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Abstract

Data augmentation is critical to contrastive self-
supervised learning, whose goal is to distinguish
a sample’s augmentations (positives) from other
samples (negatives). However, strong augmen-
tations may change the sample-identity of the
positives, while weak augmentation produces
easy positives/negatives leading to nearly-zero
loss and ineffective learning. In this paper, we
study a simple adversarial augmentation method
that can modify training data to be hard posi-
tives/negatives without distorting the key informa-
tion about their original identities. In particular,
we decompose a sample x to be its variational
auto-encoder (VAE) reconstruction G(x) plus the
residual R(x) = x − G(x), where R(x) retains
most identity-distinctive information due to an
information-theoretic interpretation of the VAE
objective. We then adversarially perturb G(x) in
the VAE’s bottleneck space and adds it back to the
original R(x) as an augmentation, which is there-
fore sufficiently challenging for contrastive learn-
ing and meanwhile preserves the sample identity
intact. We apply this “identity-disentangled ad-
versarial augmentation (IDAA)” to different self-
supervised learning methods. On multiple bench-
mark datasets, IDAA consistently improves both
their efficiency and generalization performance.
We further show that IDAA learned on a dataset
can be transferred to other datasets. Code is avail-
able at https://github.com/kai-wen-yang/IDAA.
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1. Introduction
Empowered by deep neural networks and the computa-
tional capability of recent hardware, machine learning has
achieved breakthroughs on some challenging problems
when sufficient labeled data is available. However, deep
learning is known to be data-hungry and annotating data in
many domains, e.g., medical care or predictions of protein
structures, are either difficult or expensive. To overcome
this limitation, self-supervised learning (SSL) methods train
a model on unlabeled data in a supervised learning man-
ner using self-generated labels by manipulating the data,
e.g., rotation degrees (Gidaris et al., 2018), Jigzaw puz-
zle solutions (Noroozi & Favaro, 2016), clustering (Caron
et al., 2018), back-translation (Zhu et al., 2017), etc. These
methods recently start to perform on par with supervised
learning and exhibit potential to even surpass it (Chen et al.,
2020a;b). Moreover, their learned representations can be
generally applied to different downstream tasks.

Many widely-used SSL methods are built upon sample-
identity preservation tasks, e.g., contrastive learning (Oord
et al., 2018; Tian et al., 2020a; Chen et al., 2020a) and con-
sistency regularization (Chen & He, 2021; Grill et al., 2020;
Caron et al., 2020), which aim at learning representations
that can preserve the identity of the original sample after
applying data augmentations and thus distinguish the aug-
mentations of different samples. For example, contrastive
learning targets on an representation space in which a sam-
ple (anchor) is closer to its own augmentations (positives)
than other samples or their augmentations (negatives). The
effectiveness of contrastive learning therefore heavily de-
pends on the quality of data augmentations.

Most SSL methods (Ye et al., 2019; Chen et al., 2020a; He
et al., 2020; Chen & He, 2021) utilize pre-defined data aug-
mentations to generate positives and negatives. However, as
shown in the example (green point) of Fig. 1, they are not
adaptive to the data manifold in the embedding space during
training and the generated augmentations can be too easy
for the sample identification task. In practice, these SSL
methods need tens to hundreds times of epochs required by
supervised learning to reach comparable performance (Chen
et al., 2020a; He et al., 2020; Chen & He, 2021). For the
same reason, large batch-size is common and necessary for
contrastive learning in order to involve sufficient hard neg-
atives. Therefore, how to modify the positives/negatives
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Figure 1. Data augmentations for contrastive Learning: IDAA, CLAE and random augmentation. (a) Identity-preserving and hardness of
data augmentations: random augmentation generates identity-preserved but easy samples, CLAE can adversarially generates hard but
identity-distorted samples, while IDAA (ours) can generate hard and identity-preserved samples. (b) Identity-preserving and hardness of
augmentations by different methods: Points below the boundary line have the identity changed, while points close to the boundary are
hard samples. (c) Kernel density plot for (b): IDAA generates hard samples without changing the identities.

for more informative contrastive loss is a critical yet open
challenge towards more efficient SSL. Learnable and adap-
tive data augmentations have been explored for supervised
learning (Cubuk et al., 2018; 2020; Liu et al., 2021) but have
not been widely studied in SSL. Probably the most related
augmentation method for SSL is CLAE (Ho & Vasconcelos,
2020), which generates hard positives/negatives by adver-
sarially attacking the input. However, as shown in Fig. 1,
adversarial augmentations may change the original sample
identity and it is infeasible to tune the attack strength for
every sample to preserve the identity.
Hence, another challenge for data augmentation in SSL
is how to preserve sample identity. Although hard posi-
tives/negatives might be achievable by stronger or adversar-
ial augmentations listed above, they can also distort the true
identities of the original samples as the red point in Fig. 1, so
the model may erroneously identify other different samples
or their augmentations as the anchor sample. Training with
those identity-changed augmentations might lead to trivial
solutions for SSL and poor representations.

To address the aforementioned two primary challenges of
contrastive learning, we have to consider how they interfere
with each other. For better efficiency, the data augmentation
needs to generate positives and negatives as challenging as
possible for the model to distinguish the sample identity,
but it should not remove or distort the minimum necessary
information retaining the true identity. Thereby, the sam-
ple identification task is neither too trivial nor infeasible
to learn. In this paper, we study how to automatically gen-
erate data augmentations that fulfill the above conditions
and improve both the efficiency and effectiveness of current
self-supervised learning. We relate the objective of vari-
ational antoencoder (VAE) with the sample identification
task in contrastive learning from an information-theoretical
perspective, which inspires us to disentangle the identity-
essential information of an input x as the residual of VAE

reconstruction G(x), i.e., R(x) = x−G(x). As illustrated
in Fig. 2, in order to modify x to be more challenging in
terms of sample identification, we propose to apply adver-
sarial perturbations to the bottleneck features of VAE, which
maximize the contrastive loss in an ε-ball and results in a
modified G′(x). We then utilize x′ = G′(x) + R(x) as a
data augmentation of x so the identity information captured
by R(x) remains intact in x′.

Our method, called “identity-disentangled adversarial aug-
mentation (IDAA)”, only needs a VAE model pre-trained
on unlabeled data. In the experiments on multiple bench-
marks, when applied to different SSL methods, this sim-
ple yet principal data augmentation approach consistently
brings improvements on both the efficiency and downstream
task performance. Although our theory is mainly based on
contrastive learning, IDAA consistently brings empirical
improvement to other SSL methods such as SimSiam (Chen
et al., 2020a) because the key idea of “identity-preserving”
helps general SSL methods to avoid representational col-
lapse. In addition, we present a thorough ablation study to
analyze the influence of hyperparameters (e.g., VAE hyper-
parameters, bottleneck dimensions, attack strength ε) and ex-
perimental settings (e.g., batch size, training epochs, model
architecture) on the contrastive learning’s performance.

2. Background
Contrastive learning (CL) (Wu et al., 2018; Zhuang et al.,
2019; Chen et al., 2020a) aims at learning representations
that can distinguish different samples and their augmenta-
tions. Specifically, it formulates this sample-identification
task as a classification problem on each sample (anchor),
where the positives are its own augmentations and the nega-
tives are other samples and/or their augmentations.

