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Abstract

Explaining graph neural networks (GNNs) has be-
come more and more important recently. Higher-
order interpretation schemes, such as GNN-
LRP (layer-wise relevance propagation for GNN),
emerged as powerful tools for unraveling how
different features interact thereby contributing
to explaining GNNs. GNN-LRP gives a rele-
vance attribution of walks between nodes at each
layer, and the subgraph attribution is expressed
as a sum over exponentially many such walks.
In this work, we demonstrate that such exponen-
tial complexity can be avoided. In particular, we
propose novel algorithms that enable to attribute
subgraphs with GNN-LRP in linear-time (w.r.t.
the network depth). Our algorithms are derived
via message passing techniques that make use of
the distributive property, thereby directly comput-
ing quantities for higher-order explanations. We
further adapt our efficient algorithms to compute
a generalization of subgraph attributions that also
takes into account the neighboring graph features.
Experimental results show the significant acceler-
ation of the proposed algorithms and demonstrate
the high usefulness and scalability of our novel
generalized subgraph attribution method.

1. Introduction

In recent years, there has been an increasing interest in
Graph Neural Networks (GNNs) because of their ability
to incorporate the intrinsic structure of data and their state-
of-the-art performance on graph-structured data, e.g., so-
cial networks (Chen et al., 2018; Hamilton et al., 2017,
Kipf & Welling, 2017) and molecules (Schiitt et al., 2018;
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Figure 1: Visualisation for the joint contribution of atom sub-
sets when predicting the mutagenicity of a molecule. The
gray sub-molecule G is a strong indicator for the mutagenic-
ity of the full molecule. The orange and green bars show
the lower- and higher-order relevance scores for the subset
composed of all atoms which have the denoted atomic num-
ber, respectively. The heat maps in the sub-molecules, close
to the orange and green bars, show the relevance scores of
lower- and higher-order attribution methods, respectively.

Domingue et al., 2019). The learning tasks on graphs in-
clude node, edge or graph classification, link prediction and
others (Wu et al., 2021; Hu et al., 2020). However, since the
prediction strategy of a GNN is in general not comprehensi-
ble for humans, GNN models are still treated as black-boxes,
which prevents applications in some crucial areas where
trustworthiness or safety is required. In the recent literature,
various methods for explaining GNNs have been developed
(Yuan et al., 2020b). Methods like GNNExplainer (Ying
et al., 2019), PGExplainer (Luo et al., 2020) and PGM-
explainer (Vu & Thai, 2020) allow importance analysis of
nodes and edges within the input data sample. GNN-LRP
(layer-wise relevance propagation for GNN; Schnake et al.
(2021)) aims at explaining GNNss at the level of walks, which
reflect the practically relevant higher-order interactions of
features. To obtain such walk relevances, higher-order deep
Taylor decomposition is applied to a GNN, from which
we get independent feature components that only depend
on bag-of-edges. These bag-of-edge components are then
recovered by backward massages from one node represen-
tation to the next within the GNN interaction layers, and
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Figure 2: Computation of the subgraph relevance (left). A naive implementation of GNN-LRP computes the sum of the
relevances over exponentially many walks (middle), while our proposed subgraph GNN-LRP aggregates the contributions
layer-wise (right), allowing linear time computation with respect to the network depth L.

provide the relevance resolution of walks (Schnake et al.,
2021).

Higher-order interpretation methods can give important in-
sights into the prediction strategies employed by neural
networks. In Figure 1 we see how lower- and higher- order
interpretation methods assign contributions to different sub-
sets of atoms when predicting the mutagenicity of molecules
(Kazius et al., 2005b). Using the higher order scheme, we
find that the NO3 group combined with the neighboring
aromatic carbon ring (highlighted in gray in Figure 1), is a
strong indicator for mutagenicity. This finding is also sup-
ported by experimental studies (Kazius et al., 2005a). The
lower order attribution method is unable to capture the joint
contributions of atoms, and therefore have to rely on single
atom contributions exclusively, inappropriately assuming
that the individual atoms contribute to the mutagenicity of
the molecule. On the other hand, the attribution scheme
that takes into account the higher-order structure of the
model reflects how sets of different atoms, particularly the
combination of C and N, or N and O atoms, have a strong
joint contribution to the prediction task. This aligns with
chemical intuition in general, since the property of muta-
genicity is not due to the effect of single atoms but arises
from the higher-order interactions present in the highlighted
functional group. More details can be found in Appendix A.

Although GNN-LRP has shown to be highly effective in
interpreting GNNs with respect to feature interactions, its
computation was so far limited to relatively small graphs
and shallow networks, due to the exponential complexity
with respect to the network depth. We would like to note
that this complexity issue is not specific to GNN-LRP but
rather it is present for general higher-order feature attribu-
tion methods beyond additive or linear explanation (Lund-
berg & Lee, 2017; Samek et al., 2021). This is because L-th
order interpretation methods for NV input features need to
take N different feature combinations into account. In
the task of extracting the joint relevance of a collection of

graph features, namely the relevance of a subgraph in the
input data point (Schnake et al., 2021; Yuan et al., 2021), the
incorporation of higher-order feature attribution is essential,
yet without finding an efficient way of computation that
remedies the exponential complexity, it is unfeasible for the
general case even with moderately large L.

In this work, we propose a novel propagation rule, called
subgraph GNN-LRP (sGNN-LRP), that directly computes
the relevance of a subgraph in a single backpropagation pass.
Comparing with a naive application of GNN-LRP that sums
up walk relevances, the computational complexity reduces
from exponential to linear with respect to the network depth
L (see Figure 2). The forward-hook trick (Schnake et al.,
2021; Samek et al., 2021) allows a simple, fast, and less
memory intensive implementation of SGNN-LRP.

A novel aspect of this work also exists in the way of de-
veloping the new propagation rule: sSGNN-LRP is derived
as a sum-product message passing algorithm, a.k.a., belief
propagation (Bishop, 2006; Pearl, 1982), to compute an
explicitly defined target quantity—the sum of relevances
of all walks that stay within a given subgraph. We explain
why message passing is applicable to the relevance com-
putation by pointing out its mathematical similarity to the
marginal probability computation of a Markov chain pro-
cess, and discuss its generality by deriving existing LRP
rules as message passing algorithms.

