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Abstract

Self-supervised learning (SSL) of graph neural
networks is emerging as a promising way of lever-
aging unlabeled data. Currently, most methods are
based on contrastive learning adapted from the im-
age domain, which requires view generation and a
sufficient number of negative samples. In contrast,
existing predictive models do not require negative
sampling, but lack theoretical guidance on the de-
sign of pretext training tasks. In this work, we
propose the LaGraph, a theoretically grounded
predictive SSL framework based on latent graph
prediction. Learning objectives of LaGraph are
derived as self-supervised upper bounds to objec-
tives for predicting unobserved latent graphs. In
addition to its improved performance, LaGraph
provides explanations for recent successes of pre-
dictive models that include invariance-based ob-
jectives. We provide theoretical analysis com-
paring LaGraph to related methods in different
domains. Our experimental results demonstrate
the superiority of LaGraph in performance and
the robustness to the decreasing training sample
size on both graph-level and node-level tasks.

1. Introduction

Self-supervised learning (SSL) methods seek to use super-
visions provided by data itself and design effective pretext
learning tasks. These methods allow deep models to learn
from a massive amount of unlabeled data and have achieved
promising successes in natural language processing (De-
vlin et al., 2019; Wu et al., 2019; Wang et al., 2019) and
image tasks (Batson & Royer, 2019; Xie et al., 2020; He
et al., 2020; Chen et al., 2020). To use unlabeled graph data,
earlier studies (Perozzi et al., 2014a; Grover & Leskovec,
2016) adapt sequence-based SSL methods (Mikolov et al.,
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2013bsa) to learn node representations. Inspired by the
recent success of SSL in the image domain, a variety of
SSL methods based on graph neural networks (GNNs) have
been proposed in different learning paradigms. In particu-
lar, recent studies (Velickovi¢ et al., 2019; Zhu et al., 2020;
Thakoor et al., 2021; Hassani & Khasahmadi, 2020; You
et al., 2020) construct SSL tasks as unsupervised approaches
to learn representations from graph data at either node-level
or graph-level; Hu et al. (2020) propose SSL strategies to
pre-train GNNSs for downstream tasks; and other studies (Jin
et al., 2020; Kim & Oh, 2021) employ SSL as auxiliary
tasks to boost the performance of main learning tasks.

Common taxonomies in recent survey works (Xie et al.,
2022; Liu et al., 2021b) consider two categories of SSL
methods to train GNNs; namely, contrastive methods and
predictive methods. Contrastive methods employ pair-wise
discrimination as their pretext learning tasks. It performs
transformations or augmentations to obtain multiple views
from a graph and trains GNNs to discriminate between
jointly sampled view pairs and independently sampled view
pairs. In contrast, predictive methods (Hamilton et al., 2017;
Hwang et al., 2020; Rong et al., 2020) train GNNS to predict
certain labels obtained from the input graph, such as node
reconstruction, connectivity reconstruction, graph statistical
properties, and domain knowledge-based targets.

Adapted from the image domain, current state-of-the-art
SSL methods for graphs are mostly contrastive. As a draw-
back, they usually depend on a large training sample size to
include a sufficient number of negative samples. With lim-
ited computing resources, contrastive methods may not be
applicable to large-scale graphs without suffering from per-
formance loss. To address the drawback, BGRL (Thakoor
et al., 2021) adapts BYOL (Grill et al., 2020) to the graph
domain. BGRL still obtains different views from each given
graph, but it eliminates the requirement of negative samples
by replacing contrastive objectives with the prediction of
offline embedding. BGRL has achieved competitive per-
formance to the contrastive methods. However, unlike con-
trastive methods grounded by mutual information estima-
tion and maximization, BYOL and BGRL lack theoretical
guidance and require implementation measures to prevent
collapsing to trivial representations, such as stop gradient,
EMA, and normalization layers.
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In this work, we propose LaGraph, a predictive SSL frame-
work for representation learning of graph data, based on
self-supervised latent graph prediction. In particular, we
describe the notion of the latent graph and introduce the
latent graph prediction as a pretext learning task. We adapt
the supervised objective of latent graph prediction into a
self-supervised setting by deriving its self-supervised up-
per bounds, according to which we present the learning
framework of LaGraph. We provide further justifications
of LaGraph by comparing it with theoretically sound meth-
ods in different domains. Our experimental results demon-
strate the effectiveness of LaGraph on both graph-level and
node-level representation learning, where a remarkable per-
formance boost is achieved on a majority of datasets with
higher stability to smaller batch sizes or training on subsets
of nodes. Our code is available under the DIG library ! (Liu
et al., 2021a).

Relations with Prior Work: Both LaGraph and some
existing contrastive methods (You et al., 2020; Zhu et al.,
2020; Hu et al., 2020) apply node masking. While those
contrastive methods use node masking as an augmentation
to obtain different views for contrast, LaGraph employs it
for the computation of the invariance term in its predictive
objective. In addition, the objective of BGRL has a similar
formulation to the invariance regularization term in our
objective. The objectives of LaGraph and BGRL are from
different grounding and have essential differences in their
computing and effects. While the objective of BGRL is
designed and engineered as a variant of contrastive methods,
the LaGraph objectives are derived as a whole from the
latent graph prediction. Our derived theorems associated
with LaGraph objectives can explain the success of BGRL
to some extent and provide guidance on better adopting
objectives related to the invariance regularization on graphs.

2. Methods

2.1. Notations and Problem Formulation

We consider an undirected graph G = (V,E) with a
set of attributed nodes V' and a set of edges E. We
formulate the graph data as a tuple of matrices (A, X),
where A € RIVIXIVI denotes the adjacency matrix and
X e RIVI*4 denotes the node features of dimension d. We
employ a graph encoder £ based on graph neural networks
(GNN5s) to encode each node or graph into a corresponding
representation. Namely, we compute the node-level repre-
sentations or node embedding by H = £(A, X) € RIVIxa
and the graph-level representation or graph embedding by
z = R(H) € R, where q denotes the embedding di-
mension and R : RIVI*? — R4 is a readout function.

"https://github.com/divelab/DIG.

Self-supervised representation learning is employed to train
the graph encoder € on a set of K graphs {G;}X; without
labels from downstream tasks. In particular, we seek to
design effective pre-text learning tasks, whose labels are
obtained by task designation or from given data, to train the
graph encoder £ and produce informative representations
for downstream tasks. Depending on the pre-text learning
tasks, the encoder £ is usually trained together with some
prediction head D for predictive SSL or a discriminator for
contrastive SSL.

2.2. Latent Graph Prediction

Our method considers latent graph prediction as a pretext
task to train graph neural networks. In this subsection, we
introduce the general notion of latent data, followed by its
specific definition for graph data, and the construction of the
learning task. For any observed data instance &, we assume
that there exists a corresponding latent data &7, determining
the semantic of x, such that the latent data x7 is generated
from a prior p(az) and the observed data instance is further
generated from a certain distribution conditioned on the
latent data, i.e., p(x|xz). The most common case for the
pair of observed data and latent data is the noisy data and
its clean version.

