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Abstract
Meta-learning tries to learn meta-knowledge from
a large number of tasks. However, the stochas-
tic meta-gradient can have large variance due to
data sampling (from each task) and task sampling
(from the whole task distribution), leading to slow
convergence. In this paper, we propose a novel
approach that integrates variance reduction with
first-order meta-learning algorithms such as Rep-
tile. It retains the bilevel formulation which bet-
ter captures the structure of meta-learning, but
does not require storing the vast number of task-
specific parameters in general bilevel variance
reduction methods. Theoretical results show that
it has fast convergence rate due to variance reduc-
tion. Experiments on benchmark few-shot classifi-
cation data sets demonstrate its effectiveness over
state-of-the-art meta-learning algorithms with and
without variance reduction.

1. Introduction
Meta-learning (Hospedales et al., 2021), or learning to
learn (Thrun & Pratt, 1998), aims to quickly learn new tasks
by utilizing meta-knowledge from tasks that are already
learned. This is especially useful for deep networks, as they
typically have to train on a huge amount of labeled samples
for each task. Meta-learning has been successfully used in
various applications such as few-shot learning (Wang et al.,
2020; Finn et al., 2017; Nichol et al., 2018), reinforcement
learning (Clavera et al., 2019; Gupta et al., 2018), neural ar-
chitecture search (Elsken et al., 2020), and semi-supervised
learning (Shu et al., 2019; Ren et al., 2020). In this paper, we
focus on a particularly well-known family of meta-learning
algorithms which is based on the MAML (Finn et al., 2017)
and its variants (such as Reptile (Nichol et al., 2018) and
ANIL (Raghu et al., 2020)).
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Mathematically, meta-learning is often formulated as a
bilevel optimization problem (Franceschi et al., 2018). The
outer problem learns some meta-parameter useful to all
the tasks; while the lower-level problem (one for each
task) learns a task-specific model by adapting the meta-
parameter. As meta-learning involves learning from a lot of
tasks, variance of the stochastic meta-gradient comes from
two sources: (i) variance of data samples for each task, and
(ii) variance of task samples from the task distribution. This
is different from simpler machine learning problems involv-
ing only one task, in which the variance comes only from
the data samples. When the tasks are diverse, meta-learning
algorithms can suffer from large variance of their updates,
leading to slow convergence (Ghadimi & Lan, 2013; Ji et al.,
2020).

To have faster convergence, a natural approach is to use
variance reduction (Gower et al., 2020), which accelerates
convergence by reducing the variance in the stochastic gra-
dients. As is demonstrated by the classic variance reduc-
tion methods such as SVRG (Johnson & Zhang, 2013) and
SARAH (Nguyen et al., 2017), this can achieve convergence
rates faster than SGD both theoretically and empirically.
However, the batch gradient has to be computed occasion-
ally, which can still be very expensive when the training
data set is large. To alleviate this problem, a recent variance
reduction algorithm, STORM (Cutkosky & Orabona, 2019),
proposes to perform variance reduction without the need for
batch gradient, while still achieving the same convergence
rate as previous variance reduction methods.

Very recently, Wang et al. (2021) made an initial attempt
to use variance reduction in meta-learning. They proposed
VFML, which integrates STORM into the first-order meta-
learning algorithm Reptile. However, VFML ignores the
bilevel structure in meta-learning. Moreover, a theoretical
study on its variance reduction properties is lacking.

While classic variance reduction algorithms mainly focus
on single-level stochastic optimization problems, there are
recent extensions to bilevel stochastic optimization (Khan-
duri et al., 2021; Yang et al., 2021). In principle, these can
be straightforwardly incorporated into meta-learning algo-
rithms, by simply replacing the original gradients by their
variance-reduced counterparts. However, during optimiza-
tion, this requires storing the task-specific parameters for all
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the tasks. When the number of tasks is large (as is typically
the case) or the task model is huge (as in many deep learning
models), the subsequent storage cost can be prohibitive.

In this paper, we propose an efficient variance reduction
method that can be used with various meta-learning algo-
rithms. The proposed family of variance-reduced variants is
aware of the bilevel optimization structure in meta-learning,
while removing the need for storing task-specific parameters
in existing bilevel variance reduction methods. We show
theoretically that it achieves a faster convergence rate due
to variance reduction. Experiments on benchmark few-shot
image classification data sets also demonstrate the effective-
ness of the proposed method.

A summary of this paper’s contributions is as follows: (i)
we propose a novel variance reduction method which can
be integrated into various meta-learning algorithms; (ii) we
provide theoretical analysis demonstrating that the proposed
method has a faster convergence rate; and (iii) extensive
experiments on benchmark data sets show that it has faster
convergence and better performance than existing meta-
learning algorithms with and without variance reduction.

2. Related works
2.1. Meta-learning

Given a set of tasks I, meta-learning (Hospedales et al.,
2021) is commonly formulated as the following bilevel opti-
mization problem:

minw
1

|I|
∑
i∈I

L((w,θi(w));Di
vald) (1)

s.t. θi ≡ θi(w) = argmin
θ

L((w,θ);Di
tr), (2)

where w is the meta-parameter shared among all tasks,
θi(w) is the parameter specific to task i, Di

vald and Di
tr’s

are the meta-validation and meta-training data, respectively,
for task i, L((w,θ);D) = Eξ∼D[ℓ((w,θ); ξ)] is the loss
of task i’s model on data D, and ℓ((w,θ); ξ) is the loss on
a stochastic sample ξ drawn from D. Since our focus is on
learning the meta-parameter, we will simplify notations in
the sequel and use Li(w;D) for L((w,θi);D) and ℓ(w; ξi)
for ℓ((w,θi); ξi).

In this paper, we focus on the family of MAML algorithms
(Finn et al., 2017), in which the meta-parameter is used as
a meta-initialization for θi’s. The outer loop (1) finds a
suitable meta-initialization, while the inner loop (2) adapts
w to each task. In many cases, the inner problem is complex
and cannot be explicitly solved. Instead of finding the exact
minimizer for Li, MAML performs only a single-step SGD:
θi = w − α∇ℓ(w; ξi), where ξi is sampled from the train-
ing data Di

tr of task i. This can also be naturally extended to
K-step SGD with K > 1, which allows better adaptation.

In general, bilevel optimization is expensive. While the
meta-gradient on w can be obtained from the implicit func-
tion theorem, it requires computing the Hessian matrix or
its inverse. To alleviate this problem, methods such as FO-
MAML (Finn et al., 2017) and Reptile (Nichol et al., 2018)
propose to approximate the meta-gradient by using only
the first-order information. Specifically, FOMAML simply
uses the model gradient after task-specific adaptation as
the meta-gradient, while Reptile uses the average gradient
during adaptation. In practice, Reptile usually has a better
empirical performance than MAML and FOMAML.

Another problem with the bilevel formulation of meta-
learning is that it requires storing the θi’s of all the tasks.
This can lead to a huge storage cost when the number of
tasks is large and/or each θi has a large number of param-
eters. To address this problem, methods like MAML, FO-
MAML and Reptile do not explicitly keep the θi’s for all
tasks. Instead, they directly use the θi’s (as a function of w)
in the outer objective, leading to the single-level optimiza-
tion problem: minw

1
|I|
∑

i∈I L(w−α∇L(w;Di
tr);Di

vald).

Domain randomized search (DRS) (Gao & Sener, 2020),
also called joint training (Finn et al., 2019), is another way
to avoid the bilevel formulation by simply optimizing the
losses of all tasks altogether. While it shows good results
in some applications (Gao & Sener, 2020), DRS does not
consider multi-step task adaptation and can have inferior
performance than the other meta-learning algorithms, as
will also be demonstrated empirically in Section 4.

2.2. Variance Reduction in Stochastic Optimization

Variance reduction (Gower et al., 2020) has been commonly
used to reduce the variance in stochastic gradients and
thus accelerate optimization. Pioneering works such as
SAG (Roux et al., 2012), SDCA (Shalev-Shwartz & Zhang,
2013) and SVRG (Johnson & Zhang, 2013) are only appli-
cable to strongly-convex problems. More recently, variance
reduction methods for general non-convex problems are also
developed (Allen-Zhu & Hazan, 2016; Nguyen et al., 2017;
Fang et al., 2018). However, they still require the occasional
computation of the batch gradient, which can be expensive
on large training sets.

Recently, Cutkosky & Orabona (2019) propose a
momentum-based variance reduction algorithm called
STORM (Algorithm 1). It computes a variance-reduced
gradient (step 6) by using only the stochastic gradients at
two successive iterates (wt and wt−1) on the same stochas-
tic sample ξt, without requiring the time-consuming batch
gradient computation. Note that it reduces to standard SGD
when all γt’s are set to one. Moreover, STORM (and vari-
ant STORM+ (Levy et al., 2021)) has the same asymptotic
convergence rate as other variance reduction methods.
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Algorithm 1 STORM (Cutkosky & Orabona, 2019).
1: Input: w0, step-size {ηt}, decay parameter {γt}.
2: c0 = ∇ℓ(w0; ξ0)
3: w1 = w0 − η0c0
4: for t = 1 to T − 1 do
5: sample ξt
6: ct = ∇ℓ(wt; ξt) + (1− γt)(ct−1 −∇ℓ(wt−1; ξt))
7: wt+1 = wt − ηtct
8: end for

Algorithm 2 Reptile (Nichol et al., 2018)
1: Input: w0, step-size {ηt} and α, number of local steps

K.
2: for t = 0 to T − 1 do
3: sample tasks It ⊂ I
4: for i ∈ It do
5: ui

0 = wt

6: for k = 0 to K − 1 do
7: obtain samples ξik,t from support data of task i

8: ui
k+1 = ui

k − α∇ℓ(ui
k, ξ

i
k,t)

9: end for
10: cit =

1
Kα (wt − ui

K)
11: end for
12: ct =

1
|It|
∑

i∈It
cit

13: wt+1 = wt − ηtct
14: end for

Very recently, momentum-based variance reduction has
also been extended to stochastic bilevel optimization.
Examples include SUSTAIN (Khanduri et al., 2021),
MRBO/VRBO (Yang et al., 2021), RSVRB (Guo et al.,
2021), and VR-BiAdam (Huang & Huang, 2021). With
the help of variance reduction, these methods achieve the
same asymptotic convergence rate and are faster than bilevel
algorithms without variance reduction (Ji et al., 2021; Chen
et al., 2021).

