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Abstract

With the success of Transformers in the com-
puter vision field, the automated design of vi-
sion Transformers has attracted significant atten-
tion. Recently, MetaFormer found that simple
average pooling can achieve impressive perfor-
mance, which naturally raises the question of
how to design a search space to search diverse
and high-performance Transformer-like architec-
tures. By revisiting typical search spaces, we
design micro-meso-macro space to search for
Transformer-like architectures, namely Burger-
Former. Micro, meso, and macro correspond
to the granularity levels of operation, block and
stage, respectively. At the microscopic level, we
enrich the atomic operations to include various
normalizations, activation functions, and basic
operations (e.g., multi-head self attention, aver-
age pooling). At the mesoscopic level, a ham-
burger structure is searched out as the basic Burg-
erFormer block. At the macroscopic level, we
search for the depth, width, and expansion ratio
of the network based on the multi-stage architec-
ture. Meanwhile, we propose a hybrid sampling
method for effectively training the supernet. Ex-
perimental results demonstrate that the searched
BurgerFormer architectures achieve comparable
even superior performance compared with current
state-of-the-art Transformers on the ImageNet and
COCO datasets. The codes can be available at
https://github.com/xingxing-123/BurgerFormer.
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1. Introduction
Since the emergence of landmark works such as Vision
Transformer (ViT) (Dosovitskiy et al., 2021), DeiT (Tou-
vron et al., 2021b) and Swin (Liu et al., 2021), Transformers
have made encouraging performance advances in the Com-
puter Vision (CV) field such as recognition, detection, and
segmentation. As a result, combining Transformer and Neu-
ral Architecture Search (NAS) (Chen et al., 2021b;a) has
also gained increasing attention. Recently, MetaFormer (Yu
et al., 2022) leverages simple average pooling to achieve
impressive performance, which naturally raises the question
of how to design a search space to search high-performance
Transformer-like architectures.

Recalling the development of NAS, the design of search
space plays a key role. In the early stage, the NAS-RL
(Zoph & Le, 2017) search space is proposed to find out
optimal hyper-parameters of the entire network. Afterwards,
NASNet (Zoph et al., 2018) proposes a search space con-
taining 13 operations for searching cells and then stacks
cells into a network. The search space is further compacted
to 8 operations in DARTS (Liu et al., 2019). ProxylessNAS
(Cai et al., 2019) and FBNet (Wu et al., 2019) search spaces
borrow from the block design of MobileNet (Sandler et al.,
2018), which means the search spaces contain various MB-
Conv blocks. Similarly, in Transformer NAS, the search
space of AutoFormer (Chen et al., 2021b) is borrowed from
the block design of Transformer.

As shown in Fig. 1, we classify the typical search space de-
sign according to the granularity of operations, blocks, and
stages from the micro, meso, and macro perspectives. In the
NASNet and DARTS search spaces, diverse and rich atomic
operations belong to micro design. The ProxylessNAS,
FBNet, AutoFormer, and ViT-ResNAS (Liao et al., 2021)
search spaces contain MobileNet or Transformer blocks
which belong to meso design. In the RegNet (Ilija et al.,
2020), FBNet, AutoFormer and ViT-ResNAS search spaces,
the search for hyper-parameters such as depth and width of
the stage belongs to macro design.

In this paper, we aim to design a search space at the micro-
meso-macro level to search for more efficient Transformer-
like architectures. At the microscopic level, we use richer
atomic operations, including various normalizations, acti-
vation functions, and basic operations (e.g., multi-head self
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Figure 1. A taxonomy of search space designs. Micro, Meso, and Macro correspond to operation, block, and stage granularity, respectively.

attention, average pooling). At the mesoscopic level, we
design a combined Norm-Op-Norm-Act operation struc-
ture and propose the hamburger structure to search for di-
verse Transformer-like blocks. At the macroscopic level,
we search for the depth, width, and expansion ratio based
on the multi-stage architecture.

Our major contributions are as follows:

1. We propose a micro-meso-macro search space for
the first time and propose a Norm-Op-Norm-Act and
Hamburger structure to offer more diverse operations and
block design. Based on the proposed search space, high-
performance Transformer-like architecture BurgerFormer
can be searched.

2. We utilized One-Shot NAS for searching and propose a
hybrid sampling method to effectively train the supernet.

3. Experiments on the ImageNet and COCO datasets show
that the searched BurgerFormers match even outperform
state-of-the-art Transformers.