When it comes to graph data, we consider the case that an
observed graph data G = (A, X) is (noisily) generated
from its latent graph Gy = (A, F') with the same node set
and edge set, where node feature matrices X and F' for
the two graphs have the same dimensionality. We make
two assumptions about the graphs without loss of generality.
First, we assume that the observed feature vector x,, of each
node v in an observed graph is independently generated
from a certain distribution conditioned on the corresponding
latent graph. In other words, how x, is generated from
the latent feature f, is not affected by the generation of
other observed feature vectors. Second, we assume that the
conditional distribution of the observed graph is centered
at the latent graph, i.e., E[X |G| = F'. The above assump-
tions are natural when we have little knowledge about the
generation process and are commonly used in other types
of data such as the non-structural and zero-mean noise in
images. In cases where the generation processes of different
nodes are related or the distribution is not centered at F', we
can still consider the related or biased components into the
latent feature and therefore have the assumptions satisfied.

As the latent data usually determine the semantic meaning
of observed data, we believe the prediction of the latent
graph can provide informative supervision for the learning
of both graph-level and node-level representations. We are
hence interested in constructing the learning task of latent
graph prediction. To perform latent graph prediction, it
is straightforward to employ a graph neural network f :
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{0, 1}VIXIVIE 5 RIVIXd 5 RIVIXd that takes an observed
graph G = (A, X)) as inputs and predicts the feature matrix
of its latent graph Gz = (A, F'). When the ground truth of
the latent feature matrix F' is known, the learning objective
can be designed as

s =argm;nEHf(A,X)—FH2. (1)

Intuitively, the latent graph prediction can be considered
as a generalized task from noisy data reconstruction that
predicts the signal from the noisy data with the objective
argming E || f(z) — s||*, where the mapping from the sig-
nal to the noisy data p(x|s) can usually be explicitly mod-
eled and samples of signal (ground truth) can usually be
captured. In the data reconstruction case, pairs of (x, s)
can be therefore directly captured or synthetically gener-
ated given a certain noise model p(x|s). However, when
the task is generalized to latent graph prediction, there is
a key challenge preventing us from directly applying the
prediction task. That is, whereas there are natural supervi-
sions for noisy data reconstruction, the latent graph is not
observed and we are unable to explicitly model the mapping
from latent graphs to observed graphs, i.e., the conditional
distribution p(G|Gz).

2.3. Self-Supervised Upper Bounds for Latent Graph
Prediction

As discussed in the previous subsection, unlike typical noisy
data reconstruction tasks, the latent graph is not observed
and p(G|Gz) cannot be modeled explicitly. This makes it
difficult to construct a direct learning task for latent graph
prediction using the objective in Equation (1). We therefore
seek to optimize an alternative objective that approximately
optimizes the objective in Equation (1) without requiring
the distribution p(G|G<), nor features F' of the latent graph.
We now introduce the proposed self-supervised objective
for latent graph prediction.

We derive our self-supervised objective without involving
F’ by constructing an upper bound of the objective in Equa-
tion (1). Specifically, we let J C {0,---,|V| — 1} be an
arbitrary subset of node indices, J¢ denote the complement
of set J,and X jc := 1 ;0 © X +1 ;7 ® M be the feature ma-
trix with features of nodes in V; masked, where © denotes
element-wise multiplication, M € RIVI*? denotes a matrix
consisting of independent random noise or zeros as masking
values, and 1; € RIVI*? denotes an indicator matrix such
that 1;[¢,:] = 1,¥i € Jand 1,[i,:] = 0,Vi ¢ J. We
describe the self-supervised upper bound in Theorem 2.1,
whose proof is provided in Appendix A.

Theorem 2.1. Consider a graph G = (A, X)) and its latent
graph Gz = (A, F'). We let the variance of any elements
in X be bounded by 0 and .J be a subset of nodes V in the
graph G. For any graph neural network f : {0, 1}VIXIVI x

RIVI*d 5 RIVIX4 \pe have the following inequality
Bax.r |74 X)  FI* 41X - I
<Eaxllf(A X)- X[+

Eaxl|fi(A X) - fJ(AaXJc)Q] 1/2.

2

Intuitively, the first component in the upper bound derived
in Theorem 2.1 measures the reconstruction error on the fea-
ture matrix X of the given observed graph G, enforcing the
intermediate representations to be informative. The second
component controls how much information is accessible
from the input feature of a node v; when reconstructing the
feature of v;, by encouraging the output of a node to be
invariant to the missing of its features in the input graph.
We then call the first component a reconstruction term and
the second component an invariance regularization term.
Note that the invariance regularization is only computed on
masked nodes in contrast to the BGRL objective, based on
different theoretical grounding and leading to a different
effect. A more detailed discussion is provided in Section 3.

In tasks of self-supervised representation learning, we are
more interested in graph-level or node-level representations
than predicted latent graphs. In these cases, we expect the
representations also hold the invariance property held by the
final outputs. We, therefore, seek to apply the invariance
regularization to the representations, since a regularization
applied to the output does not necessarily control the infor-
mation accessibility of representations produced intermedi-
ately in the graph neural network. To do so, we separately
consider the encoder £ and decoder D in the graph neural
network f. We introduce certain assumptions to the de-
coder network D and the readout function R, and derive
two additional upper bounds for node-level and graph-level
representation learning, respectively in the following corol-
laries. Proofs of the corollaries are provided in Appendix B.
Corollary 2.2. Let G = (A, X) be a given graph, Gz =
(A, F) be its latent graph, £ and D be a graph encoder and
a prediction head (decoder) consisting of fully-connected
layers. If the prediction head D is (-Lipschitz continuous
with respect to lo-norm, we further have the following in-
equality,

E[|D(H) ~ F|* + | X - F|*] <E|D(H) - X||*

E|H, - =]
+20|V |, J‘]] ,

7]

3)

where H = E(A,X) and H' = £(A, X je) denote the
node embedding of the given graph and the masked graph,
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respectively, and H j := H|J, :] selects rows with indices
inJ.

Corollary 2.3. Let G = (A, X) be a given graph, G =
(A, F) be its hidden latent graph, £ be a graph encoder, R
be a readout function satisfying k-Bilipschitz continuity with
respect to la-norm, and D be a prediction head (decoder). If
the prediction head D is {-Lipschitz continuous with respect
to lo-norm, we have the following inequality,

E[|D(H) - F|* + X - F|*] <E|D(H) - X||*

1/2
E||z—z'||2]

+20|V|K(E, 7

4)

where z = R(H) and z' = R(H') denote the graph-level
representations of the given graph and the masked graph,
respectively.

We note that the assumptions and restrictions are natural
or practically satisfiable. The assumption that the variance
of each element in X is bounded by ¢ holds when node
features are from {0, 1} or when feature normalization is
applied. The ¢-Lipschitz continuous property is common for
neural networks. And the k-Bilipschitz continuity can be
satisfied by applying an injective readout function such as
global sum pooling, which is commonly used in graph-level
tasks.

2.4. The LaGraph Framework

We design our self-supervised learning framework accord-
ing to upper bounds derived in Corollary 2.2 and Corol-
lary 2.3. To train encoder £ together with decoder D
under self-supervision, we input to the encoder both the
given graph (A, X)) and its variation (A, X jc) with a ran-
dom subset J of node indices for nodes to be masked
and obtain node-level representations H = £(A, X)) and
H' = £(A, X ;.) for the two graphs respectively. The
self-supervised losses are computed on input node features,
reconstructed node features, and representations, as demon-
strated in Figure 1.

