain one of pure children
of each latent variable in Lt, and T1 ∩ T2 = ∅. Then if
({P2,T2}, {P1, Q1,T1}) follows the GIN condition, Lp is
causally earlier than Lq (denoted by Lp ≻ Lq).

Example 5. Consider the causal graphs in Figure 4. Ct =
{L2, L3, L4} is am impure cluster. Suppose Lp = L2 and
Lq = L3. Then the set of latent confounders Lt = {L1}.
Let T1 = {X7}, T2 = {X8}, {P1, P2} = {X1, X2}
and {Q1, Q2} = {X3, X4}. According to Proposition 4,
({X2, X8}, {X1, X3, X7}) follows the GIN condition. This
implies that L2 ≻ L3.

L1

L2 L3 L4

X7
X8

X1 X2 X3 X4 X5 X6

Ct

Figure 4. An illustrative example for Proposition 4 and 5

We next show how to use Proposition 4 to learn the causal
order between any pair of latent variables within an impure
cluster, in a recursive way. Before that, we first introduce
local root variables, which will be used in the learning
procedure.

Definition 5 (Local Root Variable). Let Ci = {L1, ..., Lp}
be an impure cluster. We say variable Lr ∈ Ci is a local
root variable if there is no other latent variable in Ci causes
it.

For any impure cluster Ci, due to the acyclic assumption,
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the identified latent parent Lt and the identified pure chil-
dren of any latent variable in Ci from the previous step,
there always exists a local root variable Lr in Ci and it
can be found with Proposition 4 when Lt = {Lt}. After
identifying the local root variable Lr in Ci, we remove Lr

from Ci and add it into the latent confounder set Lt. We
repeat the above procedure and recursively discover the lo-
cal root variable until the casual order of the latent variables
within the impure cluster is fully determined. The detailed
procedure of identifying causal orders is given in Lines 2-8
of Algorithm 5.

Example 6. Continue to consider the example in Figure 4.
We have known that L2 is a local root variable. Now, we
update Ci = {L3, L4} and the latent confounder LC =
{L1, L2}. According to Proposition 4, we obtain that L3 is
the local root variable. Thus, we return the causal order:
L2 ≻ L3 ≻ L4.

Algorithm 5 LocallyInferCausalStructure
Input: Measured variables X and partial structure G
Output: Fully identified structure G
1: repeat
2: Select an impure cluster Ci from the G;
3: Initialize latent confounder set: LC = ∅;
4: Add the common parent Lt of Ci into LC;
5: while |Ci| > 1 do
6: Find a local root variable Lr according to Proposi-

tion 4;
7: Ci = Ci\Lr and add Lr into LC;
8: G = G ∪ {Lr → Li|Li ∈ Ci};
9: end while

10: repeat
11: Select an ordered pair of variables Lp and Lq in

Ci that Lp ≻ Lq;
12: if there exists set LS ⊂ C1 such that each latent is

causally later than Lp and is causally earlier than
Lq, and Lp and Lq are d-separated by LS ∪ Lt.
then

13: Remove the directed edge between Lp and Lq .
14: end if
15: until All ordered pairs of variables in Ci selected
16: until All impure clusters in G selected
17: Return: G

After identifying the causal order over a set of latent vari-
ables within an impure cluster, we then remove redundant
edges by using rank-deficiency test, as that in Silva et al.
(2006).

Proposition 5 (Removing Redundant Edges). Let Lp and
Lq be two latent variables in an impure cluster Ci, and
denote by P1 and Q1 pure children of Lp and Lq, respec-
tively. Suppose Lp is causally earlier than Lq . Let Lt be the
common parent of Ci and LS be the set of latent variables

in Ci such that each latent is causally later than Lp and
is causally earlier than Lq. Furthermore, let {T1, T2} be
two pure children of Lt, and S be a set of children of LS

containing two pure children per latent. Then Lp and Lq

are d-separated by LS ∪ Lt, i.e., there is no directed edge
between Lp and Lq iff the rank of the correlation matrix of
{P1, Q1} ∪ {T1, T2} ∪ S is less than or equal to |Lt ∪ LS|.

Proposition 5 helps us to identify whether there is a di-
rected edge between two latent variables by searching the
d-separation set from other latent variables in sequence. The
detailed procedure of removing the redundant edges is given
in Lines 10-15 of Algorithm 5.

Example 7. Continue to consider the example in Figure 4.
Now, we are going to verify the directed edge between L2

and L4. According to Proposition 5, we obtain that the rank
of the correlation matrix of {X1, X5} ∪ {X3, X4, X7, X8}
is less than or equal to |{L1, L3}| = 2 (the d-separation set
is {L1, L3}). This implies that L2 and L4 are d-separated
by {L1, L3}, and we will remove the directed edge between
L2 and L4.

The complete learning procedure for identifying the causal
structure among latent variables, that is based on Proposition
4 and Proposition 5, is summarized in Algorithm 5.