2. Related Work
Neural Architecture Search. NAS is designed to auto-
matically search for efficient neural architectures to reduce
the cost of manual trial and error. Early NAS utilized re-
inforcement learning (Zoph & Le, 2017) and evolutionary
algorithms (Real et al., 2019) to search for convolutional
neural network and recurrent neural network. These meth-
ods had an immense resource overhead because hundreds
of individual networks needed to be trained from scratch,
resulting in thousands of GPU days even on small-scale
datasets. Subsequently, ENAS (Pham et al., 2018) proposed
the weight sharing strategy, which reduced the search time
to a few GPU days as only one supernet needs to be trained.
Based on the strategy, differentiable NAS methods (Liu
et al., 2019; Chu et al., 2020; Xu et al., 2020; Chen et al.,
2019) make the search space continuous and adopt architec-
ture parameters to select operations. Single-Path methods

(Guo et al., 2020; Chu et al., 2021; Yu et al., 2020) further
reduce the resource consumption by sampling and train-
ing single-path sub-networks from the supernet, and then
searching sub-networks based on validation set accuracy.

Vision Transformer. Dosovitskiy et al (Dosovitskiy et al.,
2021) introduced Transformer to the computer vision field,
which achieved competitive performance compared to Con-
volutional Neural Networks (CNNs). Subsequently, DeiT
(Touvron et al., 2021b) proposed data-efficient ViT and a
teacher-student distillation strategy. Swin-Transformer (Liu
et al., 2021) and PVT (Wang et al., 2021) used multi-stage
strategy to successfully apply Transformer to different vi-
sion tasks such as detection and segmentation. TNT (Han
et al., 2021) proposed that attention to finer-grained patches
can effectively improve performance. ConViT (d’Ascoli
et al., 2021) introduced a soft inductive bias of CNN into
ViT to bridge the gap between CNN and Transformer. CeiT
(Yuan et al., 2021) combined the benefits of CNN in extract-
ing low-level features and locality with the advantage of
Transformer in extracting long-range dependencies. MLP-
Mixer (Tolstikhin et al., 2021) and ResMLP (Touvron et al.,
2021a) used MLP instead of the self-attention module, still
achieving comparable results. Moreover, MetaFormer (Yu
et al., 2022) discovered that using the average pooling op-
eration instead of the self-attention module also achieved
promising performance.

Vision Transformer NAS. AutoFormer (Chen et al., 2021b)
is the first algorithm to automatically search ViT for embed-
ding dimension, depth, MLP ratio, and the number of heads.
ViTAS (Su et al., 2021) searched ViT models based on the
weight-sharing mechanism. GLiT (Chen et al., 2021a) in-
troduced locality modules into the search space, proposed
a hierarchical search strategy, and searched ViT from both
global and local levels. ViT-ResNAS (Liao et al., 2021)
proposed residual spatial reduction and multi-architectural
sampling techniques for searching a multi-stage ViT archi-
tecture. (Minghao et al., 2021) proposed S3 space based
on ViT and Swin, and leveraged weight sharing and E-T



Searching for BurgerFormer with Micro-Meso-Macro Space Design

Basic Operation

Normalization

Activation ReLU6 GELU SiLU Skip

BN GN LN Skip

Dwise 3x3 Conv 1x1

MHSA Spatial MLP Pooling

Skip

Conv 1x1

Conv 1x1
Norm-Op-Norm-Act

Norm-Op-Norm-Act

Norm-Op-Norm-Act

Act

Norm

Op

Norm

depth, width, ratio

Meso Search SpaceMicro Seach Space

cl
as

si
fie

r

Stage 1

Macro Search Space

depth, width, ratio

Stage 2

Pa
tc

h 
Em

be
dd

in
g

depth, width, ratio

Stage 3

depth, width, ratio

Stage 4

Hamburger
Block


Pa
tc

h 
Em

be
dd

in
g

Pa
tc

h 
Em

be
dd

in
g

Pa
tc

h 
Em

be
dd

in
g

Figure 2. The micro-meso-macro search space. The top left is the micro search space, which contains candidate activation functions,
normalizations and basic operations. Skip indicates no data processing. The top right is the meso search space, which includes the
Hamburger and the Norm-Op-Norm-Act structure. Norm, Op, and Act represent normalization, basic operation, and activation function,
respectively. The lower part is the macro search space, which produces a multi-stage architecture.