In particular, we consider a mini-batch of N graphs
{(A;, X;)}, and their corresponding masked variation
{(A;, X ;7)) }L| where J; denotes the node indices sub-
set for the ¢-th graph. The self-supervised loss for node-level
representation learning follows Corollary 2.2 and is com-
puted as

N
1 2
Lnode(gap) = N Z ||D<AzaHz) - Xl” /‘m'
=1
g O
i il ’

+a

where « is a hyper-parameter corresponding to the mul-
tiplier 20¢ in Corollary 2.2. To fulfill the conditions in
Corollary 2.2, we employ fully-connected layers instead of
graph convolutional layers in the decoder D.

Similarly, using the same notations above, the self-
supervised loss for graph-level representation learning fol-
lows Corollary 2.3 and is computed as

N
1
Lgrapn(€,P) = > ID(As, Hy) — X3 /|Vi
=1
PG

1
2
+al | Nz =27/l
i i

where z; = R(H;) and 2z, = R(H]) denote the graph-
level representations obtained by applying readout function
R to the node-level representations, respectively, and o is
a hyper-parameter corresponding to the multiplier 20/ in
Corollary 2.3. To fulfill the conditions in Corollary 2.3, we
employ global sum pooling as the readout function R, where
as the decoder D here can consists of either fully-connected
layers or graph convolutional layers.

The pseudo-code for node-level and graph-level objective
computations are provided in Algorithm 1 and Algorithm 2,
respectively.

Algorithm 1 LaGraph node-level objective

Inputs: A mini-batch of graphs {G1,---,Gn}, the en-
coder &, the prediction head D, and the hyper-parameter .
> C;’z = (Ai; Xz)
foriinl,--- N do
Generate random J; € {0, 1}!Vil*1 M € RIV:Ixd
X je 150X +1; ©M > Randomly mask
nodes
H, + £(A;,X;) > Compute node representations
Hll — E(Ai, Xi)Jf)
X,ec +— D(A;, H;) > Reconstructed node attributes
greai — HX'rec,i - Xi||2 /‘Vvl|
ginv,i <~ H]LL O H; — ]]‘Ji, © Hz/||2
end for
L(gvp;{le"' 7GN}) = %Zigrec,i +
a(zi Einu,i/ Zi |Jz|)1/2

3. Theoretical Analysis and Relations with
Prior Work

In this section, we further theoretically justify and moti-
vate LaGraph by providing comparisons and connections
between our method and existing related methods, including
denoising autoencoders (Vincent et al., 2010; Wang et al.,
2017), information bottleneck principle (Tishby et al., 1999),
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Figure 1. Overview of the LaGraph framework. Given a training graph, we randomly mask a small portion V; € V of its nodes and input
both the original graph and masked graph to the encoder £. Crossed nodes in the figure have all their attributes masked but topology
preserved. The final loss consists of a reconstruction loss on node features and an invariance loss between representations of the original
graph and the masked graph. We omit the encoding part of the graph-level framework as frameworks for the two levels mainly differ in
whether the invariance term is computed on representations of masked nodes or graph-level representations obtained by R.

Algorithm 2 LaGraph graph-level objective

Inputs: A mini-batch of graphs {G1, - ,Gxn}, the en-
coder &, the prediction head D, the readout function R, and
the hyper-parameter «. >G = (A, X,)
foriinl,--- /N do
Generate random J; € {0, 1}Vilx1 M e RIVilxd
Xi,Jf — ]ljic ®X +1,; ©M »Randomly mask
nodes
z; < R(H;) "> Readout graph representations
zl +— R(H})
X, ec < D(A;, H;) > Reconstructed node attributes
Z'rec,i — HXrec,i - )(i”2 /H/z|
Uinv,i < ||z — Z;HZ
end for
L(E,D; {Gl,"' 7GN}) = %Zifrec,i +
a(zi linv,i/ Zi |Ji|)1/2

> Compute node embeddings

and contrastive methods based on local-global mutual in-
formation maximization (Velickovic et al., 2019; Sun et al.,
2019; Hassani & Khasahmadi, 2020). We also discuss the
relation and difference to BGRL (Thakoor et al., 2021) and
Barlow-Twin (Zbontar et al., 2021).

3.1. Denoising Autoencoders

Denoising autoencoders employ an encoder-decoder net-
work architecture and perform self-supervised training by
masking or corrupting a portion of dimensions of the given
data and reconstructing the masked or corrupted value given
their context. Such an approach has been also applied for
self-supervised image denoising (Batson & Royer, 2019),
known as blind-spot denoising. Similar to our method, the
denoising autoencoder can be also viewed as an approxima-

tion of the latent graph prediction. Using the same notation
in Section 2, we formulate the connection between latent
graph prediction and the graph denoising autoencoder in the
following theorem.

Theorem 3.1. Let J be a uniformly sampled subset of node
indices of the given graph (A, X), F be the class of all
graph neural networks, and F* be the class of graph neural
networks such that f%(A, X) does not depend on X ;, for
any J and f* € F*. Given any graph neural network
f € F, there exist f* € F* and f' € F such that

Eaxr |If(AX)~F*+|X-FF| @

=Eax |f(AX)-X|*+
Eaxr[2(f(A,X)-F,X - F)] (8

~Eax (A X) - X|? )

=|VIEsBax [|If)(A Xs) = X517 /1. (10)

Equation (7) is proved in the proof of Theorem 1. It can
be verified that the second term, i.e., the expectation of the
inner product, in Equation (7) reduces to zero when the neu-
ral network f satisfies that f;(A, X) does not depend on
X j, for any J, according to Batson and Royer (2019). The
objective can be therefore approximated by Equation (8)
with the neural network f* satisfying such a property. To
let any graph neural network f satisfy the property, one
can apply masks to a portion of nodes indexed by J so that
their original value is inaccessible by f when predicting
f7(A, X). Therefore, the latent graph prediction objective
under supervision can be further approximated by Equa-
tion (9), which describes the objective of a graph denoising
autoencoder.

A substantial difference between our method and the denois-
ing autoencoder lies in how to handle the inner product term
in Equation (7). In particular, the denoising autoencoder
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forces the term to be zero by assuming certain properties of
the graph neural network, whereas our method derives an
upper bound, i.e., the invariance term, for the inner product.
Theoretically, the graph denoising autoencoder is equiva-
lent to our framework with an infinite weight scalar for the
invariance term. As a drawback, when f;(A, X) does not
depend on X ;, the learned representations can be less in-
formative as representations of nodes in V; do not include
the information of X, for any J, leading to performance
loss. Our proposed upper bounds allow an encoder to ac-
cess a certain level of information of the masked nodes,
whose representations can be as good as ones from super-
vised learning. In fact, our method can be viewed as an
autoencoder with an invariance regularization.