3.3. Complexity of LaHME Algorithm

In this section, we analyze the complexity of Steps 1 and 2
of LaHME algorithm. Denote by p the number of observed
variables, by q that of latent variables, by R the maximal
depth of the graph, and by S (< q) the maximal length
of impure cluster of the graph. For Step 1, there are two
dominant parts. One dominant part is to find global clusters
(Algorithm 2) with worst case complexity O(Rp!), and the
other part is to determine latent variables (Algorithm 3)
with worst case complexity O(Rp2). Hence, the worst case
complexity is O(Rp!). Step 2 includes Algorithm 5 whose
worst case complexity is O(TS2), where T (< q) is the
maximum number of impure clusters of the graph.

4. Identifiability of Latent Hierarchical
Structure

In this section, we show that the LaHME algorithm can
identify the correct causal structure asymptotically, if the
data satisfies LiNGLaH and the graph structure satisfies the
minimal latent hierarchical structure (Condition 1). Below,
we first show that the latent variables, as well as the causal
structure among the latent parents of pure clusters, are iden-
tifiable by Step 1 of the LaHME algorithm, which is stated
in the following lemma.

Lemma 2. Suppose that the input data X follow LiNGLaH
with the minimal latent hierarchical structure. Then the
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Table 1. Performance of LaHME, GIN, FOFC, BPC, CLRG and CLNJ on learning latent hierarchical structure.
Structure Recovery Error Rate ↓ Error in Hidden Variables ↓ Correct-Ordering Rate ↑

Algorithm LaHME GIN FOFC BPC CLRG CLNJ LaHME GIN FOFC BPC CLRG CLNJ LaHME GIN FOFC BPC CLRG CLNJ
1k 0.1 0.2 1.0 1.0 1.0 1.0 0.1 0.1 0.5 0.6 2.0 2.0 0.96 0.92 - - - -

Case 1 5k 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.1 2.0 2.0 1.0 1.0 - - - -
10k 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 2.0 2.0 1.0 1.0 - - - -
1k 0.2 1.0 1.0 1.0 1.0 1.0 0.2 3.2 3.8 3.9 4.0 4.0 0.9 0.08 - - - -

Case 2 5k 0.1 1.0 1.0 1.0 1.0 1.0 0.1 3.0 3.6 3.8 4.0 4.0 0.96 0.1 - - - -
10k 0.0 1.0 1.0 1.0 1.0 1.0 0.0 3.0 3.5 3.8 4.0 4.0 1.0 0.1 - - - -
1k 0.1 1.0 1.0 1.0 1.0 1.0 0.2 1.3 3.0 3.1 3.0 3.0 0.92 0.0 - - - -

Case 3 5k 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.2 3.0 3.2 3.0 3.0 1.0 0.0 - - - -
10k 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 3.2 3.4 3.0 3.0 1.0 0.0 - - - -
1k 0.3 1.0 1.0 1.0 1.0 1.0 0.4 3.4 7.0 7.2 8.0 8.0 0.9 0.0 - - - -

Case 4 5k 0.2 1.0 1.0 1.0 1.0 1.0 0.2 3.2 6.6 6.9 8.0 8.0 0.94 0.0 - - - -
10k 0.0 1.0 1.0 1.0 1.0 1.0 0.0 3.1 5.8 6.7 8.0 8.0 1.0 0.0 - - - -

Note: The symbol ’-’ indicates that the current method does not output this information. ↓ means a lower value is better, and vice versa.

underlying latent variables, as well as the causal structure
among the latent parents of pure clusters, are identifiable
by Step 1 of the LaHME algorithm.

Lemma 2 implies that if the underlying causal structure
is a tree-based graph (each latent variable only has pure
children), then the underlying graph will be recovered only
with Step 1 of the LaHME algorithm.

We next show that the whole hierarchical structure is identi-
fiable with the LaHME algorithm, as stated in Theorem 1.
An illustrative example of the entire procedure of LaHME
is given in Appendix D.

Theorem 1 (Identifiability of Latent Hierarchical Structure).
Suppose that the input data X follows LiNGLaH with the
minimal latent hierarchical structure. Then the underlying
causal graph G is fully identifiable with LaHME, including
latent variables and their causal relationships.

5. Experiments
In this section, we first apply the proposed method to syn-
thetic data to demonstrate the correctness. Then, we apply
our algorithm to real-world data set to show its usefulness.

5.1. Synthetic Data

In the following simulation studies, we generated data
according to four typical structures that satisfy mini-
mal latent hierarchical structure, including tree-based and
measurement-based structures (see Figure 5). We con-
sidered different sample sizes N = 1k, 5k, 10k. The
causal strength bij and cjk were generated uniformly in
[−2,−0.5] ∪ [0.5, 2] and the non-Gaussian noise terms
were generated from exponential distributions to the second
power. We used HSIC-based independence tests (Zhang
et al., 2018) to test for the GIN condition, due to the non-
Gaussianity of the data.

We compared the proposed LaHME algorithm with
measurement-based methods, such as BPC (Silva et al.,
2006), FOFC (Kummerfeld & Ramsey, 2016), and GIN-
based approach (Xie et al., 2020). We also compared
LaHME with tree-based methods, such as Chow-Liu Re-

X1X2X3X4X5X6X7X8X9

(Case 1)
X1 X2 X3 X4 X5 X6 X7

(Case 2)

X1 X2X3X4X5 X6
(Case 3)

X14 X15

X1X2X3X4X5X6X7X8X9X10X11X12X13

(Case 4)

Figure 5. Latent structures used in our simulation studies.

cursive Grouping (CLRG) and Chow-Liu Neighbor Joining
(CLNJ) (Choi et al., 2011). Each experiment was repeated
ten times with randomly generated data, and the results were
averaged. The source code is in the Supplementary file.