Error to search the architecture and search space. NASViT
(Chengyue et al., 2022) designed a hybrid space based on
MBConv and Transformer blocks and developed ViTs from
200M to 800M FLOPs. These works focus on the design of
the block or stage granularity, lacking the diversity of block
structures and a comprehensive consideration of all three
granularities.

3. Search Space Design
In this section, we will first introduce the micro-meso-macro
search space design of BurgerFormer in detail. Then we
will briefly discuss the size of the proposed search space.

3.1. Micro Search Space Design

The micro search space corresponds to the operation gran-
ularity. Rich candidate operations facilitate the search for
different mesoscopic structures. For example, eight opera-
tions can build about 109 normal or reduction cells in the
DARTS search space. To improve the richness of operations,
our micro search space contains varied normalizations, acti-
vation functions, and basic operations.

Normalization and Activation Function. Normalization
and activation are two types of atomic operations. Normal-
ization can accelerate training and improve the generaliza-
tion, while activation functions can enhance the nonlinear
fitting ability of the network. Proper selection of the two
types of atomic operations can improve performance. Previ-
ous NAS methods directly utilize fixed combinations of nor-
malization and activation, e.g., Conv-BN-ReLU. However,
existing Transformers and CNNs already employ different
normalization and activation functions, which inspires us
to search varied normalization and activation functions. As
shown in Fig. 2 , our micro search space includes layer
normalization (LN) (Ba et al., 2016), batch normalization
(BN) (Ioffe & Szegedy, 2015), group normalization (GN)
(Wu & He, 2018), activation functions of ReLU6 (Agarap,
2018), GELU (Hendrycks & Gimpel, 2016), and SiLU (Ra-
machandran et al., 2018).

Basic Operation. Basic operations refer to micro oper-
ations other than normalizations and activation functions.
Following Transformer-like architectures, the basic opera-
tions of BurgerFormer contain Multi-Head Self Attention
(MHSA) (Dosovitskiy et al., 2021), Spatial MLP (Touvron
et al., 2021a), and Pooling (Yu et al., 2022), where the pool-
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Figure 3. Transformer block vs. Hamburger block.

ing size is 3. In addition, we extend the 3x3 depthwise
convolution (Dwise 3x3) and 1x1 convolution (Conv 1x1) to
introduce more locality to the network. Specifically, MHSA,
Spatial MLP, and Pooling are formulated as follows:

MHSA(Y ) = Concat(head1, . . . , headh)W
o,

headi = Softmax(
(YWQ

i )(YWK
i )T√

di
)YWV

i ,
(1)

Spatial MLP (Y ) = (Y TW )T + b, (2)

Pooling(Xi,j,k) =
1

9

3∑
p,q=1

Xi,j+p−2,k+q−2−Xi,j,k, (3)

where WQ,WK ,WV ,W o ∈ Rc×c, and W ∈ Rwh×wh

are the weights, X ∈ Rc×w×h are 2D feature maps, and
Y ∈ Rn×d are 1D tokens, respectively. c, w, h, n, d rep-
resent channel, width, height, number of tokens, and em-
bedding dimension, respectively. Following DeiT (Touvron
et al., 2021b) source code, the token dimension in each head
is R(c/head), so W o ∈ Rhead∗(c/head)×c = Rc×c. Please
note that the Pooling operator is from MetaFormer, where
the subtraction is only used as a preprocessing method for
the subsequent residual connection. In practice, pooling
and convolutions require 2D feature maps, while MHSA
and Spatial MLP require 1D tokens, so two data formats
need to be converted. For the conversion of a 2D feature
map to a 1D token, we first flatten the spatial dimension of
X ∈ Rc×w×h to obtain X ∈ Rc×(wh), then transpose X to
get Y ∈ R(wh)×c = Rn×d. Conversion of a 1D token to a
2D feature map is an inverse process.

3.2. Meso Search Space Design

Good blocks in the meso search space are halfway to suc-
cessfully search for high-performance macro architecture.
As shown in Fig. 3, we design the hamburger block based
on three modifications to the classical Transformer block.
Firstly, the combination of LN and MHSA is abstracted as
a Norm-Op-Norm-Act structure for search, where Norm,

Stage Depth Width Ratio

1 {1, 2, 3, 4} {32, 64, 96} {1, 2, 4, 6}
2 {1, 2, 3, 4} {64, 96, 128} {1, 2, 4, 6}

3
{1, 2, 3, 4, {128, 192, 256, 320} {1, 2, 4, 6}
5, 6, 7, 8}

4 {1, 2, 3, 4} {128, 256, 384, 512} {1, 2, 4, 6}

Table 1. Macro Search Space. Depth is the number of blocks per
stage. Width refers to the channels of 2D feature maps or the
embedding dimension of 1D tokens. Ratio is the expansion ratio
between the two 1x1 convolutions.

