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Abstract

Tandem mass spectrometry is the only high-
throughput method for analyzing the protein con-
tent of complex biological samples and is thus
the primary technology driving the growth of the
field of proteomics. A key outstanding challenge
in this field involves identifying the sequence of
amino acids—the peptide—responsible for gen-
erating each observed spectrum, without making
use of prior knowledge in the form of a peptide se-
quence database. Although various machine learn-
ing methods have been developed to address this
de novo sequencing problem, challenges that arise
when modeling tandem mass spectra have led to
complex models that combine multiple neural net-
works and post-processing steps. We propose a
simple yet powerful method for de novo peptide
sequencing, Casanovo, that uses a transformer
framework to map directly from a sequence of ob-
served peaks (a mass spectrum) to a sequence
of amino acids (a peptide). Our experiments
show that Casanovo achieves state-of-the-art per-
formance on a benchmark dataset using a stan-
dard cross-species evaluation framework which
involves testing with spectra with never-before-
seen peptide labels. Casanovo not only achieves
superior performance but does so at a fraction of
the model complexity and inference time required
by other methods.
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1. Introduction
Tandem mass spectrometry provides a high-throughput
framework for identifying and quantifying proteins in com-
plex biological samples, but determining the exact protein
content from observed mass spectra at scale remains a chal-
lenge. At the core of this challenge is the spectrum identi-
fication problem, in which we are given an observed mass
spectrum and the associated mass and charge of the peptide
(known as the precursor) that is responsible for generating
the spectrum, and we must infer the amino acid sequence of
the precursor peptide. The standard method for solving this
problem is enumerative, scoring each observed spectrum
with respect to a list of candidate peptides (i.e., peptides
whose masses are close to the observed precursor mass as-
sociated with the spectrum) and reporting the best-scoring
peptide-spectrum match (PSM) per spectrum.

However, the drawback to any database search methodology
is that it requires that we specify a priori which peptides
might occur in the sample. Such an approach is often sensi-
ble when analyzing samples from a species, such as human,
with a well-characterized genome sequence. However, re-
lying on a database prevents the detection of unexpected
peptide sequences, such as those that arise from genetic
variation. A sequence database also cannot be used for the
analysis of some types of immunopeptidomics data (Van-
Duijn et al., 2017), in antibody sequencing (Tran et al.,
2017), or in vaccine development when searching for bacte-
rial peptides present on the surface of infected cells (Mayer
& Impens, 2021). Finally, constructing an accurate database
for metaproteomic analyses, such as the human microbiome
or environmental samples, is nearly impossible (Muth et al.,
2013). Such settings require de novo peptide sequencing
from the acquired mass spectra.

Early de novo methods used heuristic search (Taylor & John-
son, 1997) or dynamic programming (Ma et al., 2003; Dan-
cik et al., 1999; Frank & Pevzner, 2005) to score peptide
sequences against each observed spectrum. Machine learn-
ing has provided state-of-the-art performance on this task
since 2015 (Ma, 2015), and recent methods employ deep
neural networks (Tran et al., 2017; Qiao et al., 2021; Yang
et al., 2019; Karunratanakul et al., 2019). Although de novo
search tools are improving, there is still a long way to go.
The most recent report (Qiao et al., 2021) suggests that
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CNN for spectrum peak embedding X X
CNN for spectrum processing X X
RNN for peptide sequence processing X X X
PointNet X
Transformer X
Dynamic programming post-processor X X
Database search post-processor X
Precursor m/z filter X
Discretization of m/z axis X X

Table 1. Comparison of deep learning methods for de novo pep-
tide sequencing. Casanovo introduces a simpler yet more powerful
architecture of a transformer for de novo peptide sequencing.

state-of-the-art methods achieve peptide-level recall (i.e.,
the percentage of spectra with the correctly assigned pep-
tide) of 39-60%, depending on the dataset. However, this
percentage is calculated only with respect to ground truth
spectra that, by definition, were previously identified with
high confidence by a database search.

Additionally, all of these methods involve complicated mod-
eling schemes (Table 1) featuring different neural networks
for different sub-tasks such as convolutional neural networks
(CNNs) for spectrum peak embedding and spectrum pro-
cessing, and recurrent neural networks (RNNs) for peptide
sequence processing. These methods also include com-
plex post-processing steps that involve either matching the
predicted peptide mass with the spectrum’s observed pre-
cursor mass using dynamic programming or refining low
confidence predictions with a database search-like proce-
dure. The necessity of discretizing the mass-to-charge (m/z)
axis of the mass spectra also remains a setback for all ex-
isting methods except PointNovo, necessitating a trade-off
between low binning resolution (hence low sequencing accu-
racy) and higher model complexity (hence longer inference
time).

