Be Like Water:
Adaptive Floating Point for Machine Learning

Thomas Y. Yeh! Maxwell R. Sterner! Zerlina Lai?> Brandon Y. Chuang® Alexander Ihler*

Abstract

In the pursuit of optimizing memory and compute
density to accelerate machine learning applica-
tions, reduced precision training and inference
has been an active area of research. While some
approaches selectively apply low precision com-
putations, this may require costly off-chip data
transfers or mixed precision support. In this pa-
per, we propose a novel numerical representation,
Adaptive Floating Point (AFP), that dynamically
adjusts to the characteristics of deep learning data.
AFP requires no changes to the model topology,
requires no additional training, and applies to all
layers of DNN models. We evaluate AFP on a
spectrum of representative models in computer
vision and NLP, and show that our technique en-
ables ultra-low precision inference of deep learn-
ing models while providing accuracy comparable
to full precision inference. By dynamically adjust-
ing to ML data, AFP increases memory density by
1.6x, 1.6x, and 3.2x and compute density by 4x,
1.3x, and 12x when compared to BFP, BFloat16,
and FP32.

1. Introduction

In the pursuit of optimizing compute density while reducing
memory bandwidth requirements, a number of recent works
have examined reduced precision computations for floating
point (FP) operations during the training and inference of
machine learning models. Two extremes in this spectrum
are the fixed-point format (De Sa et al., 2017; Sa et al., 2018)
and the 4-bit DNN training format (Sun et al., 2020). In the
fixed-point integer format, all exponent bits are removed,

!Computer Science Department, Pomona College, Claremont,
CA, USA *Computer Science Department, Occidental College,
Los Angeles, CA, USA 3Computer Science Department, Univer-
sity of California, Santa Cruz, CA, USA *Department of Computer
Science, University of California, Irvine, CA, USA. Correspon-
dence to: Thomas Y. Yeh <tomyenhsiyeh@ gmail.com>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

resulting in a fixed, implicit exponent. In the case of the
4-bit (DNN) training format, all available bits are used to
indicate the sign and the exponent of the value, with only an
implicit “leading one” for the mantissa. With exponent bits
determining the range and the mantissa bits providing the
accuracy, a delicate balance between the two is critical in
optimizing a number representation for machine learning.

In this paper, we present the Adaptive Floating Point
(AFP) representation, a denser alternative to IEEE FP32
or BFloat16 for storing ML data. AFP encapsulates floating
point (FP) values into blocks of FP values along with charac-
terization data that describe the block of numbers. AFP uses
this block information to increase performance and reduce
memory requirement while maintaining high accuracy.

AFP is designed to be effective in large-scale deep learning
models. We use a collection of pre-trained benchmark mod-
els to analyze empirically the distribution of values obtained
during inference, showing that 99% of values can be covered
with AFP. In addition, previous compact representations for
ML (Darvish Rouhani et al., 2020; Sa et al., 2018; Zhang
et al., 2022) may require subsets of the calculations (e.g.,
certain layers) to be computed using high precision. Such a
protocol may cause significant inefficiencies due to its data
conversion and data transfer requirements. In contrast, AFP
provides end-to-end application coverage by enabling all
ML FP computations to utilize AFP.

Our paper’s contributions include:

* We propose Adaptive Floating Point, a novel numerical
datatype for use with all ML floating point data, as an
alternative to IEEE-754 FP32 and Bfloat16 with higher
memory and compute density. The key elements which
provide higher density are:

— Auto Focus feature, where a shared exponent and
private offsets combine to automatically provide
maximum available precision to 99% of all ML
data.

— Shared block-level characterization information
to dynamically improve efficiency.

¢ We build a simulation infrastructure in Tensorflow to
accurately model the numerical effects of applying
AFP to the weights and layer outputs of ML models.

Be Like Water: Adaptive Floating Point for Machine Learning

* We perform comprehensive simulations of AFP on a
wide range of robust CNN and Transformer models.

2. Background

The IEEE-754 single precision floating format (FP32) rep-
resents each value with one sign bit s, eight exponent bits
e, and twenty-three mantissa bits m; this is illustrated in
Figure la.

To increase both memory and compute density for ML ap-
plications, the BFloat16 format (Kalamkar et al., 2019) was
introduced by Google. As shown in Figure 1b, BFloat16 re-
tains the sign bit and the eight exponent bits while reducing
the mantissa to seven bits. FP16 is another 16-bit format
with a sign bit, five exponent bits, and ten mantissa bits.

For a vector of n elements, we can represent the elements
in FP32, FP16 and BFloatl6 representations with s, e, and
m as the private signs, exponents, and mantissas:

[(—1)80 20 mg, (—1)*12¢my, ..., (—1)5"*128”*1mn,1}.

In pursuit of ultra-low precision formats for training and
inference, several custom mixed representations have been
proposed (Chang et al., 2020; Liu et al., 2021; Yao et al.,
2021), including IBM’s RaPiD design which supports five
different custom formats (Venkataramani et al., 2021).

An alternative approach to scaling the data formats is the
block floating point (BFP) format. BFP have been used
in signal processing platforms to optimize for both perfor-
mance and memory density (Wilkinson, 1994; Kalliojarvi
& Astola, 1996; Muller et al., 2010; Song et al., 2018).
The Microsoft Floating Point (MSFP) (Darvish Rouhani
et al., 2020), Hybrid Block Floating Point (HBFP) (Dru-
mond et al., 2018) and FAST BFP (FAST) (Zhang et al.,
2022) designs show the potential of this approach for ML
applications. As shown in Figure 1c, MSFP, HBFP, and
FAST approaches use a single, shared exponent (the largest
exponent in the block) along with private sign and mantissa
bits. Removing private exponent information both reduces
the representation size of each value, and can also simplify
the design of functional units.

In this work, we use BFP to refer generically to block float-
ing point formats such as MSFP, HBFP, and FAST. One
main disadvantage of BFP is the increasing loss of preci-
sion for values that are farther away from the maximum
exponent, with smaller values eventually truncating to zero.
MSFP, HBFP, and FAST designs have only been selectively
applied to components of ML models in order to achieve
accuracy. This can result in costly off-chip data transfers,
especially for distributed systems, or slower execution on
higher precision functional units.