Act, and Op represent normalization, activation function,
and basic operation, respectively. Please note that both the
pre-Op normalization and the post-Op normalization are
determined by searching, so the two normalizations can be
different. Secondly, on the one hand, adding convolution
to feed-forward network (FFN) can improve performance
(Yuan et al., 2021), on the other hand, we observe that both
of the MobileNet and Transformer blocks have inverse bot-
tleneck structures. Therefore, we split the FFN into two 1x1
convolutions and add Norm-Op-Norm-Act between them.
Finally, we symmetrically add Norm-Op-Norm-Act before
and after the FFN to search for more diverse meso blocks.
Since the block structure resembles a hamburger, we call
it hamburger block. Meanwhile, we vividly call the three
Norm-Op-Norm-Act structures from input to output as the
first bread, the meat, and the second bread.

3.3. Macro Search Space Design

The macro search space corresponds to the design of the
stage granularity. Referring from PVT (Wang et al., 2021)
and Swin (Liu et al., 2021), we design the multi-stage search
space for searching optimal depth, width, and expansion
ratio, which mean the number of hamburger blocks, the
channels of 2D feature map or the embedding dimension
of 1D tokens, and the expansion ratio between the two 1x1
convolutions, respectively. The search ranges of these hyper-
parameters are shown in Table 1.

3.4. Search Space Size

In order to reduce resource consumption, we have adjusted
the search space as follows. First, we did not search MHSA
and Spatial MLP in the first and the second stages, because
the complexity of these two operations is quadratic to hw,
which is not suitable for use in large resolution. Second, the
basic operations in the meat part of the burger contain only
skip and 3x3 depthwise convolution. Third, we search for
hamburger blocks for each stage. There are about 4.5×1028

architectures in the search space. The range of parameters
is from 0.5M to 41.6M , and the range of FLOPs is from
0.2G to 7.4G.
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Figure 4. Hybrid sampling method. Meso sampling is sampling one hamburger block for each stage. Macro sampling is sampling the
minimum, maximum, and random sub-networks in the macro search space, whose blocks are determined by the meso sampling. The
supernet weights are updated with the accumulated gradients from the sampled three sub-networks.

4. One-Shot NAS
One-Shot NAS is a search strategy based on a weight shar-
ing mechanism. The strategy only needs to train one super-
net N and then evaluates the accuracy of the sub-networks
A that inherit supernet weights, which greatly reduces the
search cost compared with training thousands of stand-alone
networks. For keeping consistency and reducing memory
usage, the supernet is usually optimized by uniformly sam-
pling the sub-networks:

W ∗
A = argmin

A
Ltrain(N(A,W )),

α∗ = argmax
a∈A

Accval(N(α,W ∗)),

s.t. Resource(N(α,Wα∗)) ≤ C,

(4)

where Ltrain is the training loss, Accval is the validation
accuracy, and C is the resource constriant (e.g., FLOPs).

4.1. Supernet Training with Hybrid Sampling

In One-Shot NAS, it is common practice to sample a sub-
network (SPOS) (Guo et al., 2020) in each iteration and train
the supernet. However, SPOS suffers from low-accuracy
sub-networks in our search space. Sandwich sampling (Yu
et al., 2020) can improve the accuracy of sub-networks, but
we observe that the maximum model in the search space
has poor performance and slow convergence speed. The
convergence ability of the maximum model is usually worse
than the minimum model, so it is not suitable to use the
sandwich sampling directly. More details can be referred
to Appendix A. In order to better train the supernet, we
propose a hybrid sampling method that combines SPOS and
sandwich sampling.