In this work, we propose Casanovo, a transformer frame-
work for de novo peptide sequencing (Figure 1). Casanovo
uses the self-attention mechanism to translate directly from
a variable-length sequence of observed spectrum peaks to
a variable-length sequence of amino acids, analogous to a
neural machine translation model in the natural language
processing setting. Importantly, Casanovo takes individ-
ual spectrum peaks, together with the precursor mass and
charge, as input, without resorting to discretization of the
m/z axis, and learns to predict the generating peptide se-
quence in a supervised setting in which ground truth se-
quences are obtained with database search. Unlike existing
methods, Casanovo does not employ an additional RNN to
process peptide sequences and replaces the dynamic pro-
gramming post-processing step with a simple delta mass
filter, offering a simpler yet more powerful framework.

We train and evaluate our model on a multi-species bench-
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Figure 1. Casanovo performs de novo peptide sequencing.
Casanovo takes as input an observed spectrum and produces the
sequence of the generating peptide (e.g., VYEMYVTVHR). In the
spectrum, peaks corresponding to b- and y-ions of the associated
peptide are in color, and black peaks correspond to unexpected
fragmentation events or noise. The spectrum annotation was cre-
ated using spectrum utils (Bittremieux, 2020).

mark dataset using an established cross-validation frame-
work which involves testing on spectra with never-before-
seen peptide labels, through cross-species prediction. Our
experiments show that Casanovo predicts peptide sequences
with markedly higher precision relative to the state-of-the-
art methods, DeepNovo and PointNovo, and does so using
a model with fewer parameters and requiring much shorter
inference time. Finally, we benchmark several variants of
the model to demonstrate the robustness of some of our
modeling choices.

2. Background: De novo peptide sequencing
Because tandem mass spectrometry analysis, and particu-
larly de novo peptide sequencing, is rarely discussed in the
machine learning literature, we begin with a brief overview
of the problem domain. Additional background is available
in several review articles (Steen & Mann, 2004; Noble &
MacCoss, 2012).

A tandem mass spectrometer measures mass-to-charge (m/z)
ratios of charged peptides in a two-scan process. The first
scan (MS1) measures the m/z of the intact peptide (also
known as the precursor); the peptide is then fragmented and
the resulting fragments are analyzed in a secondary scan
(MS2). This MS2 scan is carried out on a population of
(ideally) homogeneous peptide sequences, each of which
is randomly fragmented at one location along the peptide
backbone. As a result, the fragmentation scan contains
peaks that correspond to prefixes (called b-ions) and suffixes
(y-ions) of the peptide, each with an associated charge state.
Thus, the primary data object, the MS2 spectrum, consists of



a bag of peaks, where each peak is characterized by an m/z
value and its associated intensity (Figure 1). The intensity is
unitless but is monotonically related to the number of ions
that generated the observed peak. The m/z value is measured
with extremely high precision, often better than 10 parts-
per-million (ppm), whereas the intensity is measured much
less precisely. In practice, each spectrum contains around
100 peaks, with considerable variation (10–476 in the data
analyzed here). A mass spectrometer produces MS2 spectra
at a rate of ∼20–40 Hz, and a typical mass spectrometry
run lasts 30–60 minutes, yielding on the order of 36,000–
144,000 spectra in a single run.

The first analysis task that this data presents is the spec-
trum identification problem, in which each observed MS2
spectrum must be linked with the sequence of the peptide
responsible for generating it. The primary constraint is that
the peptide mass must lie within a specified tolerance of the
observed precursor mass associated with the spectrum. This
task is challenging because some of the expected b-ion and
y-ion peaks may be missing, and some additional peaks may
appear in the spectrum, created by losses of small molecular
groups during fragmentation or by multiple cleavage events
occurring on the same peptide. Spectra also contain noise,
including experimental noise from the instrument as well as
chemical noise produced by contaminants, other peptides,
or non-peptide molecules.

In practice, spectrum identification is most commonly
solved using database search, in which candidate peptides
are selected from a given database of peptides (Nesvizhskii,
2010). The database typically contains all of the peptide
sequences encoded in the genome of the species from which
the sample is derived. De novo peptide sequencing, on the
other hand, considers all possible peptide sequences and
is useful for identifying sequences that arise from genetic
variation, recombination in some immune system settings,
vaccine design, antibody sequencing, or in the analysis of
metaproteomic samples from many different types of mi-
croorganisms.