For a given vector of n elements, BFP representations can

be described with e, as the shared maximum exponent, and
s the m as the private sign and mantissa:

2% (=)™ mo s (<1)" s e, (<)%]

3. Adaptive Floating Point

Our proposed AFP representation is designed for end-to-
end application coverage where all ML FP computations are
processed in AFP. AFP dynamically adjusts to the data to
provide memory density while retaining model accuracy. In
contrast to prior BFP formats, AFP is designed to maximize
the benefit of encapsulating FP values into blocks. The
structure of the AFP representation is shown in Figure 2.

For a given vector of n elements, the AFP representation is
comprised of e, as the maximum shared exponent, ¢ as a
private offset, and m as the private mantissa:

2 (=) 27 mg oy (<) 27).

The dot product of two given vectors with n elements a
and b in the AFP format with shared exponents e, and e,
respectively, would take the form:

Y aT
a-b
n—1

— Q€axtepbs 3 ((_1)3a,i@sb,i 9—(ta,itts,q) M i * mb,i):
1=0

where @ is an XOR operation and 7' is the transpose.

3.1. Design Details

AFP is a block based approach inspired by the BFP design
from the signal processing domain and prior work for deep
learning models. The representation contains two distinct
sections of data: a private section with bit fields per value
and a shared section with bit fields to describe the entire
block. The AFP design described in the paper uses a 16-
element block unless otherwise noted. The target accuracy
for all rounding experiments in the paper is 99% of full
precision FP32 accuracy.

One key insight of AFP is to utilize characterization infor-
mation about the bounded range described by the values in
each block to increase the memory density of the data repre-
sentation. For each component of the value (sign, exponent,
and mantissa), AFP uses complementary private and shared
fields.

3.2. Private Fields

The private section includes 1 sign bit, 3 offset bits, and 5
mantissa bits. The sign bit represents the sign of the value.

Be Like Water: Adaptive Floating Point for Machine Learning

sign exponent mantissa sign exponent mantissa /Vsign mantissa \
g MR (11111 (I = 5 WEEEEEER TTTTTT a, § WL =
2 o =
s IR 1110 - (7110 » & W] - S I -
E
§ WD (0000 .| |5 SN - § OO » | SO
< i ©
NN [(111 (10110 = ! T - L)
private fields private fields private fields) shared exponent
(a) Single-precision IEEE (b) BFloat16 (c) BFP

Figure 1. Previous FP representations used in machine learning. Compared to (a) single precision IEEE, (b) BFloat16 reduces the number
of mantissa bits, while (c) existing block-based approaches such as MSFP, HBFP, and FAST group sequential blocks of fixed-point values
and using a single, shared exponent with private sign and mantissa bits. This reduces the total number of bits, but may reduce the precision
of elements that are farther from the maximum exponent value in the block.

sign offset mantissa

| ERNNNEREE
0 I positive

D] zero
I . a, exponent

private fields

16-element block

shared fields

Figure 2. Adaptive Floating Point format (AFP). Compared to BFP,
AFP uses private offset bits to enable using fewer mantissa bits
while preserving fidelity. It also stores “positive” and “zero” shared
fields to represent if a block is all positive and/or all not using one
or more mantissa bits.

3.2.1. Auto Focus AND OFFSET

The offset bits indicate a particular value’s offset from the
maximum exponent of the 16-element block. If we have a
block with a maximum exponent of 3, the value 2 would
have an offset of 2 since 2! is 2 bit positions away from
23. One key observation is that the maximum exponent of
a block dynamically focuses the range described by each
block. AFP sacrifices a small number of mantissa bits
(slightly reducing the precision to which all values are rep-
resented) in order to gain the same number of exponent bits,
which significantly increases the precision of smaller values
within the block. As we shall see in the experiments, this
tradeoff enables high accuracy performance using far fewer
bits in total. (All offsets are computed automatically by
AFP’s encoder and decoder hardware.) We call this feature
Auto Focus.

Within any block, we can understand AFP’s dynamic range
in terms of the shared maximum exponent, e,, the number
of mantissa bits, n, and the number of offset bits, o. Then,
the largest representable value is 2°* 1, while the smallest
representable non-zero value is 26+~ (=1 =2"~1) We can
see that, for AFP with o = 3, n = b5, this lets us represent
values as small as 2¢*~ 11, In contrast, BFP with no offset

and n = 8 gives smallest value 2+ =7, Thus, AFP can
accommodate a much larger range in values within a block.
This difference in dynamic range and available bits can also
be seen in Figure 6.

Prior works that use fixed-point representations without
blocks, such as IBM 4-bit (Sun et al., 2020), Mix and
Match (Chang et al., 2020), and RaPiD (Venkataramani
et al., 2021), increase the dynamic range and precision
with programmable or trainable scaling factors. However,
these techniques require significant developer investment in
the form of manual calibration, hyper-parameter tuning, or
model re-training. By employing a max exponent and a 3-
bit private offset, AFP implicitly determines the appropriate
range and quantization for each block.

3.2.2. 3-BIT OFFSET

Empirical analysis of the parameter values and intermediate
computations of deep learning models shows the importance
of incorporating our proposed 3-bit offset. Figures 3 and
4 show, respectively, the percentage of the model weights
and layer outputs whose offset, from the shared maximal
exponent value, is less than a given threshold. Using 3 offset
bits, AFP can represent offsets ranging from 0 to 7.

Perhaps surprisingly, all the models exhibit very similar
distributions; the average for each graph is shown in yellow.
Across all the models we examined, 99% of all weights and
layer outputs have offsets less than 8.

We hypothesize that the relatively tight grouping of values
is common to trained models. For general scientific com-
puting, we may need to accumulate many terms on different
scales, some of which may cancel one another. In ML, the
data is expected to be noisy, and the parameter values have
been trained in order to provide accurate predictions on data
from the training distribution. The data noise means that
higher-scale values are unlikely to fully cancel, making the
fidelity of lower-scale values less necessary to the overall
calculation. Similarly, since the training process sets model

Be Like Water: Adaptive Floating Point for Machine Learning

parameters to optimize performance, the parameter values
are likely to have relatively similar magnitudes to one an-
other so that, on average over the data, they are able to
influence the output prediction meaningfully.