As shown in Fig. 4, hybrid sampling consists of two steps,

i.e., meso sampling and macro sampling. In the meso sam-
pling step, for each Norm-Op-Norm-Act structure, we first
randomly select normalization, activation, and basic op-
eration from the candidates, then randomly select pre-Op
normalization and post-Op normalization. Note that nor-
malization and activation will be set to skip when the basic
operation is skip, and the residual connections next to the
Norm-Op-Norm-Act structure will be removed in first and
second bread. After three independent samplings, a spe-
cific hamburger block is determined per stage. In the macro
sampling step, we randomly select one hyper-parameter
from the candidate depth, width, and expansion ratio for
each stage. In order to better train the supernet, we addi-
tionally sample the maximum macro architecture and the
minimum macro architecture of each stage after confirming
the hamburger block. The three sampled paths are trained
separately, and then the gradients are accumulated to update
the supernet weights.

4.2. Evolutionary Search

After training supernet, we utilize an evolutionary algorithm
to search sub-networks by evaluating performance with the
inherited weights from the supernet. During evolutionary
iteration, we maintain the population of sub-networks. In
the first iteration, P0 sub-networks are randomly selected.
In subsequent iterations, parent sub-networks are randomly
selected from the sub-network population to generate child
sub-networks by crossover and mutation. Crossover is the
exchange of architecture parameters with a certain proba-
bility Pc, and mutation randomly changes the architecture
parameters with a certain probability Pm. During search,
sub-networks that satisfy the resource constraints will be
selected. The whole process will be repeated T iterations.
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Model Params. (M) FLOPs (G) Top-1 acc. (%) Top-5 acc. (%) Design Type

DeiT-Ti (Touvron et al., 2021b) 6 1.3 72.2 91.1 Manual
TNT-Ti (Han et al., 2021) 6 1.4 73.9 - Manual
CeiT-T (Yuan et al., 2021) 6 1.2 76.4 - Manual

AutoFormer-tiny (Chen et al., 2021b) 6 1.3 74.7 92.6 Auto
GLiT-Tiny (Chen et al., 2021a) 7 1.4 76.3 91.1 Auto
ViTAS-DeiT-A (Su et al., 2021) 7 1.4 75.6 92.5 Auto

BurgerFormer-Tiny 10 1.0 78.0 93.7 Auto

ConVi-Ti+ (d’Ascoli et al., 2021) 10 2.0 76.7 93.6 Manual
PVT-Tiny (Wang et al., 2021) 13 1.9 75.1 - Manual

PoolFormer-S12 (Yu et al., 2022) 12 2.0 77.2 Manual
BurgerFormer-Small 14 2.1 80.4 95.0 Auto

Deit-S (Touvron et al., 2021b) 22 4.7 79.9 - Manual
Swin-T (Liu et al., 2021) 29 4.5 81.3 - Manual

CvT-13 (Haiping et al., 2021) 20 4.5 81.6 - Manual
TNT-S (Han et al., 2021) 24 5.2 81.5 95.7 Manual

PVT-Small (Wang et al., 2021) 25 3.8 79.8 - Manual
ViL-Small (Pengchuan et al., 2021) 25 4.9 82.0 - Manual

ResMLP-S12 (Touvron et al., 2021a) 31 6.0 79.4 - Manual
Twins-PCPVT-S (Xiangxiang et al., 2021) 24 3.8 81.2 - Manual

PoolFormer-S36 (Yu et al., 2022) 31 5.2 81.4 - Manual
RegNetY-4G (Ilija et al., 2020) 21 4.0 80.0 - Auto

AutoFormer-small (Chen et al., 2021b) 23 5.1 81.7 - Auto
GLiT-Small (Chen et al., 2021a) 25 4.4 80.5 - Auto
ViTAS-DeiT-B (Su et al., 2021) 23 4.9 80.2 95.1 Auto

S3-T (Minghao et al., 2021) 28 4.7 82.1 95.8 Auto
ViT-ResNAS-Medium (Liao et al., 2021) 97 4.5 82.4 - Auto

BurgerFormer-Base 26 3.9 82.7 96.2 Auto

Swin-S (Liu et al., 2021) 50 8.7 83.0 - Manual
Twins-PCPVT-B (Xiangxiang et al., 2021) 44 6.4 82.7 - Manual

CvT-21 (Haiping et al., 2021) 32 7.1 82.5 - Manual
BoTNet-S1-59 (A. et al., 2021) 34 7.3 81.7 - Manual
RegNetY-8G (Ilija et al., 2020) 39 8.0 81.7 - Auto

BossNet-T1 (Changlin et al., 2021) - 7.9 82.2 95.8 Auto
BurgerFormer-Large 36 6.5 83.0 96.8 Auto

Table 2. Comparison with state-of-the-art models on ImageNet. ”Param.” is the volume of parameters. ”acc.” is accuracy. The gray color
highlights the searched BurgerFormer architectures. We group different models according to their FLOPs.
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Figure 5. Comparison between BurgerFormer and efficient vision
transformers, in terms of ImageNet Top-1 over FLOPs.