3.2. The Information Bottleneck Principle

The information bottleneck principle (Tishby et al., 1999) is
a technique for data compression and signal processing in
the field of information theory, and has been widely applied
in deep learning problems (Tishby & Zaslavsky, 2015; Saxe
et al., 2018). Let X be a random variable to be compressed,
X be an observed relevant variable, and Z denote the com-
pressed representation of X . The information bottleneck
principle seeks to optimize the following problem

Z*:argmzinI(Z;X)—ﬁl(ZQX)» (1)

where I(-; -) denotes the mutual information and 3 > 1is a
Lagrange multiplier. The work Barlow Twin (Zbontar et al.,
2021) has discussed a connection between the information
bottleneck principle and self-supervised learning. In partic-
ular, to apply information bottleneck to SSL, one usually
obtain X by performing augmentations or distortions on
the given data X. And Equation (11) can be rewritten into

Z" = argmin [H(Z)-H(Z|X)] (12)
- B[H(Z) - H(Z|X)] (13)
:argmzinH(Z|X)—)\H(Z)7 (14)
where A\ = % > 0 is a weight scalar. Intuitively, the

conditional entropy H (Z]X) is to be minimized, indicating
that the distortion should add no additional information to
the representation Z. In other words, the representation Z
should be as invariant as possible to distortions applied to X.
In addition, the entropy H(Z) is to be maximized, indicat-
ing that the representation Z itself should be as informative
as possible.

The two terms in objectives of LaGraph correspond to the
terms in Equation (14). In particular, the invariance term cor-
responding to H (Z|X) and the reconstruction term aims to
ensure informative representations, i.e., to maximize H (Z).
Objectives in existing SSL methods such as BYOL (Grill

et al., 2020), its variation BGRL (Thakoor et al., 2021) in
graph domain, and Barlow Twin (Zbontar et al., 2021) also
include invariance terms corresponding to H(Z|X). To
encourage informative representations, Barlow Twin further
includes a redundancy reduction term to minimize the cross-
correlation between different dimensions of the representa-
tion, as a proxy of the maximization of H(Z). In addition,
the InfoNCE (NT-XENT) loss employed in some contrastive
learning methods (You et al., 2020; Zhu et al., 2020) induces
a similar effect, according to Zbontar et al. (2021). Both
Equation (14) and the derivation of LaGraph objectives indi-
cate the importance of the invariance term in SSL objectives.
In addition, compared to the redundancy reduction term in
Barlow Twin and the noise contrast in InfoNCE, LaGraph
objectives can directly guarantee the learning of informative
representations measured by the reconstruction capability.

3.3. Contrastive Learning by Maximizing Local-Global
Mutual Information

Motivated by Deep InfoMax (Hjelm et al., 2019), recent
graph self-supervised learning methods (Veli¢kovi€ et al.,
2019; Sun et al., 2019; Hassani & Khasahmadi, 2020) con-
structs their learning tasks by maximizing the mutual in-
formation between local (node-level) representations and a
global (graph-level) summary of the graph. Practically, as a
k-layer encoder £ has the receptive field of at most k-hop
neighborhood, the goal becomes the maximization of the
mutual information between local representations and their
k-hop neighborhood, formulated as

14
* (k). ¢
£ —argmngI(Xi (A X)), (15

=1

where I denotes the mutual information, X Z-(k) is the k-hop
neighborhood of node i, £ is a graph encoder with £ GNN
layers, and &;(A, X) denotes the local representation of
node ¢. The learning objective is motivated by the goal that
the local representations should contain as much the global
information of the entire graph (or the k-hop neighborhood)
as possible.

As for LaGraph, the reconstruction term encourages repre-
sentations to contain sufficient information to reconstruct
the input features while the invariance term limits the infor-
mation accessibility from a local node when reconstructing
its features. The two terms in the objective jointly promote
node representations to learn limited local information and
as much contextual information from the neighborhood as
possible for reconstruction. It hence has a similar effect to
the local-global mutual information maximization.
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3.4. Other Invariance-Based Objectives

Recent self-supervised learning objectives such as BGRL,
Barlow-Twin, and the consistency regularization (Wei et al.,
2021) have similar invariance terms as one in the LaGraph
objective. Specifically, BGRL minimizes the difference
between representations of two augmented views. In spite
of the similarity, the invariance terms in LaGraph and other
objectives have different grounding and effects.

Regarding how the objectives are computed, the invariance
term in the LaGraph objective for node-level representation
learning is computed only on masked nodes, in contrast to
BGRL and Barlow-Twins objectives where invariance of all
nodes are computed. It is worth noting that the proposed
objective is an upper bound to the latent graph prediction
only if the invariance is computed on the masked nodes,
according to the derivation in the proof of Theorem 1. Intu-
itively, during the computation of a node representation, the
invariance term in LaGraph enforces the encoder to capture
less information from the node itself and more contextual
information. Computing the invariance regularization term
on unmasked nodes could lead to a contradicted effect, i.e.,
discouraging encoders to capture information from contex-
tual nodes, as it lets the representation remain consistent
when its masked neighbor nodes are changed. We believe
the derivation and the intuition of the proposed objective can
provide insights on adopting the invariance regularization
into graph self-supervised learning studies.

4. Experiments

We conduct experiments on both node-level and graph-
level self-supervised representation learning tasks with
datasets used in two most recent state-of-the-art methods
for SSL (You et al., 2020; Thakoor et al., 2021). For graph-
level tasks, we follow GraphCL (You et al., 2020) to perform
evaluations on eight graph classification datasets (Wale &
Karypis, 2006; Borgwardt et al., 2005; Dobson & Doig,
2003; Debnath et al., 1991; Yanardag & Vishwanathan,
2015) from TUDataset (Morris et al., 2020). For node-level
tasks, as the citation network datasets (McCallum et al.,
2000; Giles et al., 1998; Sen et al., 2008) are recognized to
be saturated and unreliable for GNN evaluation (Shchur
et al., 2018; Thakoor et al., 2021), we follow Thakoor
et al. (2021) to include four transductive node classifica-
tion datasets from Shchur et al. (2018), including Amazon
Computers, Amazon Photos from the Amazon Co-purchase
Graph (McAuley et al., 2015), Coauthor CS, and Coau-
thor Physics from the Microsoft Academic Graph (Sinha
et al., 2015). We further include three larger-scale inductive
datasets, PPI, Reddit, and Flickr, for node-level classifica-
tion used in SUBG-CON (Jiao et al., 2020).

We follow You et al. (2020) and Zhu et al. (2020) for the

standard linear evaluation protocols at graph-level and node-
level, respectively. In particular, for both levels, we first
train the graph encoder on unlabeled graph datasets with the
corresponding self-supervised objective. We then compute
and freeze the corresponding representations and train a lin-
ear classification model on top of the fixed representations
with their corresponding labels. Linear SVM and the regu-
larized logistic regression are employed as linear classifiers
for graph-level datasets and node-level datasets, according
to You et al. (2020) and Zhu et al. (2020), respectively. For
inductive node-level datasets, the self-supervised training is
only performed on graphs in the training datasets whereas
the test graphs are unavailable during the self-supervised
training.

4.1. Comparisons with Baselines

We perform experiments on both graph-level and node-level
datasets to demonstrate the effectiveness of LaGraph. We
construct our model and losses according to Section 2.4.
Detailed model configurations, training settings, and dataset
statistics are provided in Appendix C.