We adapted the evaluation metrics from Choi et al. (2011)
and Xie et al. (2020) to evaluate the minimal latent hierar-
chical structure. Specifically, we used the following three
metrics:

• Structure Recovery Error rate: the percentage that the
proposed algorithm fails to recover the ground-truth struc-
ture. Note that this is a strict measure because even a
wrong latent variable or a wrong direction results in an
error.

• Error in the Number of Latent variable sets: the absolute
difference between the averaged number of latent vari-
ables estimated and the number of latent variables in the
ground-truth structure.

• Correct ordering rate: the number of correctly inferred
causal ordering divided by the total number of causal
ordering in the true structure.

The experimental results were reported in Table 1. From the
table, we can see that our proposed LaHME outperforms
other methods with all the three evaluation metrics, in all the
structures, and in all sample sizes, indicating that it can not
only handle the tree-based and measurement-based struc-
tures, but also the latent hierarchical structure, including the
causal directions. We found that the GIN-based algorithm
does not perform well especially on hierarchical structures,
so it is not appropriate to identify structures where latent
variables have no observed variables as children. We further
noticed that CLRG and CLNJ algorithms do not perform
well on case 3, although the structure is a tree. One possible
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Table 2. Results with two scenarios that violates the assumptions of our model (with sample size=10k).
Structure Recovery Error Rate ↓ Error in Hidden Variables ↓ Correct-Ordering Rate ↑

Cases Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
Scenario 1 0.00 0.20 0.00 0.30 0.00 0.20 0.00 0.40 1.00 0.90 1.00 0.91
Scenario 2 1.00 2.00 0.47

reason is that these algorithms were designed for Gaussian
and discrete variables only.

In addition, we consider the following two typical scenarios
where the assumptions are not fulfilled. Scenario 1) Vio-
lation of non-Gaussianity: we consider all four graphs in
Fig. 5 with Gaussian noise terms for measured variables.
Scenarios 2) Violation of Cond. 1: we consider the graph
in Fig. 2(b), where L6 and L7 only have two neighbors.
Experimental results are reported in Table 2. We found that
in Scenario 1, the performances in cases 1&3 are almost
the same, and the performance drops slightly in cases 2&4
while it is still better than by chance. In Scenario 2, the
recovered graph of our method is the graph in Fig. 2(a),
which indicates that Condition 1 is necessary.

In summary, these above findings show a clear advantage of
our method over the comparisons. We also consider graphs
with different scales (numbers of variables and depths) and
report the results in Appendix E.

5.2. Real-World Data

We applied our LaHME algorithm to a multitasking behav-
ior model, represented by a hierarchical SEM (Himi et al.,
2019). In details, the multitasking behavior model contains
four latent factors: Multitasking behavior (Mb), Speed (S),
Error (E), and Question (Q), where factor Mb has no ob-
served variables as children, and Speed (S), Error (E), and
Question (Q) each has three measured variables. The de-
tailed explanation of the data set is given in Appendix F.
The data set consists of 202 samples.

Figure 6 shows the performance of different algorithms. The
significance levels of LaHME, BPC, and FOFC were set
to 0.001, 0.0001, and 0.000001 respectively. The reason of
choosing different significance levels is that BPC and FOFC
algorithms will output empty graph if the significance level
is 0.001. Here, we chose the ’better’ significance such that
the output graphs of BPC and FOFC algorithms are closer to
the ground-truth graph. The result of our output is consistent
with the model given in Himi et al. (2019), which indicates
the effectiveness of our method. Note that although GIN
and BPC discover three other latent variables that have
observed children, neither finds latent factor Multitasking
behavior. CLRG and CLNJ output the same result and
capture the latent variable Multitasking behavior; however,
They fail to find the latent variable Speed. These results
again indicate that our algorithm has better performance
than other algorithms in learning hierarchical structure.

Mb

S E Q

S1S2S3E1E2E3Q1Q2Q3

(LaHME)

S E Q

S2 S3 E1 E2Q1Q2Q3

(GIN)
S EQ

S1 S2 S3 Q1Q2Q3E1 E2 E3

(BPC)

S Q

S1 S2 S3 E1 Q1 Q2 Q3

(FOFC)
Mb

Q Q1 E

S2 S3 S1 Q2Q3 E1 E2 E3

(CLRG)

Mb

Q Q1 E

S2 S3 S1 Q2Q3 E1 E2 E3

(CLNJ)
Figure 6. The output of LaHME, GIN,BPC,FOFC,CLRG and
CLNJ on the multitasking behavior data. The ground-truth graph
is the same as that identified by LaHME.

6. Conclusions and Further work
We investigated the problem of learning linear non-Gaussian
latent hierarchical models from observational data. In par-
ticular, we allow latent variables without observed variables
as children and hierarchical structures beyond a tree for
the latent variables. We provided sufficient conditions for
structural identifiability, and proposed a recursive clustering
method, which locates the latent variables and locally infers
the causal order among them. The method can output the
correct causal structure asymptotically.