5. Experiments
In this section, we first show the searched architectures and
compare them with state-of-the-art transformers. In addition,
we transfer the searched Burgerformer to the COCO dataset
to verify its transferability. We then conduct an ablation
study of search methods and hamburger blocks. Finally, the
searched architectures and visualization are discussed.

5.1. Results on ImageNet

Searching Settings. ImageNet (Olga et al., 2015) con-
tains 1.28M training images and 50, 000 validation images.
We split 25, 000 images from the training set as the valida-
tion set for searching. In the supernet training phase, we
trained the supernet using AdamW (Ilya & Frank, 2019)
optimizer with learning rate 1e− 3 and weight decay 0.05.
we turned off the normalization statistics because of varying
sampled architectures. The data augmentation and other
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BackBone RetinaNet 1x
Param. (M) AP b AP b

50 AP b
75 APS APM APL

ResNet50 (He et al., 2016) 37.7 36.3 55.3 38.6 19.3 40.0 48.8
PVT-Small (Wang et al., 2021) 34.2 40.4 61.3 43.0 25.0 42.9 55.7

PoolFormer-S24 (Yu et al., 2022) 31.1 38.9 59.7 41.3 23.3 42.1 51.8
BurgerFormer-Base 35.9 41.2 61.3 43.9 24.2 44.4 55.4

BackBone Mask R-CNN 1x
Param. (M) AP b AP b

50 AP b
75 APM APM

50 APM
75

ResNet50 (He et al., 2016) 44.2 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small (Wang et al., 2021) 44.1 40.4 62.9 43.8 37.8 60.1 40.3

PoolFormer-S24 (Yu et al., 2022) 41.0 40.1 62.2 43.4 37.0 59.1 36.9
Swin-T (Liu et al., 2021) 48.0 43.7 66.6 47.7 39.8 63.3 42.7

BurgerFormer-Base 45.9 44.0 65.6 48.1 40.2 62.7 43.4

Table 3. Comparison with state-of-the-art models on COCO.

techniques are essentially the same as for retraining, except
that stochastic depth is not used. The epochs are 120 and the
warmup epochs are 10. Experiments are performed on eight
V100s with a batch size of 32 per GPU. In the searching
phase, our settings follow (Liao et al., 2021). The initial
population size P0 is 500 and the number of iterations T is
20, The number of parents and child networks are 75 and
150, respectively. The crossover and mutation probability
is 0.3. We select the Top-5 architectures and validate them
on ImageNet-100 (Yonglong et al., 2020), and then take the
optimal architecture and retrain it on ImageNet.

Retraining Settings. Our implementations follow DeiT
(Touvron et al., 2021b) and MetaFormer (Yu et al., 2022).
Models are optimized using AdamW with learning rate
1e − 3 and weight decay 0.05 and batch size 1, 024. Data
augmentations include MixUp (Hongyi et al., 2018), Cut-
Mix (Sangdoo et al., 2019), CutOut (Zhun et al., 2020)
and RandAugment (Ekin Dogus et al., 2020). We alse use
stochasic depth (Gao et al., 2016) and layerscale (Hugo
et al., 2021). Label Smoothing (Szegedy et al., 2016) is set
to 0.1. The training epochs are 300 and the warmup epochs
are 10. Retraining is also conducted on eight V100s.

Results. The experimental results are shown in Table 2. We
searched BurgerFormer under four different levels of FLOPs
and compared it with state-of-the-art Transformers. Burg-
erFormers are competitive even superior to either manually
designed or automatically searched Transformers under sim-
ilar FLOPs. For example, BurgerFormer-Tiny has only 1.0G
FLOPs, but the accuracy is higher than the manually de-
signed DeiT-T and the automatically searched AutoFormer-
Tiny by 5.8% and 3.3%. Meanwhile, BurgerFormer-Base
outperforms Swin-T by 1.4% points with even fewer FLOPs
(3.9G vs. 4.5G) and parameters (26M vs. 29M ). In ad-
dition, although BurgerFormer-Large has the same Top-1
accuracy as Swin-S, it has 25% and 28% fewer FLOPs
and parameters, respectively. BurgerFormer-Large also out-
performs the pure CNN model RegNetY-8G and the hy-

brid CNN-Transformer model BossNAS-T1. Furthermore,
BurgerFormer consistently outperforms the automatically
searched Transformer-like model, indicating the effective-
ness of our micro-meso-macro designed search space.