A widely-used loss for CL is “InfoNCE” (Tian et al., 2020a)
built upon the positives and negatives created by data aug-
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Figure 2. Architecture and pipeline of Identity-Disentangled Adversarial Augmentation (IDAA).

mentations. For each mini-batch ~x = {x1, x2, · · · , xN} of
size N , InfoNCE loss is computed as:

LNCE(~x) = −
1

N

N∑
i=1

log qNCE(i|x = xi),

qNCE(i|x = xi) ,
exp 〈f(A(xi)), h(B(xi))〉∑N
j=1 exp 〈f(A(xi)), h(B(xj))〉

,

(1)
where 〈·, ·〉 denotes inner product,A(·) andB(·) denote two
different transformations for data augmentation, f(·) and
h(·) are the embedding networks that can be either identi-
cal (Chen et al., 2020a; Ye et al., 2019) or different (Misra &
Maaten, 2020; He et al., 2020), and qNCE(i|x = xi) is the
softmax probability of identifying the augmentation A(xi)
is transformed from the original sample xi. The choices of
data augmentation are critical to the performance and effi-
ciency of CL: weak augmentations might already result in
fully distinguishable representations over different samples
and nearly zero CL loss, while strong augmentations may
overly distort the identity of a sample and make CL too chal-
lenging, infeasible, or inefficient. In previous works such as
SimCLR (Chen et al., 2020a), different (compositions of)
augmentations can result in large gaps on CL’s performance
but finding the best one is difficult and time-consuming.

Another challenge in CL is to keep a large memory bank
or mini-batch to cover sufficient amount of “hard negatives”
because a sample might be distant from most other samples
(and their augmentations) and hard negatives close to it
are sparse in the training set. (Wu et al., 2018) trains a non-
parametric classifier to maximally scatter the representations
of all samples over a unit sphere. However, it needs to build
a memory bank to store all these representations, which is
infeasible for large-scale datasets. (He et al., 2020) instead
maintain a fixed-sized dynamic dictionary based on a FIFO
queue of representations of incoming mini-bathes during
training. It finds that a relatively large dictionary is critical
to the success of CL. The lack of hard negatives forms a

bottleneck to the sample efficiency of CL. Therefore, how to
select or modify the data to increase the chance of including
more hard negatives is a significant open problem for CL.

Consistency regularization (CR) has been studied in sev-
eral recent works for self-supervised (Chen & He, 2021;
Caron et al., 2020) or semi-supervised learning (Zhou et al.,
2020; Sohn et al., 2020), which achieves comparable or even
better performance than CL. Compared to CL, CR removes
the comparison to negatives and only focus on maximizing
the similarity between model outputs for two augmentations
of the same sample, e.g.,

LCS(~x) = −
N∑
i=1

〈f(A(xi)), h(B(xi))〉
‖f(A(xi))‖ · ‖h(B(xi)‖

, (2)

Similar to CL, CR also aims at preserving the sample iden-
tity on the learned representations and it heavily relies on the
choice of data augmentations. For example, FixMatch (Sohn
et al., 2020) chooses to apply multiple weak augmentation
for generating the pseudo-labels (e.g., f(A(·))) and strong
augmentations to the other branch h(B(·)).

3. Identity-Disentangled Adversarial
Augmentation

In this section, we will firstly relate the sample-identification
task broadly used in designs of self-supervised learning with
the training objective of variational auto-encoder (VAE).
Specifically, we will show that VAE’s training tries to re-
move the sample-identity related information from its bot-
tleneck features. Hence, the residual of VAE reconstruction
may retain the sample-identity information that we wish to
preserve in the data augmentation for self-supervised learn-
ing. We then propose a data generation and augmentation
model based on VAE and analyze the lower bound for iden-
tity preservation in its augmented data. In the end of this
section, we apply adversarial attack methods to this data
augmentation model, which modify samples to be hard pos-
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itives and negatives for more efficient contrastive learning
without changing their sample-identities.

3.1. Identity-Disentanglement in Contrastive Learning

The goal of sample-identification can be formulated as max-
imizing q(y = i|x = xi), i.e., the likelihood estimation of
identifying xi or its augmentations as sample-i, where x
and y are two random variables for a sample and an identity
label, respectively. The following proposition shows that
q(y = i|x = xi) provides a lower bound for the mutual
information I(x; y) between x and y.

Proposition 3.1. (Sample-identification likelihood as a
lower bound of I(x; y)). If ~x is a random mini-batch
of size N and the sample-identification likelihood estima-
tion of xi on its correct identification label y = i to be
q(y = i|x = xi), the mutual information I(x; y) can be
lower bounded by:

I(x; y) = logN + E~x

[
1

N

N∑
i=1

log p(y = i|x = xi)

]

≥ logN + E~x

[
1

N

N∑
i=1

log q(y = i|x = xi)

]
.

(3)

where p(·) is the true probability and q(·) denotes an esti-
mation of p(·). A detailed proof is given in the Appendix.
In contrastive learning, p(y = i|x = xi) can be modeled
and estimated by qNCE(i|x = xi) defined in Eq. (1) using
neural network embedding f(·) and h(·) of data augmen-
tations A(·) and B(·). Hence, InfoNCE loss can provide a
lower-bound of I(x; y), i.e.,

I(x; y) ≥ logN + E~x

[
1

N

N∑
i=1

log qNCE(i|x = xi)

]
= logN − E~x [LNCE(~x)] .

(4)

The above lower bound relates the mutual information
I(x; y) and CL: increasing the batch size N and/or min-
imizing the InfoNCE loss can improve the tightness of the
lower bound and results in representations with better capa-
bility on sample identification. Due to the natural sparsity of
hard examples in the original data ~x, data augmentations of
~x are necessary to improve the sample efficiency when min-
imizing E~x [LNCE(~x)]. However, without any constraints,
strong data augmentations may remove the identity-related
information of some data and change their identities, which
results in qNCE(i|x = xi) � p(y = i|x = xi), a loose
lower bound in Eq. (4), and poor representations via CL.

3.2. Identity-Disentanglement via VAE

Next, we will show that the training objective of
VAE (Kingma & Welling, 2013) is also related to I(x, y)
and sample identification. In particular, VAE aims at re-

Figure 3. Data generative model.

moving identity-specific information from the bottleneck
features z, i.e., minimizing I(z, y). With an outputG(x) de-
coded from z, VAE naturally disentangles identity-relevant
information from x. If we can remain such information, i.e.,
x−G(x), intact in data augmentations and only perturb the
rest part G(x), the above problem of CL can be resolved.
Lemma 3.2. (VAE objective and I(z; y) from Eq. (29) in
(Alemi et al., 2016)). Assume that the bottleneck features
of VAE are denoted by z, the encoder is E(·) and produces
distribution pE(z|x), the decoder is D(·) and produces
distribution qD(x|z), the prior for z is p(z), and the KL-
divergence regularization in the VAE objective LVAE has a
weight β, we have:

−I(z;x) + βI(z; y) ≤ LVAE, (5)

LVAE ,−
∫

dxp(x)

∫
dzpE(z|x) log qD(x|z)

+ β
1

N

N∑
i=1

DKL (pE (z|x = xi) ||p(z)) ,
(6)

In LVAE, β (Higgins et al., 2016) controls how close the dis-
tribution of bottleneck features pE(z|x = xi) is to the prior
p(z), e.g., a standard Gaussian distribution independent of
the sample identity y = i. So β controls the strength of iden-
tity disentanglement on z. Lemma 3.2 shows that VAE is
trained to minimize an upper bound of −I(z, x)+βI(z, y),
i.e., preserving most information of input x in the bottle-
neck feature z but removing from z the critical information
about sample identity y = i. Hence, the most identity-
relevant information is disentangled from the VAE output
G(x) ∼ pD(x|z) = p(x|D(z)) and preserved in the resid-
ual R(x) , x − G(x). We discuss the choices of other
generative models in Sec. D.2 of the Appendix.