3. Variance Reduction for Meta-Learning
Recall from Section 2.1 that meta-learning can be formu-
lated as either a bilevel or single-level optimization problem.
In both cases, a straightforward approach to reduce vari-
ance in the stochastic gradients is to use the corresponding
variance reduction methods. For example, when using the
bilevel optimization formulation, one can use the recent
methods in (Khanduri et al., 2021; Yang et al., 2021). How-
ever, recall that this demands a lot of storage and can be
infeasible when the number of tasks is large. Moreover, to
avoid overfitting the often limited data available in each task,
the inner loop typically performs only a small number of
gradient descent steps. For effective variance reduction, a
sufficiently large number of steps is usually required (Allen-

Algorithm 3 VR-Reptile (Variance-Reduced Reptile).
1: Input: initial weight w0, stepsizes {ηt} and α, number

of local steps K, decay parameter {γt}.
2: sample tasks I0 ⊂ I
3: for i ∈ I0 do
4: ui

0 = w0

5: for k = 0 to K − 1 do
6: obtain samples ξik,0 from support data of task i

7: ui
k+1 = ui

k − α∇ℓ(ui
k; ξ

i
k,0)

8: end for
9: c̃i0 = 1

Kα (w0 − ui
K)

10: end for
11: c̃0 = 1

|I0|
∑

i∈I0
c̃i0

12: w1 = w0 − η0c̃0
13: for t = 1 to T − 1 do
14: sample tasks It ⊂ I
15: for i ∈ It do
16: ui

0 = wt

17: vi
0 = wt−1

18: for k = 0 to K − 1 do
19: obtain samples ξik,t from support data of task i

20: ui
k+1 = ui

k − α∇ℓ(ui
k; ξ

i
k,t)

21: vi
k+1 = vi

k − α∇ℓ(vi
k; ξ

i
k,t)

22: end for
23: d̃i

t−1 = 1
Kα (wt−1 − vi

K)
24: c̃it =

1
Kα (wt − ui

K)
25: end for
26: d̃t−1 = 1

|It|
∑

i∈It
d̃i
t−1

27: c̃t =
1

|It|
∑

i∈It
c̃it + (1− γt)(c̃t−1 − d̃t−1)

28: wt+1 = wt − ηtc̃t
29: end for

Zhu & Hazan, 2016; Cutkosky & Orabona, 2019).

Alternatively, by formulating meta-learning as a single-level
optimization problem, one can use recent variance reduction
methods such as STORM. Very recently, an initial attempt in
this direction is VFML (Wang et al., 2021), which integrates
STORM into Reptile. However, it lacks a formal study on
its theoretical properties. Experiments in Section 4 also
show that VFML has inferior performance.

In this section, we propose a novel variance reduction algo-
rithm for meta-learning that avoids the pitfalls of directly
applying existing variance reduction methods in bilevel or
single-level optimization. The idea is to keep utilizing the
double-loop structure in the bilevel formulation, which is
known to more accurately capture the structure in meta-
learning (Gao & Sener, 2020), while maintaining the effi-
ciency of single-level optimization formulation that does not
require storing a vast number of task-specific parameters.



Efficient Variance Reduction for Meta-Learning

Algorithm 4 VFML (Wang et al., 2021).
1: Input: w0, stepsizes {ηt} and α, number of local steps

K, decay parameters {βt} and {γt}.
2: sample tasks I−1 ⊂ I
3: for i ∈ I−1 do
4: mi

0 = ∇ℓ(w0, ξ
i
0,−1)

5: end for
6: m0 = 1

|I−1|
∑

i∈I−1
mi

0

7: for t = 0 to T − 1 do
8: sample tasks It ⊂ I
9: for i ∈ It do

10: ūi
0 = wt

11: for k = 0 to K − 1 do
12: ūi

k+1 = ūi
k −α(γt∇ℓ(ūi

k, ξ
i
k,t)+ (1− γt)mt)

13: end for
14: m̄i

t = ∇ℓ(wt, ξ
i
K,t)

15: c̄it =
1

Kα (wt − ui
K)

16: end for
17: c̄t =

1
|It|
∑

i∈It
cit

18: m̄t =
1

|It|
∑

i∈It
m̄i

t

19: wt+1 = wt − ηtc̄t
20: for i ∈ It do
21: mi

t+1 = ∇ℓ(wt+1, ξ
i
K,t)

22: end for
23: mt+1 = 1

|It|
∑

i∈It
mi

t+1 + (1− βt)(mt − m̄t)

24: end for

3.1. Proposed Algorithm

In the following, for easy comparison with VFML, we focus
on Reptile (Algorithm 2). The proposed integration, which
will be called VR-Reptile (variance-reduced Reptile), is
shown in Algorithm 3. The integration with other first-
order meta-learning algorithms (such as MAML, FOMAML
and BMG (Flennerhag et al., 2022)) are analogous and are
presented in Appendix B.1.

The main part of Algorithm 3 is in steps 13-29. Recall that
STORM computes a variance-reduced gradient estimate
by using the stochastic gradients at two successive iterates
(step 6 of Algorithm 1). Applying this on the stochastic
gradient update ct in the outer loop of Reptile (step 13 in
Algorithm 2), we obtain the update in step 27 of Algorithm 3.
Here, d̃t−1 is the stochastic gradient estimate (analogous
to c̃t in Algorithm 3 or ct in Reptile) but evaluated at the
previous iterate (wt−1) on the current batch of samples ξik,t.
The components c̃it’s (resp. d̃i

t’s) in c̃t (resp. d̃t), which
correspond to the local update on each task i in the inner
loop, are computed at steps 16-24. Again, c̃it’s are based
on wt, while d̃i

t’s are based on wt−1. Note that the bilevel
optimization structure in meta-learning is still preserved.
Moreover, it can be easily seen that when all γt’s are set
to 1, VR-Reptile reduces to Reptile, in the same manner as

STORM reduces to standard SGD in this case.

In the implementation, we do not need to store the task-
specific model parameters (ui

K’s and vi
K’s), as they are

used only once to update c̃it’s and d̃i
t−1’s. Indeed, neither

c̃it’s nor d̃i
t−1’s have to be stored separately, as they only

need to be summed in the updates of c̃t and d̃t−1. Thus,
this is much more space-efficient than a direct application
of the variance reduction methods for stochastic bilevel
optimization, which requires storing all the task-specific
parameters.

Remark 3.1. Recall that VFML (shown in Algorithm 4)
also aims at integrating STORM into Reptile. However, it is
very different from the proposed Algorithm 3. While Algo-
rithm 3 computes a variance-reduced gradient estimate c̃t
for the update of target meta-parameter w (step 27), VFML
computes a STORM-like variance-reduced estimate of the
intermediate gradient ∇ℓ(ui

k; ξ
i
k,t) that is used only by the

local variable ui
k+1 (step 12 in Algorithm 4). However, the

number of gradient descent steps performed in the inner
loop is typically small and not enough for effective variance
reduction. Moreover, performing variance reduction on an
intermediate gradient makes theoretical analysis of VFML
difficult.

3.2. Theoretical Analysis

In Section 3.2.1, we first study the (gradient of the) loss func-
tion that Reptile and the proposed VR-Reptile are implicitly
minimizing. Section 3.2.2 then shows that VR-Reptile has
a faster convergence rates than vanilla Reptile due to vari-
ance reduction. The analysis can be easily extended to show
that VR-MAML/VR-FOMAML/VR-BMG also have faster
convergence rate than vanilla MAML/FOMAML/BMG.

3.2.1. LOSS IMPLICITLY USED IN REPTILE

For Reptile (Algorithms 2), let ξi0:K−1,t ≡
{ξi0,t, . . . , ξiK−1,t} be the K i.i.d. samples from the
training data Di

tr of task i. At step 13, the meta-parameter
wt is updated with ηtct, in which ct is an average
over cit’s from the sampled tasks in It (step 12). Note
that cit = 1

K

∑K−1
k=0 ∇ℓ(ui

k; ξ
i
k,t). As each gradient

∇ℓ(ui
k; ξ

i
k,t) is a gradient field and thus path-independent

by the gradient theorem (Rudin, 1976), summing them
together means cit is also path-independent and thus a gradi-
ent field from the converse of gradient theorem. Thus, each
cit can be considered as the stochastic gradient of some loss
ℓ̃ on samples ξi0:K−1,t (i.e., cit ≡ ∇ℓ̃(wt; ξ

i
0:K−1,t)). Let

∇L̃i(wt) = Eξi0:K−1,t∼Di
tr
[∇ℓ̃(wt; ξ

i
0:K−1,t)]. The Reptile

update can then be viewed as the stochastic gradient on an
“implicit” loss L̃ with ∇L̃(wt) =

1
|I|
∑

i∈I ∇L̃i(wt).

When K = 1, as can be seen from Reptile (Al-
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gorithms 2), ∇ℓ̃(wt; ξ
i
0,t) ≡ cit = ∇ℓ(wt; ξ

i
0,t).

Hence, ∇L̃i(wt) = Eξi0,t∼Di
tr
∇ℓ̃(wt; ξ

i
0,t) =

Eξi0,t∼Di
tr
∇ℓ(wt; ξ

i
0,t) = ∇L(wt;Di

tr), which matches the
gradient of task i’s training loss. This agrees with the fact
that Reptile reduces to SGD on loss L in this case.

Similarly, for VR-Reptile, when K = 1, we have:

c̃it =∇ℓ̃(wt; ξ
i
0,t) = ∇ℓ(ui

0; ξ
i
0,t) = ∇ℓ(wt; ξ

i
0,t),

d̃i
t−1 =∇ℓ̃(wt−1; ξ

i
0,t) = ∇ℓ(vi

0; ξ
i
0,t) = ∇ℓ(wt−1; ξ

i
0,t),

which are the stochastic gradients at wt and wt−1 with the
same stochastic sample ξi0,t. Since ξi0,t’s are sampled from
different tasks and d̃t−1 is the average over all d̃i

t−1’s, d̃t−1

becomes the stochastic gradient of L at wt−1. c̃t in step 27
(which is the same as step 6 in STORM (Algorithm 1)) then
becomes the variance-reduced gradient of L at wt. Thus,
while Reptile reduces to SGD when K = 1, VR-Reptile
reduces to (the faster) STORM in this case.

3.2.2. CONVERGENCE PROPERTIES

First, we introduce the following smoothness assumption
on the loss ℓ, which is commonly used in stochastic opti-
mization algorithms (Cutkosky & Orabona, 2019).
Assumption 3.2. ℓ is M -Lipschitz smooth w.r.t. w (i.e., for
any w,w′ and ξ, ∥∇ℓ(w; ξ)−∇ℓ(w′; ξ)∥ ≤ M∥w−w′∥).