3. Related Work
Early de novo methods used heuristic search (Lutefisk (Tay-
lor & Johnson, 1997)) or dynamic programming (PEAKS
(Ma et al., 2003) and SHERENGA (Dancik et al., 1999))
to score peptide sequences against each observed spectrum.
The PepNovo algorithm (Frank & Pevzner, 2005) uses a
similar dynamic programming approach but employs a prob-
abilistic score function that takes into account various chemi-
cal and physical rules governing peptide fragmentation. This
model is closely related to the hidden Markov model that is,
to our knowledge, the first application of machine learning
to the de novo peptide sequencing task (Fischer et al., 2005).
A decade later, the Novor algorithm (Ma, 2015) achieved

improved performance by using a decision tree as the score
function in a dynamic programming algorithm.

The first deep neural network algorithm for de novo pep-
tide sequencing, DeepNovo (Tran et al., 2017), combines
two different network architectures—a convolutional neural
network and a long short term memory (LSTM) network—
each of which aims to predict the subsequent amino acid,
given a spectrum and a peptide prefix. These two scores
are combined in a dynamic programming procedure to yield
the predicted peptide sequence. The recently described
SMSNet algorithm (Karunratanakul et al., 2019) uses a
network architecture similar to that of DeepNovo but also
offers a post-processing step in which low-confidence amino
acids are replaced by making use of a user-supplied pep-
tide database. A competing method, pNovo 3 (Yang et al.,
2019), works in three steps: (1) a traditional dynamic pro-
gramming approach generates a set of candidate peptides
for a given spectrum, (2) a previously described deep learn-
ing model, pDeep (Zhou et al., 2017), predicts a theoretical
spectrum for each candidate, and (3) a ranking support vec-
tor machine ranks the candidate peptides, based on features
extracted by comparing the observed and theoretical spec-
tra. Finally, PointNovo (Qiao et al., 2021) is an improved
version of DeepNovo which focuses specifically on han-
dling high-resolution mass spectrometry data by using an
order-invariant network architecture (Qi et al., 2016).

4. Methods
Transformers are highly capable of learning contextualized
representations and modeling sequential data (Vaswani et al.,
2017), with a variety of successful applications to biological
sequences (Rives et al., 2021; Avsec et al., 2021). In this
context, de novo peptide sequencing can be formulated as
a sequence-to-sequence learning problem where variable-
length sequences of observed spectra peaks are translated
into variable-length sequences of amino acids. The main
contribution of this paper is to propose a transformer-based
de novo peptide sequencing framework, Casanovo, which
provides a unified solution to de novo peptide sequencing
sub-tasks such as learning latent representations for spec-
tra, spectrum processing and peptide sequence processing,
which existing methods tackle separately through more com-
plex modeling schemes.

4.1. Casanovo

Casanovo consists of a transformer encoder and decoder
stack as described in (Vaswani et al., 2017), which are re-
spectively responsible for learning latent representations of
the input spectrum peaks and decoding the amino acid se-
quence of the spectrum’s generating peptide (Figure 2). The
encoder takes d-dimensional spectrum peak embeddings
as input and outputs d-dimensional latent representation
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Figure 2. Casanovo model architecture with inputs and outputs

vectors for each peak. Subsequently, the decoder takes as
input these representations of prefix amino acids, coupled
with a d-dimensional precursor embedding encapsulating
precursor m/z and charge information, to predict the next
amino acid in the peptide sequence. We discuss different
aspects of our modeling strategy in detail below.

4.1.1. INPUT EMBEDDINGS

Each spectrum S = {(mj , Ij)}Nj=1 is a bag of peaks, where
each peak (mj , Ij) is a 2-tuple representing the m/z value
and intensity of the peak. The m/z value and intensity are
embedded separately before being summed to yield the input
peak embedding. We use a fixed, sinusoidal embedding
(Vaswani et al., 2017) to project each m/z value to a d-
dimensional vector, the m/z embedding f . Specifically, we
create the m/z embedding from an equal number of sine and
cosine waveforms spanning the wavelengths from 0.001 to
10,000 m/z, where each feature in the embedding fi is

fi =

{
sin(mj/(

λmax
λmin

(λmin
2π )2i/d)), for i ≤ d/2

cos(mj/(
λmax
λmin

(λmin
2π )2i/d)), for i > d/2

(1)

where λmax = 10, 000 and λmin = 0.001. These input em-
beddings provide a granular representation of high-precision
m/z information and, similar to relative positions in the orig-
inal transformer model (Vaswani et al., 2017), may help
the model attend to m/z differences between peaks, which
are critical for identification of amino acids in the peptide
sequence. The intensity, which is measured with lower pre-
cision than the m/z value, is embedded by projection to d
dimensions through a linear layer, after which the m/z and
intensity embeddings are summed to produce the input peak
embedding. We also experiment in Section 5.3 with encod-
ing intensity using a fixed, sinusoidal position embedding

and concatenating it with the m/z embedding.