3.3. Identity-Disentangled Data Augmentation

We can study a data generative model based on identity-
disentanglement of VAE, which generates D(z) and R(x)
from z and y respectively and combine them to generate
x = G(x)+R(x), as shown in Fig. 3. The following lemma
compares I(R(x); y) with I(x; y) and analyzes how much
identity information can be preserved in R(x).
Lemma 3.3. (Identity-disentangled data generation). For a
data generative model described above,

I(R(x); y) ≥ I(x; y)− I(z; y). (7)

The detailed proof of Lemma 3.3 is given in the appendix.
Assumption 3.4. (Identifiability extended from Theorem 1
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of Robust PCA (Candès et al., 2011)). There exists a small
ε > 0, when perturbing z within the ε-ball, the identity-
disentangled part D(z) and identity-relevant part R(x) are
still separable using VAE (more details in the Appendix).
Theorem 3.5. (Identity-disentangled data augmentation).
If we use a VAE in the identity-disentangled data generative
model for Lemma 3.3, and if we define an augmentation
x′ = R(x)+G′(x) with G′(x) ∼ qD(x|z′) and z′ = z+ δ
(a δ-perturbed z)), there exists a small ε > 0 such that for
any ‖δ‖p ≤ ε, we can lower bound I(x′; y) as

I(x′; y) ≥ I(x; y)− 1

β
(LVAE + I(z;x)). (8)

Theorem 3.5 is proved by combing Lemma 3.2, 3.3, and
Assumption 3.4 which is illustrated in the Appendix.

Therefore, the augmentation x′ preserves most of the iden-
tity information in x if LVAE + I(z;x) is small. VAE train-
ing aims at minimizing LVAE so the first term can be kept
small. There is a trade-off between the second term and iden-
tity preservation I(x′; y) since a sufficiently large I(z;x) is
necessary to produce augmentation x′ approximately drawn
from the true data distribution. A key observation of the
above theorem is that we can perturb z arbitrarily within the
ε-ball (as long as it fulfills Assumption 3.4) to generate x′

without hurting the lower-bound of I(x′; y). This implies
that we can adversarially perturb z to produce hard nega-
tives and positives for more efficient CL without heavily
distorting the original identity information. In contrast, most
data augmentation techniques used in SSL have not taken
this into account so they may change the sample-identity
and result in poor representations. A formal definition of
“identity-preserving” is given in Sec. D.1 of the Appendix.

3.4. Identity-Disentangled Adversarial Augmentation

As discussed in Sec. 2 and Sec. 3.1, keeping a sufficient
amount of hard positives and negatives in each batch ~x is
critical to the effectiveness and sample efficiency of con-
trastive learning. Although any ε-bounded perturbation on
z can produce an identity-preserved data augmentation x′

according to Theorem 3.5, adversarially perturbing the VAE-
bottleneck feature z of the original samples can produce
hard positives/negatives with sample-identities preserved.
Fortunately, we can use off-the-shelf adversarial attack al-
gorithms for this purpose. The main difference here is: (1)
we apply them to perturb the bottleneck features z instead
of x; and (2) the objective is to maximize the InfoNCE loss
instead of a classification loss such as cross entropy. We
call this method “identity-disentangled adversarial augmen-
tation (IDAA)”, as illustrated in Fig. 2. The architecture is
similar to Class-Disentangled VAE (Yang et al., 2021).

In particular, the goal of IDAA is to generate an augmen-
tation of x in the form of x′ in Theorem 3.5 such that the
InfoNCE loss is maximized using an ε-bounded perturba-

tion δ to z = E(x) when generating x′. For a batch of data
~x, this problem can be formulated as optimizing {δi}Ni=1 by

max
‖δi‖p≤ε, ∀i∈[N ]

LNCE(~x
′), x′i = R(xi) +D(E(xi) + δi).

(9)
To only perturb the positives and negatives to be harder for
contrastive learning while keeping the anchors intact, we
slightly modify LNCE(~x

′) to be

LNCE(~x
′) = − 1

N

N∑
i=1

log
exp 〈f(xi), h(x′i)〉∑N
j=1 exp

〈
f(xi), h(x′j)

〉 ,
Since the augmentation x′ can be a positive for its own iden-
tification (i.e., when x is the anchor) and a negative for other
samples’ identification, the objective in Eq. (9) modifies a
sample x to be both a hard positive and a hard negative. In
other words, IDAA perturbs the bottleneck features to move
x′ away from x to other difference samples in the embed-
ding space. Besides InfoNCE loss, IDAA can be applied
to other self-supervised losses, e.g., replacing LNCE(·) in
Eq. (9) with the consistency regularization LCS(·) in Eq (2).

IDAA is complementary to and can be applied to existing
data augmentation techniques by replacing xi in Eq. (9)
with a pre-defined data augmentation A(xi). It can also
be applied together with other data augmentations, e.g.,
by combining multiple InfoNCE loss terms computed on
different augmentations. A primary advantage of IDAA is
that the generated augmentations are adaptive to the training
models f(·) and h(·). It aims at finding the weaknesses
of the SSL models on the sample-identification task and
improve them without heavily distorting the original sample-
identities, which is underexplored in previous literature.

There exists various off-the-shelf adversarial attack meth-
ods that can be directly applied to solve the problem in
Eq. (9). In this paper, we adopt fast gradient sign method
(FGSM) (Goodfellow et al., 2014b) for its computational
efficiency. FGSM perturbs z = E(x) for one step by adding
noises along the gradient sign’s direction of the loss w.r.t. δ
and the augmentation x′ is generated based on the perturbed
bottleneck features z + δ, i.e.,
x′ = R(x)+D (E(x) + δ∗) , δ∗ = ε sign(∇δLNCE(~x

′)).

4. Experiments
In this section, we evaluate the improvements that IDAA
as a data augmentation method brings to several popu-
lar methods in (1) self-supervised learning and (2) semi-
supervised learning on standard benchmarks such as CI-
FAR (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009). We compare IDAA with (1) default random aug-
mentations used in the original methods; (2) other data
augmentation methods for SSL (Ho & Vasconcelos, 2020;
Tian et al., 2020a; Hu et al., 2021); and (3) view generation
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Figure 4. Comparing IDAA and CLAE on their adversarial augmentations for ImageNet samples.

methods (Kalantidis et al., 2020; Chuang et al., 2020). In
all experiments, IDAA consistently improves both the train-
ing efficiency and the test accuracy of all the methods and
significantly outperforms other data augmentation methods.
Moreover, IDAA trained on one dataset can be transferred
to other datasets and improve downstream tasks on them,
demonstrating the generalization of the learned augmen-
tation model. A walk-clock time comparison is given in
Sec. C.3 of the Appendix, in which IDAA effectively re-
duces the computational cost. In addition, we conduct a
thorough sensitivity study of IDAA by changing (1) batch
sizes; (2) network architectures; (3) training epochs; (4) reg-
ularization weight β in the VAE objective; (5) dimensions
of VAE’s bottleneck; and (6) adversarial attack strength ε.
It’s worth noting that by following most data augmentation
and view generation methods for SSL (Ho & Vasconcelos,
2020; Tian et al., 2020a; Hu et al., 2021; Kalantidis et al.,
2020; Chuang et al., 2020), IDAA is also applied on top of
each SSL method’s default random augmentations for fair
comparisons. More implementation details can be found in
Sec. B of the Appendix.