Weights Coverage

ResNet50
ResNet101
ResNet152
Inception
EfficientNetBO
EfficientNetB3
EfficientNetB6
—— DenseNet201
NasNetMobile
—— NasNetLarge
— VGG16
VGG19
Xception
Distilbert
—— RoBERTa
Average

100

®
o

Percent of Values
B (=
o o

20

0 1 2 3 4 5 6 7
Offset from Max Exponent
Figure 3. Percentage of weights representable by a given offset
within 16-element blocks. While less than 20% of weights have
the same exponent as the maximum, almost all (99%) are within
offset 7, making a 3-bit private offset sufficient for preventing any
precision loss in the mantissa.

Layer Outputs Coverage

ResNet50
ResNet101
ResNet152
Inception
EfficientNetB0
EfficientNetB3
EfficientNetB6
—— DenseNet201
NasNetMobile
—— NasNetLarge
—— VGG16
VGG19
—— Xception
Distilbert
RoBERTa
Average

100 -

®
o

o
S

Percent of Values

I
o

201

0 1 2 3 4 5 6 7
Offset from Max Exponent
Figure 4. Percentage of layer outputs representable by a given off-
set within 16-element blocks. These values show more variability
across models than the weights, but again, 3 private offset bits is
sufficient to prevent precision loss on about 99% of values. On
average, 19% of the layer outputs are zeros.

While we only show the data for 16-element blocks, a maxi-
mum offset of 7 still covers 99% of the values on average
for 32-element and 64-element blocks. Based on our simula-
tions, the fine grain block size of 16 provides a good balance
between model accuracy and hardware optimization. Larger
block sizes have minimal impact on memory density but
increase hardware complexity and wire delays.

By providing the 3-bit offset with a range of 0 to 7, AFP
provides its maximum available precision to 99% of all
values. Prior block based FP formats without an offset
result in significant data loss with insufficient mantissa bits.
Values whose offset are greater than or equal to the number
of mantissa bits are truncated to zero. Thus, BFP with (no
offset and) 3, 4, or 5 mantissa bits respectively, captures
only 69%, 85%, and 92% of values on average; in other

words, 31%, 15%, and 8% of all values (respectively) are
truncated to zero. In the sequel, we define coverage of a
collection of values to be the fraction of those values that can
be quantized by a representation without truncating them
to zero. For 5 mantissa bits, BFP’s coverage of the model
weights appears adequate at 92%, but we can see a more
complete picture by looking at per layer coverage of values.

To understand the per-layer coverage of weights, we show
whisker plots comparing AFP to BFP using the same number
of bits per value in Figure 5. Although the mean coverage
is reasonable with 5 mantissa bits, we can see that many
models contain layers that would undergo severe truncation
to zero with BFP (as much as 57% of a layer’s weights).
The BFP plots 5a and 5b show many layers identified as
low-coverage outliers (particularly the EfficientNet models),
and even the non-outlier whiskers indicate many layers in
each model with low coverage. For example, the minimum
whisker value for BFP with 5 bits is 77%, meaning that 23%
of all weights in these layers are truncated to zero. Even
with 8 mantissa bits, BFP shows outliers with coverage as
low as 55%.

Since data inputs must propagate through each layer of a
model, having multiple or even one highly truncated layer
could severely degrade a model’s accuracy. When using
AFP, the 3-bit offset enables a significantly higher minimum
of the coverage distribution. All layers’ lower whiskers are
at or above 98%, and the minimum outlier coverage is at
70%.

Even BFP values that are not completely truncated to zero
may incur significant loss of precision if they are far from
the maximum exponent. Again, in Figures 3 and 4, we
see an average of 80% of weights and 70% of layer outputs
will have one or more mantissa bits truncated. For a value
with offset of 7, only 1 bit of precision is retained. Figure 6
illustrates this point by comparing AFP with BFP formats
(MSFP, HBFP, and FAST) using 8 bits of private fields (ex-
cluding the sign bit) for each value. BFP use all 8 bits for
the mantissa, while AFP uses a 3-bit offset and a 5-bit man-
tissa. The highlighted bit positions are the actual mantissa
bits stored in each representation. Each row indicates the
information stored for values with the particular offset from
the maximum exponent.

By leveraging each block’s information, AFP can provide
an additional bit of precision, indicated by the colored x’s
in Figure 6; the details of this expanded mantissa width
are described in the next section. With AFP (left panel),
all values with offsets up to and including 7 utilize the
maximum amount of available precision. In contrast to BFP,
AFP effectively stores the significant digits and provides a
graceful degradation in precision all the way until bit 12.

Be Like Water: Adaptive Floating Point for Machine Learning

5 Bit BFP Percent Coverage Per Layer

8 Bit BFP Percent Coverage Per Layer

8 Bit AFP Percent Coverage Per Layer

100 4 100 - e E—.ﬁ_% -- 100-1‘]335@ g]eo
ﬁﬁﬁﬁl ILﬁﬂ o @ ooE -! 8 o °
- - o
90 H E T g 90{ 8 g ° § 8 g8 %04 o 8§ $—o
T o §°8 4 8 2
° g go 8 % i ' o
g 8015 o EBO_ ° 8 8 980- o
5 [° o o o 9]
o 3 2 8
g 8 8 3 o o 3
(s} o o) 1 o | 8
© 704 8 = 70 ° Y 70
2 ° 8 c 8 S
g P9 g ? 8
g 60] g 60 g 60
o @ ¥
50 50 50
/P9 I N A A I o 40 L 40 F—————
© A SONSSELDLOLLLOISLS Y OSNAN SS9 58 009
SSISSFTESISTESELS ST EEESHSETES IS EEESHEEFTES £
P RIII ISP EITEL FITIT AT TIISITOO T I FITITEAFTITIIFTOO IS
SELEITIISIFSFESSE CSSEETETES 55LE CS5sEETEFS S FELEE
e egENESESSELTE o5 LTSN EST SIS F&TL TSN EST SIS Y TL
TELS TEEES S SRR = < SLLSTE & @ << LS & @
FEELT & FEFEES d EEEFLE S
(a) 5 Bit BFP Coverage (b) 8 Bit BFP Coverage (c) 8 Bit AFP Coverage

Figure 5. Whisker Plots of Per-Layer Percent Coverage Comparing AFP to BFP. BFP with 5 bits and 8 bits results in as much as 57%
and 46% of a layer’s values being truncated to zero. BFP’s coverage applies to MSFP, HBFP, and FAST. AFP with 8 bits improves the

coverage significantly, especially for the EfficientNet models.