5.2. Results on COCO

Setting. We conduct experiments on COCO benchmark
(Lin et al., 2014) to verify the transferability of Burger-
Former architectures. COCO benchmark contains 118K
training images (train2017) and 5K validation images
(val2017). We employ BurgerFormer as backbone for two
standard detectors, i.e., RetinaNet (TsungYi et al., 2017)
and Mask R-CNN (Kaiming et al., 2017). The backbone is
initialized with the weights pre-trained on ImageNet, while
the added layers are initialized by Xavier (Xavier & Yoshua,
2010). The detectors are trained with AdamW (Ilya & Frank,
2019) optimizer and an initial learning rate of 1e−4. Follow-
ing (TsungYi et al., 2017; Kaiming et al., 2017), we utilized
1× training schedule where the detectors are trained with
12 epochs. The training images are resized to 800 pixels
(short side) by no more than 1,333 pixels (long side). The
testing images have a short side of 800 pixels.

Results. As shown in Table 3, under a similar volume of pa-
rameters, BurgerFormer significantly outperforms ResNet50
and PoolFormer-S24. When compared with powerful hand-
crafted baselines such as PVT-Small and Swin-T, Burger-
Former achieves competitive results, which validates the
transferability of the searched model.

5.3. Ablation Study

Search Method. In Table 4, we compared random search,
SPOS, Sandwich, and our hybrid sampling search method
on ImageNet. For a fair comparison, all models are con-
strained to 1G FLOPs and are trained under the same set-
tings. The experimental results demonstrate that our hy-
brid sampling search method outperforms random search,
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Figure 7. Visualization of features for Deit and BurgerFormer on ImageNet.

Methods FLOPs (G) Top-1 acc. (%)

Random Search 1.0 75.6
SPOS 1.0 77.0

Sandwich 1.0 77.5
Hybrid Sampling 1.0 78.0

Table 4. Comparisons of Random Search, SPOS, Sandwich and
our hybrid sampling search method on ImageNet.

SPOS and sandwich by 2.4 points, 1.0 points and 0.5 points,
respectively, validating the effectiveness of the proposed
method.

Hamburger Blocks. Table 5 analyzes the effect of each
Norm-OP-Norm-Act in hamburger blocks. We choose the
Transformer-Tiny model as the baseline. We remove the
part corresponding to burger, i.e., replace the part with skip

Model FLOPs (G) Top-1 acc. (%)

BurgerFormer-Tiny 1.0 78.0

w/o the first bread 0.85 77.7
w/o the second bread 0.82 77.2

w/o the meat 0.84 76.9

Table 5. Ablation study of Hamburger blocks.

and remove the residual connections, to check its impact
on performance. Table 5 shows that each part contributes
to the performance with similar FLOPs, but the impact of
the meat part is somewhat larger, which we attribute to
that this part locates in the inverse bottleneck structure thus
has a greater impact on the performance. We can see the
hamburger structure offers more diversity to find a better
architecture.
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5.4. Discussion

Searched Architecture. Fig. 6 visualizes the structure of
BurgeFormer-Tiny, where d, w, and r denote depth, width,
and expansion ratio, respectively. Overall, local operations
such as pooling and convolution dominate in BurgerFormer-
Tiny, while there is only one global operation (i.e., Spatial
MLP) in the third stage. Interestingly, the hamburger block
of the fourth stage resembles a depthwise separable convolu-
tion but does not use an activation function with a different
normalization. Meanwhile, the second stage uses three
depthwise convolutions to obtain a larger perceptual field.
More discussions can be referred to Appendix B.

Visualization. Fig. 7 visualizes learned features of DeiT-
Small and BurgerFormer-Base on ImageNet. For a fair
comparison, both methods use the same visualization tech-
nique (Ramprasaath R. et al., 2017). The visualized heat
map is calculated by multiplying the output feature map
by its gradient and then scaling it to the size of the input
image. As shown in Fig. 7, BurgerFormer locates objects
more accurately than DeiT, which indicates that the searched
architectures have a better ability to extract features.