4.1. Case Study of Augmentations by IDAA vs. CLAE

We firstly present a case study of augmentations gener-
ated by IDAA, CLAE, and widely used random augmen-
tations. We compare their identity preserving, hardness
to contrastive learning, and their perturbation patterns. In
Fig. 1 (b)-(c), we compare the distance of an anchor to a
positive with its distance to the nearest negative in the em-
bedding space we apply the contrastive learning. If the latter
is smaller than the former, i.e., the point is located below
the “identity-preserving boundary” in the plots, its original

identity cannot be preserved in the augmentation. On the
other hand, if the latter is much larger than the former, i.e.,
the point is located on the left region of the plots, the sample
identification task is too trivial and the contrastive learning
is not efficient. From the plots, we can see that random
augmentations are too easy while the CLAE augmentations
are much harder but cannot preserve the original identity
for some samples. In contrast, IDAA (ours) produces suffi-
ciently hard augmentations within the boundary of identity
preserving, which is ideal for contrastive learning.

We visualize the augmentations produced by the three meth-
ods in Fig. 4 for natural images from ImageNet. Both IDAA
and CLAE are applied to random augmentations A(x) and
introduce further perturbations A′(x)− A(x). IDAA gen-
erates more semantic perturbations to important regions
of the images because its adversarial attack is conducted
in the VAE bottleneck space, which is supposed to cap-
ture semantic attributes of the images. On the contrary,
CLAE generates the perturbations on the input pixels and
produces unnatural artifacts, which may distort the original
sample-identity. In addition, we show the identity-relevant
part R(A(x)) and the identity-disentangled part G(A(x))
produced by VAE. The former well preserves the most im-
portant patterns to identity the original sample, e.g., the edge
of the steamship (column 2) and spots of the frog (column
5). Since IDAA keep it intact in its augmentation model,
the identity is well preserved in the augmentations.

4.2. Self-Supervised Learning

We evaluate IDAA and compare it with default random aug-
mentations, data augmentations designed for SSL such as
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Table 1. Top-1 accuracy of linear and KNN evaluation on four self-supervised learning methods using different data augmentations, i.e.,
their default ones, CLAE, and IDAA (ours). All experiments train a ResNet-18 for 300 (100) epochs on CIFAR (miniImageNet).

Method kNN Linear Evaluation

CIFAR10 CIFAR100 miniImageNet CIFAR10 CIFAR100 miniImageNet

Plain 82.78±0.20 54.73±0.20 46.96±0.32 79.65±0.43 51.82±0.46 44.90±0.29
Plain+CLAE 83.09±0.19 55.28±0.12 47.01±0.28 79.94±0.28 52.14±0.21 45.43±0.15
Plain+IDAA 86.00±0.16 58.64±0.15 47.83±0.29 82.83±0.10 56.12±0.16 46.81±0.16

UEL 83.63±0.14 55.23±0.28 40.71±0.73 80.63±0.18 52.99±0.25 43.08±0.35
UEL+CLAE 84.00±0.15 55.96±0.06 41.75±0.39 80.94±0.13 54.27±0.40 44.32±0.24
UEL+IDAA 86.69±0.13 59.04±0.18 43.24±0.32 83.65±0.17 57.25±0.19 45.74±0.30

SimSiam 88.22±0.10 57.13±0.20 31.68±0.28 89.84±0.15 62.76±0.13 40.62±0.48
SimSiam+CLAE 85.59±0.21 53.88±0.08 27.77±3.47 87.77±0.08 60.89±0.22 37.32±0.47
SimSiam+IDAA 89.08±0.12 58.19±0.19 32.14±0.58 90.99±0.18 65.21±0.37 41.24±0.51

SimCLR 80.79±0.10 41.11±0.28 30.13±0.28 86.40±0.18 57.81±0.10 46.13±0.23
SimCLR+CLAE 80.27±0.18 43.57±0.17 32.23±0.08 85.25±0.07 57.69±0.25 46.76±0.16
SimCLR+IDAA 83.41±0.22 46.78±0.22 33.66±0.16 88.07±0.22 60.90±0.08 48.23±0.23

Table 2. Top-1 accuracy of linear and KNN evaluation on CIFAR.
All the methods train a ResNet-50 for 400 epochs.

Method kNN Linear Evaluation

CIFAR10 CIFAR100 CIFAR10 CIFAR100

Debiased 88.98 57.57 91.55 68.16
Debiased+IDAA 90.75 63.00 93.19 72.67

HCL 89.03 60.46 91.48 68.83
HCL+IDAA 90.88 64.21 93.10 71.81

CLAE (Ho & Vasconcelos, 2020), InfoMin (Tian et al.,
2020b) and AdCo (Hu et al., 2021), and effective/hard
view generation like HCL (Robinson et al., 2020) and De-
biased (Chuang et al., 2020), on several benchmarks by
following each method’s original setting.

Comparison with Random and Adversarial Augmenta-
tions: Since CLAE (Ho & Vasconcelos, 2020) also studies
adversarial augmentation as IDAA, it serves as an important
baseline. Following CLAE’s original setting, we compare
IDAA with random augmentation and CLAE by applying
them to four SSL methods: Plain (InfoNCE in Eq. (1),
UEL (Ye et al., 2019), SimSiam (Chen & He, 2021) and
SimCLR (Chen et al., 2020a), on three datasets. As reported
in Table 1, IDAA consistently improves the original SSL
methods (with their default random augmentations) and
substantially outperforms CLAE on the improvement. In
contrast, though CLAE performs better or comparable than
the default augmentations in contrastive learning methods,
it results in significant degradation when applied to Sim-
Siam. Since SimSiam optimizes the anchor-positive consis-
tency without considering the negatives, it is more prone to
possible identity distortion in augmentations introduced by
CLAE. Instead, IDAA consistently improves different types
of SSL methods due to the identity preservation.

Table 3. Linear evaluation (top-1 and top-5) accuracy of ResNet-50
on ImageNet. § denotes reproduced results using the official code.

Method Epoch Batch ImageNet
Size Top-1 Top-5

MoCo (He et al., 2020) 200 256 60.6 -
MoCo v2 (Chen et al., 2020b) 200 256 67.5 88.2
MoCHi (Kalantidis et al., 2020) 800 512 68.7 -
SimCLR (Chen et al., 2020a) 1000 4096 69.3 89.0
SwAV (Caron et al., 2020) 400 4096 70.1 -
AdCo (Hu et al., 2021) 200 256 68.6 -
InfoMin (Tian et al., 2020a) 200 256 70.1 89.4
SimSiam (Chen et al., 2020a) 100 256 68.1 -
SimSiam (Chen et al., 2020a) 200 256 70.0 -

SimSiam§ 100 256 68.1 88.2
SimSiam§+IDAA 100 256 69.0 88.8

SimSiam§ 200 256 69.8 89.2
SimSiam§+IDAA 200 256 70.6 89.7

Comparison with methods of Effective Views or Hard
Negatives: hard sample mining (Robinson et al., 2020) or
effective view generation (Chuang et al., 2020) aims to im-
prove SSL efficiency through hard or effective data. Hence,
we study whether IDAA can improve HCL (Robinson et al.,
2020) and Debiased (Chuang et al., 2020) by applying
IDAA to them. We follow their original setting to train a
ResNet-50 for 400 epochs on CIFAR and report the results
in Table 2, which shows that IDAA improves HCL and
Debiased by a large margin, e.g., > 3% kNN accuracy on
CIFAR100. Therefore, IDAA is complementary to this cate-
gory of data selection methods, e.g., one can apply IDAA for
data augmentation and then apply HCL for data selection.