Currently, we assumed that each latent variable has a cer-
tain number of pure children, i.e., 1-factor model. A future
research line is to extend it to n-factor models, where the
condition is on the number of pure children of a latent
variable set. It can be achieved by extending LaHME that
considers an increased size of Y in testing for GIN condi-
tions. Another line of future research is to estimate the latent
hierarchical structure under nonlinear causal models (e.g.,
the post-nonlinear model (Zhang & Hyvärinen, 2009)).
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A. Notations

Symbol Description

G A directed acyclic graph
V The set of all variables
X The set of observed variables
L The set of latent variables
Pa(Vi) The set of all parents of Vi

Ch(Vi) The set of all children of Vi

Pa(Y) The set of common parents of a variable
set Y

L(Y) The set of latent variables that are par-
ents of any component of Y.

| ∗ | (e.g., |Y|) The number of elements of set ∗ (Y)
ΣAB The cross-covariance matrix of set A

and B
rank(ΣAB) The rank of cross-covariance matrix of

set A and B

Table 3. The list of main symbols used in this Appendix

B. Proofs
Before presenting the proofs of our results, we need a few more theorems and definitions.

Definition 6 (GIN condition (Xie et al., 2020)). Let Z, Y be sets of variables in a linear non-Gaussian acyclic causal
model. We say that (Z,Y) follows GIN condition if and only if ω⊺Y are statistically independent of Z, where ω satisfies
ω⊺E[YZ⊺] = 0 and ω ̸= 0.

In other words, (Z,Y) violates the GIN condition if and only if EY||Z is dependent on Z.

Below, we show the graphical implication of the GIN condition in LiNGLaH, which helps to exploit the GIN condition to
discover the latent hierarchical structure, and we first give the definition of exogenous set, which will be used in the theorem.

Definition 7 (Exogenous set). We say variable set S1 is an exogenous set relative to variable set S2 if and only if 1) S2 ⊆ S1
or 2) for any variable V that is in S2 but not in S1, according to the causal graph over {V } ∪ S1 and the ancestors of
variables in {V } ∪ S1, V does not cause any variable in S1, and the common cause for V and each variable in S1, if there
is any, is also in S1 (i.e., relative to {V } ∪ S1, V does not cause and is not confounded with any variable in S1).

Theorem 2 (GIN Graphical Criteria in LiNGLaH). Let Y and Z be two sets of observed variables of a linear non-Gaussian
latent hierarchical model (LiNGLaH). (Z,Y) satisfies the GIN condition (while with the same Z, no proper subset of Y
does) if and only if there exists a k-size subset of the latent variables L, 0 ≤ k ≤ min(Dim(Y)− 1, Dim(Z)), denoted
by SkL, such that 1) SkL is an exogenous set relative to L(Y), that 2) SkL d-separates Y from Z, and that 3) the covariance
matrix of SkL and Z has rank k, and so does that of SkL and Y.

Roughly speaking, the conditions in this theorem can be interpreted in the following way: i.) a causally earlier subset
(according to the causal order) of the common causes of Y d-separate Y from Z, and ii.) the linear transformation from that
subset of the common causes to Z has full column rank.

Proof. It has been shown in Xie et al. (2020) that the graphical criteria hold in linear non-Gaussian latent variable model
(LiNGLaM). The key difference between LiNGLaM and LiNGLaH is that LiNGLaH allows some latent variables have no
observed variables, which does not affect the graphical criteria of GIN in terms of LiNGLaH because linear causal models
are transitive. Therefore, the graphical criteria also hold in LiNGLaH.

B.1. Proof of Proposition 1

Proof. (i) Assume that Y is a global causal cluster. Let Ỹ be any subset of Y such that |Ỹ| = 2. To prove that (A \Y, Ỹ)
follows the GIN condition, we need to verify the three conditions of GIN Graphical Criteria in Theorem 2. First, due to the
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definition of global causal clusters, we know that there exists a latent parent, denoted by L1, d-separates Y fromA\Y. This
will imply that conditions 1 and 2 of GIN Graphical Criteria hold, i.e., L1 is an exogenous set relative to L(Ỹ) = L1, and
L1 d-separates Y from A \Y. Furthermore, denote by ε the set of common components between Y and A \Y. Because
L1 is the only parent of Y, we have |ε| = 1. Therefore, the covariance matrix of L1 and A \Y has rank 1, and so does
that of L1 and Y. Due to the condition 2 of global causal cluster, we obtain that no proper subset Ỹ ⊂ Y such that Ỹ and
A \ Ỹ are d-separated by L1. This will imply that there is no proper subset of Y satisfies the condition 1.

(ii) Assume that Y is not a global causal cluster. We need to consider the following two cases:

Case 1: Y is not a causal cluster. Since Y is not a causal cluster, without loss of generality, L(Y) must contain at least two
different latent parents, denoted by L1 and L2. Furthermore, because condition 1 holds, i.e., for any subset Ỹ of Y with
|Ỹ| = 2, (A \Y, Ỹ) follows the GIN condition. According to GIN Graphical Criteria, {L1, L2} d-separates Y and A \Y,
which leads to the contradiction–the variables in Y share only one common parent.