The following Proposition shows that the implicit loss L̃ is
also Lipschitz-smooth. All the proofs are in Appendix A.
Proposition 3.3. ℓ̃ is M̃ -Lipschitz-smooth w.r.t. wt, where
M̃ = (1 + αM)K/(αK).
Corollary 3.4. L̃i(w) and L̃(w) are M̃ -Lipschitz smooth.

Next, we decompose the variance of cit (which is equal to
1
K

∑K−1
k=0 ∇ℓ(ui

k; ξ
i
k,t)) into two parts.

EiEξi0:K−1,t∼Di
tr
∥cit −∇L̃(wt)∥2

= Ei

[
Eξi0:K−1,t∼Di

tr
∥cit −∇L̃i(wt)∥2

]
+Ei∥∇L̃i(wt)−∇L̃(wt)∥2. (3)

The first part is due to data sampling, while the second
part is due to task sampling. To bound the first part, we
assume that the stochastic variance of ∇ℓ(w; ξ) is bounded.
This is also commonly assumed in stochastic gradient meth-
ods (Ghadimi & Lan, 2013; Cutkosky & Orabona, 2019).
Assumption 3.5. For any w and task i, there exists a con-
stant σ2 such that Eξ∼Di

tr
∥∇ℓ(w; ξ) − ∇Li(w)∥2 ≤ σ2.

For simplicity, we assume the same σ2 for all tasks. This
can be easily extended to the case where different tasks have
difference variance bounds.

The following Proposition bounds the variance of the first
part in (3). When K = 1, it reduces to the condition in
Assumption 3.5.

Proposition 3.6. Define

ς̃2 =
2K(1 +M2α2)K − 1

K(1 + 2M2α2)

2M2α2σ2

1 + 2M2α2
+

σ2

1 + 2M2α2
.

For any wt and task i, we have Eξi0:K−1,t∼Di
tr
∥cit −

∇L̃i(wt)∥2 ≤ ς̃2. When K = 1, we have ς̃ = σ.

For effective meta-learning, we assume that the tasks should
not differ too much, as in (Fallah et al., 2020; Ji et al., 2020).

Assumption 3.7. There exists a positive constant δ2 such
that for any w and two different tasks i, j, ∥∇Li(w) −
∇Lj(w)∥2 ≤ δ2.

Proposition 3.8. Define

δ̃2 =2δ2 +
(1 + 4KM2α2)K

4K2M2α2
(1 +

1

KMα2
)(δ2 + 2σ2)

+ 8KM2α2(δ2 + 2σ2).

For any w and tasks i, j, we have ∥∇L̃i(wt) −
∇L̃j(wt)∥2 ≤ δ̃2.

This can then be used to bound the second term in (3).

Corollary 3.9. If tasks i’s are uniformly sampled from I,
then Ei∥∇L̃i(wt) − ∇L̃(wt)∥2 ≤ δ̃2, where the expecta-
tion is taken over the set of training tasks.

Combining Proposition 3.6 and Corollary 3.8, we have:

Corollary 3.10. EiEξi0,...,ξ
i
K−1∼Di

tr
∥cit −∇L̃(wt)∥2 ≤ σ̃2,

where σ̃2 ≡ ς̃2 + δ̃2.

With a suitable α, M̃ can be upper-bounded by a constant
not depending on K. Consequently, δ̃2 also grows linearly
(but not exponentially) with K.

Corollary 3.11. With α = 1
KM , M̃ = M(1+ 1

K )K ≤ eM

and δ̃2 = 2δ2 +
(1+ 4

K )K

4 (1 +KM)(δ2 + 2σ2) + 8
K (δ2 +

2σ2) ≤ 2δ2 + ( e
4

4 + 8 + eKM
4 )(δ2 + 2σ2).

The following Theorem shows convergence rate for Reptile
on the implicit loss.

Theorem 3.12. For any η0 > 0, set ηt = η0

(1+t)1/2
, then

Reptile (Algorithm 2) satisfies:

1

T
E

[
T−1∑
t=0

∥∇L̃(wt)∥2
]
≤

√
2G1/η0√

T
+

√
2G1/η0
T

,

where G1 = E[L̃(w0)−L̃∗]+M̃σ̃2η20 ln(T +1) and L̃∗ =
minw L̃(w).
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Table 1. Statistics for the data sets used.
number of classes

training validation testing #samples per class

Meta-Dataset

bird 64 16 20 60
texture 30 7 10 120
aircraft 64 16 20 100
fungi 64 16 20 150

Mini-Imagenet 64 16 20 600

Theorem 3.12 matches the asymptotic convergence rate for
SGD on problems with non-convex objectives (Ghadimi &
Lan, 2013). The difference is that we prove the convergence
w.r.t. ∥∇L̃(wt)∥2 (i.e., the gradient norm on the implicit
loss) instead of ∥∇L(wt)∥2.

The following Theorem shows that with the use of vari-
ance reduction, VR-Reptile has a faster convergence rate
than Reptile. The bound also matches the convergence rate
in STORM (Theorems 1 and 2 in (Cutkosky & Orabona,
2019)).

Theorem 3.13. Let ηt = 1/(4M̃(t + ( 6528 )
3)1/3) and

γt+1 = 65
28/(t+ ( 6528 )

3)1/3. Algorithm 3 satisfies:

1

T
E

[
T−1∑
t=0

∥∇L̃(wt)∥2
]
≤ 4M̃G2

T 2/3
+

65

7
· M̃G2

T
,

where G2 = 8E[L̃(w0)− L̃∗] + σ̃2

M̃

(
65
28 + 4225

392 lnT
)
.

Table 2. Number of outer-loop training iterations on the data sets.

1-shot 5-way 5-shot 5-way

Bird 60,000 20,000
Meta- Texture 40,000 30,000

Dataset Aircraft 20,000 20,000
Fungi 60,000 20,000

Mini-Imagenet 60,000 60,000

Figure 1. Variance of updates during training.

4. Experiments
As in (Finn et al., 2017; Nichol et al., 2018), we per-
form meta-learning experiments in the few-shot image clas-
sification setting. Experiments are performed on Mini-
Imagenet (Vinyals et al., 2016; Ravi & Larochelle, 2017)
and Meta-Dataset (Triantafillou et al., 2020). Meta-Dataset
has been popularly used for meta-learning. It consists of
image classification data sets from different domains. In this
experiment, we use (i) bird, (ii) texture, (iii) aircraft, and
(iv) fungi as in (Yao et al., 2019). While the Meta-Dataset
focuses on fine-grained classification, Mini-Imagenet con-
tains more diverse images. A summary of these data sets is
in Table 1. Experiments are performed in the 1-shot 5-way
and 5-shot 5-way settings.

Following (Finn et al., 2017; Nichol et al., 2018), we use
the CONV4 model as base learner. It is a 4-layer CNN.
Each layer contains 64 3× 3 convolutional filters, followed
by batch normalization, ReLU activation, and 2 × 2 max-
pooling. For all data sets, the hyper-parameter settings
follow Reptile (Nichol et al., 2018): we use vanilla SGD
as the optimizer for the outer loop, and Adam for the inner
loop. The learning rate for SGD is 1, and no momentum is
used. The learning rate for Adam is 0.001, the first-order
momentum weight is 0, and the second-order momentum
weight is 0.99. The number of gradient descent steps K in
the inner loop is 5. The number of iterations in the outer
loop (T in Algorithm 3) is shown in Table 2.

The following groups of meta-learning baselines are com-
pared: (i) Standard single-level optimization methods, in-
cluding (a) MAML, (b) FOMAML, (c) Reptile, (d) BMG,
and (e) DRS (Gao & Sener, 2020), which optimizes the aver-
age loss of all tasks; (ii) Variants of the first group1 (denoted
MAML+STORM, FOMAML+STORM, Reptile+STORM,
BMG+STORM and DRS+STORM), in which the stochastic
gradients are replaced by the variance-reduced counterparts
obtained with STORM; (iii) Variants of the first group inte-
grated with the proposed method (denoted VR-MAML, VR-
FOMAML, VR-Reptile and VR-BMG);2 (iv) VFML (Wang

1These algorithms are shown in Appendix B.2.
2VR-MAML, VR-FOMAML and VR-BMG are shown in Ap-

pendix B.1. DRS does not use a bilevel structure, and so cannot be
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Table 3. Classification accuracy (%) on mini-ImageNet.

var reduction single/bilevel 1-shot 5-way 5-shot 5-way

MAML × single 48.7±1.8 63.1±0.9
FOMAML × single 48.1±1.8 63.2±0.9

Reptile × single 50.0±0.3 66.0±0.6
BMG × single 50.7±0.5 65.6±0.6
DRS × single 24.5±0.8 30.4±0.6

ProtoNet × single 49.4±0.8 68.2±0.7

MAML+STORM
√

single 47.9±1.4 61.6±1.2
FOMAML+STORM

√
single 48.0±1.6 63.4±1.1

Reptile+STORM
√

single 49.9±0.3 66.2±0.3
BMG+STORM

√
single 46.7±0.6 60.9±0.8

DRS+STORM
√

single 24.7±1.1 30.3±0.7

VR-MAML
√

single 49.2±1.4 63.6±0.8
VR-FOMAML

√
single 48.3±1.2 63.4±0.6

VR-Reptile
√

single 50.4±0.4 67.6±0.8
VR-BMG

√
single 51.4±0.3 68.4±0.6

VFML
√

single 49.6±0.5 66.2±0.8

ANIL × bilevel 46.9±0.4 61.4±0.2
ANIL+SUSTAIN

√
bilevel 47.0±0.4 61.8±0.3

ANIL+MRBO
√

bilevel 47.2±0.5 62.0±0.2
ANIL+VRBO

√
bilevel 47.2±0.4 61.9±0.2

(a) Bird. (b) Texture. (c) Aircraft. (d) Fungi.
Figure 2. Training accuracy with number of outer-loop iterations on Meta-Dataset in 1-shot 5-way setting.

et al., 2021); (v) ANIL (Raghu et al., 2020), which uses the
bilevel formulation for meta-learning. As the bilevel formu-
lation needs to keep θi’s for all tasks i, it is infeasible to use
the whole CONV4 model as θi.3 To alleviate this problem,
we only adapt parameters in the last layer of CONV4; (vi)
variants of ANIL using a straightforward combination with
variance reduction methods for bilevel optimization, includ-
ing (a) SUSTAIN (Khanduri et al., 2021), (b) MRBO (Yang
et al., 2021), and (c) VRBO (Yang et al., 2021).