ImageNet Experiments: To evaluate IDAA on high-
resolution large-scale dataset, we apply IDAA to Sim-
Siam (Chen & He, 2021) on ImageNet (Deng et al., 2009)
since SimSiam performs better than many SSL methods
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Table 4. Transfer learning performance (test accuracy) of a ResNet-18 (trained on ImageNet100) on other datasets.

CIFAR10 CIFAR100 Birdsnap Aircraft DTD Pets Flower CUB-200

SimCLR 61.83 36.55 12.68 24.19 54.35 46.46 75.00 16.73
SimCLR+CLAE 61.59 37.13 13.61 25.87 52.12 43.55 76.82 17.58
SimCLR+IDAA 64.49 38.82 13.89 26.02 54.97 46.76 77.99 18.15

Table 5. Transfer learning performance on object detection and instance segmentation. SimSiam and “SimSiam+IDAA” are pre-trained
for 200 epochs on ImageNet, fine-tuned using Mask R-CNN(He et al., 2017) in COCO 2017 train, and evaluated in COCO 2017 val.
Scratch denotes training a model with the same structure from scratch. “ImageNet supervised” is the supervised ImageNet pre-training
counterpart.

Method COCO detection COCO instance seg.

AP50 AP AP75 APmask
50 APmask APmask

75

scratch 44.0 26.4 27.8 46.9 29.3 30.8
ImageNet supervised 58.2 38.2 41.2 54.7 33.3 35.2
SimSiam (Chen et al., 2020a) 57.5 37.9 40.9 54.2 33.2 35.2
SimSiam+IDAA 58.2 38.7 42.0 55.1 33.9 35.9

Table 6. Semi-supervised learning performance of a WideResNet-
28 trained on CIFAR100 with different amounts of data labeled.

Method CIFAR100

400 labels 2500 labels 10000 labels

Fixmatch 47.76 66.30 74.13
Fixmatch+CLAE 50.34 68.58 74.54
Fixmatch+IDAA 52.88 68.96 75.28

in this setting. As shown in Table 3, IDAA consistently
improves SimSiam by a large margin, e.g., 0.8% on top-
1 accuracy after 200 epochs. Moreover, IDAA also out-
performs data augmentation methods specifically designed
for SSL, e.g., AdCo (Hu et al., 2021) and InfoMin (Tian
et al., 2020a), where it outperforms Adco 2% on top-1 accu-
racy. IDAA also outperforms a hard sample mining method
MoCHi (Kalantidis et al., 2020) while requiring smaller
batch size and fewer epochs.

Transfer Learning Performance: To evaluate whether
IDAA can be transferred to other unseen datasets to im-
prove downstream tasks. We apply IDAA, CLAE and ran-
dom augmentation to SimCLR respectively to train a model
on ImageNet100 and evaluate the trained model on 8 other
datasets. The linear evaluation accuracy are reported in Ta-
ble 4. The improvement of IDAA can be transferred to the
8 datasets. As shown in the Table, IDAA consistently out-
performs CLAE and improves the original SimCLR, while
CLAE brings degeneration on one dataset, i.e., Pets. We
also compare their transfer learning results when applied to
SimSiam in Sec. C.1 of the Appendix. In Table 5, we com-
pare the representation quality by transferring them to other
tasks, i.e., COCO (Lin et al., 2014) object detection and in-
stance segmentation. We can clearly see that IDAA can also
improve detection and segmentation performance. Equipped
with IDAA, SimSiam can surpass ImageNet supervised pre-

training counterparts in all tasks, indicating that the key idea
of “identity-preserving” can be applied to different tasks.

4.3. Semi-Supervised Learning

Data augmentation is also critical to state-of-the-art semi-
supervised learning algorithms such as FixMatch (Sohn
et al., 2020), which relies on accurate pseudo labeling and
confidence-based data selection and their quality heavily
depends on data augmentations. The test accuracy of the
trained models are reported in Table 6, where IDAA consis-
tently improves FixMatch’s accuracy and the improvement
is more significant with fewer labeled data available. More-
over, in Fig. 7 of the Appendix, IDAA significantly improves
the efficiency and convergence of FixMatch and can save a
great amount of computation to reach a reasonable accuracy.

4.4. Sensitivity Analysis of Hyperparameters

Batch Size: We evaluate how SimCLR and SimCLR+IDAA
perform using six different batch sizes and the results are
shown in Fig. 5(a). As verified by previous works (Chen
et al., 2020a; He et al., 2020), increasing the batch size can
improve SimCLR and other contrastive learning methods’
performance, which is also reflected in our results. However,
IDAA can significantly improve SimCLR’s performance un-
der small batch size, e.g., 64, because it effectively modifies
various samples to be hard positives/negatives without dis-
torting their original identities. Due to the same reason,
SimCLR+IDAA is less sensitive to the change of batch size.
This demonstrates the advantage of IDAA on improving the
data/memory efficiency of SSL.

Model Architecture: We evaluate the linear evaluation
performance of SSL when training different ResNet archi-
tectures in Fig. 5(b). Increasing the model size improves the
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Figure 5. SSL performance under different (a) batch sizes, (b) ResNet architectures, and (c) training epochs.
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Figure 6. SSL performance using different (a) β, (b) VAE bottleneck dimensions, and (c) Attack strength ε.

performance of both methods but SimCLR+IDAA always
outperforms SimCLR by a large margin. Hence, IDAA can
improve SSL of different models and it can train a smaller
model with less costs to match the performance of training
a larger model by random augmentations.

Training epochs: As shown in Fig. 5(a), the performance
of both methods improves when investing more training
epochs but the SimCLR+IDAA saturates much earlier and
only spends 300 epochs to achieve comparable performance
as SimCLR trained using 1000 epochs. Hence, IDAA can
greatly improve the training efficiency of SSL.

Regularization weight β in VAE: As revealed by Theo-
rem 3.5, β in the VAE objective controls the lower bound
of the identity information preserved in IDAA augmenta-
tions: larger β enforces more identity preservation in x′

and stronger identity-disentanglement on z. However, it
also controls I(z;x) which reflects the proximity of z’s dis-
tribution to the true data manifold of x: large β leads to
small I(z;x) and less information of x preserved in z that
can be leveraged to produce stronger adversarial attacks for
hard positives/negatives. In Fig. 6(a), we observe that the
trade-off reaches a sweet spot at β = 0.1 among all the four
β values between 0 and 10. Sensitivity analysis of β on
different datasets is given in Sec. C.2 of the Appendix.

VAE Bottleneck Dimension: As shown in Fig. 6(b), SSL
performance with IDAA is not sensitive to the change of bot-
tleneck dimension of VAE, though 512-dimension performs
slightly better than other choices in the experiment.

Attack Strength ε: Stronger attacks may produce more
hard positives/negatives but also increases the risk of iden-

tity distortion and unrealistic augmentations biased from the
true data distribution/manifold. Results in Fig. 6(c) shows
this trade-off and its effects on the SSL performance. Nev-
ertheless, the performance of SimCLR+IDAA is still quite
stable and only varies in a small range when changing ε
since the identity-relevant information in R(x) stays intact.