Graph-level Datasets. We evaluate the performance of
LaGraph in terms of the linear classification accuracy
and compare it with three kernel-based methods including
graphlet kernel (GL) (Shervashidze et al., 2009), Weisfeiler-
Lehman kernel (WL) (Shervashidze et al., 2011), and
deep graph kernel (DGK) (Yanardag & Vishwanathan,
2015), together with five unsupervised methods including
Node2Vec (Grover & Leskovec, 2016), Sub2Vec (Adhikari
et al., 2018), Graph2Vec (Narayanan et al., 2017), GAE and
VGAE (Kipf & Welling, 2016). We further compare the
results with recent SOTA SSL methods based on contrastive
learning, including InfoGraph (Sun et al., 2019) , MV-
GRL (Hassani & Khasahmadi, 2020), and GraphCL (You
et al., 2020). Results in Table 1 show that LaGraph outper-
forms the current SOTA methods on a majority of datasets
and is on par with the best performance on the rest of
datasets. Additional results adopting LaGraph as a pre-
training strategy under the semi-supervised learning setting
are provided in Appendix D.

Node-level Datasets. We perform node-level experiments
on both transductive and inductive learning tasks. Transduc-
tive self-supervised learning of node representation allows
utilization of all data at hand to pre-train GNNs for down-
stream tasks. Although labels of nodes are not visible during
pre-training, patterns and information present in all nodes
are observed. In contrast to transductive learning, inductive
self-supervised learning only allows using a portion of data
to pre-train GNNs, while holding out a certain amount of
data for downstream tasks. Our inductive tasks include two
cases. First, the PPI dataset consists of 24 graphs, and the
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Table 1. Performance on graph-level classification tasks, scores are averaged over 5 runs. Bold and underlined numbers highlight the
top-2 performance. OOM indicates running out-of-memory on a 56GB Nvidia A6000 GPU.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

GL - - - 81.7+2.1 - 77302  41.0£0.2  65.9+1.0
WL 80.0+0.5 72.9+0.6 - 80.7+3.0 - 68.8£0.4  46.1x0.2  72.3+34
DGK 80.3+0.5 73.3+0.8 — 87.4+2.7 — 78.0+04  41.3+0.2  67.0+0.6
Node2Vec  54.9+1.6 57.5+3.6 75.1£0.5  72.6x10.2 55702  73.8+0.5  34.1x04  50.0+0.8
Sub2Vec 52.8+1.5 53.0+5.6 73.6x1.5 61.1x15.8 62.1+x1.4 71.5+04  36.7#04  55.3%1.5
Graph2Vec  73.2+1.8 73.3+2.1 76.2+0.1  83.249.3 59.9+0.0 75.8+1.0 479403  71.1x0.5
GAE 73.3+0.6 74.1£0.5 77.9+0.5  84.0+0.6 56.3+0.1 74.8+0.2  37.6+1.6  52.1+x0.2
VGAE 73.7£0.3 74.0+0.5 77.6£04  84.4+0.6 56.3+0.0 74.8+0.2  39.1+1.6  52.1+0.2
InfoGraph  76.2+1.1 74.4+0.3 72.9£1.8  89.0£1.1 70.7x1.1 82514  53.5+1.0  73.0+0.9
GraphCL  77.9+04 74.4+0.5 78.6£0.4  86.8+1.3 71.4+12  89.5#0.8  56.0+#0.3  71.1x04
MVGRL  75.1+0.5 71.5+0.3 OOM 89.7+1.1 OOM 84.5+0.6 OOM 74.2+0.7
LaGraph ~ 79.9+0.5 75.2+0.4 78.1+0.4  90.2+1.1 77.6£0.2  90.4+0.8  56.4+0.4  73.7+0.9

training and testing nodes are split by graphs. In this case,
the inductive task is considered across multiple graphs. In
other words, node representations are learned from training
graphs, and the encoder is evaluated on testing graphs. Sec-
ond, Flickr and Reddit each consist of only one graph, the
training and testing nodes are from the same graph. Dur-
ing self-supervised training, all test nodes are masked-out.
During evaluation, all training nodes are masked-out, i.e.,
test nodes are unseen nodes of the graph during train. For
both cases of inductive learning, data used during the self-
supervised training stage and data used during evaluation
stage are distinct, but the feature dimensionality should be
the same for data used in both stages.

For the evaluation of transductive learning, we compare
the performance of LaGraph in terms of linear classifica-
tion accuracy with DeepWalk (Perozzi et al., 2014b), GAE,
VGAE, and six contrastive learning methods including Deep
Graph InfoMax (DGI) (Velickovi€ et al., 2019), GMI (Peng
et al., 2020), MVGRL (Hassani & Khasahmadi, 2020),
GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021), and
BGRL (Thakoor et al., 2021), where BGRL is the current
state-of-the-art SSL. method for node-level representation
learning. We further include the results of directly perform-
ing linear classification on raw node features (raw features)
and by supervised training for references. To be consistent
with Thakoor et al. (2021), we have ensured that the GPU
memory consumption of LaGraph is under 16GB for the
four transductive datasets. We then perform additional ex-
periments on the larger-scale inductive datasets (Zitnik &
Leskovec, 2017; Zeng et al., 2020; Hamilton et al., 2017)
and compare our results in terms of micro-averaged F1-
score with DeepWalk, unsupervised GraphSAGE (Hamilton
et al., 2017), DGI, GMI, SUBG-CON (Jiao et al., 2020)
and BGRL. Results for both transductive datasets and in-
ductive datasets shown in Table 2. As there is no official
BGRL implementation available at the time our experiments
are conducted, results with % are obtained from an unoffi-

cial public implementation’. Results suggest competitive
performance of LaGraph compared to the existing SOTA
methods. Moreover, LaGraph consumes even less memory
than BGRL, which requires twice the memory for its GNN
encoders for the EMA parameter update.

Experiment Environment Details. We train graph-level
datasets on a 11GB GeForce RTX 2080 Ti GPU, and node-
level datasets on a 56GB Nvidia RTX A6000 GPU. Our
experiments are implemented with PyTorch 1.7.0 and Py-
Torch Geometric 1.7.0. All neural networks employ batch
normalization (Ioffe & Szegedy, 2015), and are optimized
with Adam optimizer (Kingma & Ba, 2014). We initialize
GNNs with Xavier initialization (Glorot & Bengio, 2010).

4.2. Ablation Study

We further conduct three ablation studies to explore model
robustness to smaller batch sizes on graph-level data and
to the training with sub-graphs on large-scale node-level
datasets. An additional ablation study on the effect of opti-
mizing different objectives is provided in Appendix E.

Robustness to Batch Sizes. Different from contrastive
learning methods, LaGraph does not require negative sam-
ples to perform noise contrast or pair-wise discrimination.
Therefore, an advantage of LaGraph is that the performance
is robust to the batch size as it does not depend on large
batch sizes with sufficient negative samples. To verify the
statement, we perform an ablation study on how model
performance changes when decreasing the batch size from
128 to 8 for graph-level datasets. We include correspond-
ing results of GraphCL which uses InfoNCE for references
and show the comparisons in Figure 2. The results indi-
cate while contrastive methods based on InfoNCE suffer
from significant performance loss with a small batch size,
LaGraph are more robust to the batch size.

Zhttps://github.com/namkyeong/bgrl_pytorch.
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Table 2. Performance on node-level datasets, 20 runs averaged. Results of SSL methods with the best performance are highlighted in
bold numbers. Left: Mean classification accuracy on transductive datasets, with baseline results from Thakoor et al. (2021). Right:
Micro-averaged F1 scores on larger-scale inductive datasets, with baseline results from Thakoor et al. (2021) and Jiao et al. (2020).