The message passing framework allows us to easily adapt
the propagation rule to another target quantity. We demon-
strate this benefit by deriving a variant of sSGNN-LRP for
a generalized definition of the subgraph relevance, which
takes into account the walks outside the subgraph with dis-
counted contributions according to how many times the
walk steps out of the subgraph. Our experiments show that
our generalized subgraph relevance quantitatively improves
the explanation of GNNS in terms of node-ordering perfor-
mance.
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Table 1: Notation.

h,h,H, H,, .,/ scalar, vector, matrix, matrix entry
my.p partial vector with indices (I, ...,1")
Gand S graph and subgraph
m and n sequence of nodes and neurons
m, my integers for node identifications
n, ng integers for neuron identifications
R, r relevance
r propagated relevance, message, or belief
T propagation matrix

2. Background and Related Work
2.1. Graph Neural Networks

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Wu
et al., 2021) is a class of neural networks that receive a
graph as an input. In a GNN, node embeddings are learned
in multiple interaction blocks, where the interaction is de-
fined by the given graph. In most GNN architectures, the
interaction block can be divided into aggregate and combine
steps (Gilmer et al., 2017), which can be expressed by

Aggregate: Z() = AH(-D),

Combine: H) = ¢® (ZW) @
Here H) ¢ RM*xN @ denotes the feature (activation) ma-
trix of the [-th layer, which consists of the N (1) _dimensional
feature vectors for all M nodes (notation is summarized in
Table 1). In the aggregate step, the features H(~1) from the
last layer are aggregated using a modified (e.g., normalized
with self-loops) adjacency matrix A € RM*M and stored
in ZO € RM*N“"Y Iy the combine step, a non-linear
function CO : RNV s RN js applied to Z(©) column-
wise, to transform Z) into the new node features H® for
this layer. For the combine function, common choices are
a one-layer perceptron C) (Z) = ¢(ZW©") with train-
able weights W) ¢ RN"VxN and a non-linear activa-
tion o(-) as in Graph Convolution Network (GCN) (Kipf
& Welling, 2017), and a multilayer perceptron (MLP) as in
Graph Isomorphism Network (GIN) (Xu et al., 2019). After
the node feature of the last layer is computed, a read-out
function (e.g., average or maximum over all nodes, followed
by an MLP) is applied to generate the required graph-level
predictions, depending on the prediction task.

2.2. Explainability for Graph Neural Networks

In recent years multiple explainability methods for GNNs
have been proposed. GNNExplainer (Ying et al., 2019)
and PGExplainer (Luo et al., 2020) explain GNNSs by find-
ing masks that maximize the mutual information between

the predictions of the original graph and a masked graph.
GNNExplainer learns soft masks for edges or node fea-
tures, while PGExplainer trains a parametric predictor to
determine if an edge should be masked out. The predicted
mask is an approximate discrete mask and is known to al-
leviate the ‘introduced evidence’ problem that soft mask
faces. Such masks can be used to extract the most important
subgraphs, for example, we can identify the subgraph con-
sisting of all nodes with soft mask values above a threshold
as the most important subgraph. PGM-Explainer (Vu &
Thai, 2020) trains a well explainable probabilistic graphical
model (PGM) as a surrogate method of the GNN, and then
substitute the explanation of the GNN with the explanation
of the PGM. Unlike all the instance-level methods above,
XGNN (Yuan et al., 2020a) is a model-level explainer, which
generates a representative graph of every target class using
reinforcement learning.

Most explainability techniques (Pope et al., 2019; Ying et al.,
2019; Luo et al., 2020) for GNNs explains the model at the
level of nodes, edges and node features, while a few of them,
including SubgraphX (Yuan et al., 2021) and GNN-LRP
(Schnake et al., 2021), analyze the relevance of subgraphs
as higher-order features. SubgraphX identifies the most
important subgraphs based on the Shapley value (Lundberg
& Lee, 2017) with Monte-Carlo Tree Search (MCTS). The
Shapley value is computed by perturbing the input graph
and comparing the change of the model output. GNN-LRP
is an LRP-based method, which scores bag-of-edges by
decomposing and backpropagating the output to the input
layer. Since our proposed algorithm is based on GNN-LRP,
we give its detailed description in the next subsection.

Unlike the above methods, GNES (Gao et al., 2021) pro-
vides a general framework that trains the GNN model and
optimizes the explanation model simultaneously with reg-
ularizations, so that the explanation is reasonable and sta-
ble. GNES can handle many attribution methods including
Gradient-based, Grad-CAM and LRP.

2.3. GNN-LRP

GNN-LRP (Schnake et al., 2021) aims to explain the predic-
tion strategy of GNNs with respect to higher-order feature
interactions, by tracking the information that were passed
through the internal dependency graph for making a predic-
tion. The basic unit of explanation is therefore the relevance
of a walk, which is defined as an ordered sequence of nodes
connected from layer to layer. Assume that the whole graph
G consists of M nodes. Then, a walk can be denoted by
m € M with M = {1,..., M}£*! meaning that the walk
starts from the mg-th node at the input layer, goes through
the m;-th node at the I-th layer, and reaches the m-th node
in the last layer. We also denote a partial walk by m;.;» for
0 <1 < I'" < L. We identify a node and its index, and
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denote, e.g., by m € G that the node m is a member of G.

The GNN-LRP rule for a simple GCN (Kipf &
Welling, 2017) with the combine function CV(Z) =
ReLU (ZW ") in Eq.(1) is given as

f,(l,ml) _ Tl7mlﬂ'll+1 f.(l+17m1+1). (2)

N o .
Here #(b™) ¢ RN is the propagated relevance at the
. / My N+ .
node m; in the I-th layer, and TH™™ ¢ RV XN s
the propagation matrix whose entries are given as

A JHOD T

l 4 m,m ’
T s;m,m __ » msn T n,n
n,n’

()
an”.n” Am”,m/ Hm//

WWET

Here W' is a modified weight parameter depending on
the choice of LRP rules (Bach et al., 2015; Montavon et al.,
2018; Samek et al., 2021), e.g., wWh.=W +7-max(0, W)
for the LRP-v rule with v > 0, where the max operator
applies entry-wise. Note that we mostly use subscripts to
specify the entry of a matrix or vector, while superscripts for
distinguishing different matrices or vectors. Note also that
the propagated relevance ¥(*!) does not denote a particular
quantity but a variable that depends on the propagation rule.

The GNN-LRP rule depends on the network structure, and
we refer to Schnake et al. (2021) for the GNN-LRP rules for
other GNN variants.

3. Efficient Computation of Subgraph
Attribution

Understanding the relevance contribution of subgraphs in
the input graph to the model prediction is a key challenge
when explaining models on graphs (Yuan et al., 2021; Luo
et al., 2020; Schnake et al., 2021). As a higher-order inter-
pretation method, Schnake et al. (2021) proposed a defini-
tion of subgraph relevance as the sum over relevance scores
of all walks inside the subgraph S C G, i.e.,

RS =Y cs R™ 3)

Here, with slight abuse of notation, we denote by m C
S that the walk m stays inside S, i.e., m; € S for all
l=0,..., L. Unfortunately, performing the sum in Eq.(3),
which we call a naive application of GNN-LRP for subgraph
attribution (Naive GNN-LRP), over exponentially many
~ O(|S|¥) walks is limited to small subgraphs (nodes or
edges) for state-of-the-art GNNSs as they are typically deep.