5. Conclusion
We propose a simple automatic data-augmentation method
IDAA, which can generate more informative but identity-
preserved augmentations to improve the efficiency and gen-
eralization of SSL. Motivated by an information theoretical
analysis of VAE and identity preserving, IDAA adds ad-
versarial noise to an identity-disentangled space learned by
VAE and combines the perturbed VAE outputs with an in-
tact identity-relevant part to produce augmentations. IDAA
merely relies on a pre-trained VAE without requiring any
labeled data but consistently improves a diverse set of popu-
lar self-supervised/semi-supervised learning methods across
multiple benchmarks. It also enhances the transfer learning
performance and improves the learning efficiency.
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A. Proof
A.1. Proof for Proposition 3.1

Proposition A.1. (Sample-identification likelihood as a lower bound of I(x; y)). If ~x is a random mini-batch of size N
and the sample-identification likelihood of xi on its correct identification label y = i to be p(y = i|x = xi), the mutual
information I(x; y) can be lower bounded by

I(x; y) ≥ logN + E~x

[
1

N

N∑
i=1

log p(y = i|x = xi)

]
. (10)

Proof. Here we consider such data distribution p(x, y) = E~x[p(x, y|~x)] where ~x = {x1, x2, · · · , xN} denotes a batch of
size N . Then we have:

I(x, y) = H(y)−H(y|x)

= logN +
∑
y∈Y

∫
x∈X

p(x, y) log p(y|x)dx

= logN +
∑
y∈Y

∫
x∈X

E~x [p(x, y|~x)] log p(y|x)dx

= logN + E~x

[
N∑
y=1

∫
x∈~x

p(x, y) log p(y|x)dx

]

= logN + E~x

[
N∑
y=1

∫
x∈~x

p(x)p(y|x) log p(y|x)dx

]

≥ logN + E~x

[
N∑
y=1

∫
x∈~x

p(x)p(y|x) log q(y|x)dx

]

= logN + E~x

[
N∑
y=1

∫
x∈~x

p(x, y) log q(y|x)dx

]

= logN + E~x

[
N∑
y=1

∫
x∈~x

p(x|y)p(y) log q(y|x)dx

]

= logN + E~x

[
N∑
i=1

∫
x∈~x

p(x|y = i)p(y = i) log q(y = i|x)dx

]

= logN + E~x

[
N∑
i=1

∫
x∈~x

δ(x− xi)
1

N
log q(y = i|x)dx

]

= logN + E~x

[
N∑
i=1

1

N
log q(y = i|x = xi)

]

(11)

where p(·) denotes the true probability and q(·) denotes arbitrary estimation of p(·). The fourth equality in Equa-
tion (11) holds true using Fubini’s theorem (switch the order of integration). The inequality in Equation (11) comes
from DKL(p(y|x), q(y|x)) ≥ 0.

A.2. Proof for Theorem 3.5

We start by proving Lemma 3.2, Lemma 3.3 and then we can prove Theorem 3.5 by combing Lemma 3.2, Lemma 3.3 and
Assumption 3.4.

Lemma A.2. (VAE objective and I(z; y) from Eq. (29) in Appendix B of (Alemi et al., 2016)). Assume that the bottleneck
features of VAE are denoted by z, the encoder is E(·) and produces distribution pE(z|x), the decoder is D(·) and produces
distribution qD(x|z), the prior for z is p(z), and the KL-divergence regularization in the VAE objective LVAE has a weight
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β, we have:
−I(z;x) + βI(z; y) ≤ LVAE, (12)

LVAE , −
∫

dxp(x)

∫
dzpE(z|x) log qD(x|z) + β

1

N

N∑
i=1

DKL (pE (z|x = xi) ||p(z)) , (13)

The proof can be found in Appendix B of (Alemi et al., 2016).

Lemma A.3. (Identity-disentangled data generation). For a data generative model described above,
I(R(x); y) ≥ I(x; y)− I(z; y). (14)

Proof. Due to the Markov chain y → (R(x), z)→ x in the data generative model in Fig. 3, we have
I(x; y) ≤ I(R(x), z; y) = I(R(x); y) + I(z; y|R(x)). (15)

By the definition of conditional mutual information, we have
I(z; y|R(x)) = I(z; y) + [H(R(x)|z)−H(R(x))] + [H(R(x)|y)−H(R(x)|y, z)] . (16)

Since z ⊥⊥ R(x) in the generative model, the last two terms in the above equation are zeros and I(z; y|R(x)) = I(z; y).
Substituting it to Eq. (15) completes the proof.

Assumption A.4. (Identifiability extended from Theorem 1 of Robust PCA (Candès et al., 2011; Zhou & Tao, 2011)).
There exists a small ε > 0, when perturbing z within the ε-ball, the identity-disentangled part D(z) and identity-relevant
part R(x) are still separable using VAE.

The identifiability assumption is a mild and reasonable assumption because VAE is known as an extension of Robust
PCA (Candès et al., 2011), as pointed out by (Dai et al., 2018). Similar assumption can be found in Proposition 1 of (Huang
et al., 2018), which assumes the reversibility of Autoencoders.

Theorem A.5. (Identity-disentangled data augmentation). If we use a VAE in the identity-disentangled data generative
model for Lemma 3.3, and if we define an augmentation x′ = R(x) + G′(x) with G′(x) ∼ qD(x|z′) and z′ = z + δ (a
δ-perturbed z)), there exists a small ε > 0 such that for any ‖δ‖p ≤ ε we can lower bound I(x′; y) as

I(x′; y) ≥ I(x; y)− 1

β
(LVAE + I(z;x)). (17)

Proof. Applying the results from Assumption 3.4, Lemma 3.3, and Lemma 3.2, for any ‖δ‖p ≤ ε, we have
I(R(x) +D′(z + δ); y) = I(R(x) +G′(x); y) (18)

≥ I(R(x); y) (19)
≥ I(x; y)− I(z; y) (20)

≥ I(x; y)− 1

β
(LVAE + I(z;x)). (21)

The first inequality comes from Assumption 3.4: we have the conditional entropy H(R(x)|R(x) +G′(x)) = 0 because
R(x) + G′(x) can be separated into R(x) and G′(x) again in an unique and exact way using VAE and thus I(R(x) +
G′(x); y) ≥ I(R(x); y).

B. Experimental Implementation and Reproduction Details
All code are implemented with Pytorch (Paszke et al., 2019). All CIFAR (ImageNet) experiments are conducted on NVIDIA
V100 (A100) GPU. The pre-trained VAE uses a standard VAE architecture (Kingma & Welling, 2013) with 512 (3072)
bottleneck dimension for CIFAR (ImageNet). Default β in Eq. (6) is set to be 0.1 and default ε in Eq. (9) is set to be 0.15.
When applying IDAA to a SSL method, IDAA uses that SSL method’s default random augmentation, which is a standard
setting used by all current data augmentation methods for SSL (Ho & Vasconcelos, 2020; Tian et al., 2020a; Hu et al., 2021;
Kalantidis et al., 2020; Chuang et al., 2020). To train the backbone with IDAA augmentation, we apply seperate batch norm
layer (BN) on ResNet architecture, i.e., adversarial data and normal data use different BN. Please refer to AdvProp (Xie
et al., 2020) for more implementation details. In the main results, a VAE is trained from scratch on the same dataset as
self-supervised learning.
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Table 7. Comparison of CLAE’s and our reproduction results of SimCLR. All methods train a ResNet-18 for 300 epochs.