Transductive ~ Am.Comp. Am.Pht. Co.CS Co.Phy Inductive PPI Flickr Reddit
Raw features 73.8+0.0 78.5£0.0  90.4+0.0 93.6+0.0 Raw feat.  42.5+0.3 20.3+0.2 58.5+0.1
DeepWalk 85.7£0.1 89.4+£0.1 84.6+0.2 91.8+0.2 GAE 75.7£0.0  50.7+0.2 OOM
GAE 87.7£0.3 92.740.3  92.4+0.2 95.3%0.1 VGAE 75.8+0.0  50.4+0.2 OOM
VGAE 88.1£0.3 92.840.3 92.5+0.2 95.3+0.1 Super-GCN  51.5£0.6  48.7+#0.3  93.3+0.1
Supervised 86.5+0.5 92.440.2 93.0+0.3 95.7+0.2 Super-GAT  97.3+0.2 OOM OOM
DGI 84.0£0.5 91.6+0.2 92.2+0.6 94.5+0.5 GraphSAGE  46.5£0.7 36.5£1.0 90.8+1.1
GMI 82.2+0.3 90.7+0.2 OOM OOM DGI 63.840.2 42.9+0.1 94.0+0.1
MVGRL 87.5+0.1 91.74#0.1 92.1+0.1 95.3%0.0 GMI 65.0£0.0 44.5+0.2 95.0£0.0
GRACE 87.5+0.2 92.2+0.2 92.9+0.0 95.3x0.0 SUBG-CON 66.9+0.2 48.840.1 95.2+0.0
GCA 88.9+0.2 92.540.2 93.1+0.0 95.7+£0.0 BGRL-GCN 69.6£0.2 50.0+0.3* OOM*
BGRL 89.7+0.3 92.940.3 93.2+0.2 95.6+0.1 BGRL-GAT 70.5+0.1 44.2+0.1* OOM*
LaGraph 88.0+0.3 93.5+0.4 93.3+0.2 95.8+0.1 LaGraph 74.6+0.0 51.3+0.1 95.2+0.0
Table 3. Model performance when trained on a subset of nodes.
# nodes sampled 100 1,000 2,500 5,000 10,000 all
% nodes sampled 0.22% 2.24% 5.60% 11.20% 22.41% 100.00%
Fl-score - LaGraph 6.07 51.12 51.12 51.27 51.29 51.26
Flickr  Memory - LaGraph ~ 1389MB  1465MB  1553MB 1725MB  2065MB 4211MB
F1-score - GraphCL 45.27 45.27 45.27 45.38 45.45 45.48
Memory - GraphCL  1647MB  2599MB  4137MB 6741MB  11905MB  47939MB
% nodes sampled 0.07% 0.65% 1.63% 3.25% 6.50% 100.00%
Fl-score - LaGraph 5.76 95.05 95.06 95.08 95.09 95.22
Reddit Memory - LaGraph  1403MB  1475MB  1585MB  1783MB  2161MB  16933MB
F1-score - GraphCL 93.24 93.24 93.25 93.31 93.32 OOM
Memory - GraphCL  4199MB  6117MB  6687MB  9297MB  14495MB OOM
RDT-B COLLAB suffers more from performance loss above 1,000 nodes and
o O . consumes significantly more GPU memory.
5 : 5. Conclusions and Future Directions
< <
8 g We introduced LaGraph, a state-of-the-art predictive SSL
—@— LaGraph F _g —8— LaGraph
-4 —¥ GraphCL =¥ GraphcL framework whose objectives are based on self-supervised la-
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Figure 2. Model robustness to small batch sizes on RDT-B and
COLLAB. Shown are relative changes in accuracy over different
batch sizes compared to the batch size of 256.

Training on Sub-graphs for Large-scale Datasets.
Training graph encoders on all nodes for some large-scale
graphs can be heavily expensive in computation. We hence
conduct an ablation study on how training graph encoders
on a portion of sampled nodes instead of the entire graph af-
fects the effectiveness of training. Results in Table 3 suggest
that the model performance remains stable when decreasing
the number of nodes until the number becomes extremely
small. The collapse is due to the very sparse connectivity
and LaGraph fails to reconstruct a node from its neighbor
nodes as there are no neighbors at all. In contrast, though
GraphCL does not collapse at extremely small subsets, it

tent graph prediction. We provided theoretical analysis and
discussed the relationship between LaGraph and theories in
different related domains. Experimental results demonstrate
the strong effectiveness of the proposed framework and the
stability to the training scale for both graph-level and node-
level tasks. Currently, our framework mainly considers the
latent graph regarding its node features. Further investiga-
tion into a latent graph prediction framework that includes
richer information such as edge features and latent connec-
tivity into self-supervision can potentially bring additional
improvement to the performance. We discuss more future
directions in Appendix F.
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A. Proof of Theorem 1

Proof. We first derive the relationship between the supervised objective of latent graph prediction E || f(A, X)) — F||* and
the self-supervised reconstruction loss I || f(A, X ) — X||* in the following equations,

E|lf(A,X) - X|* =E|(f(A,X) - F) - (X - F)|” (16)
where (-, -) denotes the inner product along all dimensions {0, - - - ,d|V| — 1}. The expectation E|| f(A, X)|| in the above

equation is not relevant to the neural network f. It hence can be considered as a constant during the optimization of f. To
derive an upper bound to It || f (A, X') — F||?, we only need to derive an upper bound of its equivalent I || (A, X) — X ||*+

E(f(A,X)— F,X — F). As F is unobserved, our goal is to derive an upper bound to eliminate the need of F' for the
inner product term (f(A, X) — F, X — F). To do so, we apply the definition of latent graph IE[X | A, F'| = F and rewrite
the inner product into the following form.

Bf(4.X) - F.X - F) = Earx| $(4(A.X) - )X, - F)JA.F] (18)

%

ZEAF[ (fi(A,X) - F))(X; — F)|A, F] -

E[ﬁ(A,X)ElF]E[XiEA,F]] (19)

=> Ear[Cov(fi(A,X) - F,X; - F|AF)] (20)

= _Bar [Cov(fi(A, X), Xi|A, F)], 1)

where ¢ sums over all dimensions {0, --- ,d|V| — 1}, f; and X; denotes the i-th element of the flattened matrices. Note

that we employ E[X — F'|A, F] = 0 to let Equation (17) hold, according to the definition of latent graphs. Letting .J be a
uniformly sampled subset of all node indices {0, - - - , |[V'| — 1}, the right hand side of the above equation satisfies

VI s~
RHS = EJm > EBar[Cov(fjark(A, X), Xjarr|A, F)], (22)

FET k=0

where fjq+r € R and X4, € R denote the (jd + k)-th element of corresponding matrices, i.e., the k-th element of the
node v;, whereas X j € R/71%4 denotes the feature matrix of nodes in V. Given the bounded variance Var(X;) < 02, Vi,
we bound the above term as