However, we will show in Section 4 that there is a much

more efficient way of achieving subgraph attribution: the

exponential sum in Eq.(3) can be computed by RS =
© _(0.m . )

Y moes ZnN:1 #0mo) after applying a single pass of our

novel subgraph GNN-LRP (sGNN-LRP) rule

(lmy) _ Lomg,mypr w(I4+1,mi41)
r = ZmHlEST 1y + )

forl=L —1,...,0. Since a single backward pass directly
yields the subgraph attribution, the computational advantage
is evident and massive, as shown graphically in Figure 2.
Moreover, applying the forward-hook trick (Schnake et al.,
2021; Samek et al., 2021) to sGNN-LRP gives a simpler,
faster, and less memory intensive implementation than di-
rectly implementing the sGNN-LRP rule (see Section 5).

Our novel sSGNN-LRP rule (4) only differs from the GNN-
LRP rule (2) for computing the walk relevance, by intro-
ducing an additional summation that pools the propagated
relevances over all nodes belonging to the subgraph S. How-
ever, we emphasize that we obtained this new rule by a novel,
systematic procedure: we explicitly define the target quan-
tity to be computed, and then derive a propagation rule as a
message passing algorithm. We detail this procedure and its
generality in Section 4.

4. LRP as Message Passing

In this section, we first point out the similarity between the
relevance computation and the marginal probability com-
putation of a Markov chain, which implies the applicabil-
ity of sum-product (a.k.a. belief propagation) algorithm
(Bishop, 2006; Pearl, 1982), a message passing algorithm
for marginalizing over random variables. Then, we apply
the sum-product decomposition to the target quantity (3),
and derive our SGNN-LRP rule (4). We also discuss the gen-
erality of our approach, and derive existing LRP rules. This
novel procedure allows us to systematically derive new prop-
agation rules by defining or modifying the target quantity,
which will be further demonstrated in Section 6.

Let us define the relevance of a partial walk m;.,; as the sum
of relevances of all walks going through the specified nodes
from the [-th to the I’-th layers, i.e.,

’

my m
R - Zm/EM:m;_L, =m.p R™,

N®

and its neuron-level counterpart r’>™’ € R whose

entry 5™ is the relevance of a partial walk limited to a
particular neuron specified by n at the [-th layer. We denote
by my.» C S that the partial walk is within the subgraph,
ie,mp € Sforl” =1,...,I', and by r™mi+1:LCS the
sum of relevances of the partial walks that go through the
node m; at layer [ and any node in S at layers [ + 1,..., L.

GNNss can be unfolded into a feed forward neural network
(FFNN) (Fig.3(b)). Based on the unfolded network, con-
sider a virtual stochastic system where a particle exists at
the L-th layer at time ¢ = 0, stays at the [-th layer at time
t = L — [, and arrives at the input layer at time ¢ = L. At
each layer, the particle stochastically chooses a particular
neuron in a particular node. Then, its trajectory can be de-
noted by (m, n), wheren € N = {1,... max;(N?))}L+1
specifies the choice of neuron at each layer. Assume that
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Figure 3: LRP as message passing. (a) An example graph consisting of 3 nodes (with self-connections). (b) Unfolded
feed-forward network of a 2-layer GCN (with the node feature dimension in each layer being N(0:2) = [1,2,1]). A walk
(m = [2,1,2]) is marked with yellow background, and a neuron-level walk (m = [2,1,2],n = [1, 1, 1]) is marked as red
arrows. (¢) A Markov chain process of which the joint distribution has the same decomposable structure as the relevance of
a neuron-level walk. This implies that message passing techniques for computing various marginal probabilities of Markov
chain can be used for computing the sum of relevances over various sets of walks.

the probability of the choice of node-neuron pair at the I-th
layer only depends on the choice at the (I + 1)-th layer.
Then, the joint probability can be written as

p(m,n) = (HIL:_Ol P(ml,mlmz+1,nl+1)) p(mr,nr),
(5)
which is a simple Markov chain (Fig.3 (c)). If we for-

mally assume that p(1my, ny[my g1, ni41) = Ter ' and
p(mp,ng) = rﬁLmL, the joint distribution (5) coincides
with the relevance of a neuron-level walk, a walk specifying
not only the node but also the neuron inside the node at each
layer:

R = (12 Tl ) rkme = pmyn). - (©)

= ’ L

Importantly, the relevance has the same decomposable struc-
ture as the joint distribution of the Markov chain. Therefore,
we can use the sum-product algorithm—which allows ef-
ficient computation for various marginal distributions of a
Markov chain—for computing relevances that require sum-
mation over different sets of walks.

Since the propagation matrices {Tl*m’m'} and the partial
walk relevance r”™~ are not probabilities, they can have
negative entries, and not necessarily normalized. These dif-
ferences do not affect the applicability of the sum-product
decomposition, and we can derive LRP rules as message
passing for any propagation matrices and any definition
of relevance. However, we restrict our theoretical analy-
sis in this paper to the case where the propagation matrix
is normalized, ie., ), mT,lL’Z’,’m/ = 1 Vn/,m’ for sim-
plicity. This allows us to prec}sely and concisely describe
what quantity is carried by the propagated relevance ¥(*-")
(which corresponds to the message/belief in the terminol-
ogy for message passing/belief propagation), and makes the
derived LRP rules transparent. For unnormalized propaga-
tion matrices, the messages are scaled by layer-dependent

constants, which are practically irrelevant and (if necessary)
can be computed by another pass of messages.

Now let us derive our sSGNN-LRP rule (4). Setting Eq.(3)
as the target quantity,! we apply the sum-product decompo-
sition, and obtain the following theorem (the proof is given
in Appendix B):

Theorem 1 Assume that the sGNN-LRP rule (4) is applied
forl = L —1,...,0 with the initial message ¥(F") =
rlome . Then, #bm) = pbmimienn €S ¢ 10, L},

(0
S _ N 0,mo,m1.,CS
and R *ZmoeSanl L=

Our novel procedure—deriving LRP rules as message pass-
ing for computing explicitly defined target quantities—is
general, and one can derive many existing LRP rules by
defining the corresponding target values, as summarized
in Table 2 (see Appendices C and D for derivations, and
Appendix E for the same rules using the notation of Schnake
et al. (2021)). This procedure allows systematic derivation
of propagation, and will facilitate future development of
LRP methods.