3.2.3. MANTISSA

Compared to existing BFP formats, AFP’s private offsets
allow its 5-bit mantissa to behave more similarly to FP32’s
mantissa. In particular, for all values with offsets less than 7,
an implicit leading one is concatenated to the 5-bit mantissa.
For denormal values (offsets 7 or greater), no implicit one
is used. This is illustrated on the left of Figure 6. The value
zero is represented by an offset of 00111 and a mantissa of
0600000. Additionally, AFP uses nearest rounding on the
least significant bit for inference instead of the truncation
used by MSFP and HBFP. However, we plan to evaluate
stochastic rounding of AFP data for the backward pass of
ML training in future work.

The choice to use a 5-bit mantissa width and nearest round-
ing is motivated by ML inference simulation experiments,
on which we compare three traditional rounding modes:

Bit0 12 12| Offset |Bit0 12 7
1| X[X[X[x[x|x 0 11X %] X| X| X| x| X
11x| x| x| x| x|x 1 0] 1] x| x|x|x|x|X|
1{x|x|x|x[x|x 2 0[O} 1{x|x|x|x|x
11X[X|X| X[X]|x 3 0[0[0|1|x|x|x|x
1{x|x| x| x| x|x 4 0(0/0|0|1(x|x|x
1|X[X|X| X[X]| % 5 0/0|0]0/0{1|x|x
T [x [[x [x [x 6 0(0[0[0[0(0[1|x
XXX [X|X [x 7 0/0/0{0/0{0|0|1

AFP BFP

Figure 6. Comparing AFP and BFP with 8 Private Bits. AFP uses 3
offset and 5 mantissa bits, while BFP uses 8 mantissa bits. Yellow
locations show which bits are explicitly stored in the mantissa. For
higher-offset values, BFP quickly loses fidelity in its representa-
tion.

nearest, truncate, and stochastic. To evaluate the role of
the mantissa precision in model inference, we evaluate each
model’s accuracy when representing values using a full 8-bit
private exponent, while varying mantissa lengths and round-
ing strategies. Intuitively, this evaluates the degradation
associated with the mantissa size and rounding, absent any
effects from the blocking or exponent range. Figure 7 shows
that nearest rounding requires the fewest mantissa bits to
achieve 99% of FP32 accuracy across all of the benchmarks.
The maximum required mantissa width for nearest is 5 bits,
while the maximum required mantissa width is 9 bits for
truncate. We use round to nearest to achieve high accuracy
with minimum number bits.

Intuitively, if each value preserves its exponent as in FP32,
we still need a minimum of 5 mantissa bits to achieve the
target accuracy across all benchmarks. In this sense, the
5-bit mantissa can be seen as a lower bound on the mantissa
width for block based formats. As we show in subsequent
experiments, AFP is able to achieve our target accuracy with
a 5-bit mantissa and 3-bit offset.

Similarly, since MSFP and HBFP use truncation rounding,
our experiment provides a lower bound on their required
mantissa width, since our truncation uses a (more accu-
rate) private exponent for each value instead of the shared
exponent. In Figure 7, several models (specifically, the Ef-
ficientNet models) require a mantissa of 9 bits to maintain
accuracy. While stochastic rounding has been used in many
ML quantization papers (De Sa et al., 2017; Sa et al., 2018),
our experiments showed its performance to be generally
similar to truncate for inference.

Be Like Water: Adaptive Floating Point for Machine Learning

1s Mantissa Bits Required for Traditional Rounding Methods

14 —— Nearest
134 —— Stochastic
" 12 A Truncate
£ 11 A
© 10
£ 9
2 8
w 71
(=] 6‘
[
Qo 4 -
E > /’
2 4
3 7,
2 4
14

Figure 7. Mantissa Bits Required for Traditional Rounding. Round
to nearest shows the best performance with a maximum of 5 bits
and an average of 3.6 bits to achieve the target accuracy.

Data Bits Required for AFP and BFP

15
14 4 —— AFP Mantissa + Offset
134 —— AFP Effective Mantissa
12 4 BFP Mantissa
114
£ 104
2
S 91
©
o 8-
‘s
= 71
gl
5
2 57
4
34
24
14
0 T T T T T T T T T T T T T
S N N S S O DL LS Y L9 e oo g
SIS EEST S LT TSELSD
P K ZER SR A VARSI R S R)
F IS I TFFITTEO§ 54
AR T FEE T

Figure 8. Data Bits Required to Achieve Target Accuracy. AFP’s
mantissa width is 1 bit less than the data width, and BFP’s mantissa
width equals its data width. The maximum required mantissa width
is 7 for AFP and 14 for BFP. The average mantissa width is 5.1 for
AFP and 8.8 for BFP.

3.3. Shared Fields

AFP’s shared section uses 2 bytes to store information de-
scribing the entire block, including an 8-bit shared exponent
and 8 bits of block characterization information. The 8-bit
shared exponent is set to be the maximum exponent among
the values within a block. We allocate a full byte for block
characterization info to support byte alignment and enable
future optimizations.

In this study, we explore two methods for improving effi-
ciency. First, we include a field to indicate positivity. Sec-
ond, we include an optional zero field for each block. These
methods dynamically increase the mantissa bits by a max-
imum of one bit. By designing the AFP multiplier to use

radix-4 multiplier encoding (Ercegovac & Lang, 2003), the
extra bit can be supported with minimal overhead to the
multiplier area and delay, since both 6 bit or 7 bit multiplier
designs will generate 4 partial products to reduce.