RHS =711 5 B e [Con(f00(A, X) = oo (A, X 2). Xyaurl A, F)] @)
jeJk
\%4 1/2
<Eji— 7] > Ear [Var(fjd+k(A7X) = fia+n(A, X 5)|A, F) 'Var(deM)} (24)
jEJk
. 1/2
< |VIE; <|J z Ear [Var(fjd-'rk’(A?X) = fia+n(A, X j)|A, F) 'UQD (25)
jeTk
1/2
< 0|V|]EJ< > Ear [ fiarn(A, X) — fjd+k(AaXJc)]2|AaFH> (26)
JEJk
L\ 172
U|V|EJ< ] > E fgd+k(A X) = fia+r(A, XJL)} ) 27)
jeJk
1/2
= olVIEs (S EIAX) - HAX) o8)
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Above inequalities and equations are derived based on the fact that f;(A, X jc) does not correlate to X ;44 as j ¢ J° for
Equation (21), the Cauchy-Schwarz inequality for Inequality (22), and (IEX)? < IEX? for Inequality (23). We complete the
proof of Theorem 1 by combining Equation (15) and Inequality (26),

E[ /(A X) — FI> + |X - F*] = E||[f(A, X) - X|* + 2(/(A, X) - F.X — F) 29)
1/2

<E|f(AX) - X|* +20|V[E, <3|E 1F2(AX) — f1(A, X 0) ) . (30)

O

B. Proof of Corollary 1 and 2

Proof. We first prove Corollary 1. Consider an ¢-Lipschitz continuous prediction head with respect to [o-norm consists of
fully connected layers. We have

1£7(A, X) = f5(A, Xye)lly = 'D(H,) = DH))|l, < L] Hy — Hjl, . GD
We therefore have the following inequality

B |f2(A, X) — (A, X0 < E[@Q \H, H&Hé] 32

We apply the above inequality to Theorem 1 and obtain the following inequality

E[[If(4,X) - F|* + | X - F|]

1 1/2
< E[7(4.%) - XI* +20VIEs (B 1(A4.X) - fo(4. X0 ) 33
1 ) 1/2
<BIF(A.X) - XI +20VIE, (| 2 18, - 313 ) (34
) 1/2
—E11(A.X) - X[ +20[v108, (BIL# - B30 (35)
which completes the proof of Corollay 1.
Similarly, for Corollay 2, we have
1£7(A, X) = (A, X je)lly = ID(H ;) — DH))||, < | Hy — Hj|l, . (36)

Given an /,.-Bilipschitz continuous readout function R, the following inequalities hold,
1
7 1Hy = Hjlly < |R(Hy) = R(H), < 6 | Hy = Hjll, - 37

‘We therefore have

E[|f(A,X) - F|* + | X - F||"]

1/2
< E[f(4.X) — X|* 120V |(E, (E \H, — H 2 /|J) / (38)
1/2
< E[f(A.X) — X|? 120[V|06,E, (E IR(ELy) — R(H)|: /J|> (39)
1/2
— E|f(A,X) — X|? +20|V|KE, <E Iz — 2| /|J|) , (40)

which completes the proof of Corollay 2. O
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C. Experiment Settings and Model Configurations

Dataset Statistics. Statistics including number of graphs, averaged number of nodes, averaged number of edges, and node
attribute dimensions are summarized in Table 4.

Table 4. Summary and statistics of common graph datasets for self-supervised learning.

Datasets Evaluation task  # graphs Avg. nodes Avg. edges # features
NCI1 4110 29.87 32.30 37
PROTEINS 1178 39.06 72.82 3
DD 188 284.32 715.66 89
MUTAG Graph-level 1113 17.93 19.79 7
COLLAB classification 5000 74.49 2457.78 1
RDT-B 2000 429.63 497.75 1
RDT-M5K 4999 508.52 594.87 1
IMDB-B 1000 19.77 96.53 1
Amazon Computer Transductive 1 13,752 245,861 767
Amazon Photos Node-level 1 7,650 119,081 745
Coauthor CS lassificati 1 81,894 81,894 6,806
Coauthor Physics ~ © oorneation 1 247,962 247,962 8,415
PPI Inductive 24 2,373 34,133 50
Flickr Node-level 1 89,250 899,756 500
Reddit classification 1 232,965 11,606,919 602

Models for Graph-Level Datasets. We employ a 3-layer GIN (Xu et al., 2019) as the graph encoder £, and a 2-layer
MLP as the decoder D. Following GraphCL (You et al., 2020), we use a hidden dimension of size 32 and concatenate the
embedding at each encoding layer to obtain the final representation. To fulfill the conditions in Corollary 2, we apply global
sum pooling as the readout function R. The obtained graph representation is then taken by a SVM classifier with a 10-fold
evaluation. For graph datasets that do not come with node attributes, we apply the one-hot vector of the degree for each
node as the node attributes so that the node degrees are reconstructed. Certain thresholds for max degrees are applied to
reduce computational cost and avoid over sparse node features. The neural network is trained using the loss described in
Equation (6). We mask all attributes of the sampled nodes with Gaussian noise. Detailed training configurations including
mask ratio, the standard deviation of noise, weight scalar o/, and threshold for max degrees are shown in Table 5. Note
that we do not include carefully designed implementation mechanisms by BGRL, such as stop gradients, EMA, and batch
normalization at the last layer.

Models for Node-Level Datasets. For node-level datasets, we employ a 2-layer GCN (Kipf & Welling, 2017) as the graph
encoder &£, and a linear layer or an MLP as the decoder D. We use a hidden dimension of size 512 at each encoding layer.
The neural network is trained using the loss described in Equation (3). We uniformly employ the weight scalar o’ of 2
as we observed that the model performance is not sensitive to the selection of «’ within the range [1, 100]. We obtain the
final node representation by concatenating the original feature with the embedding from the last layer of the encoder. The
intuition of this is based on the Bayesian rule where the learned encoder provides the prior knowledge (Ulyanov et al., 2018)
of data distribution whereas the given graph data serves as the observed samples. And the posteriori should be based on a
combination of the priori (encoder output) and the observed data itself (Laine et al., 2019). Node representation is then
taken by a logistic regression classifier that is trained using the cross-entropy (CE) loss with a learning rate of 0.01. Detailed
training configurations including mask ratio, the standard deviation of noise, number of encoder and decoder layers, learning
rate and weight decay of the graph neural network, training epochs, and weight decay of the logistic regression classifier
are shown in Table 6. To split train, valid and test sets, we use the public split used in (Shchur et al., 2018) for Coauthor
and Amazon, (Zitnik & Leskovec, 2017; Hamilton et al., 2017; Zeng et al., 2020) for PPI, Reddit and Flickr provided by
PyTorch Geometric. Note that we do not include implementation mechanisms by BGRL, such as stop gradients, EMA, and
batch normalization at the last layer.
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Table 6. Model configurartions for node-level datasets.
Am.Computers Am.Photos CoautherCS CoauthorPhy PPI  Flickr Reddit

Mask ratio 0.05 0.05 0.05 0.05 0.05 0.01 0.05
Noise SD 0.5 0.5 0.005 0.5 0.5 0.5 0.5
Decoder layers 1 1 1 2 2 2 2
Learning rate 1074 107° 1073 1073 10°% 100* 1073
Weight decay 0 1074 0 0 107° o0 0
LogReg epochs 400 400 400 300 200 200 500
LogReg WD 1073 1073 1073 1073 0 107% 1073

D. Experimental Results under Semi-supervised Setting

For graph-level datasets, we perform semi-supervised experiments with 10% label rate using both GIN and GCN. All
experiments are conducted with the same random seed to avoid randomness in data split and initialization. Under the setting
of random initialization followed by supervised learning, the GNN is randomly initialized without pre-training. Under the
setting of LaGraph followed by supervised learning, the GNN is pre-trained with the proposed LaGraph framework. Weights
of GNNss are fine-tuned during supervised learning with 10% labels. For each dataset, the learning rate and epoch number
for pre-training are the same as what we use under an unsupervised setting. For fine-tuning, learning rate is selected from
{1073,1074,10~°}, and epoch number is selected from {5, 10, 15, 20}. The results shown in Table 7 and Table 8 indicate
that our proposed LaGraph framework is also effective for semi-supervised learning with different GNN backbones.