Method Linear Evaluation

CIFAR10 CIFAR100

SimCLR (CLAE (Chen et al., 2020a)’s results) 83.27±0.17 53.79±0.21
SimCLR+CLAE (CLAE (Chen et al., 2020a)’s results) 83.32±0.26 55.52±0.30

SimCLR (Our reproduction) 86.40±0.18 57.81±0.23
SimCLR+CLAE (Our reproduction) 85.25±0.07 57.69±0.25

Table 8. Comparison of the original reported and our reproduction results of SimSiam. All methods train a ResNet-50 with batch size 256.

Method Epoch Linear Evaluation

SimSiam (Reported results (Chen et al., 2020a)) 100 68.1
SimSiam (Our reproduction) 100 68.1

SimSiam (Reported results (Chen et al., 2020a)) 200 70.0
SimSiam (Our reproduction) 200 69.8

To evaluate self-supervised learning methods, k nearest neighbor (kNN) and linear evaluation are considered. For kNN, the
evaluation is identical to the protocal used in (Ho & Vasconcelos, 2020), where k is set to be 200. For linear evaluation, we
train a single linear layer on the embedding extracted from the fixed backbone, as in (Chen et al., 2020a).

Case Study of Augmentations generated by IDAA and CLAE: The experiments in Fig. 1 are conducted on CIFAR10
and the model used to compute the distance is trained using the original SimCLR before convergence because we aim at
simulating the intermediate stage of self-supervised learning when the model does not fully converge and when high-quality
data augmentations with identity preserved are critical to the future training (while poor augmentations with identity distorted
are detrimental to the future training). For random augmentations, we choose RandomFlip, ColorJitter and GreyScale for
their popularity in recent SSL methods (Ye et al., 2019; Chen et al., 2020a; Chen & He, 2021). The distance is measured
in feature space where contrastive loss is applied. The “identity-preserving boundary” in Fig. 1 is defined by those points
whose distances to positive equals to that to their nearest negative.

Comparison with Random and Adversarial Augmentation: Here we mainly follow the setting of CLAE (Ho & Vascon-
celos, 2020) to evaluate data augmentations on four self-supervised learning methods: Plain (InfoNCE in Eq. (1)), UEL (Ye
et al., 2019), SimSiam (Chen & He, 2021) and SimCLR (Chen et al., 2020a) on three datasets, i.e., CIFAR10 (Krizhevsky
et al., 2009), CIFAR100 (Krizhevsky et al., 2009), and miniImageNet (Vinyals et al., 2016). The four SSL methods cover
different contrastive learning methods (Plain, UEL, SimCLR) and a consistency regularization based method (SimSiam).
The training/test splitting of miniImageNet follows (Ebrahimi et al., 2020). Follow CLAE’s setting, We train a ResNet-18 for
300 (100) epochs and linear evaluation model for (1000) 200 epochs with batch size 256 (128) for CIFAR (miniImageNet).
We use CLAE’s official code1 to implement plain, UEL, SimCLR and CLAE. We further implement SimSiam as an
additional baseline using their official code2. It worth noting that CLAE reported a much lower accuracy on SimCLR than
the one reported in the original SimCLR (Chen et al., 2020a) paper and the one we achieved on SimCLR. This is shown in
the Table 7, in which we provide a side-by-side comparison with the results from CLAE’s paper and we can clearly see that
our reproduction of SimCLR is much higher than that of CLAE’s. We posit the reason is that CLAE did not use a decaying
learning rate as instructed in SimCLR paper, which uses a decaying cosine learning rate (and we use it too).

Comparison with Hard/Effective View Generation Methods: Here we compare IDAA with a hard sample mining
method, i.e., HCL (Robinson et al., 2020) and a effective view generation method, i.e., Debiased (Chuang et al., 2020). We
implemented these two methods using HCL’s official code3 and apply IDAA to them. We follow their original setting to
train a ResNet-50 for 400 epochs and the linear evaluation layer for 100 epochs with batch size 256 on CIFAR10/CIFAR100.

ImageNet Experiments: Here we evaluate IDAA’s performance on ImageNet, which contains 1.28M images in the training
set and 50K images in the validation set from 1000 classes. We select SimSiam (Chen et al., 2020a) as a baseline due to its

1https://github.com/chihhuiho/CLAE
2https://github.com/facebookresearch/simsiam
3https://github.com/joshr17/HCL
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Figure 7. Convergence curve under 2500 labels on CIFAR100 for semi-supervised learning.

Table 9. Transfer learning performance (in test accuracy %) on 8 datasets for CLAE and IDAA applied to SimSiam (pre-trained on
ImageNet100).

CIFAR10 CIFAR100 Birdsnap Aircraft DTD Pets Flower CUB-200

SimSiam 49.75 25.59 7.32 16.29 40.07 31.33 58.20 9.96
SimSiam+CLAE 53.05 26.78 8.80 20.01 43.97 33.62 63.54 12.39
SimSiam+IDAA 55.74 29.63 9.16 20.16 47.32 36.22 65.63 12.84

effectiveness and efficiency. We reproduce SimSiam using their official code2 and apply IDAA to it. We follow its original
setting to train a ResNet-50 for 100 and 200 epochs with batch size 256 and linear evaluation layer for 90 epochs. We
compare our reproduction results and the original reported results in Table 8, where we can see that our reproduction is quite
close to the original reported results.

Transfer Learning: Here we follow the setting of CLAE (Ho & Vasconcelos, 2020) to train a ResNet-18 for 100 epochs
on ImageNet-100 by applying default random augmentation, IDAA and CLAE to SimCLR respectively, and then train a
linear layer using the embedding outputed by the backbone network on other 8 datasets (Krizhevsky et al., 2009; Berg et al.,
2014; Maji et al., 2013; Cimpoi et al., 2014; Parkhi et al., 2012; Nilsback & Zisserman, 2006; Welinder et al., 2010). For
the detection and instance segmentation experiments in Table 5, we follow the setting of (Chen et al., 2020a) to use Mask
R-CNN (He et al., 2017) (1× schedule) with the C4-backbone.

Semi-Supervised Learning: Here we reproduce one state-of-the-art semi-supervised learning method, i.e., FixMatch (Sohn
et al., 2020), then we apply IDAA and CLAE to FixMatch to train a a WideResNet-28-8 model on CIFAR100 with only
{400, 2500, 10000} labeled samples and the rest unlabeled. We train all the methods for 2× 105 steps with batch size 512.

Sensitivity Analysis of Hyperparameters: The experiments are conducted on CIFAR100 with SimCLR.

C. Additional Experiments
C.1. Transfer learning performance using SimSiam as baseline

We further add new experiments of SimSiam, SimSiam+CLAE, and SimSiam+IDAA, and report their results in Table 9
as an extension of Table 4. Unlike SimCLR, SimSiam (Chen & He, 2021) adopts another popular idea of self-supervised
learning based on the consistency regularization and Siamese network.

We evaluate the three methods on ImageNet-100 as we did for SimCLR, i.e., by running each method for 100 epochs
and evaluating their transfer learning performance on the 8 datasets as in Table 4. Similar to SimCLR, IDAA consistenly
improves the transfer learning performance of SimSiam and outperform CLAE on all the datasets.