For performance evaluation, we follow (Finn et al., 2017;
Nichol et al., 2018) and report the average accuracy over

integrated with the proposed method.
3For example, Mini-Imagenet has 64 classes, and about 7.6×

106 5-way classification tasks in the meta-training set. Assume
that the deep network has only 0.1M parameters (which is small),
the task models take a total of 7.6× 106 × 0.1M=760G memory.

1,000 5-way classification tasks randomly sampled from its
meta-testing set. Each method is repeated 3 times.

4.1. Results on Mini-Imagenet

Table 3 shows the testing accuracies of the various methods
in the 1-shot and 5-shot settings. As can be seen, inte-
grating meta-learning algorithms with any of the variance
reduction methods generally leads to better performance. In
particular, the proposed VR-BMG achieves the best overall
performance. The superiority of the VR variants over the
STORM variants demonstrates that explicitly considering
the double-loop meta-learning structure is useful. On the
other hand, ANIL and its variance-reduced variants, which
are based on the bilevel formulation, perform less well than
those using the single-level formulation. As ANIL can
only adapt part of its model in order to be computationally
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Table 4. Classification accuracy (%) on meta-testing set from Meta-Dataset in 1-shot 5-way classification.

var reduction single/bi-level Bird Texture Aircraft Fungi

MAML × single 57.44 33.74 57.98 41.80
FOMAML × single 56.14 31.48 56.94 39.70

Reptile × single 60.82 34.66 54.08 42.84
BMG × single 60.96 34.78 54.16 42.76
DRS × single 33.64 23.82 28.24 24.96

ProtoNet × single 60.78 34.66 56.62 40.24

MAML+STORM
√

single 57.16 33.78 57.52 41.88
FOMAML+STORM

√
single 55.94 31.52 57.16 39.48

Reptile+STORM
√

single 61.02 34.84 56.48 43.56
BMG+STORM

√
single 56.22 31.18 53.88 42.04

DRS+STORM
√

single 33.78 23.96 28.36 25.12

VR-MAML
√

single 57.62 34.04 57.88 41.66
VR-FOMAML

√
single 57.08 31.48 56.46 39.88

VR-Reptile
√

single 62.04 35.10 57.54 45.34
VR-BMG

√
single 62.14 35.24 57.68 45.26

VFML
√

single 61.32 34.32 53.94 42.88

ANIL × bilevel 56.82 32.68 56.84 41.84
ANIL+SUSTAIN

√
bilevel 56.78 32.74 56.88 41.92

ANIL+MRBO
√

bilevel 56.74 32.76 56.92 41.94
ANIL+VRBO

√
bilevel 56.96 32.90 56.94 42.06

(a) Bird. (b) Texture. (c) Aircraft. (d) Fungi.
Figure 3. Training accuracy with number of outer-loop iterations on Meta-Dataset in 5-shot 5-way setting.
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Figure 4. Testing accuracy (%) of VR-Reptile on 1-shot 5-way
mini-ImageNet with different K’s.

feasible, this greatly limits model flexibility, leading to infe-
rior performance. DRS and DRS+STORM are also much
inferior than the other baselines, suggesting that accurate

modeling the structure of meta-learning is more important
than the ease of optimization. Also, VFML generally has
worse performance than VR-Reptile, as has been discussed
in Remark 3.1.

Next, we demonstrate that the proposed method can re-
duce the variance. We focus on three gradient-based meta-
learning algorithms, MAML/FOMAML/Reptile, and their
variance-reduced variants VR-MAML/VR-FOMAML/VR-
Reptile. Figure 1 shows E∥c̃t−E[c̃t]∥2

∥E[c̃t]∥2 , the variance of weight
update c̃t (relative to its squared norm), for different meth-
ods on Mini-ImageNet in the 1-shot 5-way setting. As ex-
pected, the update variance becomes smaller with variance
reduction. MAML and FOMAML have smaller gradient
variance than Reptile, which explains the smaller improve-
ments for variance reduction on MAML/FOMAML than on
Reptile.
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Table 5. Classification accuracy (%) on meta-testing set from Meta-Dataset in 5-shot 5-way classification.

var reduction single/bilevel Bird Texture Aircraft Fungi

MAML × single 74.56 45.68 69.06 53.68
FOMAML × single 73.64 42.82 66.38 52.18

Reptile × single 74.60 43.26 66.46 52.88
BMG × single 74.52 43.74 66.64 53.02
DRS × single 53.34 33.28 41.06 37.64

ProtoNet × single 74.22 49.86 71.38 53.94

MAML+STORM
√

single 74.86 45.26 68.48 53.72
FOMAML+STORM

√
single 73.72 42.78 66.22 52.28

Reptile+STORM
√

single 75.24 44.60 67.48 52.54
BMG+STORM

√
single 73.16 42.32 66.46 51.74

DRS+STORM
√

single 53.48 33.42 41.12 37.72

VR-MAML
√

single 75.06 46.18 68.36 53.86
VR-FOMAML

√
single 74.28 43.28 66.98 52.16

VR-Reptile
√

single 76.48 46.94 71.62 54.24
VR-BMG

√
single 76.56 47.28 71.48 54.38

VFML
√

single 74.38 44.48 65.64 52.76

ANIL × bilevel 73.68 41.96 68.74 52.84
ANIL+SUSTAIN

√
bilevel 73.74 42.12 68.82 52.78

ANIL+MRBO
√

bilevel 73.78 42.18 68.78 52.86
ANIL+VRBO

√
bilevel 73.88 42.22 68.74 52.82

4.2. Results on Meta-Dataset

Tables 4 and 5 shows the testing accuracies in the 1-shot and
5-shot settings, respectively, for the four few-shot data sets
in Meta-Dataset. The observations are generally similar to
those on mini-ImageNet in Section 4.1. The integration of
variance reduction into different meta-learning algorithms
leads to best performance overall, as is demonstrated by VR-
BMG and VR-Reptile. Moreover, meta-learning methods
based on the single-level formulation have better perfor-
mance than methods based on the bilevel formulation in
general.

Figures 2 and 3 show the training accuracy with the number
of outer-loop iterations (in (1)) for the 1-shot and 5-shot
settings. To reduce clutterness, we only show results for
Reptile and related methods (VFML, Reptile+STORM and
VR-Reptile). As can be seen, VR-Reptile has much faster
convergence than the other baselines, showing the benefits
of variance reduction and verifies Theorem 3.13. On the
other hand, Reptile+STORM does not show faster conver-
gence as compared to Reptile. This is because the inner
loop only involves a small number of gradient descent steps,
while variance reduction methods like STORM typically
require a sufficiently large number of steps to be effective.
VFML converges even slower than Reptile in most cases.
This can partly be attributed to its lack of theoretical study
on convergence properties.

4.3. Ablation Study: Number of Inner Iterations K

Finally, we study the influence of K (number of inner-loop
iterations) on VR-Reptile. We use the Mini-ImageNet data
set under the 1-shot 5-way setting. The testing accuracies
with different K’s are shown in Figure 4. As can be seen,
having a K too small or too large lead to inferior perfor-
mance, and the performance with 4 ≤ K ≤ 10 are very
similar. To be consistent with (Finn et al., 2017; Nichol
et al., 2018), we set K = 5 in all previous experiments.

5. Conclusion
In this paper, we propose a novel variance reduction method
VR-Reptile to accelerate convergence of meta-learning. VR-
Reptile utilizes the double-loop structure of meta-learning
algorithms, but does not require storing the task-specific pa-
rameters. Theoretical results demonstrate that VR-Reptile
has a faster convergence rate than Reptile due to variance
reduction. Experiments on benchmark few-shot classifica-
tion data sets demonstrate its superiority over meta-learning
algorithms with and without variance reduction.
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A. Proofs
A.1. Proof of Proposition 3.3

We first construct the following two sequences from wt and w′
t.

ui
0 = wt,u

i
k+1,t = ui

k − α∇ℓ(ui
k, ξ

i
k,t),

ui′

0 = w′
t,u

i′

k+1,t = ui′

k − α∇ℓ(ui′

k , ξ
i
k,t).

From the definition of ∇ℓ̃ in Section 3.2.1, we have:

∥∇ℓ̃(wt, ξ
i
0:K−1,t)−∇ℓ̃(w′

t, ξ
i
0:K−1,t)∥ =∥ 1

K

K−1∑
k=0

∇ℓ(ui
k, ξ

i
k,t)−

1

K

K−1∑
k=0

∇ℓ(ui′

k , ξ
i
k,t)∥

=∥ 1

K

K−1∑
k=0

(∇ℓ(ui
k, ξ

i
k,t)−∇ℓ(ui′

k , ξ
i
k,t))∥

≤ 1

K

K−1∑
k=0

∥∇ℓ(ui
k, ξ

i
k,t)−∇ℓ(ui′

k , ξ
i
k,t)∥

≤M

K

K−1∑
k=0

∥ui
k − ui′

k ∥,

where the last inequality comes from Assumption 3.2. Now we have to bound ∥ui
k − ui′

k ∥ for k = 0, . . . ,K − 1 in terms of
∥wt −w′

t∥. For k = 0, obviously we have ∥ui
0 − ui′

0 ∥ = ∥wt −w′
t∥. For k > 0, we have the following induction:

∥ui
k+1 − ui′

k+1∥ =∥
(
ui
k − α∇ℓ(ui

k, ξ
i
k,t)
)
−
(
ui′

k − α∇ℓ(ui′

k , ξ
i
k,t)
)
∥

=∥(ui
k − ui′

k )−
(
α∇ℓ(ui

k, ξ
i
k,t)− α∇ℓ(ui′

k , ξ
i
k,t)
)
∥

≤∥ui
k − ui′

k ∥+ α∥∇ℓ(ui
k, ξ

i
k,t)−∇ℓ(ui′

k , ξ
i
k,t)∥

≤(1 + αM)∥ui
k − ui′

k ∥,

where the last inequality comes from Assumption 3.2. This then gives:

∥ui
k − ui′

k ∥ ≤ (1 + αM)k∥wt −w′
t∥, k = 0, . . . ,K − 1.

Summing over k, we have:

∥∇ℓ̃(wt, ξ
i
0:K−1,t)−∇ℓ̃(w′

t, ξ
i
0:K−1,t)∥ ≤M

K

K−1∑
k=0

(1 + αM)k∥wt −w′
t∥

=
M

K

(1 + αM)K − 1

αM
∥wt −w′

t∥

≤ (1 + αM)K

αK
∥wt −w′

t∥.