Case 2: Y is a causal cluster but is not global. Let L1 be the common parent of Y. Since Y is not global, there are two
sub-cases to be discussed (see Figure 7),

a. Y and A \Y are not d-separated by L1;

b. Y and A \Y are d-separated by L1, but there exist a proper subset Ỹ ⊂ Y such that Ỹ and A \ Ỹ are d-separated by
L1.

L1

L2 L3 L4

Y

(a)

L1

L2 L3 L4 L5

Y

(b)

Figure 7. The illustrative examples for Case 2.

Case 2(a): Because condition 1 holds, i.e., for any subset Ỹ of Y with |Ỹ| = 2, (A \Y, Ỹ) follows the GIN condition.
According to GIN Graphical Criteria, there exist S1L such that S1L d-separates Y from A \Y. Furthermore, since L1 is the
common parent of Y, S1L = L1. This will imply that L1 d-separates Y from A \Y, which leads to the contradiction.

Case 2(b): Because there exists a proper subset Ỹ ⊂ Y such that Ỹ and A \ Ỹ are d-separated by L1. Without loss of
generality, denote by Y′ ⊂ Y the subset, i.e., Y′ and A \Y′ are d-separated by L1. According to condition 1 and GIN
Graphical Criteria, we have that for any subset Ỹ′ of Y′ with |Ỹ′| = 2, (A \Y′, Ỹ′) follows the GIN condition, which
leads to the contradiction–condition 2 does not hold.

Therefore, from (i) and (ii), the proposition is proved.

B.2. Proof of Lemma 1

Proof. The proof of Statement 1 is obvious: if C1 is a pure cluster, then there exist a proper subset Y′ ⊂ Y such that for
any subset Ỹ′ of Y′ with |Ỹ′| = 2, (A \Y′, Ỹ′) follows the GIN condition, which leads to the contradiction–C1 is a
global causal cluster.

We prove Statement 2 by contradiction. Assume that C1 = {Vi, Vj} is an impure cluster. Without loss of generality,
assume that Vi → Vj . Let L1 be the common parent of C1. With the model assumption, L1 has at least two pure children,
denote by Vk, Vt ∈ {A ∪Ch(A) \C1}. Next, we will show that ({Vi, Vt}, {Vi, Vj , Vk}) follows the GIN condition while
({Vj , Vt}, {Vi, Vj , Vk}) violates the GIN condition. To do so, we need to verify the three conditions of GIN Graphical
Criteria Theorem.

We first verify that ({Vi, Vt}, {Vi, Vj , Vk}) follows the GIN condition. Denote by ε the set of common components
between {Vi, Vj , Vk} and {Vi, Vt}. Because {Vi, Vj , Vk, Vt} is a causal cluster and {Vk, Vt} is a pure cluster, we know
that ε = {εL1 , εVi}. Thus, we know there exist a set S2L = L1, Vi such that (1) {L1, Vi} is an exogenous set relative to
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L({Vi, Vj , Vk}) = {L1, Vi}, (2) {L1, Vi} d-separates {Vi, Vj , Vk} from {Vi, Vt}, and (3) the covariance matrix of L1 and
A \Y has rank 2, and so does that of L1 and Y. These will imply that ({Vi, Vt}, {Vi, Vj , Vk}) follows the GIN condition.

We next verify that ({Vj , Vt}, {Vi, Vj , Vk}) violates the GIN condition. Denote by ε′ the set of common components
between {Vi, Vj , Vk} and {Vj , Vt}. Because {Vi, Vj , Vk, Vt} is a causal cluster and {Vk, Vt} is a pure cluster, we know that
ε′ = {εL1 , εVi , εVj}. Thus, there does not exist a set SkL such that k ≤ min(|{Vi, Vj , Vk}| − 1, |{Vj , Vt}|) = 2. This will
imply that ({Vj , Vt}, {Vi, Vj , Vk}) violates the GIN condition.

B.3. Proof of Proposition 2

Proof. We will prove these three rules by contradiction, by assuming that C1 and C2 do not share the same latent parent
and showing that condition (2) of each rule violates. Let L1 and L2 be the parents of C1 and C2, respectively.

We first proveR1. We consider the case where C1 and C2 are two pure clusters. With the model assumption, without loss
of generality, we assume C1 = {V1, V2} and C2 = {V3, V4}, as illustrate by Figure 8. We can show that condition (2) of
R1 is violated.

L1 L2

V1 V2 V3 V4

C1 C2

Figure 8. The illustrative example that violates R1.

Here, we let C̃ = {V1, V3} be the subset of C1 ∪C2. Denote by ε the set of common components between {V1, V3} and
{V2, V4, ...}. Because C1 and C2 are two clusters, ε must contain εL1 , εL2 . That is to say, |ε| ≥ 2. According to GIN
Graphical Criteria, there does not exist a set SkL such that k ≤ min(|{V1, V3}| − 1, |{V2, V4, ...}|) = 1. This will imply that
({V2, V4, ...}, {V1, V3}) violates the GIN condition.