We select SimCLR and SimSiam for this study because they represent the two most widely studied self-supervised learning
strategies, i.e., contrastive learning and consistency learning respectively.

C.2. Sensitivity Analysis of VAE hyperparameter β on Multiple Datasets

Below we provide a thorough ablation study regarding β on all the three datasets. Specifically, we tried four values of β, i.e.,
0, 0.1, 1, 10, in SimCLR+IDAA on three datasets and report the results in the Table 10. The performance of our method is
robust to the change of β and keeps surpassing all the baselines.
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Table 10. Linear Evaluation (top-1) accuracy regarding different values of β on three datasets. All the methods train a ResNet-18 for 300
(100) epochs for CIFAR (miniImageNet).

β CIFAR10 CIFAR100 miniImageNet

0 86.79 59.18 48.19
0.1 88.07 60.90 48.23
1 87.75 60.47 48.44
10 87.64 59.81 48.51

Table 11. Computation cost comparison of SimCLR and “SimCLR+IDAA” by training a ResNet-18 on CIFAR100.

SimCLR SimCLR+IDAA

Epoch Training time (s) Linear Evaluation (%) Training time (s) Linear Evaluation (%)

100 3.54×103 54.02 6.76×103 57.72
200 7.08×103 57.64 1.35×104 60.23
300 3.54×104 59.51 2.02×104 61.35
400 1.42×104 59.72 2.70×104 62.47
500 1.77×104 60.60 3.38×104 63.09
600 2.12×104 60.94 4.06×104 63.66
700 2.48×104 61.61 4.73×104 63.74
800 2.83×104 61.19 5.41×104 63.76
900 3.19×104 61.29 6.10×104 64.07
1000 3.54×104 61.26 6.76×104 64.11

The best value of β for both CIFAR10 and CIFAR100 is 0.1, while that for miniImageNet is 10. This is because the images
in miniImageNet are of higher resolution and contain richer identity-information than CIFAR, hence a larger β is needed to
enforce a stronger identity-disentanglement.

The performance of IDAA is robust to the choice of β, e.g., the maximal difference on accuracy is merely < 0.5% between
two choices of β in the miniImageNet experiments. Therefore, SimCLR+IDAA consistently outperforms SimCLR for all
the evaluated values of β.

In the main paper, we did not tune the value of β for each dataset separately but instead use the same β = 0.1 for all the
datasets. As shown in Table 10, we can achieve better results than the previous results in our paper if we carefully tune β for
every dataset.

C.3. Computational Cost

Although IDAA requires more computation per epoch caused by the extra inference and adversarial perturbation on VAE,
it produces more informative augmentations (more challenging but identity-preserved) that can significantly reduce the
number of training epochs needed to reach the same accuracy. In practice, it can effectively reduce the overall training time.

For example, in our experiments on CIFAR100 with ResNet-18, the (averaged) training time per epoch on CIFAR100 (batch
size=256) is 67.6s (seconds) for ”SimCLR+IDAA” and 35.4s for vanilla SimCLR. However, as reported in the Table 11,
IDAA greatly saves the total training time to reach a similar performance. For example, to reach > 60% accuracy, SimCLR
takes 1.77× 104s while IDAA taks only 1.35× 104s and thus saves over 4× 103s training time.

C.4. New Baseline: Data Augmentation without Decomposition (G(z′) only)

Here we compare with an additional baseline: simply attacking the z of a standard VAE (with beta=1) to produce
an x′ = G(z′) as augmentations for contrastive learning. We report its results on CIFAR in Table 12, denoted as
“SimCLR+IDAA(w/o decomposition)”. It shows that the performance significantly declines once the decomposition
removed and it performs even worse than the original SimCLR.

Therefore, identity-disentanglement is critical and preserving the identity-relevant part R(x) in augmentations is essential to
self-supervised learning. This is illuestrated in Figure 1. On the contrary, if we simply use the identity-distorted part G(z′)
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Table 12. Test accuracy on downstream classification tasks: comparing representations learned with (x′ = G(z′) +R(x)) and without
identity-disentanglement decomposition (x′ = G(z′)).

Method kNN Linear Evaluation

CIFAR10 CIFAR100 CIFAR10 CIFAR100

SimCLR 80.79 41.11 86.40 57.81
SimCLR+IDAA(w/o decomposition) 67.25 32.77 75.82 47.41
SimCLR+IDAA 83.41 46.78 88.07 60.90

for augmentation with R(x) removed, the positive and negative assignments in contrastive learning can be wrong. With
many wrong identity labels, the identification task of contrastive learning can easily fail, resulting in poor representations
and performance degradation on downstream tasks.

D. Additional Discussion
D.1. On the Definition of “Identity-Preserving”

Theoretically, an augmentation x′ of a sample x preserves x’s identity y if I(x′; y) ≥ I(x; y)− ε holds with a small ε, e.g.,
Eq. (8) for IDAA. Empirically, ”identity-preserving” refers to that a sample is closer to positive(s) than to its nearest negative
in contrastive learning.

“Identity-preserving” is defined from the perspective of neural nets. Although augmentations including CLAE and IDAA are
limited to make too much change to the original samples (ε-ball constraint for adversarial perturbations in CLAE and IDAA),
it is hard for human to notice whether the sample identity is changed or not for the neural nets. This is similar to adversarial
attacks (Fu et al., 2022; Zhang et al., 2020; Cao et al., 2020; Fu et al., 2019; Tu et al., 2019): they change a neural network’s
predictions of images using perturbations that are too small to be noticed by human eyes, because neural nets usually rely on
very sparse patterns to make predictions, as discussed in (Ilyas et al., 2019). Thus, as shown in Fig. 1 (b)-(c), many CLAE
augmentations cannot preserve the original identity since they produce negatives closer to the anchor than the positives.

D.2. Using Other Generative Model

From both theoretical and empirical intuitions, we believe that VAE is a simpler but better choice than other deep generative
models. The main reason is that our objective here is not reconstruction/generation but identity-disentanglement and VAE
serves best for this purpose:

• VAE provides tighter bound for identity-disentanglement in Lemma 3.2. For example, Wassertein Autoencoder
(WAE) (Tolstikhin et al., 2018) matches the marginal distribution of latent factor pE(z) to the prior p(z), while
VAE matches the conditional distribution pE(z|x) to prior p(z). By the convexity of KL divergence, we have
I(z; y) ≤ Ex[DKL(pE(z|x)‖p(z))] ≤ DKL(Ex[pE(z|x)]‖p(z)) = DKL(pE(z)‖p(z)). Hence, comparing to WAE,
VAE optimizes a tighter bound for the identity-disentanglement measured by I(z; y).

• Empirically, other deep generative model like WAE or GAN (Goodfellow et al., 2014a) may generate higher-quality
reconstruction G(x) than VAE so their residual R(x) = x−G(x) tends to preserve less identity information, which
may lead to more identity distortion in generating the augmentations and hence performance degradation.

D.3. Extending IDAA to other Data Modality

The proposed scheme and its theoretical insights of IDAA are principal and can be extended to other data domains: the VAE
based identity-disentanglement and the identity-preserved adversarial augmentation can be directly applied to other domains
such as time series/texts. One of the most challenging parts when extending to other modalities is choosing the proper space
to conduct identity-disentanglement. For example, on NLP data, we may perform identity-disentanglement in an embedding
space instead of the raw discrete input space and choose transformer as the architecture for VAE’s encoder and decoder.