5. Forward-hook Trick

We can implement our sSGNN-LRP by slightly modify-
ing the forward-hook trick (Schnake et al., 2021; Samek
et al., 2021), developed for the original GNN-LRP (see
Appendix F). We implement the forward combine step in
Eq.(1) as

PO Z(l)vv(l)T7
QY PV o [o(zOWD) o PV, (7
HY « Q¥ o MO + [Q(l)]cst. o1 - M(l))’

" The subgraph relevance (3) corresponds to the marginal proba-

bility that a particle never steps out of the subgraph S in the virtual
Makov chain process shown in Fig.3(c).
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Table 2: Target quantities and the corresponding propagation rules derived as message passing. The propagation matrices
{T! ¢ RN “xN (Hl)} can be arbitrary, and therefore this table applies for all (¢, 7, a3, etc.) propagation matrices.

Target quantity Propagation rule
LRP for general FFNN 10 = ( lL:_Ol T!)rl #(O = plg+1D)
GNN-LRP R™ pm) — plbme,mygr gp(I41,migr)

sGNN-LRP R® =3 csR™

Generalized SGNN-LRP RS = > mcg aXi=o Lmi¢S) pm

w(lmy) — Lmy,mypr p(I4+1,mp41)
r - Zml+165 T r

w(lmy) — L(mip 1 €S)plymi,mypa f(I4+1,m41)
r - Zmz+1€g @ T r

where PO, M) € RM*N ‘and ® and @ denote the entry-
wise multiplication and division, respectively. The operator
[]cst. detaches the quantity to which it applies from the
gradient computation. Then, the target quantity can be
computed by the Aut ograd function:

Theorem 2 Assume that we applied a complete forward
prediction with the modified combine step (7) with the con-
stant mask matrix M) = MS for all [, where M masks
the columns that correspond to the nodes outside the sub-
graph, i.e., the m-th columns for m € S are all-one vectors,
and the other columns are all-zero vectors. Then, we get
RS = <Autograd(y,H(O)),MSH(O)>, where (-,-) de-
notes the Frobenius inner product.

The proof (given in Appendix G) is similar to the one for
the relevance of walk in Schnake et al. (2021). This imple-
mentation is simpler, faster, and less memory intensive than
the direct implementation of the SGNN-LRP rule (4).

6. Generalized Subgraph Attribution

In this section, we propose a novel definition of subgraph at-
tribution by generalizing Eq.(3), and derive the correspond-
ing LRP rule. The proposed definition itself will be shown
to be useful in Section 7, and our derivation of a new propa-
gation rule demonstrates the utility of the message passing
framework, introduced in Section 4.

We consider the following two properties important to fulfill
for subgraph attributions: A subgraph S is important if and
only if

1. the model makes almost the same predictions for the
input graphs G and S, and

2. the model predictions for its complement G \ S and the
full input graph G diverge drastically.

However, the original definition (3) of the subgraph attri-
bution completely ignores the walks that step out of the
subgraph even only once, and thus only considers the first

property.

We propose a generalized version of subgraph attribution
that trades-off both properties with a discounting parameter

a€l0,1]:
RS =31 95 (m)R™, (8)

where

45 (m) = 0 ) itm; ¢S,V1i=0,...,L,
¢ aXizo LmES)  otherwise.

€))
Here we used the indicator function 1(-) equal to one if the
event is true and zero otherwise. The generalized subgraph
attribution (8) counts all walks that go through a node in S
at least once with their discounted contributions according
to how many times the walk steps outside S. For a = 0, it
reduces to the original definition, i.e., RS = R.

We can efficiently compute the generalized subgraph attri-
bution (8) by decomposing it as
S _ pS L G\S
RS = RS — oL +1RINS, (10)
where
L S

o (11)
and applying a message passing algorithm for Eq.(11). Note
that the second term in Eq.(10) is the original (a« = 0)
subgraph attribution to the complementary set of S weighted
by a1, which can be efficiently computed by sGNN-LRP,
described in Section 3. For the first term (or Eq.(11)), our
message passing framework, introduced in Section 4, gives
the following theorem (the proof is given in Appendix B):

Theorem 3 Assume that we apply the LRP rule

f‘(laml) —
D G ol (mip1€8) plmemeps g(I4+1,miqq) (12)

mi41
forl = L —1,...,0 with the initial message &™) =

L Then, #0m) — FlmiminnS6 vl € {0,... L},
where Thmimit1:LC9 — aZf/:m l(mz/¢5)rl,mz,mz+1:L§g

and

~ N©O
RS = ngeg al(mo¢s) Z . r,ﬂgvm07ml:ng.

« n=

The forward-hook trick is also applicable (the proof is given
in Appendix G):
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Table 3: Computation time (in msec) comparison on 5 datasets. '—’ means ‘failed’.The subgraph size is |S| = 5.
DATASET BA-2MOTIF MUTAG  MUTAGENICITY REDDIT-B  GRAPH-SST2
MODEL-L (DEPTH) GIN-3 GIN-5 GIN-7 GIN-3 GIN-3 GIN-5 GCN-3
NAIVE GNN-LRP 224.22  6.07x10° 1.42x10° 4.23x10° 4.28x10° — 3.16x 10°
SGNN-LRP (OURS) 4.22 6.44 9.81 28.90 26.68 195.43 29.94

Theorem 4 Assume that we applied a complete forward [ oL
prediction with the modified combine step (7) with the con- 100 —— SGNN-LRP 201
stant mask matrix M) = MS for all I, where MS softly I e ol

masks the nodes outside the subgraph, i.e., the columns
corresponding to the nodes in the subgraph S are all-one
vectors, and all the other entries are equal to «. Then, we
get RS = (Autograd(y, H?) MSHO).

We will show the usefulness of the generalized subgraph
attribution in Section 7.

7. Experiment

In this section, we conduct two experiments demonstrating
(1) the massive gain in computation time by our efficient
sGNN-LRP, and (2) the usefulness of the generalized sub-
graph attribution in relevant node-ordering tasks. For GNN
models, we used GIN and GCN with different depths L. We
used the following five popular datasets: BA-2motif (Luo
et al., 2020), MUTAG (Debnath et al., 1991), Mutagenic-
ity (Kazius et al., 2005b), REDDIT-BINARY (Yanardag &
Vishwanathan, 2015), and Graph-SST2 (Yuan et al., 2020b).
Detailed experimental setting is given in Appendix H, and
our implementation is available at our GitHub repository.>

7.1. Computational Efficiency Evaluation

Here we show computational advantages of sGNN-LRP
over the Naive GNN-LRP (Schnake et al., 2021) as a base-
line on different scales of models and subgraph sizes. Ex-
periments were performed on a Xeon E5-2620 CPU with
8GB memory.