Micro-Meso-Macro Design. In this work, we present a
micro-meso-macro schema for designing search spaces. An
intuitive question is whether three granularities are needed.
We believe that the co-design of the three granularities is
beneficial and necessary. Micro multivariate operations
can constitute diverse local and global operators, and the
appropriate pairing of these is helpful to improve perfor-
mance; Meso hamburger block covers the common structure
of Mobilenet and Transformer block (e.g., inverse bottle-
neck, residuals); macro-level design can significantly affect
FLOPs and parameters, and thus the model capacity. Re-
cently, ConvNeXt (Liu et al., 2022) manually improved
ResNet from three granularities to outperform Swin (Liu
et al., 2021), so the automatic search for three granularities
should be a direction worth thinking about and exploring.

Limitation. Limited by hardware resources, the ranges of
FLOPs and parameters of the searched architectures are
relatively small (e.g., maximum FLOPs < 8G), and we
conjecture that BurgerFormer searched under larger FLOPs
or higher volume of parameters will have stronger repre-
sentation capability. In addition, because all of the three
granularities are involved in the micro-meso-macro search
space, the search cost is high, e.g., training of the super-
net takes 11 days on eight V100s. Therefore, reducing the
search cost is a direction for our future work.

6. Conclusion
In this work, we design a new search space for searching
BurgerFormer architectures from a micro-meso-macro per-
spective. Meanwhile, we propose a hybrid search strategy

to train supernet effectively. Experiments on ImageNet and
COCO datasets verify the effectiveness of the BurgerFormer
architecture. While demonstrating better performance than
state-of-the-art Transformers, this work indicates that good
search space is very critical for finding out powerful visual
Transformer-like architectures. In the future, we will fur-
ther explore the Transformer-like search space design and
experiment with other computer vision tasks.
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A. The Sampling Methods
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Figure 8. (a) The sub-networks accuracy of SPOS and Hybrid Sampling Method on ImageNet. (b) The Top-1 accuracy along epochs of
the maximum and minimum models on ImageNet-100.

Fig. 8(a) shows the FLOPs and accuracy of 100 random sampled sub-networks with weights inherited from the supernet.
The figure indicates that the sub-networks accuracy of the SPOS method is generally lower than that of the hybrid sampling
method, especially when the FLOPs are larger than 3G. Fig. 8 shows the retraining accuracy along training epochs of the
maximum and minimum models on ImageNet-100. The training configuration is the same as that on ImageNet except that
the batch size is 128. The experimental results demonstrate that the maximum model has much worse convergence ability
than the minimum model before 200 epochs. Furthermore, the Top-1 accuracy of the maximum model is not the upper
bound in the search space, so it is not suitable to train the supernet directly using the sandwich sampling method.
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B. Searched BurgerFormers
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Figure 9. The architectures of BurgerFormer-Small, BurgerFormer-Base, and BurgerFormer-Large.

Fig. 9 visualizes the structure of BurgerFormer-Small, BurgerFormer-Base and BurgerFormer-Large. At the microscopic
level, global operators (i.e., Spatial MLP, MHSA) always exist in stage three or stage four. And the searched architectures
prefer MHSA to Spatial MLP when the model size grows. Besides, an interesting observation is that Pooling, Spatial MLP,
and MHSA can be followed by an activation function, which is rarely considered in previous architecture designs. At the
mesoscopic and macroscopic levels, all three parts of the hamburger block tend to be leveraged and the architectures become
deeper and wider as the model size grows.
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C. More details of Architectures

Stages Tokens Patch Embedding MHSA Head Number

1 H
4 × W

4

3× 3, stride 2, 24
-

[
3× 3, stride 1, 24
3× 3, stride 1, 24

]
3× 3, stride 2, C1

2 H
8 × W

8 3× 3, stride 2, C2 -

3 H
16 × W

16 3× 3, stride 2, C3 4

4 H
32 × W

32 3× 3, stride 2, C4 8

Table 6. The tokens, patch embedding and MHSA head number settings of each stage.

Table 6 shows the tokens, patch embedding, and MHSA head number settings of each stage. ”K ×K, stride S,C” in the
patch embedding column indicates the kernel size K, the stride S and the output channels C of convolution. Following (Liao
et al., 2021), we add three additional 3x3 convolutions into the patch embedding of stage one. Since the three convolutions
already have a large receptive field, we set the kernel size three in the first patch embedding.