3.3.1. PoOSITIVE FIELD

The positive field is used to indicate if all values in a sec-
tion are positive. While only one bit is necessary, two bits
per block can be used to reduce the critical path and wire
delay for more efficient hardware. The accuracy difference
between using one vs. two positive bits is negligible. One
bit is assigned to the first half of the block (8 values), and
the second bit is assigned to the latter half. When a set of
8 values are all positive, the private sign bit is reused as an
additional mantissa bit. While all-positive blocks are not
common in the model weights (1% of blocks contain all-
positive values), they are much more common in the layer
outputs (35% of blocks), due to the popularity of ReLU and
similar non-negative activations.

3.3.2. ZERO FIELD

The zero field indicates bit positions where all values with
the same offset have a zero following the leading one. The
two bits describe values with an offset of 0 and 1. This
shared information allows AFP to remove these unused bits
from the stored mantissa, allowing an additional mantissa
bit to be stored. The zeros are dynamically restored upon
decode. To maximize compute density, the zero bits are
ignored when the all positive bit is on. Our simulations
show that zero bits increase the effective mantissa width for
approximately 50% of the blocks. To simplify the hardware
design, we can use 4 zero bits which are split into two 2-bit
vectors, each referring to a set of 8 values.

3.4. Fixed Number of Bits

Many ML accelerators such as Google’s TPU (Jouppi et al.,
2021), Nvidia Tensor Cores, Intel NNP, Centaur Technol-
ogy’s Ncore (Henry et al., 2020), and Groq’s TSP (Abts
et al., 2020) are designed with a fixed data width. Figure 8
shows the required data width for each ML model. Each
data format is applied to all weights and layer outputs for in-
ference. Assuming a fixed width accelerator, to achieve our
target performance requires choosing the maximum width
across the various ML models. AFP requires a total of 8
data bits (the 3-bit offset and 5-bit mantissa), while BFP
requires /4 mantissa bits. When comparing the total amount
of memory to store a 16-element block, AFP increases mem-
ory density by 1.6, 1.6, and 3.2x over BFP, BFloat16,
and FP32, respectively.

The square of effective mantissa width can be used as a
first-order approximation of compute density. For AFP, the
effective mantissa width in hardware is shown in Figure 8.

Be Like Water: Adaptive Floating Point for Machine Learning

Model Float32 BFloatl6 AFPS
CNNs

ResNet-50 1.000 (62.04) 1.000 0.999
ResNet-101 1.000 (64.05) 1.001 0.999
ResNet-152 1.000 (64.60) 1.000 0.998
Inception-v3 1.000 (66.56) 1.000 0.996
Xception 1.000 (67.72) 1.000 1.003
EfficientNetBO 1.000 (62.22) 1.002 0.994
EfficientNetB3 1.000 (69.36) 1.001 0.998
EfficientNetB6 1.000 (73.28) 1.000 0.997
DenseNet201 1.000 (65.56) 1.000 0.999
NasNetMobile 1.000 (61.67) 1.002 0.999
NasNetLarge 1.000 (72.21) 0.999 0.999
VGG16 1.000 (58.88) 1.000 0.999
VGG19 1.000 (58.82) 0.999 1.000
Transformers

DistilBERT 1.000 (91.06) 1.000 1.000
RoBERTa 1.000 (89.96) 1.000 1.000
BERT-Large 1.000 (83.04) 1.000 1.000
Memory Density | 1.0x 2.0x 3.2x
Compute Density | 1.0x 9.0x 12x

Table 1. Accuracy and Density Normalized to FP32.

To achieve the target accuracy for all benchmarks, AFP
requires 7 effective mantissa bits (only 5 stored), while BFP
requires /4 bits. FP32 uses 24 mantissa bits, and BFloat16
uses 8 mantissa bits. When compared to BFP, BFloat16
and FP32, AFP increases compute density by 4, 1.3x and
12, respectively.

This enables AFP’s accelerators to have 1.3x as many
multiply-accumulate (MAC) units on chip as BFloatl6.
AFP’s memory density also permits the same memory to
store 1.6 x as much data as BFloat16, and will have mem-
ory bandwidth effectively 1.6x greater than BFloat16. As
described in Jouppi et al. (2021), memory bandwidth is
a critical resource for maintaining high utilization of ML
accelerators.

Detailed accuracy and density data normalized to the values
for FP32 are shown in Table 1. Under the FP32 column,
the raw accuracy percentage is shown for each benchmark
inside the parentheses.

We use AFP8 to indicate the AFP representation with Auto
Focus and shared positive bits only (i.e., no zero fields). The
shared fields for AFP8 include the maximum exponent and
positive bits while the private fields include 1 sign bit, 3
offset bits, and 5 mantissa bits. By using only the positive
bits for accelerators with a fixed data width, AFPS8 simplifies
the hardware design.

Prior work show lower mantissa bit requirements for MSFP
and FAST by only applying the BFP formats to certain
components (e.g., convolutional layers only) of ML models,
as well as performing model tuning (retraining).

Memory and Compute Density of AFP vs BFP

—— AFP Compute Density
—— AFP Memory Density
5 BFP Baseline

Density Ratio
w

S N AN &£ £§ O DM o & & @
SIS EFEEITS S ESESLS
S (KNS VAR I NG SR C N R
S I I FFFT T T IFTIYYPL & o8
W &S &SS9 N
TP ENES ST IL S IR
g @ L P
©° FELESEE N
G G & 9T

Figure 9. Comparing Compute and Memory Density of AFP vs
BFP. With the same area and memory, employing AFP will allow
3.1x MAC units and 1.3x more values to be stored.

3.5. Variable Number of Bits

For ML accelerators that can utilize variable bit sizes such
as FPGAs (Darvish Rouhani et al., 2020; Chang et al., 2020),
Figure 8 shows each benchmark’s minimum required data
width for AFP vs. BFP. AFP’s data width includes the private
offset and the private mantissa. For BFP, the data width
equals the private mantissa width.