Figure 4 shows the computation time for subgraph attribu-
tion on BA-2motif, as functions of (a) the network depth
L and (b) the subgraph size |S]|, respectively. We clearly
observe the (a) exponential and the (b) cubic (L = 3) com-
plexity, O(|S|%), of Naive GNN-LRP. Our proposed sGNN-
LRP with its complexity O(L|S|?) is drastically faster. Ta-
ble 3 summarizes the computation time for various GNNs
and datasets. The reported computation time is the average
over three trials for randomly chosen 50 samples in each
dataset. We report ‘fail’ if out-of-memory error occurs or
the computation does not finish within 360 sec. Again we

https://github.com/xiong-ping/sgnn_lrp_
via_mp.
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Figure 4: Computation time on BA-2motif dataset. Note the
different vertical scales in the top, middle, and bottom parts.
(a) GIN-L for L = 1,...,6 with |S| = 5. (b) GIN-3 with
S| =1,...,19.

observe from the table a significant computational gain by
sGNN-LRP.

We also compared computation time with other baseline
methods in Figure 4, and observed that our sGNN-LRP is
significantly faster than GNNExplainer, and even compa-
rable with very simple baselines, Gradient-based heatmap
and (Grad-)CAM. Notably the complexity bounds O(L|S|?)
of sGNN-LRP is the same as those for a single for-
ward/backward pass of GNNs, and therefore, sGNN-LRP
can be applied to deeper GNNss for larger graphs at a similar
computational cost to prediction.

7.2. Node Ordering Performance by Generalized
Subgraph Attribution

Here, we demonstrate the high usefulness of our generalized
definition of subgraph attribution. Specifically, we show that
the optimal discounting parameter, « in Eq.(9), is not always
zero, and depends on the evaluation task. We first evaluate
the node ordering performance on the BA-2motif dataset, for
which the ground truth is available. Then, we evaluate the
performance in the model activation and the model pruning
tasks (Schnake et al., 2021) on other datasets.

7.2.1. NODE ORDERING

We use the generalized subgraph attribution for providing
node ordering in two modes, activation and pruning.

Activation mode: In this mode, we obtain the node or-
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Since the activation mode focuses on the high relevance sub-
graphs themselves and the pruning mode focuses on their
complement, we expect that they respectively tend to satisfy
the first and the second properties that good subgraph attri-
bution should fulfill (see Section 6). We investigate how the
discounting parameter « of the generalized subgraph attri-
bution affects the activation and the pruning performance.

7.2.2. BA-2MOTIF BENCHMARK EXPERIMENT

Here, we use the BA-2motif dataset to evaluate the node
ordering performance of subgraph attribution. Since this
dataset is synthetic and the ground truth motif is available,
we can simply compare the node ordering obtained by the
subgraph attribution with the ground truth. All sample
graphs have 25 nodes, of which 5 nodes are specified as the
motif. Fig. 5 shows the accuracy—the proportion that the
subgraph attribution in the activation mode gives the order-
ing such that the top 5 nodes match the ground truth motif—
with its dependence on .. The figure also shows the area
under the receiver operating characteristic curve (AUROC),
where the threshold of motif detection is scanned. We found
that the best performance is achieved around o ~ 0, and
therefore, the original subgraph attribution is almost optimal.
This is not surprising because, for this dataset, the nodes
outside the motifs are completely random, and therefore,
considering the outside nodes gives no useful information.

7.2.3. MODEL ACTIVATION AND PRUNING
EXPERIMENTS

Next we evaluate the subgraph attribution performance in
model activation and model pruning tasks on MUTAG and
Graph-SST2 datasets, for which the ground truth explana-
tion is not available. These tasks measure the correlation
between the relevance attribution and the model output in
two ways.

Let f(-) be the GNN model output for the correct label.
The goal of the model activation task is to find the node
ordering [m(),...,m(™)] such that the area under the

activation curve, AUAC = L Zf\il fAm®, ... m®}),

—— Accuracy
---- AUROC

00 02 04 06 08 10
a

Figure 5: Accuracy and AUROC of node ordering task on
the BA-2motif dataset with different discounting parameter
a. The best performance is achieved around o ~ 0.

is maximized. This task evaluates how many subgraphs
formed by the top predicted nodes recover the correct
prediction, and therefore, measures how well the attribu-
tion fulfills Property 1 in Section 6. On the other hand,
the goal of the pruning task is to find the node ordering
[m®), ..., mM)] such that the area under the pruning curve,
AUPC = LS 1 #(G\ {mD), ..., mD}) — f(G)], is min-
imized. This task evaluates how much the complement of
subgraphs formed by the top predicted nodes retains the pre-
dictive performance, and therefore, can be a performance
measure on Property 2 in Section 6. Further details are
given in Appendix J. We should naturally use the activa-
tion and the pruning modes, respectively, for node ordering
in the model activation and the model pruning tasks (see
Section 7.2.1).

Figure 6 shows AUAC and AUPC with their dependence
on the discounting parameter «. Because AUAC, as well
as AUPC, differs largely between positive samples and neg-
ative samples, we plotted them separately. We speculate
that this is due to the different predictive capability of the
model on positive and negative samples. The (red) curves
for sGNN-LRP imply that the original definition of the sub-
graph attribution, i.e., & = 0, is not always optimal, and
tuning « can improve the node ordering performance. This
applies not only in the pruning task but also in the activation
task. We will further investigate the performance depen-
dence on «, and develop tuning procedures in our future
work.

To show the superiority of the attribution via sSGNN-LRP,
we also compared the node ordering performance with three
baselines, GNNExplainer, Gradient-based heatmap, and
(Grad-)CAM, and plotted the results in Figure 6. The sub-
graph relevance by GNNExplainer for a = 0 is given by
the sum of the relevances over the edges between the nodes
both inside the subgraph. For o > 0, the sum over the edges
connecting inside and outside nodes is also added with the
discounting factor o (see Appendix K for more detail). As-
suming that the parameter « is optimized for each method,
sGNN-LRP outperforms the baselines in most of the cases
(6 out of 8).
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Figure 6: AUAC (top row, higher is better) and AUPC (bottom row, lower is better) on MUTAG and Graph-SST2 datasets of
our sSGNN-LRP and baseline methods, GNNExplainer, Gradient-based heatmap, and (Grad-)CAM. The triangles mark the

best performance points for SGNN-LRP and GNNExplainer.