Table 7. GIN results for Semi-supervised learning.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B
Rand. Init. + 10% supervised 76.67 7529  76.66 86.67 77.54 8545 56.03 72.70
LaGraph + 10% supervised 80.19  76.10  77.93 91.40 78.04  89.65 56.43 74.30

Table 8. GCN results for Semi-supervised learning.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B
Rand. Init. + 10% supervised 75.47 7448  77.33 84.59 79.02 8530  53.67 72.90
LaGraph + 10% supervised 78.18  76.28  78.86 85.12 80.12  90.35 55.33 75.10

E. Additional Ablation Studies.

Ablation on Optimizing Different Objectives. We empirically compare the effect of different upper bounds on graph-level
datasets. In addition to the objectives described in Corollary 2, we further train the graph encoder with the upper bound
described in Theorem 1, which applies invariance regularization on the reconstructed node features. In addition, as node
attributes in many graph-level datasets are formed as one-hot vectors of the node type, we also provide the results of
using two corresponding multinomial versions of the objective. In particular, we replace the reconstruction term by the
cross-entropy between f(A, X) and X and, if computed on the outputs, the invariance term by the KL-divergence between
fr(A, X) and f;(A, X jc). Note that the multinomial versions are no longer strictly upper bounds of supervised latent
graph prediction. In Table 9, we show the results obtained under the four objectives above, namely, to compute invariance
on on-embedding (MSE-Embed), on-output (MSE-Output), and their corresponding multinomial versions (CE-Embed and

Table 5. Model configurations for graph-level datasets.
NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

Mask ratio 0.05 0.3 0.1 0.05 0.05 0.05 0.05 0.05

Noise SD 0.5 2 0.5 0.5 0.5 0.5 0.5 0.5
Weight scalar o/ 10 1 10 10 10 10 10 10
Degree threshold ~ — - - - 128 - - 64

Learning rate ~ 107° 107° 107° 107° 10* 1073 10 10~
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CE-Output), respectively. Results indicate that there is no significant difference among the four versions on most datasets,
while MSE-Embed and CE-Embed generally tend to be more stable and achieve higher performance on MUTAG, RDT-B,
and RDT-M5K.

Table 9. Effect of training with different objectives on graph-level datasets.

NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B
MSE-Embed 79.9+0.5 75.2+0.3 78.1+0.3 90.2+1.3 77.6£0.1 90.4+0.9 56.4+0.2 73.7+0.7
MSE-Output 79.9+0.7 75.0#0.4 78.1+0.8 89.2+2.1 77.7+0.1 89.8+0.9 56.0+0.4 73.4+0.6
CE-Embed 79.9+0.5 75.240.3 78.1+0.4 90.1+1.0 77.6+x0.2 90.5%+1.3 56.3+0.4 73.7+0.7
CE-Output  79.9+0.7 75.2404 78.120.4 89.3+2.7 77.6+0.1 89.4+1.8 55.7#0.2 73.5+0.5

Ablation on Concatenated Representations for Node-Level Datasets. For the node-level datasets, We obtain the final node
representation by concatenating the original feature with the embedding from the last layer of the encoder, due to the intuition
discussed in Appendix C. Results in Table 10 compare the performance of representations with or without concatenations.
The removal of the concatenation leads to reduced performance on four of the seven datasets and performance gain on the
rest datasets including the most challenging PPI. The results indicate that the concatenation generally positively contributes
to the final performance. However, the conclusion still holds that, on node-level datasets, LaGraph can provide significant
performance gain on challenging datasets where there is a gap between SSL and supervised performance. Meanwhile, the
performance of LaGraph is on par with the performance of supervised learning and the SOTA method BGRL on datasets
that are less challenging.

Table 10. Effect of performing concatenation with node features.

Dataset Am. Comp. Am. Pht. Co. CS Co. Phy PPI Flickr Reddit
With concat 88.0+0.3 93.5+0.4 93.3+0.2 95.8+0.1 74.6+0.0 51.3+x0.1 95.2+0.0
W/o concat 88.8+0.3 927404  92.6+0.2 95.3+x0.1 75.240.0 51.6+0.1 94.8+0.0

F. Additional Discussion on Potential Limitations and Future directions

In this section, we discuss several limitations of the proposed method and their solutions or related future directions.

Performance comparison with BGRL on transductive tasks. From the experimental perspective, we admit that BGRL
is a quite strong baseline method for transductive tasks. As the results are already on the same level as the performance of
supervised training, it is very difficult to further obtain significant improvements. However, when it comes to inductive
tasks, where there is still a significant gap between the performance of BGRL and supervised learning, our method is able to
bring significant improvements in performance. Therefore, we argue that the non-significant performance boost on some
transductive datasets does not degrade our main conclusion about the effectiveness of our method and the contribution of
our work.

Unattributed graphs. Although, in this work, we mainly focus on graphs with attributed nodes, there exist cases where
the nodes are unattributed and all information is contained in the graph topology, especially for some graph-level datasets.
In such cases, we follow a common solution to consider the one-hot vectors of node degrees as the node attributes and our
objective performs reconstruction on the node degree. To avoid inconsistency between training and testing graphs in their
range of degrees, we introduce thresholds to the node degrees, i.e., the degree of a node is considered as k if it exceeds
k. The current solution can capture the topological information of a graph to some degree. However, there can be better
solutions capturing full topological information of graphs. A potential direction is to perform connectivity reconstruction
with the invariance of representations to the changing in the input edge set. Although the described approach does not
currently fit into our theoretical framework, it is possible to derive similar objectives (e.g., upper bound to link prediction
objective) following a similar idea.
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Scaling-up issue. The scaling-up of graph neural networks becomes an emerging topic. Many existing self-supervised
methods may suffer from the scaling-up issue when the graph scales up to billions of nodes and edges. Although we do not
perform experimental studies on extremely large graphs, we perform ablation studies to demonstrate the robustness of our
method to the training schemes of sampling subgraphs (mini-batches of nodes) for each training iteration.

Performance of SSL methods on unsupervised downstream tasks. Performing linear evaluation with supervised
downstream tasks on learned representations is the most common way to evaluate the performance of SSL methods.
However, evaluation performance on graph-specific unsupervised tasks such as overlapping community detection (Xie et al.,
2013) is seldom studied. Further investigations in the unsupervised downstream task are required to fully demonstrate the
effectiveness of self-supervised learning methods.