Setting M̃ = (1+αM)K

αK then gives the desired result.

A.2. Proof of Proposition 3.6

From the definition of Eξi0,t,...,ξ
i
K−1,t∼Di [cit] in Section 3.2.1, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di [cit] =

1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)],

ui
0 = wt,u

i
k+1,t = ui

k − α∇ℓ(ui
k, ξ

i
k,t) (4)
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Therefore,

Eξi0,t,...,ξ
i
K−1,t∼Di∥cit − Eξi0,t,...,ξ

i
K−1,t∼Di [cit]∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥

1

K

K−1∑
k=0

∇ℓ(ui
k, ξ

i
k,t)−

1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

≤ 1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2.

Now we need to bound Eξi0,t,...,ξ
i
k,t
∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
k,t
[∇ℓ(ui

k, ξ
i
k,t)]∥2 for each k = 0, . . . ,K − 1, for which we

have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)−∇Li(ui

k) +∇Li(ui
k)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)−∇Li(ui

k)∥2 + Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)− Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2,

(5)

where the last equality is obtained from the fact that ξik,t and ui
k are independent, as all these stochastic samples ξi0,t, . . . , ξ

i
k,t

are i.i.d..

For the first term in (5), from Assumption 3.5, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)−∇Li(ui

k)∥2 = Eξik,t∼Di∥∇ℓ(ui
k, ξ

i
k,t)−∇Li(ui

k)∥2 ≤ σ2. (6)

For the second term in (5), when k = 0, we have

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

0)− Eξi0,t,...,ξ
i
k,t
[∇ℓ(ui

0, ξ
i
0,t)]∥2

=Eξi0,t
∥∇Li(ui

0)− Eξi0,t
[∇ℓ(ui

0, ξ
i
0,t)]∥2

=Eξi0,t
∥∇Li(ui

0)−∇Li(ui
0)∥2 = 0.

When k > 0, ui
k depends on ξi0,t, . . . , ξ

i
k−1,t. Define ūi

k that satisfies:

ūi
0 =ui

0 = wt, ū
i
k = Eξi0,t,...,ξ

i
k−1,t∼Di [ui

k]. (7)

This gives:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)− Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)− Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥

(
∇Li(ui

k)−∇Li(ūi
k)
)
−
(
Eξi0,t,...,ξ

i
K−1,t∼Di [∇Li(ui

k)]−∇Li(ūi
k)
)
∥2,

which can be seen as the variance of ∇Li(ui
k)−∇Li(ūi

k) w.r.t. stochastic samples ξi0,t, . . . , ξ
i
k−1,t, as the other stochastic

samples do not affect ui
k. With this, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)− Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)−∇Li(ūi
k)∥2 − ∥Eξi0,t,...,ξ

i
K−1,t∼Di [∇Li(ui

k)]−∇Li(ūi
k)∥2

≤Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)−∇Li(ūi
k)∥2.

From Assumption 3.2, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)−∇Li(ūi
k)∥2 ≤ M2Eξi0,t,...,ξ

i
K−1,t∼Di∥ui

k − ūi
k∥2. (8)
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For Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k − ūi
k∥2, from the definitions of ui

k and ūi
k in (4) and (7), we have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k − ūi
k∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k−1 − α∇ℓ(ui
k−1, ξ

i
k−1,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [ui

k−1 − α∇ℓ(ui
k−1, ξ

i
k−1,t)]∥2

≤2Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k−1 − Eξi0,t,...,ξ
i
K−1,t∼Di [ui

k−1]∥2

+ 2α2Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k−1, ξ
i
k−1,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k−1, ξ
i
k−1,t)]∥2

=2Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k−1 − ūi
k−1∥2

+ 2α2Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k−1, ξ
i
k−1,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k−1, ξ
i
k−1,t)]∥2, (9)

where the last term is what we want to bound, except that here we have k − 1 instead of k. Combining (6), (8) and (9) in (5),
we have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

≤σ2 + Eξi0,t,...,ξ
i
K−1,t∼Di∥∇Li(ui

k)− Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

≤σ2 +M2Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k − ūi
k∥2

≤σ2 + 2M2Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k−1 − ūi
k−1∥2

+ 2M2α2Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k−1, ξ
i
k−1,t)− Eξi0,t,...,ξ

i
K−1,t∼Di∇ℓ(ui

k−1, ξ
i
k−1,t)]∥2. (10)

Finally, we rewrite the two bounds in (9) and (10) as:

Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k − ūi
k∥2

≤2Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k−1 − ūi
k−1∥2 + 2α2Eξi0,t,...,ξ

i
K−1,t∼Di∥∇ℓ(ui

k−1, ξ
i
k−1,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k−1, ξ
i
k−1,t)]∥2,

and

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

≤σ2 + 2M2Eξi0,t,...,ξ
i
K−1,t∼Di∥ui

k−1 − ūi
k−1∥2

+ 2M2α2Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k−1, ξ
i
k−1,t)− Eξi0,t,...,ξ

i
K−1,t∼Di∇ℓ(ui

k−1, ξ
i
k−1,t)]∥2.

Using the fact that

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

0, ξ
i
0,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

0, ξ
i
0,t)]∥2

=Eξi0,t
∥∇ℓ(ui

0, ξ
i
0,t)− Eξi0,t

[∇ℓ(ui
0, ξ

i
0,t)]∥2 = Eξi0,t

∥∇ℓ(ui
0, ξ

i
0,t)−∇Li(ui

0)∥2 ≤ σ2,

and

Eξi0,t
∥ui

0 − Eξi0,t
[ui

0]∥2 = Eξi0,t
∥ui

0 − ui
0∥2 = 0,

we can obtain that:

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2 ≤2k(1 +M2α2)k

2M2α2σ2

1 + 2M2α2
+

σ2

1 + 2M2α2
.

Summing k from 0 to K − 1, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di∥cit − Eξi0,t,...,ξ

i
K−1,t∼Di [cit]∥2

≤ 1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di∥∇ℓ(ui

k, ξ
i
k,t)− Eξi0,t,...,ξ

i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]∥2

≤2K(1 +M2α2)K − 1

K(1 + 2M2α2)

2M2α2σ2

1 + 2M2α2
+

σ2

1 + 2M2α2
.
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Finally, define

ς̃2 =
2K(1 +M2α2)K − 1

K(1 + 2M2α2)

2M2α2σ2

1 + 2M2α2
+

σ2

1 + 2M2α2
,

and this concludes the proof.

A.3. Proof of Proposition 3.8

Similar to the proof of Proposition 3.6, we first obtain:

Eξi0,t,...,ξ
i
K−1,t∼Di [cit] =

1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)] =

1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)],

which then gives:

∥Eξi0,t,...,ξ
i
K−1,t∼Di [cit]− Eξj0,t,...,ξ

j
K−1,t∼Dj [c

j
t ]∥2

=∥ 1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]−

1

K

K−1∑
k=0

Eξj0,t,...,ξ
j
K−1,t∼Dj [∇ℓ((uj

k, ξ
j
k,t)]∥

2

=∥ 1

K

K−1∑
k=0

(Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)])∥
2

≤ 1

K

K−1∑
k=0

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2. (11)

Next, we need to bound ∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥2 for each k = 0, . . . ,K − 1 and
tasks i, j ∈ I. Note that when k = 0, we have:

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2 = ∥∇Li(wt)−∇Lj(wt)∥2 ≤ δ2,

that is directly obtained from Assumption 3.7. For k > 0, we have:

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2

=∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]

+ Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2

≤2∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)−∇Lj(ui
k)]∥2 + 2∥Eξi0,t,...,ξ

i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2

≤2δ2 + 2∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2, (12)

where the first term is bounded by Assumption 3.7. For the second term in (12), we have:

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2

=∥Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj

[
∇Lj

(
ui
k−1 − α∇ℓ(ui

k−1, ξ
i
k−1,t)

)
−∇Lj

(
uj
k−1 − α∇ℓ(uj

k−1, ξ
j
k−1,t)

)]
∥2

≤Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇Lj(ui

k−1 − α∇ℓ(ui
k−1, ξ

i
k−1,t))−∇Lj(uj

k−1 − α∇ℓ(uj
k−1, ξ

j
k−1,t))∥

2

≤M2Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥

(
ui
k−1 − α∇ℓ(ui

k−1, ξ
i
k−1,t)

)
−
(
uj
k−1 − α∇ℓ(uj

k−1, ξ
j
k−1,t)

)
∥2

≤M2Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj

(
2∥ui

k−1 − uj
k−1∥

2 + 2α2∥∇ℓ(ui
k−1, ξ

i
k−1,t)−∇ℓ(uj

k−1, ξ
j
k−1,t)∥

2
)
. (13)
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For the first term in (13), consider ∥ui
k − uj

k∥2, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥ui

k − uj
k∥

2 =Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥(ui

k −wt)− (uj
k −wt)∥2

=Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥

k−1∑
l=0

α(∇ℓ(ui
l, ξ

i
l,t)−∇ℓ(uj

l , ξ
j
l,t))∥

2

≤kα2
k−1∑
l=0

∥∇ℓ(ui
l, ξ

i
l,t)−∇ℓ(uj

l , ξ
j
l,t)∥

2. (14)

Substituting the first term in (13) by (14),

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj(uj

k)]∥
2

≤M2Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj [2∥ui

k−1 − uj
k−1∥

2 + 2α2∥∇ℓ(ui
k−1, ξ

i
k−1,t)−∇ℓ(uj

k−1, ξ
j
k−1,t)∥

2]

≤2(k − 1)M2α2Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj

[
k−2∑
l=0

∥∇ℓ(ui
l, ξ

i
l,t)−∇ℓ(uj

l , ξ
j
l,t)∥

2

]
+ 2kM2α2Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj [∥∇ℓ(ui

k−1, ξ
i
k−1,t)−∇ℓ(uj

k−1, ξ
j
k−1,t)∥

2]. (15)

Now we need to bound Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj [∥∇ℓ(ui

l, ξ
i
l,t)−∇ℓ(uj

l , ξ
j
l,t)∥2] for any l = 0, . . . ,K − 1, that

appears in (15). First, we have:

∥∇ℓ(ui
l, ξ

i
l,t)−∇ℓ(uj

l , ξ
j
l,t)∥

2

=∥∇ℓ(ui
l, ξ

i
l,t)−∇Li(ui

l) +∇Li(ui
l)−∇Lj(ui

l) +∇Lj(ui
l)−∇Lj(uj

l ) +∇Lj(uj
l )−∇ℓ(uj

l , ξ
j
l,t)∥

2

≤4∥∇ℓ(ui
l, ξ

i
l,t)−∇Li(ui

l)∥2 + 4∥∇Li(ui
l)−∇Lj(ui

l)∥2

+ 4∥∇Lj(ui
l)−∇Lj(uj

l )∥
2 + 4∥∇Lj(uj

l )−∇ℓ(uj
l , ξ

j
l,t)∥

2. (16)