8. Conclusion

Layer-wise relevance propagation for Graph neural net-
works (GNN-LRP) is a higher-order explainability method
for GNNs, which provides attributes of the GNN models
at the level of walks. Specifically, it supports subgraph-
level attribution by summing over the walks inside a given
subgraph, which however suffers from exponential com-
plexity and thus has computational limits in application.
In this paper, we have overcome this issue by proposing a
polynomial-time algorithm (SGNN-LRP) that directly com-
putes the subgraph GNN-LRP attribution. Notably, our
development of sSGNN-LRP has been conducted by a novel
procedure: unlike previous work, we developed sGNN-LRP
by first defining the target quantity to be computed and
then deriving a propagation rule as a message passing al-
gorithm. This novel procedure is general, rediscovering
many existing LRP rules, and thus expected to facilitate
future development of new LRP methods. We have demon-
strated the utility of this procedure by deriving another LRP
rule for computing a generalized definition of the subgraph
relevance that takes into account the partly-outside walks.
Experimental results showed that our proposed SGNN-LRP
is significantly faster than the naive application of GNN-
LRP, and that the generalized subgraph relevance definition
can more robustly attribute GNNSs at the subgraph level.

Future research will address the broad application of the
novel algorithms, as now novel ‘deeper’ insights (mani-
fested in longer walks or deeper GNNs) have become possi-
ble for learning problems that possess a significant amount
of higher-order and long range nonlinear interactions, such
as in the sciences, e.g., for neuroimaging (see, e.g., Rubinov
& Sporns (2010); Shine et al. (2019)) or quantum chemistry
(see, e.g., Gilmer et al. (2017); Schiitt et al. (2018); Unke

et al. (2021)). Beyond applications in the sciences, we con-
sider the novel efficient GNN-LRP algorithms as promising
for NLP applications where assessing deeper higher-order
interactions may be helpful for assessing trustworthiness,
fairness, and unbiasedness of SOTA systems.
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A. Details of Figure 1

In Figure 1 we consider the GIN model trained on the Mutagenicity dataset (Kazius et al., 2005b). We use the same model
architecture and training procedure as described in Appendix H.3. The visualized molecule is one sample of the Mutagenicity
dataset which is classified as mutagenic. The bars in each graph reflect the interaction relevance of the subgraph consisting
of all atoms with the described atomic number at the x-axis. In order to reflect the relevance of the interactions of a set
S, we use the subgraph relevance definition in equation (3) and substract the relevance scores of all features that are not
exclusively composed of all atoms types in S. For example, in the case where we measure the interaction between the atoms
C, N and O we define the interaction relevance REN? to be

RONO _ RONO _ RON _ pCO _ pNO | RC 4 RN | RO,

It is important to see that we add the relevance scores with only one atom (such as R, because by definition of the subraph
relevance in (3) they occur in the scores which consists of two atoms (as in R“© and R¢Y), which we already subtract
twice. This definition ensures the conservation of the interaction relevance, i.e. it ensures RENC =3¢ .\ RS,.

B. Proof of Theorem 1 and Theorem 3

We prove Theorem 3, which covers Theorem 1 as a special case for @ = 0. The required quantity is decomposed as

N () N(©
DS _ L 1(m;¢S) pm __ L 1(m ¢S O,m __ 1(moé¢S ~0,mo,m1..CG
Ra7§a2170(“’7£)R7§a2170(1¢)§rn 7§:a(o¢)§rn 0,m1:LCG (13)
meg meg n=1 mo€g n=1
where
'I‘:O,mo,ml:ng _ § azlel ]l(ml¢S)T0,mo,m1 Tl,ml,mz . TL—l,nLL_1,7nLI_ Lmyp,
m1.1€G
— § : a]l(m1¢S)T0,mo,m1 § : a]l(m2¢S)T1,m1,m2 E a]l(ngs)TL—l,mL,l,erL,mL.
m1€G ma€G mp€g

_gL-1mp_1,mCG

gy 1,m1,mqo. 1 CG

(14)

This decomposition gives the LRP rule (12) as a sum-product message passing with the propagated relevance (/™) =
T bt €9 Cand proves Theorem 3. Noting that

Fhmumipn S Lmimign €S for a=0 (15)

proves Theorem 1. O

C. Stardard LRP as Message Passing

Here, we derive the standard LRP rule as a sum-product message passing. Consider a plain feed forward neural networks
with N neurons at layer I = 0,..., L. The relevance of the (neuron-level) walk n = (nq, ..., nz,) is then given as

L—-1
n _ 70 1 L—-1 L _ l L
R" = TnoﬂllTnl,nQ e TnL—lynL’rnL - (H Tnz,nz+1> Tnpo (16)
=0

where r' € RN is such that 7! denotes the sum of relevances over all walks going through the neuron n at layer /.
Collecting the relevances of all walks starting from the input node ny amounts to

NO N2 N

0o _ 0 1 L—1 L
Tng = Z Z Z Tno,annhnz Tanl;nLrnL' 17
anl

n1:1 n2:1
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This summation can be decomposed as

N N2 N
0 _ 2: 0 Z 1 Z L1 L
Tneg = Tno,nl Tnl,nz e T"L—lanLrnL7 (18)
n1:1 ’I’L2:1 nL:1
L—1
=Tnp_4
1
rnl
giving a sum-product message passing:
lo_ ! I+1 I _ ol il
T, = E T miss "rss or r="Tr1r"". (19)

Nni4+1

This coincides with the standard LRP (Bach et al., 2015).

D. GNN-LRP as Message Passing

We can drive the original GNN-LRP rule as message passing, giving another proof of the following theorem:

Theorem 5 (Schnake et al., 2021) Assume that the GNN-LRP rule (2) is applied for | = L — 1,...,0 with the initial
(0

message L) = plme, Then, #m) = plmie i € {0,... L}, and R™ = S0 10,

n=1"n

(Proof) The required quantity is decomposed as

N
R™ = 3 0m (20)

n
n=1

where

roam :T07mo,m1 T17m1am2 L TL—l,mtherLmlL . 1)

=TL71,m,L,1:L

=rb™m1:L

This decomposition gives the LRP rule (2) as a sum-product message passing with the propagated relevance ¥(-:") = ylmu:r
and proves the theorem. |

E. Propagation Rules of Table 2 for GCNs with the Notation in Schnake et al. (2021)

To bring further intuition on the proposed propagation rules, we rewrite all propagation rules of Table 2 in a notation similar
to that of the original paper on GNN-LRP (Schnake et al., 2021). Note that the defined notation here applies only in this
appendix. We show the propagation rules specifically for the Graph Convolution Networks (Kipf & Welling, 2017), with
network connectivity encoded in the matrix A, weights at a given layer stored in a matrix W, and h% denoting the activation
of neuron a in node J. We denote by ... JK L ... node indices in successive layers and jointly forming a walk. We denote
by a and b two neurons indices (within their corresponding nodes) in successive layers. With this notation, the GCN equation
for a given layer can be written as

vK,b : hb — max (0, Z )\Jthwab).
J,a

Furthermore, we denote by S the set of nodes composing the subgraph of interest S. It can also be interpreted as a
coarse-graining of the member nodes into a new single node denoted by S. We denote by > ;- the sum over all nodes in the
given layer, and ), the sum over all neuron indices of a node in the given layer. The propagation rules can then be written