Figure 9 compares the compute density and memory density
of AFP vs. BFP. On average, memory density and compute
density are increased by 1.3x and 3.1x when using AFP
vs. BFP. With the same die area constraint, AFP enables
3.1x times as many MAC units to fit on the chip. AFP can
store 1.3x as much data as BFP given the same amount
of memory, and the memory bandwidth is effectively 1.3 x
that of BFP.

3.6. Run-time Analysis

We can estimate AFP’s run-time improvement by using
the Roofline Model (Williams et al., 2009). Depending on
whether a model’s speed bottleneck is memory bandwidth
or computation, AFP should improve run-time by a factor
similar to the memory density improvement or compute
density improvement, respectively. If a model’s run-time is
bandwidth-limited, AFP improves over BFP by 1.6x. If the
model is computation limited, then AFP improves over BFP
by 4x.

3.7. Error Analysis

By combining the shared 8-bit exponent and private 3-bit off-
sets, AFP achieves a dynamic range of (3.676*40, 3.38638),
which is comparable to both FP32 and BFloat16. The mini-
mum non-zero value is represented with a shared exponent

Be Like Water: Adaptive Floating Point for Machine Learning

of -126, an offset of 7, and mantissa of zeroes followed
by one in the lowest bit position. The maximum value is
represented with a shared exponent of 127, an offset of 0,
and mantissa of all ones. Zero is represented by an offset of
7 and all zeroes in the mantissa for any shared exponent.

For AFP, there are two sources of error when compared to
FP32 and BFloat16. First, error is injected with the narrower
mantissa width, which ranges from 6 to 7. Second, error
is injected when values fall outside the representable range
and are truncated to zero. However, this scenario happens
for less than 1% of values on average, as shown in Figures 3
and 4.

For values with offset < 7, the upper bound of AFP’s ab-
solute error is 2(¢?=™) n, is # of mantissa bits and ep is
the value’s private exponent, and is 1/33 or 3.03% for rel-
ative error. For values with offset > 7, the upper bound is
2(e-=(n+6)) "¢ s the shared exponent.

Given the dynamic nature of AFP, we measured the absolute
and relative error while executing all models. For weights,
the average absolute error was 0.00013 and the average per-
centage error is 0.64%. For layer outputs, the average errors
are 0.037 and 0.47%, respectively. Compared to BFP using
the same amount of memory, AFP reduces absolute error by
23% and 46% for weights and layer outputs, respectively.
AFP reduces relative error by 60% and 43% for weights and
layer outputs, respectively.

3.8. AFP Hardware Design

Figure 10 shows a high level diagram of an AFP ML ac-
celerator to calculate the dot product of two vectors. This
design uses fused operations where multiple operations are
applied to the data before encoding back to AFP or FP32.
The design works similarly to BFP based representations,
such as MSFP, HBFP, and FAST, with additional logic to
handle AFP’s offset bits.

The Mem block refers to the memory or register where AFP
data is stored. A simple and fast decoder expands blocks of
AFP data and sends the operands to the multipliers.

The private operand offsets for each product are added by
simple 3-bit adders. Prior to the adder network for the dot
product, each product is right shifted by this sum of offsets.
The entire adder network operates in fixed-point. In parallel,
per-block shared exponents are added to produce the result
exponent for the entire block.

To further validate our design, we developed the AFP block
decoder, the AFP block encoder, the FP32 encoder and the
AFP Dot Product unit in logic design. For each AFP value,
block decoding requires only three AND gates and one 2-1
Mux. The critical path is only increased by the delays of
one AND gate and one 2-1 Mux.

' ma!o —
mp,0 ¥

Block
-
Decode

Figure 10. High Level Diagram of AFP Dot Product. The example
uses a block size of 4. Multiplications occur with the decoded man-
tissas while private exponents ¢4, and ¢ , are added in parallel.
The products are right shifted by the sum of offsets before reaching
the adders. The entire adder network is in fixed point. The shared
block exponents are used for encoding to AFP8 or FP32.

4. Experimental Setup

To simulate AFP in hardware, several DNN inference mod-
els were employed in Tensorflow using the Keras (Chol-
let et al., 2015) and HuggingFace (Wolf et al., 2019) li-
braries. For image classification, the test dataset of Ima-
geNetV2 (Recht et al., 2019) was used to measure model ac-
curacyl. The models used include ResNet-50, ResNet-101,
ResNet-152, Inception-v3, Xception, EfficientNetB0, Effi-
cientNetB3, EfficientNetB6, DenseNet201, NasNetMobile,
NasNetLarge, VGG16, and VGG19. For transformer-based
models, we applied AFP to DistilBERT for sentiment analy-
sis (SST-2 dataset), RoOBERTa for textual entailment (MNLI
dataset), and BERT-Large for question-answering (SQUAD
dataset).

Using a custom round function, all types of layers’ weights
and outputs were rounded with AFP, such as Conv2D, Batch
Normalization, and Dense layers. To properly simulate infer-
ence using AFP in hardware, all the weights were rounded
when instantiating the model and all layer outputs were
rounded between every layer, before being input into the
next layer. Examples from data sets were individually input
into each model and a block size of 16 was used for most
experiments. Entire data sets were always used to determine
accuracy values.

To round values to the AFP format, we employ a method
similar to Kalamkar et al. (2019) where FP32 operations
emulate the behavior of AFP operations by zeroing out the
lower mantissa bits outside of the AFP mantissa range. This
rounding framework is built on top of Tensorflow, and we
utilize the same infrastructure to model the other rounding
methods described in this paper.

Because AFP is block based, we flatten and reshape the

"Note that the validation in Darvish Rouhani et al. (2020) used
ImageNetV1; here we use V2 to provide a more realistic data
distribution for evaluation.

Be Like Water: Adaptive Floating Point for Machine Learning

tensors into blocks of 16 elements in order to accurately
model the effects of AFP encoding. The maximum exponent
is determined for each block, and all values’ private offset
is generated based on the maximum exponent. At the end
of the rounding process, we reshape the tensors back into
their original shapes. For tensors that do not divide evenly
into 16-element blocks, we pad the end of the tensor with
zeros and remove these padded zeros at the end of rounding.
Across all the models, memory increase from zero padding
is negligible, 0.0001% on average for weights and layer
outputs.