For the expectation, we have:

Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

l, ξ
i
l,t)−∇ℓ(uj

l , ξ
j
l,t)∥

2

≤Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj [4∥∇ℓ(ui

l, ξ
i
l,t)−∇Li(ui

l)∥2 + 4∥∇Li(ui
l)−∇Lj(ui

l)∥2

+ 4∥∇Lj(ui
l)−∇Lj(uj

l )∥
2 + 4∥∇Lj(uj

l )−∇ℓ(uj
l , ξ

j
l,t)∥

2]

≤4δ2 + 8σ2 + 4M2Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥ui

l − uj
l ∥

2

≤4δ2 + 8σ2 + 4lM2α2
l−1∑
m=0

Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)− ℓ(uj
m, ξjm,t)∥2,

where the first and last terms are bounded by Assumption 3.5, the second term is bounded by Assumption 3.7, and the third
term is obtained from Assumption 3.2. This also implies:

∑l

m=0
Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)−∇ℓ(uj
m, ξjm,t)∥2

=
∑l−1

m=0
Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)− ℓ(uj
m, ξjm,t)∥2

+ Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

l, ξ
i
l,t)−∇ℓ(uj

l , ξ
j
l,t)∥

2

≤4δ2 + 8σ2 + (1 + 4KM2α2)
∑l−1

m=0
Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)− ℓ(uj
m, ξjm,t)∥2, (17)
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as we always have l < K by definition. To derive the final bound, consider l = 0 in (17):

∑0

m=0
Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)−∇ℓ(uj
m, ξjm,t)∥2

=Eξi0,t∼Di,ξj0,t∼Dj∥∇ℓ(ui
0, ξ

i
0,t)−∇ℓ(uj

0,t, ξ
j
0,t)∥2

=Eξi0,t∼Di,ξj0,t∼Dj∥∇ℓ(wt, ξ
i
0,t)−∇Li(wt) +∇Li(wt)−∇Lj(wt) +∇Lj(wt)−∇ℓ(wt, ξ

j
0,t)∥2

=Eξi0,t∼Di∥∇ℓ(wt, ξ
i
0,t)−∇Li(wt)∥2 + ∥∇Li(wt)−∇Lj(wt)∥2 + Eξj0,t∼Dj∥∇Lj(wt)−∇ℓ(wt, ξ

j
0,t)∥2

≤2σ2 + δ2,

where we remove the stochastic samples ξi1,t, . . . , ξ
i
K−1,t and ξj1,t, . . . , ξ

j
K−1,t that are irrelevant to the expectations, as

∥∇ℓ(ui
0, ξ

i
0,t)−∇ℓ(uj

0,t, ξ
j
0,t)∥2 only depends on ξi0,t, ξ

j
0,t. This then gives:

∑l

m=0
Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)−∇ℓ(uj
m, ξjm,t)∥2

≤(1 + 4KM2α2)l(1 +
1

KMα2
)(δ2 + 2σ2)− δ2 + 2σ2

KMα2
. (18)

Now we have:

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj((uj

k)]∥
2

≤2(k − 1)α2M2Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj

[
k−2∑
l=0

∥∇ℓ(ui
l, ξ

i
l,t)− ℓ(uj

l , ξ
j
l,t)∥

2

]

+ 2kα2M2

(
4δ2 + 8σ2 + 4M2(k − 1)α2

k−2∑
m=0

Eξi0,t,...,ξ
i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj∥∇ℓ(ui

m, ξim,t)− ℓ(uj
m, ξjm,t)∥2

)

=2(k − 1)M2α2
(
1 + 4(k − 1)M2α2

)
Eξi0,t,...,ξ

i
K−1,t∼Di,ξj0,t,...,ξ

j
K−1,t∼Dj

[
k−2∑
m=0

∥∇ℓ(ui
m, ξim,t)− ℓ(uj

m, ξjm,t)∥2
]

+ 8kM2α2(δ2 + 2σ2)

≤2(k − 1)M2α2
(
1 + 4(k − 1)M2α2

)(
(1 + 4KM2α2)k−2(1 +

1

KMα2
)(δ2 + 2σ2)− δ2 + 2σ2

KMα2

)
+ 8kM2α2(δ2 + 2σ2)

≤2(k − 1)M2α2(1 + 4KM2α2)k−1(1 +
1

KMα2
)(δ2 + 2σ2) + 8kM2α2(δ2 + 2σ2), (19)

where the first inequality is due to (16), the second is due to (18), and the last is obtained by removing the − δ2+2σ2

KMα2 term
which is always negative. Using (19) in (12), we have:

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj(uj

k)]∥
2

≤2δ2 + 2∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Lj(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj(uj

k)]∥
2

≤2δ2 + 4(k − 1)M2α2(1 + 4KM2α2)k−1(1 +
1

KMα2
)(δ2 + 2σ2) + 16kM2α2(δ2 + 2σ2). (20)
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Using (20) in (11),

∥Eξi0,t,...,ξ
i
K−1,t∼Di [cit]− Eξj0:K−1,t

[cjt ]∥2

=∥ 1

K

K−1∑
k=0

Eξi0,t,...,ξ
i
K−1,t∼Di [∇ℓ(ui

k, ξ
i
k,t)]−

1

K

K−1∑
k=0

Eξj0,t,...,ξ
j
K−1,t∼Dj [∇ℓ(uj

k, ξ
j
k,t)]∥

2

≤ 1

K

K−1∑
k=0

∥Eξi0,t,...,ξ
i
K−1,t∼Di [∇Li(ui

k)]− Eξj0,t,...,ξ
j
K−1,t∼Dj [∇Lj(uj

k)]∥
2

≤2δ2 + 4M2α2 (1 + 4KM2α2)K

16K2M4α4
(1 +

1

KMα2
)(δ2 + 2σ2) + 8KM2α2(δ2 + 2σ2)

=2δ2 +
(1 + 4KM2α2)K

4K2M2α2
(1 +

1

KMα2
)(δ2 + 2σ2) + 8KM2α2(δ2 + 2σ2).

Finally, define

δ̃2 = 2δ2 +
(1 + 4KM2α2)K

4K2M2α2
(1 +

1

KMα2
)(δ2 + 2σ2) + 8KM2α2(δ2 + 2σ2),

which concludes the proof.

A.4. Proof of Theorem 3.12

First, we need the following Lemma.

Lemma A.1. If ηt ≤ 1
2M̃

in Algorithm 2, then:

EL̃(wt+1) ≤ EL̃(wt)−
ηt
2
E∥∇L̃(wt)∥2 +

η2t M̃

2
σ̃2.

Proof. Since L̃(wt) is M̃ -Lipschitz smooth, we have:

EL̃(wt+1) ≤E[L̃(wt) + (∇L̃(wt))
⊤(wt+1 −wt) +

M̃

2
∥wt+1 −wt∥2]

=E[L̃(wt)− ηt(∇L̃(wt))
⊤ct +

η2t M̃

2
∥ct∥2].

For Algorithm 2, we have ct =
1

|It|
∑

i∈It
cit. Since the tasks i are independently sampled, obviously we have E[ct] =

Ei[c
i
t] = ∇L̃(wt), which gives:

E∥ct∥2 =E∥ct −∇L̃(wt) +∇L̃(wt)∥2

=E∥ct −∇L̃(wt)∥2 + 2E(ct −∇L̃(wt))
⊤∇L̃(wt) + E∥∇L̃(wt)∥2

≤σ̃2 + E∥∇L̃(wt)∥2,

where the last inequality comes from Corollary 3.10. Then we have

EL̃(wt+1) ≤E[L̃(wt)− ηt(∇L̃(wt))
⊤ct +

η2t M̃

2
∥ct∥2]

≤E[L̃(wt)− ηt∥∇L̃(wt)∥2 +
η2t M̃

2
(σ̃2 + E∥∇L̃(wt)∥2)]

=E[L̃(wt)− ηt(1−
ηtM̃

2
)∥∇L̃(wt)∥2 +

η2t M̃

2
σ̃2].
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Since ηt ≤ 1
2M̃

, we have ηt(1− ηtM̃
2 ) ≥ ηt

2 , which gives:

EL̃(wt+1) ≤E[L̃(wt)− ηt(1−
ηtM̃

2
)∥∇L̃(wt)∥2 +

η2t M̃

2
σ̃2]

≤EL̃(wt)−
ηt
2
E∥∇L̃(wt)∥2 +

η2t M̃

2
σ̃2,

and this concludes the proof.

In Lemma A.1, summing t from 0 to T − 1 gives:

EL̃(wT ) ≤ EL̃(w0)−
T−1∑
t=0

ηt
2
E∥∇L̃(wt)∥2 +

T−1∑
t=0

η2t M̃

2
σ̃2,

i.e.,

T−1∑
t=0

ηt
2
E∥∇L̃(wt)∥2 ≤ E[L̃(w0)− L̃(wT )] + M̃σ̃2η2g,0 ln(T + 1),

where we have used the fact that
∑T−1

t=0 η2t =
∑T−1

t=0

η2
g,0

1+t ≤ 2η2g,0 ln(T+1). Also, note that ηt > ηt for any t = 0, . . . , T−1

and EL̃(wT ) ≤ L̃∗, which gives:

ηt
2

T−1∑
t=0

E∥∇L̃(wt)∥2 ≤ E[L̃(w0)− L̃∗] + M̃σ̃2η2g,0 ln(T + 1) = G,

where G denotes the right hand side for notational simplicity. To obtain the final result, we need to divide both sides by Tηt

2 ,
for which we have:

2

Tηt
=

2

Tηg,0
(1 + T )1/2 ≤ 2

Tηg,0

1

2
(
√
2 +

√
2T ) =

1

ηg,0
(

√
2

T
+

√
2

T
),

which comes from the concavity of the square root function. Then we obtain:

1

T

T−1∑
t=0

E∥∇L̃(wt)∥2 ≤ 2

Tηt
G ≤

√
2G/ηg,0√

T
+

√
2G/ηg,0
T

,

which concludes the proof.