Efficient Computation of Higher-order Subgraph Attribution via Message Passing

as follows:
\ e he T
Rj = JK—Jw“bTRgo (LRP for general FFNN)
K.,b ZJ,a AsghGwg,
\ 7w h T
n = Y R (GNN-LRP)
b ZJ,a Asxhjwe,
A ho T
Riss.. = Z . N (sGNN-LRP)
€S,b ZJ’(L /\JKh]wab
Arh%
RYSs. = Z H(KES)M—J%RZ}’%W. (Generalized sGNN-LRP)
K,b ZJ,a Asghjwe,

F. Forward-hook Trick for Walk Relevance by GNN-LRP

The forward-hook trick (Schnake et al., 2021; Samek et al., 2021) for computing the relevance of a walk works as follows.
We implement the forward combine step in Eq.(1) as
PO« zOWOT,
QY « PV [a(Z(l)W(l)) % P(l)]cst., (22)
HY « Q¥ o MO + [Q(l)]cst. o1 - M(l)),
where PO, M® e RM*N "and ® and @ denote the entry-wise multiplication and division, respectively. The operator
[‘]cst . detaches the quantity to which it applies from the gradient computation. Schnake et al. (2021) have shown that, if the

mask matrices {M(l)} are set such that the column corresponding to the node m; specified by the walk is all-one vector, and
the other columns are all-zero vectors, the relevance of a walk is obtained by

R™ = <Autograd(y, H(O)),M(O)H(O)> ,

where (-, -) denotes the Frobenius inner product.

G. Proof of Theorem 2 and Theorem 4

We prove Theorem 4, which covers Theorem 2 as a special case for o = 0. The adapted forward computation of the model
gives
l _ (-1
Zﬁwz,nzfl - Z A?m 1,M Hmz 1)7nz 17

mi_1€G
l ( Ht
P7(713,m = Z Zm)zﬂlz 1W7Sz 1,717
ny—1
(23)
l l
p(an,l Zﬁl)l,nzflwéz)fhm)

PT(Vil),'ILZ

l
le ny _Pr(nl) ny
cst.

HO | =admgoQl) 4 (1 - q1mgs)) [le m] o
Then the gradient is

l
Hi)

)
aHmlfﬂl ]l(ml¢$)A l ,
Pl

m W(l)T
oY e

ny—1,n

(24)

where we used Hf,?tm =p(>n,_, Zﬁ,gymfl W,SZZL n,)- By using the transition coefficient

-1 -1
Aml,l,mlH7(n1 1)774 1WT(Ll 1)2l
S At HY W T

m’.n' " n' in

l—=1,my_1,m _
nyg—1,Mn1

(25)
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and Eq.(23), the gradient (24) can be written as

l 0t -1 l
aH’r(nz,nl ]l(mlis) A7nl 1,7nlW7(lL) 1 an7(nl71),nl71 Hr(nz,nl
-1 l -1
aHT(nl—l)vnl—l PT("? ny HT(nl—l)vnl—l
T, (26)
l
H?S‘Lz,nl

=t gS)pl=1,mi_1,my
ni—1,M1

-1 :
H"gnl — 1)7nl -1
By applying the chain rule, we have the gradient of the output layer with respect to the input layer as

OHE) . OHE) OHy.,
L,nL Z Z LML My,n1 Q7)

o = (L-1) RPN
aHmU’"O My, ML —1 N1, NL—1 a];ImLfl’anl aHZVIO,nO

Substituting Eq.(26) into Eq.(27) gives

OH. o) 7 L m m m H T(’L)
7703 o Z Z iz Hmigs) H Trl” 11,nlz 1,1 (LOL)JLL . (28)
8Hm07"0 M1, ML —1 N1,y ML —1 =1 Hmoﬂlo

For the readout function, if we modify it according to the forward-hook trick described in Appendix B in Samek et al. (2021),
we can obtain the relevance of the L-th layer of GNN as

9y
Lmyp __ L
et = ) L (29)
8HmL,nL
Then, we have
el SIID ME L) | R e
— Q= 1 (my T ,myp_1,my - -ML,nL
O n 17“ 0 L
OHfna o ma T H e OHi ),
H(L) rLmr
= Z Z >l leS)HTl 1my_y,my "ML, " np (30)
«
ni—1,n 0 L
1,700 ,MML M1, M . l Hr(ng,no H7(nL);nL
Z ¢5) -1, ’I"L’mL
_ (m m ,m nr,
- Yy ashoee [
1,700 ,MML M1, 3N mo,Nno
Multiplying the gradient with the masked initial activation and summing them up gives the final inner product:
dy
1(mo¢S 0 _ 1(m; ¢S —1,m ,m Lm
Z al(moé )Hr(ng,noaH(o) — Z a0 Hmi¢S) Z HTm =1, Lyme
mo,no mo,no mo,--r , My, -,nr l=1 (31)

— Zazl 0 ]l(mLQS)Rm _ Ri,
which proves the theorem. O

H. Details of Datasets and GNN Models used in Experiments
H.1. BA2-Motif

BA-2motif (Luo et al., 2020) is a synthetic dataset of graphs that can be classified into two classes according to the different
motifs. For each sample graph, a base graph is generated by the Barabési-Albert (BA) model, and then one of two motifs is
connected to it. Because this dataset is synthesized, the ground truth about which nodes build the motif is available.
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Table 4: Statistics of the 5 datasets used in experiments.

BA-2MOTIF MUTAG MUTAGENICITY REDDIT-BINARY GRAPH-SST2

# OF EDGES (AVG) 25.48 19.79 17.79 497.75 19.40
# OF NODES (AVG) 25.00 17.93 16.90 429.63 10.20
# OF GRAPHS 1000 188 4337 2000 70042

We trained GIN models with 2,3,4,5,6,7 layers, and all models has the same GIN block, which is a 2-layer MLP. The input
feature dimension is 1 and the output feature dimension in the MLP blocks N = 20, VI = 1,---, L — 1. The activation
function is ReLU. We employed the SGD optimizer with a decreasing learning rate v = 0.00001/(1.0 + (epoch/epochs)
for 10000, 10000, 5000, 1000, 1000, 1000 epochs, respectively. We downloaded the dataset from the repository of Schnake
et al. (2021), and the dataset includes 1000 samples with the first 500 samples from positive class and the last 500 samples
from negative class. Because all samples are randomly generated, it is unnecessary to sample randomly and we used the
0-400 and 500-900 as training dataset and the rest as testing dataset. The test accuracy of the three models are 98%, 99.50%,
100%, 100%, 100%, 100%, respectively.