We next proveR2. We need to consider the case where C1 is pure and C2 is impure. With the model assumption, without
loss of generality, we assume C1 = {V1, V2} and C2 = {V3, V4, V5, ...}, as illustrate by Figure 9. We can show condition
(2) ofR2 is violated.

L1 L2

V1 V2 V3 V4

V5

C1 C2

Figure 9. The illustrative example that violates R2.

Here, we let Vi = V1 ∈ C1 and Vj = V3 ∈ C2. Denote by ε the set of common components between {V1, V3} and
{V2, V5...}. Because C1 and C2 are two clusters, we know that ε must contain noise terms εL1

and εL2
. That is to say, |ε| ≥ 2.

According to GIN Graphical Criteria, there does not exist a set SkL such that k ≤ min(|{V1, V3}| − 1, |{V2, V4, ...}|) = 1.
This will imply that ({V2, V5, ...}, {V1, V3}) violates the GIN condition.

Finally, we prove R3. This proof is similar to Case 2. We need to consider the case where C1 and C2 both are impure.
With the model assumption, without loss of generality, we assume C1 = {V1, V2, V5, ...} and C2 = {V3, V4, V6, ...}, as
illustrate by Figure 10. We can show condition (2) ofR3 is violated.

Here, we let Vi = V1 ∈ C1 and Vj = V3 ∈ C2. Denote by ε the set of common components between {V1, V3} and
{V5, V6...}. Because C1 and C2 are two clusters, we know that ε must contain noise terms εL1 and εL2 . That is to say, |ε| ≥ 2.
According to GIN Graphical Criteria, there does not exist a set SkL such that k ≤ min(|{V1, V3}| − 1, |{V5, V6, ...}|) = 1.
This will imply that ({V5, V6, ...}, {V1, V3}) violates the GIN condition.
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L1 L2

V1 V2 V3 V4

V5 V6

C1 C2

Figure 10. The illustrative example that violates R3.

B.4. Proof of Corollary 1

Proof. It suffices to notice that all elements in C1 are the children of L1 and do not affect the variables in A. The corollary
follow immediately from the three rules of Proposition 2 when we update A = A ∪C1.

B.5. Proof of Proposition 3

Proof. Suppose G is the current graph and G′ is the updated graph. According to Proposition 1 and 2, all elements in L
must be the parent nodes of some nodes in A. That is to say, all nodes in L must be the leaves when we remove Ch(L).
Thus, the structure of the other variables in A′ is not changed. Furthermore, because linear causal models are transitive,
each latent variable L′

i in A′ still have at least two pure children when the values of L are updated to their corresponding
children that identified in the latest iteration. Therefore, each latent variable L′

i in A′ satisfies the minimal latent hierarchical
structure. That is to say, the GIN conditions over variables in A′ are equivalent to those that replace V ∈ A′ by any variable
in its corresponding cluster identified in the latest iteration.

B.6. Proof of Proposition 4

Proof. Without loss of generality, we assume that the ground-truth causal order is Lp ≻ Lq. Further, we assume that
Lt = {L1, ..., Lt}, T1 = {T1, ..., Tt} and T2 = {T ′

1, ..., T
′
t}. Figure 11 illustrates the case. We will prove this Proposition

by leveraging the GIN Graphical Criteria. That is to say, we need to verify these conditions of GIN Graphical Criteria
theorem for {P1, Q1,T1} and {P2,T2}.

L1
... Lt

Lp Lq
T1

T ′
1

Tt

T ′
t

P1 P2Q1 Q2

Figure 11. An illustrative example for Proposition 4.

We first verify that ({P2,T2}, {P1, Q1,T1}) follows the GIN condition. Denote by ε the set of common components
between {P1, Q1,T1} and {P2,T2}. Because {L1, ..., Lt} is the set of latent confounders between {P1, Q1,T1} and
{P2,T2}, and Lp ≻ Lq, we know that ε = {εL1

, ..., εLt
, εLp
}. Thus, we know there exist a set St+1

L = {L1, ..., Lt, Lp}
such that (1) {L1, ..., Lt, Lp} is an exogenous set relative to L({P1, Q1,T1}) = {L1, ..., Lt, Lp}, (2) {L1, ..., Lt, Lp}
d-separates {P1, Q1,T1} from {P2,T2}, and (3) the covariance matrix of {L1, ..., Lt, Lp} and {P2,T2} has rank t+ 1,
and so does that of {L1, ..., Lt, Lp} and {P1, Q1,T1}. These implies that ({P2,T2}, {P1, Q1,T1}) follows the GIN
condition.

We now verify that ({Q2,T2}, {P1, Q1,T1}) violates the GIN condition. Denote by ε′ the set of common components
between {P1, Q1,T1} and {Q2,T2}. Because {L1, ..., Lt} is the set of latent confounders between {P1, Q1,T1} and
{P2,T2}, and Lp ≻ Lq , we know that ε = {εL1

, ..., εLt
, εLp

, εLq
}. Thus, we know there does not exist a set SkL such that

k ≤ min(|{P1, Q1,T1}|− 1, |{Q2,T2}|) = t+1. This will imply that ({Vj , Vt}, {Vi, Vj , Vk}) violates the GIN condition.