A.5. Proof of Theorem 3.13

We extend Theorem 3.13 to the following which allows a flexible choice of ηt.
Theorem A.2. For any b > 0, set

ηt =
b

M̃
(
(7b+ 1

28b2 )
3 + t

)1/3 , γt+1 = cη2t

for all t = 0, . . . , T − 1, where c = M̃2(28 + 1
7b3 ), then Reptile+STORM (Algorithm 3) satisfies:

1

T
E

[
T−1∑
t=0

∥∇L̃(wt)∥2
]
≤ G2

M̃/b

T 2/3
+

G2M̃(7 + 1
28b3 )

T
,

where

G2 = 8E[L̃(w0)− L̃∗] +
(7 + 1

28b3 )σ̃
2

4M̃
+

c2b3σ̃2

16M̃5
lnT

and L̃∗ = minw L̃(w).
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First, we need the following Lemma.
Lemma A.3. If ηt ≤ 1

4M̃
in Algorithm 3, then:

EL̃(wt+1) ≤ EL̃(wt)−
ηt
4
E∥∇L̃(wt)∥2 +

3ηt
4

E∥et∥2,

where et = ct −∇L̃(wt) and the expectation is taken over all tasks and training data.

Proof. Since L̃(wt) is M̃ -Lipschitz smooth, we have:

EL̃(wt+1) ≤E[L̃(wt) + (∇L̃(wt))
⊤(wt+1 −wt) +

M̃

2
∥wt+1 −wt∥2]

=E[L̃(wt)− ηt(∇L̃(wt))
⊤ct +

η2t M̃

2
∥ct∥2].

Since ct = et +∇L̃(wt), we have:

(∇L̃(wt))
⊤ct = ∥∇L̃(wt)∥2 + (∇L̃(wt))

⊤et,

∥ct∥2 = ∥et +∇L̃(wt)∥2 ≤ 2∥et∥2 + 2∥∇L̃(wt)∥2,

and so:

EL̃(wt+1) ≤E[L̃(wt)− ηt∥∇L̃(wt)∥2 − ηt(∇L̃(wt))
⊤et

+ η2t M̃∥et∥2 + η2t M̃∥∇L̃(wt)∥2].

For (∇L̃(wt))
⊤et, we have:

(∇L̃(wt))
⊤et ≥ −1

2
(∥∇L̃(wt)∥2 + ∥et∥2),

which then gives:

EL̃(wt+1) ≤E[L̃(wt)−
ηt
2
∥∇L̃(wt)∥2 +

ηt
2
∥et∥2 + η2t M̃∥et∥2 + η2t M̃∥∇L̃(wt)∥2]

=E[L̃(wt)−
ηt
2
(1− 2ηtM̃)∥∇L̃(wt)∥2 +

ηt
2
(1 + 2ηtM̃)∥et∥2].

Since ηt ≤ 1
4M̃

, we have −ηt

2 (1− 2ηtM̃) ≤ −ηt

4 and ηt

2 (1 + 2ηtM̃) ≤ 3ηt

4 . Combining these two gives:

EL̃(wt+1) ≤ EL̃(wt)−
ηt
4
E∥∇L̃(wt)∥2 +

3ηt
4

E∥et∥2,

which concludes the proof.

The following Lemma. bounds ∥et∥2.
Lemma A.4. For any t > 0, we have:

E∥et∥2 ≤ 2γ2
t σ

2

|It|
+ (1− γt)

2(1 + 4M̃2η2t−1)E∥et−1∥2 + 4(1− γt)
2M̃2η2t−1E∥∇L̃(wt−1)∥2.

Proof. From Algorithm 3, we have:

et = ct −∇L̃(wt) =
1

|It|
∑
i∈It

cit −∇L̃(wt) + (1− γt)(ct−1 − dt)

=γt

(
1

|It|
∑
i∈It

cit −∇L̃(wt)

)
+ (1− γt)

(
1

|It|
∑
i∈It

cit −∇L̃(wt) + ct−1 −
1

|It|
∑
i∈It

di
t

)

=γt

(
1

|It|
∑
i∈It

cit −∇L̃(wt)

)
+ (1− γt)

(
1

|It|
∑
i∈It

(cit − di
t)− (∇L̃(wt)−∇L̃(wt−1))

)
+ (1− γt)(ct−1 −∇L̃(wt−1)),
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where the last term is exactly (1− γt)et−1 and is independent of the first two terms. For E∥et∥2, we have:

E∥et∥2 =E∥γt(
1

|It|
∑
i∈It

cit −∇L̃(wt)) + (1− γt)(
1

|It|
∑
i∈It

(cit − di
t)− (∇L̃(wt)−∇L̃(wt−1)))∥2

+ (1− γt)
2E∥et−1∥2.

Note that for any two vectors w,u, we always have ∥w + u∥2 ≤ 2∥w∥2 + 2∥u∥2. This implies:

E∥et∥2 =2γ2
t E∥

1

|It|
∑
i∈It

cit −∇L̃(wt)∥2 + 2(1− γt)
2E∥ 1

|It|
∑
i∈It

(cit − di
t)− (∇L̃(wt)−∇L̃(wt−1))∥2

+ (1− γt)
2E∥et−1∥2. (21)

For the first term in (21), since the tasks i are independently sampled, we have:

E∥ 1

|It|
∑
i∈It

cit −∇L̃(wt)∥2 =
1

|It|
∑
i∈It

E∥cit −∇L̃(wt)∥2 ≤ σ2

|It|
.

For the second term in (21), similarly we have:

E∥ 1

|It|
∑
i∈It

(cit − di
t)− (∇L̃(wt)−∇L̃(wt−1))∥2 =

1

|It|
∑
i∈It

E∥(cit − di
t)− (∇L̃(wt)−∇L̃(wt−1))∥2

=
1

|It|
∑
i∈It

E∥cit − di
t∥2 − ∥∇L̃(wt)−∇L̃(wt−1)∥2

≤ 1

|It|
∑
i∈It

E∥cit − di
t∥2.

For any ∥cit − di
t∥2, Proposition 3.3 leads to ∥cit − di

t∥2 ≤ M̃2∥wt −wt−1∥2. Combining all these together, we have:

E∥et∥2 ≤2γ2
t σ

2

|It|
+ 2(1− γt)

2M̃2∥wt −wt−1∥2 + (1− γt)
2E∥et−1∥2

=
2γ2

t σ
2

|It|
+ 2(1− γt)

2M̃2η2t−1∥ct−1∥2 + (1− γt)
2E∥et−1∥2

=
2γ2

t σ
2

|It|
+ 2(1− γt)

2M̃2η2t−1∥et−1 +∇L̃(wt−1)∥2 + (1− γt)
2E∥et−1∥2

≤2γ2
t σ

2

|It|
+ 4(1− γt)

2M̃2η2t−1∥et−1∥2 + 4(1− γt)
2M̃2η2t−1∥∇L̃(wt−1)∥2 + (1− γt)

2E∥et−1∥2

=
2γ2

t σ
2

|It|
+ (1− γt)

2(1 + 4M̃2η2t−1)∥et−1∥2 + 4(1− γt)
2M̃2η2t−1∥∇L̃(wt−1)∥2,

which concludes the proof.

Now we are ready to prove Theorem 3.13:

Proof for Theorem 3.13. From Lemma A.4, we first consider bounding E[η−1
t ∥et+1∥2 − η−1

t−1∥et∥2], i.e., the difference in
variance, which is given by:

E[η−1
t ∥et+1∥2 − η−1

t−1∥et∥2] ≤
2γ2

t+1σ̃
2

ηt|It+1|
+ (1− γt+1)

2 1 + 4M̃2η2t
ηt

∥et∥2

+ 4(1− γt+1)
2M̃2ηt∥∇L̃(wt)∥2 −

1

ηt−1
∥et∥2.
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Recall that

ηt =
b

M̃
(
(7b+ 1

28b2 )
3 + t

)1/3 , γt+1 = cη2t ,

which implies that

ηt ≤η0 =
1

M̃(7 + 1
28b3 )

<
1

4M̃
,

γt+1 ≤cη20 = M̃2(28 +
1

7b3
) · 1

M̃2(7 + 1
28b3 )

2
=

28 + 1
7b3

(7 + 1
28b3 )

2
< 1,

i.e., ηt ≤ 1
4M̃

and 0 < γt+1 ≤ 1 always hold for t ≥ 0. Thus, we have 0 ≤ 1− γt+1 < 1, which gives:

E[η−1
t ∥et+1∥2 − η−1

t−1∥et∥2] ≤
2γ2

t+1σ̃
2

ηt|It+1|
+ (

1− γt+1

ηt
− 1

ηt−1
+ 4M̃2ηt)∥et∥2

+ 4M̃2ηt∥∇L̃(wt)∥2.

Summing t from 0 to T − 1, we have:

T−1∑
t=0

E[η−1
t ∥et+1∥2 − η−1

t−1∥et∥2] ≤
T−1∑
t=0

2γ2
t+1σ̃

2

ηt|It+1|
+

T−1∑
t=0

(
1− γt+1

ηt
− 1

ηt−1
+ 4M̃2ηt)E∥et∥2

+ 4M̃2
T−1∑
t=0

ηtE∥∇L̃(wt)∥2. (22)

For the first term in (22), since ηt =
b

M̃((7b+ 1
28b2

)3+t)
1/3 and γt+1 = cη2t , we have:

T−1∑
t=0

2γ2
t+1σ̃

2

ηt|It+1|
=

T−1∑
t=0

2c2η3t σ̃
2

|It+1|

=

T−1∑
t=0

2c2b3σ̃2

M̃3
(
(7b+ 1

28b2 )
3 + t

)
|It+1|

≤2c2b3σ̃2

M̃3
·
T−1∑
t=0

1

1 + t
≤ 2c2b3σ̃2

M̃3
lnT,

where the last two inequalities come from (7b+ 1
28b2 )

3 > 2 and |It+1| ≥ 1.

For the second term in (22), we first bound 1
ηt

− 1
ηt−1

. Obviously, x1/3 is a concave function, which gives (x+ y)1/3 ≤
x1/3 + y · x−2/3/3. Therefore, we have:

1

ηt
− 1

ηt−1
=
M̃

b

((
(7b+

1

28b2
)3 + t

)1/3

−
(
(7b+

1

28b2
)3 + (t− 1)

)1/3
)

≤M̃

3b

(
(7b+

1

28b2
)3 + (t− 1)

)−2/3

=
M̃

3b
(
(7b+ 1

28b2 )
3 + (t− 1)

)2/3 .
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Since (7b+ 1
28b2 )

3 > 2 for b > 0, we have 1
2 (7b+

1
28b2 )

3 + t
2 < (7b+ 1

28b2 )
3 − 1 + t for any t ≥ 0, which implies that:

1

ηt
− 1

ηt−1
≤ M̃

3b
((
(7b+ 1

28b2 )
3 − 1

)
+ t
)2/3

≤ M̃

3b
(
1
2 (7b+

1
28b2 )

3 + t
2

)2/3
=

22/3M̃

3b
(
(7b+ 1

28b2 )
3 + t

)2/3 =
22/3M̃3

3b3
η2t .