5. Related Work

There are a number of well-known works that have proposed
quantization or low-precision representations for acceler-
ating machine learning, among them BFloat16 (Kalamkar
et al., 2019), Nvidia Mixed Precison (Micikevicius et al.,
2017), Buckwild (De Sa et al.,, 2017), High-Accuracy
Low Precision Training (HALP) (Sa et al., 2018), IBM
4-bit (Sun et al., 2020), Microsoft Floating Point (MSFP)
(Darvish Rouhani et al., 2020), and RaPiD (Venkataramani
et al., 2021) This section will provide additional background
on these representations.

Compared to FP16, BF16 increases the dynamic range but
reduces precision. As discussed above, AFP improves upon
the memory and compute density over BF16. Nvidia Mixed
Precision makes use of IEEE half precision FP16 and FP32.
It saves a master copy of the weights in FP32 to update
weights during training and reduce compute time.

Stanford Buckwild uses a fixed point INT8 format focused
on stochastic gradient descent (SGD) network training. Due
to a fixed point format having a global exponent, it suffers
from a narrow dynamic range. HALP also focuses on SGD
training with a fixed point representation but employs a bit
centering method which routinely narrows the representable
range ,as gradient values converge, in order to increase
precision. IBM 4-bit uses a 4-bit (1,3,0) exponent only
representation to maximize the dynamic range for gradients
and an INTS8 quanitzation for performance-critical layers.
It also employs per layer trainable scaling factors known
as GradScale to decrease quantization error. GradScale
is inconvienient to apply to existing models because the
scaling factors require further training.

Mix and Match quantizes weights matrices row-by-row by
employing a 4-bit fixed point representation with a scaling
factor for uniformly distributed rows and a sum-of-power-of-
2 (SP2) representation with scaling factor for gaussian dis-
tributed rows. Narrow fixed point representations like INT4
can be used in conjunction with loss scaling to train low-
precision models, but is not effective at quantizing already-
trained models. Unlike Mix and Match, AFP uses a private

3-bit offset which automatically adjusts to all distributions
with greater precision. Also, AFP applies to 16-element
blocks instead an entire row of data.

MSFP implements a bounding box method which is similar
to AFP blocks. It also implicitly determines a max expo-
nent. However, MSFP uses fixed-point values which may
poorly represent non-uniform box distributions. Addition-
ally, MSFP has only been applied to performance-critical
layers in addition to model fine-tuning to achieve high accu-
racy. With the 3-bit offset, AFP can represent distributions
with greater precision and can be applied to all layers of
models without model fine-tuning.

FAST implements a dynamic precision system on top of the
BFP format for DNN training. Similar to MSFP, the BFP
format is applied to selective layers within the 6 models
studied. FAST utilizes a 3-bit shared exponent with some
form of scaling factor.

RaPiD applies a spectrum of precisions from FP16 to 2 bit
fixed point for training and inferencing. For training, Hybrid-
FP8 uses a (1,4,3) scheme for activations and weights and
(1,5,2) representation for gradients. For inferencing, it uses
PArameterized Clipping acTivation (PACT) and Statistics-
aware Weight Binning (SaWB) with scaling factors to repre-
sent activations and weights. RaPiD may increase software
and hardware complexity from the programmable scaling
factor and the use of several different representations.

6. Conclusions

In this paper, we present AFP, an adaptive floating point
representation for ML applications. AFP provides a highly
compact format while maintaining the necessary fidelity to
preserve accurate inference across a wide range of bench-
mark networks.

Ongoing work includes developing hardware implementa-
tions for AFP, as well as evaluating the effectiveness of
AFP for model training. Prior work (Jouppi et al., 2021;
Venkataramani et al., 2021) suggests that training may re-
quire more dynamic range than inference; however, we
expect AFP to improve on existing representations in these
settings as well, due to its increased ability to retain preci-
sion.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments, Milos D. Ercegovac for early discussions
on BFP, Kim B. Bruce for valuable feedback, and Anthony
J. Clark for simulation discussions. We also want to ac-
knowledge Carl Bell, Ziang Xue, and other members of the
ARCALA Research Lab for assistance on model simulations
and hardware design.

Be Like Water: Adaptive Floating Point for Machine Learning

References

Abts, D., Ross, J., Sparling, J., Wong-VanHaren, M., Baker,
M., Hawkins, T., Bell, A., Thompson, J., Kahsai, T., Kim-
mell, G., Hwang, J., Leslie-Hurd, R., Bye, M., Creswick,
E., Boyd, M., Venigalla, M., Laforge, E., Purdy, J., Ka-
math, P., Maheshwari, D., Beidler, M., Rosseel, G., Ah-
mad, O., Gagarin, G., Czekalski, R., Rane, A., Parmar, S.,
Werner, J., Sproch, J., Macias, A., and Kurtz, B. Think
fast: A tensor streaming processor (TSP) for accelerating
deep learning workloads. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architecture

(ISCA), pp. 145-158, 2020.

Chang, S., Li, Y., Sun, M., Shi, R., So, H. K., Qian,
X., Wang, Y., and Lin, X. Mix and match: A novel
FPGA-centric deep neural network quantization frame-
work. CoRR, abs/2012.04240, 2020. URL https:
//arxiv.org/abs/2012.04240.

Chollet, F. et al. Keras. https://keras.io, 2015.

Darvish Rouhani, B., Lo, D., Zhao, R., Liu, M., Fowers,
J., Ovtcharov, K., Vinogradsky, A., Massengill, S., Yang,
L., Bittner, R., Forin, A., Zhu, H., Na, T., Patel, P., Che,
S., Chand Koppaka, L., SONG, X., Som, S., Das, K.,
T, S., Reinhardt, S., Lanka, S., Chung, E., and Burger,
D. Pushing the limits of narrow precision inferencing at
cloud scale with Microsoft floating point. In Advances in
Neural Information Processing Systems, volume 33, pp.
10271-10281, 2020.