Based on the above analyses, we have Lp ≻ Lq if ({P2,T2}, {P1, Q1,T1}) follows the GIN condition.
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B.7. Proof of Proposition 5

Proof. This result can be proved by following Theorem 19 in Silva et al. (2006). The key difference to Theorem 19 is that
we have known the causal order of latent variables and the d-separation set of Lp and Lq can be selected in sequence.

B.8. Proof of Lemma 2

Proof. We first show that all latent variables can be located in Step 1 of LaHME. Specifically, In the first iteration, with
Proposition 1, one can detect all global causal clusters by testing for GIN conditions. Then, by Propositions 2 and Corollary
1, one can detect all latent variables. Next, by Propositions 3, the new active variable set is structurally consistent with the
ground-truth one, which will ensure that the recursive search process is correct and all latent variables can be located.

Now, we show the causal structure among the latent parents of pure clusters. This result follows immediately from the
definition of causal cluster—the nodes in any cluster have the common parent and there is no directed edges between them if
this cluster is a pure cluster.

B.9. Proof of Theorem 1

Proof. Based on Lemma 2, all latent variables as well as the causal structure among the latent parents of pure clusters can
be identified in Step 1 of LaHME.

We now show the casual structure among latent variables within any one impure cluster can be identified in Step 2 of
LaHME. For an impure cluster, Ci, a local root set in Ci can be found exactly with the condition of Proposition 4. Due to
the acyclic assumption, we know the order of recursive search of LocallyInferCausalStructure is the causal order of the
original variables. Finally, given the causal order of the latent variables, we can use the rank-based independence tests to
removing the redundant edges from the fully connected sub-graph (Proposition 5).

Based on the above analysis, one can identify all latent variables of the system and infer the causal structure among them
(including the causal direction). This implies that the latent hierarchical structure of LiNGLaH is fully identifiable.

C. Illustration of Merging Rules
Here, we give an example to illustrate the three rules in Proposition 2 and Corollary 1 to identify the clusters of variables
that share a common latent parent.

L1

V1 V2 V3

C1 C2

(a)

L1

V1 V2 V3 V4

C1 C2

(b)

L1

V1 V2 V3 V4

V5 V6

C1 C2

(c)
L1

V1 V2
V3

L4

V5 V6

V7 V8

C1

C2

(d)

L1

V1 V2
V3

V4

V5 V6

V7 V8

C1

C2

(e)

L1

V1 V2
V3

V4

V5
V6

V7 V8

V9 V10

C1

C2

(f)
Figure 12. The illustrative examples for R1 ∼ 3 in Proposition 2 and Corollary 1.

Consider the causal graphs in Figure 12. We first analyze the subgraphs (a) ∼ (c) by Proposition 2, where clusters C1 and
C2 are found in the same iteration.
R1. In subgraph (a), C1 and C2 are two pure and overlapping causal clusters. Let A = {V1, V2, V3}. For any subset of
C1 ∪C2, e.g., C̃1 = {V1, V3}, we have ({V2}, {V1, V3}) follows the GIN condition. This implies that C1 and C2 share
the same latent parent L1.
R2. In subgraph (b), C1 is a pure cluster and C2 is an impure cluster. Let A = {V1, ..., V4}. For any variable in C1, e.g.,
V1, and for any variable in C2, e.g., V3, ({V2}, {V1, V3}) follows the GIN condition. This implies that C1 and C2 share
the common parent.
R3. In subgraph (c), C1 and C2 are two impure cluster. Let A = {V1, ..., V6}. For any subset of C1 ∪ C2, e.g.,
C̃ = {V1, V3}, ({V5, V6}, {V1, V3}) follows the GIN condition. This implies that C1 and C2 share the common parent.
We next analyze subgraphs (d) ∼ (f) by Corollary 1, where L1 is a latent variable introduced in the first iteration, C1 is a
subset of its children, C2 is a new causal cluster, and A = {L1, V3, V4}. For subgraph (d), we first set A = A ∪C1\L1 =
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{V1, ..., V4}. Then, we check R1 and see that C1 and C2 share the common parent; For subgraph (e), we first set
A = A ∪C1\L1 = {V1, ..., V4}. Then, we checkR2 and obtain that C1 and C2 share the common parent; For subgraph
(f), we first set A = A ∪C1\L1 = {V1, ..., V6}. Then, we checkR3 and find that C1 and C2 share the common parent.

D. Illustration of LaHME Algorithm
In this section, we illustrate our LaHME algorithm with the graph in Figure 13(a).

(a) 

L1 

L2 L3 

L4 L5 L6 X14 L8 L9 X15 

X3 X4 X5 X2 X6 X12 X13 X9 X10 X11 

(b) (c) 

L7 

X7 X8 X1 

L4 L5 L6 

X3 X4 X5 X2 X6 X1 
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X12 X13 X9 X10 X11 

L7 

X7 X8 

X14 

L1 

L2 L3 

L4 L5 L6 X14 L8 L9 X15 

X3 X4 X5 X2 X6 X12 X13 X9 X10 X11 

L7 

X7 X8 X1 

(d) 

L1 

L2 L3 

L4 L5 L6 X14 L8 L9 X15 

X3 X4 X5 X2 X6 X12 X13 X9 X10 X11 
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X3 X4 X5 X2 X6 X12 X13 X9 X10 X11 

L7 

X7 X8 X1 

Figure 13. Illustration of the entire procedure of LaHME. Solid blue nodes indicate the active variable set A for the current iteration. (a)
Ground-truth structure. (b) Output after the first iteration of Step 1 of LaHME. Red circles indicate the selected clusters. (c) Output after
the second iteration of Step 1 of LaHME. (d) Output after the third iteration of Step 1 of LaHME. (e) Output after Step 2 of LaHME,
which has recovered the true causal structure.