H.2. MUTAG

MUTAG (Debnath et al., 1991) is a datasets of molecules. Every sample graph includes atoms as nodes and chemical links
as edges. The molecules are labeled as mutagenic or non-mutagenic. The node feature is the node type (atom), which is
represented as a one-hot vector.

The 3-layered GIN model has in all layers a 2-layer MLP as the GIN blocks. The input feature dimension is 7, which is
one-hot vectors denoting different atoms. The output dimensions in the MLP blocks are 128. We used 108 samples with half
positive and half negative as training dataset, and the rest samples build the testing dataset. We trained the model with SGD
optimizer for 1500 epochs, and the learning rate v = 0.0005/(1.0 + (epoch/epochs). The test accuracy is 85.00%.

H.3. Mutagenicity

Mutagenicity (Kazius et al., 2005b) is another dataset for chemical molecules, which is larger than MUTAG and contains
much more variety of mutagenic molecules with different types of toxic groups.

The model setting is the same as for MUTAG, except the input feature dimension increased to 13 as there are more atoms in
this dataset. We used 3096 samples with half positive and half negative as training dataset, and the rest as testing dataset.
We trained the model with Adam optimizer for 25 epochs, and the initial learning rate v = 0.00005. The test accuracy is
83.16%.

H.4. REDDIT-BINARY

REDDIT-BINARY (Yanardag & Vishwanathan, 2015) is a social network dataset, and each graphs stands for a community,
with nodes being users and edges denoting that there is at least one response to the comments between the two users. The
graphs are classified into two classes according to which kind of community the users build, i.e., question/answer-based
community or discussion-based community. The dataset contains large graphs (> 400 nodes in average), and no node
feature is provided.

Our model for this dataset is 5-layer GIN, with 2-layer MLP as GIN blocks. The input feature dimension is 1 and the output
dimensions of the GIN blocks are 64. The training dataset has 1600 samples of half positive and half negative, and the rest
400 samples build the testing dataset. We trained the model with Adam optimizer for 500 epochs and the initial learning rate
~ = 0.00005. The test accuracy is 82.50%.

H.5. Graph-SST2

Graph-SST2 (Yuan et al., 2020b) is a dataset of texts labeled in two sentiment classes. The text are transformed into parse
tree graphs with 768-dimensional embedded vectors of the words for the initial node features.

The model is built with a node feature embedding part and a following 3-layer GCN. The input feature dimension is 768,
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Algorithm 1 sGNN-LRP, a = 0

Input: graph G, subgraph S, # of model layers L.
Output: subgraph relevance score R
Initialize mask matrix M s, such that M5 is valued 1 on the indices of nodes inside S and 0 else.
for! =1to L do
ZW — AH(-D
PO — zOWO?T
QY PO [p(z(l)w(l)) % P(l)]cst.
H(l) — Q(l) © MS + [Q(l)}cst. © (]- - MS)
end for
y + readout(H(")) with readout function modified according to LRP forward-hook trick.

RS = ZmOES <Autograd(y, H&?&L H522J>

and in the middle layer of GCN the output dimension is 20. We downloaded the dataset from Yuan et al. (2020b) and used
their dataset split. We trained the model with Adam optimizer for 50 epochs, and the initial learning rate v = 0.0001. The
test accuracy is 89.40%.

L. Details of sGNN-LRP Implementation

Algorithm 1 and Algorithm 2, respectively, summarize the procedures of SGNN-LRP (with the Forward-hook trick) for the
original subgraph attribution (o = 0) and for the generalized subgraph attribution (« € (0, 1]).

J. Details of the Model Activation and Pruning Experiments

Algorithm 3 and Algorithm 4, respectively, describe the detailed procedures of model activation and pruning experiments
(node ordering and its evaluation).

K. Subgraph Attribution using GNNExplainer

In Section 7.2.3, we applied the GNNExplainer to compute the subgraph relevance according to the definition of generalized
subgraph relevance definition (8). GNN-Explainer attributes the edges, and we consider an edge as a one-step walk which
contains only two nodes. According to (8), the subgraph relevance is the sum of all edges that have at least one node inside
the subgraph, with the partly-outside edge (one node inside and one node outside the subgraph) deweighted with «;, i.e.,

0 ifm1¢S/\m2§ZS,
RgNN—Exp = Z gg(m)RgNN—Expv gam)=<Sa ifm ¢SVmy ¢S, (32)
meg 1  otherwise,

where m € {1,..., M}? denotes edges between nodes m; and ms.
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Algorithm 2 sGNN-LRP, « € (0, 1]

Input: graph G, subgraph S, discount factor «, # of model layers L.
Output: subgraph relevance score R
Initialize mask vector M3, such that M¢ is valued 1 on the indices of nodes inside S and « else.
for! =1to L do
ZO «— AH(-D
PO  zOWO?T
QY PO [p(z(l)w(l)) % P(l)]cst.
HO « QW oM + Q. © (1 - M)
end for
y + readout(H(")) with readout function modified according to LRP forward-hook trick.
Ri=3,.cc <Autograd(y, Hgg?)), H£23>
Set mask vector M<, such that M is valued 0 on the indices of nodes inside S and « else.
for [ =1to Ldo
7O « AH(-D
PO — zOwWwO?T
QY PO [p(z(l)w(l)) % P(l)]cst.
HO « QW oM + Qe © (1 - M)
end for
y + readout(H(")) with readout function modified according to LRP forward-hook trick.

R2 = Zmo cg <AUtOgrad(y7 Hgg?))a ng?())>
RS =Ry — Ry

Algorithm 3 Model Activation Task

Input: GNN model f(-), input graph G

Output: AUAC

Find the node sequence [m(l), ey m(M)] such that vail RIm™m P} is maximized.
Initialize AUAC = 0.

S=0
fori=1,---,|G| do
S=8Su{m}
AUAC = AUAC + f(S)
end for

AUAC = AUAC/|G|

Algorithm 4 Model Pruning Task

Input: GNN model f(-), input graph G

Output: AUPC

Find the node sequence [m®"), ..., m®)] such that 3" | |[RI\m™om @Y _ RE| s minimized.
Initialize AUPC = 0.

S=0
for:=1,--- ,M do
S=8uU{m
AUPC = AUPC + [ f(G\S) — f(G)|
end for

AUPC = AUPC/|G]