Since ηt ≤ 1
4M̃

, we have:

1

ηt
− 1

ηt−1
≤ 22/3M̃3

3b3
η2t ≤ 22/3M̃2

12b3
ηt <

M̃2

7b3
ηt, (23)

where the last inequality comes from 12/22/3 > 7. For the −γt+1

ηt
+ 4M̃2ηt term, we have:

−γt+1

ηt
+ 4M̃2ηt = (4M̃2 − c)ηt ≤ (4M̃2 − M̃2(28 +

1

7b3
))ηt = −24M̃2ηt −

M̃ηt
7b3

. (24)

Combining (23) and (24), we have:

(
1− γt+1

ηt
− 1

ηt−1
+ 4M̃2ηt)∥et∥2 ≤ (

M̃2

7b3
ηt − 24M̃2ηt −

M̃ηt
7b3

)∥et∥2 = −24M̃2ηt∥et∥2.

Now we have:
T−1∑
t=0

E[η−1
t ∥et+1∥2 − η−1

t−1∥et∥2] ≤
2c2b3σ̃2

M̃3
lnT − 24M̃2

T−1∑
t=0

ηtE∥et∥2 + 4M̃2
T−1∑
t=0

ηtE∥∇L̃(wt)∥2.

Dividing the sum by 32M̃2 on both sides gives:

1

32M̃2

T−1∑
t=0

E[η−1
t ∥et+1∥2 − η−1

t−1∥et∥2] ≤
c2b3σ̃2

16M̃5
lnT +

T−1∑
t=0

E[
ηt
8
∥∇L̃(wt−1)∥2 −

3ηt
4

∥et∥2].

Consider the potential function Φt = L̃(wt) +
1

32M̃2ηt−1
∥et∥2. We have:

E[Φt+1 − Φt] =E[L̃(wt+1)− L̃(wt)] + E[
1

32M̃2ηt
∥et+1∥2 −

1

32M̃2ηt−1

∥et∥2]

≤E[−ηt
4
∥∇L̃(wt)∥2 +

3ηt
4

∥et∥2 +
1

32M̃2ηt
∥et+1∥2 −

1

32M̃2ηt−1

∥et∥2],

where the first part is bounded from Lemma A.3. Summing t from 0 to T − 1 gives:

E[ΦT − Φ0] ≤
T−1∑
t=0

E[−ηt
4
∥∇L̃(wt)∥2 +

3ηt
4

∥et∥2 +
1

32M̃2ηt
∥et+1∥2 −

1

32M̃2ηt−1

∥et∥2]

≤
T−1∑
t=0

E[−ηt
4
∥∇L̃(wt)∥2 +

3ηt
4

∥et∥2] +
1

32M̃2

T−1∑
t=0

E[
1

ηt
∥et+1∥2 −

1

ηt−1
∥et∥2]

≤
T−1∑
t=0

E[−ηt
4
∥∇L̃(wt)∥2 +

3ηt
4

∥et∥2] +
c2b3σ̃2

16M̃5
lnT +

T−1∑
t=0

E[
ηt
8
∥∇L̃(wt)∥2 −

3ηt
4

∥et∥2]

=

T−1∑
t=0

E[−ηt
8
∥∇L̃(wt)∥2] +

c2b3σ̃2

16M̃5
lnT,
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which implies that:

T−1∑
t=0

E[ηt∥∇L̃(wt)∥2] ≤8E[Φ0 − ΦT ] +
c2b3σ̃2

16M̃5
lnT

≤8E[L̃(w0)− L̃∗] +
1

4M̃2η−1

E∥e0∥2 +
c2b3σ̃2

16M̃5
lnT.

Since ηt is decreasing w.r.t. t, we have ηt > ηT for t = 0, . . . , T − 1. For η−1, we have:

1

η−1
=

M̃
(
(7b+ 1

28b2 )
3 − 1

)1/3
b

≤ M̃(7 +
1

28b3
).

For E∥e0∥2 = E∥c0 −∇L̃(w0)∥2, we have E∥e0∥2 ≤ σ̃2 from Proposition 3.10. Combining all these,

ηT

T−1∑
t=0

E[∥∇L̃(wt)∥2] ≤8E[L̃(w0)− L̃∗] +
(7 + 1

28b3 )σ̃
2

4M̃
+

c2b3σ̃2

16M̃5
lnT = G2,

where G2 denotes the whole right hand for notational simplicity. To obtain the final result, we need to divide both sides by
TηT , for which we have:

1

TηT
=

(w + σ̃2T )1/3

kT
≤ σ̃2/3

kT 2/3
+

w1/3

kT
,

and

1

TηT
=

M̃
(
(7b+ 1

28b2 )
3 + T

)1/3
bT

≤ M̃

bT 2/3
+

M̃(7 + 1
28b3 )

T
.

Then we have:

1

T

T−1∑
t=0

E[∥∇L̃(wt)∥2] ≤
G2

M̃/b

T 2/3
+

G2M̃(7 + 1
28b3 )

T
,

which concludes the proof.

B. Proposed Variance-Reduced Variants for Popular Meta-Learning Algorithms
B.1. Integration with MAML and FOMAML

Besides the integration with Reptile as discussed in Section 3.1, the proposed method can also be integrated with other
meta-learning algorithms such as MAML, FOMAML and BMG. The resultant algorithms, which will be called VR-MAML,
VR-FOMAML and VR-BMG, respectively, are shown in Algorithm 5. Similar to VR-Reptile, we introduce additional ct
and dt−1, and apply similar variance reduction steps.

B.2. Combining STORM with Meta-learning

Algorithm 6 shows how STORM can be integrated into meta-learning algorithms, by replacing all stochastic gradients in
these algorithms with the variance-reduced gradients in STORM.
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Algorithm 5 VR-MAML/FOMAML/BMG (Variance-Reduced MAML/FOMAML/BMG)
1: Input: w0, stepsizes {ηt} and α, number of local steps K, decay parameter {γt} (1 means no variance reduction).
2: sample tasks I0 ⊂ I
3: for i ∈ It do
4: ui

0,0 = w0

5: for k = 0 to K − 1 do
6: obtain samples ξik,t from support data of task i

7: ui
k+1,0 = ui

k − α∇ℓ(ui
k, ξ

i
k,0)

8: end for
9: if VR-BMG then

10: for k = K to K +M − 1 do
11: obtain samples ξik,0 from support data of task i

12: ui
k+1,0 = ui

k − α∇ℓ(ui
k, ξ

i
k,0)

13: end for
14: end if
15: obtain samples ξiK,0 from query data of task i
16: if VR-MAML then
17: c̃i0 = ∇w0

ℓ(ui
k, ξ

i
K,0)

18: else if VR-FOMAML then
19: c̃i0 = ∇ℓ(ui

k, ξ
i
K,0)

20: else if VR-BMG then
21: c̃i0 = ∇w0

( 12∥u
i
K+M,0 − ui

K,0∥)
22: end if
23: end for
24: c̃0 = 1

|I0|
∑

i∈I0
ci0

25: w1 = w0 − η0c̃0
26: for t = 1 to T − 1 do
27: sample tasks It ⊂ I
28: for i ∈ It do
29: ui

0 = wt,v
i
0,t−1 = wt−1

30: for k = 0 to K − 1 do
31: obtain samples ξik,t from support data of task i

32: ui
k+1,t = ui

k − α∇ℓ(ui
k, ξ

i
k,t),v

i
k+1,t−1 = vi

k,t−1 − α∇ℓ(vi
k,t−1, ξ

i
k,t)

33: end for
34: if VR-BMG then
35: for k = K to K +M − 1 do
36: obtain samples ξik,t from support data of task i

37: ui
k+1,t = ui

k − α∇ℓ(ui
k, ξ

i
k,t),v

i
k+1,t−1 = vi

k,t−1 − α∇ℓ(vi
k,t−1, ξ

i
k,t)

38: end for
39: end if
40: obtain samples ξiK,t from query data of task i
41: if VR-MAML then
42: d̃i

t−1 = ∇wt−1
ℓ(vi

K,t−1, ξ
i
K,t), c̃

i
t = ∇wt

ℓ(ui
k, ξ

i
K,t)

43: else if VR-FOMAML then
44: d̃i

t−1 = ∇ℓ(vi
K,t−1, ξ

i
K,t), c̃

i
t = ∇ℓ(ui

k, ξ
i
K,t)

45: else if VR-BMG then
46: d̃i

t−1 = ∇wt−1(
1
2∥v

i
K+M,t−1 − vi

K,t−1∥), c̃it = ∇wt
( 12∥u

i
K+M,t − ui

K,t∥)
47: end if
48: end for
49: d̃t−1 = 1

|It|
∑

i∈It
d̃i
t−1

50: c̃t =
1

|It|
∑

i∈It
c̃it + (1− γt)(c̃t−1 − d̃t−1)

51: wt+1 = wt − ηtc̃t
52: end for
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Algorithm 6 MAML/FOMAML/Reptile+STORM: meta-learning algorithms with stochastic gradients replaced by STORM.
1: Input: w0, step-size ηt and α, number of local steps K.
2: for t = 0 to T − 1 do
3: Sample tasks It ⊂ I
4: for i ∈ It do
5: ui

0 = wt

6: for k = 0 to K − 1 do
7: Obtain data samples ξik,t from the support data of task i
8: if k > 0 then
9: mi

k,t = ∇ℓ(ui
k, ξ

i
k,t) + (1− γk)(m

i
k−1,t −∇ℓ(ui

k−1, ξ
i
k,t))

10: else
11: mi

k,t = ∇ℓ(ui
k, ξ

i
k,t)

12: end if
13: ui

k+1,t = ui
k − αmi

k,t

14: end for
15: Obtain data samples ξiK,t from the query data of task i

16: cit = ∇wtℓ(u
i
k, ξ

i
K,t) (MAML), cit = ∇ℓ(ui

k, ξ
i
K,t) (FOMAML), or cit =

1
Kα (wt − ui

k) (Reptile)
17: end for
18: ct =

1
|It|
∑

i∈It
cit

19: wt+1 = wt − ηtct
20: end for