De Sa, C., Feldman, M., Ré, C., and Olukotun, K. Un-
derstanding and optimizing asynchronous low-precision
stochastic gradient descent. In Proceedings of the 44th

Annual International Symposium on Computer Architec-
ture, ISCA 17, pp. 561-574, 2017.

Drumond, M., Lin, T., Jaggi, M., and Falsafi, B. Training
dnns with hybrid block floating point. In Advances in
Neural Information Processing Systems, pp. 451-461,
2018.

Ercegovac, M. D. and Lang, T. Digital Arithmetic. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2003. ISBN 1558607986.

Henry, G., Palangpour, P., Thomson, M., Gardner, J. S.,
Arden, B., Donahue, J., Houck, K., Johnson, J., O’Brien,
K., Petersen, S., Seroussi, B., and Walker, T. High-
performance deep-learning coprocessor integrated into
x86 SoC with server-class CPUs industrial product. In
2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA), pp. 15-26, 2020.

Jouppi, N. P., Hyun Yoon, D., Ashcraft, M., Gottscho, M.,
Jablin, T. B., Kurian, G., Laudon, J., Li, S., Ma, P., Ma,

X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou,
Z., and Patterson, D. Ten lessons from three genera-
tions shaped Google’s TPUv4i: Industrial product. In
2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pp. 1-14, 2021.

Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D.,
Banerjee, K., Avancha, S., Vooturi, D. T., Jammala-
madaka, N., Huang, J., Yuen, H., Yang, J., Park, J.,
Heinecke, A., Georganas, E., Srinivasan, S., Kundu, A.,
Smelyanskiy, M., Kaul, B., and Dubey, P. A study of
BFLOAT16 for deep learning training, 2019.

Kalliojarvi, K. and Astola, J. Roundoff errors in block-
floating-point systems. [EEE Transactions on Signal
Processing, 44(4):783-790, Apr 1996. ISSN 1941-0476.
doi: 10.1109/78.492531.

Liu, X., Ye, M., Zhou, D., and Liu, Q. Post-training
quantization with multiple points: Mixed precision
without mixed precision. arXiv:2002.09049 [cs, stat],
Jan 2021. URL http://arxiv.org/abs/2002.
09049. arXiv: 2002.09049.

Micikevicius, P, Narang, S., Alben, J., Diamos, G. F., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training.
CoRR, abs/1710.03740, 2017.

Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod,
C.-P, Lefevre, V., Melquiond, G., Revol, N., Stehlé, D.,
and Torres, S. Handbook of Floating-Point Arithmetic.
Birkhduser Boston, 2010.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do
imagenet classifiers generalize to imagenet? In Interna-
tional Conference on Machine Learning, pp. 5389-5400,
2019.

Sa, C. D., Leszczynski, M., Zhang, J., Marzoev, A., Aberger,
C. R,, Olukotun, K., and Ré, C. High-accuracy low-
precision training, 2018. URL http://arxiv.org/
abs/1803.03383.

Song, Z., Liu, Z., Wang, C., and Wang, D. Computation
error analysis of block floating point arithmetic oriented
convolution neural network accelerator design. In AAAI,
2018.

Sun, X., Wang, N., Chen, C.-Y., Ni, J., Agrawal, A., Cui,
X., Venkataramani, S., El Maghraoui, K., Srinivasan,
V. V., and Gopalakrishnan, K. Ultra-low precision 4-bit
training of deep neural networks. In Advances in Neural

Information Processing Systems, volume 33, pp. 1796—
1807, 2020.

https://arxiv.org/abs/2012.04240
https://arxiv.org/abs/2012.04240
https://keras.io
http://arxiv.org/abs/2002.09049
http://arxiv.org/abs/2002.09049
http://arxiv.org/abs/1803.03383
http://arxiv.org/abs/1803.03383

Be Like Water: Adaptive Floating Point for Machine Learning

Venkataramani, S., Srinivasan, V., Wang, W., Sen, S.,
Zhang, J., Agrawal, A., Kar, M., Jain, S., Mannari, A.,
Tran, H., Li, Y., Ogawa, E., Ishizaki, K., Inoue, H.,
Schaal, M., Serrano, M., Choi, J., Sun, X., Wang, N.,
Chen, C.-Y., Allain, A., Bonano, J., Cao, N., Casat-
uta, R., Cohen, M., Fleischer, B., Guillorn, M., Haynie,
H., Jung, J., Kang, M., Kim, K.-h., Koswatta, S., Lee,
S., Lutz, M., Mueller, S., Oh, J., Ranjan, A., Ren, Z.,
Rider, S., Schelm, K., Scheuermann, M., Silberman, J.,
Yang, J., Zalani, V., Zhang, X., Zhou, C., Ziegler, M.,
Shah, V., Ohara, M., Lu, P.-F., Curran, B., Shukla, S.,
Chang, L., and Gopalakrishnan, K. Rapid: Ai acceler-
ator for ultra-low precision training and inference. In
2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA), pp. 153—-166, 2021.
doi: 10.1109/ISCA52012.2021.00021.

Wilkinson, J. H. Rounding Errors in Algebraic Processes.
Courier Corporation, Jan 1994.

Williams, S., Waterman, A., and Patterson, D. Roofline: An
insightful visual performance model for multicore archi-
tectures. Commun. ACM, 52(4):65—-76, April 2009.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P, Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. M. Huggingface’s transformers:
State-of-the-art natural language processing, 2019. URL
https://arxiv.org/abs/1910.03771.

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan,
E., Wang, L., Huang, Q., Wang, Y., Mahoney, M. W.,
and Keutzer, K. HAWQV3: Dyadic neural network
quantization. arXiv:2011.10680 [cs], Jun 2021. URL
http://arxiv.org/abs/2011.10680.

Zhang, S. Q., McDanel, B., and Kung, H. FAST: DNN
training under variable precision block floating point
with stochastic rounding. In 28th IEEE International

Symposium on High-Performance Computer Architecture
(HPCA-28), 2022.

https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/2011.10680