We assume oracle tests for GIN conditions. In this structure, L1, ..., L9 are latent variables and X1, ...X15 are observed
variables. The estimating process is as follows:

1. LaHME first initializes active variable set A = {X1, ...X15} and graph G = ∅.

2. After initialization, it runs FindGlobalCausalClusters (Phase 1) and learns 8 clusters, i.e., C1 = {X1, X2},
C2 = {X3, X4}, C3 = {X5, X6}, C4 = {X7, X8}, C5 = {X9, X10}, C6 = {X11, X12}, C7 = {X11, X13},
and C8 = {X12, X13}. Next, it runs DetermineLatentVariables (Phase 2) and merges C6, C7 and C8 into
one cluster by using R1 of Proposition 2. It obtains six clusters and introduces six latent variables for them:
Pa({X1, X2}) = L4, Pa({X3, X4}) = L5, Pa({X5, X6}) = L6, Pa({X7, X8}) = L7, Pa({X9, X10}) = L8 and
Pa({X11, X12, X13}) = L9, as shown in Figure 13(b).

3. Next, it updates the active variable set A = {X ∪ {L4, ..., L9} \ {X1, ..., X13}} = {X14, X15, L4, ..., L9}, where the
values of latent variables L4, ..., L9 are the values of X1, X3, X5, X7, X9, X11, respectively.

4. It runs the second iteration of Step 1. Specifically, it runs FindGlobalCausalClusters and finds three clusters, i.e.,
C1 = {X14, L4}, C2 = {L6, L7} and C3 = {L9, X15}. Next, it introduces three latent variables for them by running
DetermineLatentVariables, i.e., Pa({X14, L4}) = L2, Pa({L6, L7}) = L1 and Pa({L9, X15}) = L3, as shown in
Figure 13(c).

5. It updates the active variable set A = {L1, L2, L5, L3, L8}, where the values of latent variables L1, L2, L5, L3, L8 are
the values of X5, X14, X3, X15, X9, respectively.

6. Analogously, in the third iteration, it identifies two clusters {L2, L5} and{L3, L8}. Next, it runs DetermineLatentVari-
ables and finds that the introduced L1 is the parent of {L2, L5} and{L3, L8}, as shown in Figure 13(d).

7. Since there is no new latent variable, Step 1 of LaHME stops.
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8. Finally, LaHME performs Step 2 as follows: for impure cluster {L2, L5}, it runs LocallyInferCausalStructure and
finds that {L2} is a local root set, i.e., L2 ≻ L5 and there exists the directed edge between L2 and L5. Similarly, for
impure cluster {L3, L8}, it runs LocallyInferCausalStructure and finds that {L3} is a local root set, i.e., L3 ≻ L8, and
and there exists the directed edge between L3 and L8

9. Since there is no one impure cluster, Step 2 of the LaHME algorithm stops. The unknown latent structure is fully
reconstructed, as given in Figure 13(e).

E. More Results of Experiments
We here consider graphs with different scales (numbers of variables and depths) and reported the results in Table 4 below.
When the number of latent variables increases, it is generally harder to identify the structure, which is the typical case for
causal discovery algorithms.

Table 4. Results with different numbers of latent variables (with sample size=10k).
#.Obs. (#.Lat.) Depth Structure Recovery Error Rate Error in Hidden Variables Correct-Ordering Rate Running time

4(6) 3 0.00 0.00 1.00 35 sec.
10(12) 4 0.10 0.10 0.98 265 sec.
22(24) 5 0.40 0.60 0.95 2486 sec.

F. More Details of Real-World Data
The data set used in Himi et al. (2019) contains variables that form multitasking behavior model (including four factors),
executive functions model (three factors), and predictor variables (three factors). In our experiment, we only considered the
multitasking behavior model which includes four factors, as it satisfies the conditions for identifiability.

The details of the hypothesized factors in a multitasking behavior model are shown in Table 5 (Himi et al., 2019).

Latent Factors Children (Indicators)

Speed (S) Correctly marked Numbers (S1), Correctly
marked Latters (S2), and Correctly marked
Figures (S3)

Error (E) Errors marking Numbers (E1), Errors marking
Latters (E2), and Errors marking Figures (E3)

Question (Q) Correctly answered Questions Par.1 (Q1), Cor-
rectly answered Questions Par.2 (Q2), and
Correctly answered Questions Par.3 (Q3)

Multitasking be-
havior (Mb)

Speed, Error, and Question

Table 5. Details of the multitasking behavior data set