Precursor information, used as input to the decoder, con-
sists of the total mass mprec ∈ R and charge state cprec ∈
{1, ..., 10} associated with the spectrum. We use the same
sinusoidal position embedding as peak m/z’s for mprec; cprec
is embedded using an embedding layer, and the embeddings
are summed to obtain the input precursor embedding. Pre-
ceding amino acids in the peptide sequence, another decoder
input, are also encoded as the sum of an amino acid embed-
ding and a sinusoidal position embedding of their position
in the sequence.

4.1.2. TRAINING AND INFERENCE STRATEGY

Taking the previously described embeddings as input, the
transformer outputs scores which are treated as a probability
distribution over the amino acid vocabulary for the next
position in the sequence at each decoding step. The amino
acid vocabulary includes 20 canonical amino acids, post-
translationally modified versions of three of them (oxidation
of methionine and deamidation of asparagine or glutamine),
plus a special stop token to signal the end of decoding,
yielding a total of 24 tokens. During training, the decoder
is fed the amino acid prefix for the ground truth peptide
following the teacher forcing paradigm (Williams & Zipser,
1989). Cross-entropy between the model output probabili-
ties and a binary matrix representing amino acid sequence of
the ground truth peptide is minimized as the objective func-
tion. During inference, the highest scoring amino acid is
predicted for each position in the sequence, and the decoder
is fed its previous amino acid predictions at each decoding
step. The decoding is finished either when the stop token
is predicted or the pre-defined maximum peptide length of
` = 100 amino acids is reached.

4.1.3. MODEL AND TRAINING HYPERPARAMETERS

We train models with nine layers, embedding size d = 512,
and eight attention heads, yielding a total of ∼47M model
parameters. A batch size of 32 spectra and 10−5 weight
decay is used during training, with a peak learning rate of
5×10−4. The learning rate is linearly increased from zero to
its peak value in 100k warm-up steps, followed by a cosine
shaped decay. Models are trained on 2 RTX 2080 GPUs for
30 epochs, which takes approximately two days, and model
weights from the epoch with the lowest validation loss were
selected for testing. These model hyperparameters—number
of layers, embedding size, number of attention heads, and
learning rate schedule—are used for all downstream experi-
ments unless otherwise specified.

4.1.4. PRECURSOR m/z FILTERING

A critical constraint in de novo peptide sequencing requires
the relative difference between total mass of the predicted



peptide mpred and the observed precursor mass mprec of the
spectrum to be less than a threshold value ε (specified in
ppm) for the predicted sequence to be plausible: ∆mppm =
|mprec−mpred|×106

mprec
< ε In addition to providing precursor

information as an input for the model to learn from, we
filter out peptide predictions that do not satisfy the above
constraint. The threshold value ε is a property of the mass
spectrometer that the data is collected with, and hence is
known at inference time. Accordingly, we choose ε based
on the precursor mass error tolerance used in the database
search to obtain ground truth peptide sequences for the test
data.

Casanovo’s source code and trained model weights are
available as open-source under the Apache 2.0 license at
https://github.com/Noble-Lab/casanovo.

4.2. Data set

To evaluate the performance of Casanovo and compare it
with state-of-the-art de novo peptide sequencing methods,
we use the nine-species benchmark data set and evaluation
framework first introduced by (Tran et al., 2017) and used
in several subsequent studies (Karunratanakul et al., 2019;
Qiao et al., 2021). This data set combines a total of about
1.5 million mass spectra from nine different experiments,
each using the same instrument to analyze peptides from a
different species. Based on database search identification
using the standard false discovery rate (FDR) of 1%, each
spectrum comes with an assigned peptide sequence which
is treated as ground truth to train and evaluate the methods.
With approximately 300,000 unique peptide sequences in
the data set, each sequence has around five spectrum in-
stances on average, but around 40% of all peptide sequences
have a single spectrum associated with them. Following
(Tran et al., 2017), we employ a leave-one-out cross vali-
dation framework where we train a model on eight species
and test on the held-out species for each of the nine species
in the data set. In each case, we split the training set 90/10
for training and validation. This cross-species evaluation
framework allows for testing the model on never-before-
seen peptide samples, because the peptides in the training
set are almost completely disjoint from the peptides of the
held-out species. To illustrate this point, among the∼26,000
unique peptide labels associated with the human spectra in
the test data, only 7% overlap with the ∼250,000 unique
peptide labels associated with spectra from the other eight
species. Cross-species testing is particularly important for
de novo sequencing models because most practical applica-
tions of de novo sequencing require models to perform well
on spectra with never-before-seen peptide sequences.

4.3. Evaluation metrics

We use precision calculated at the amino acid and peptide
levels (Ma et al., 2003; Frank & Pevzner, 2005; Tran et al.,
2017) as a function of coverage over the test set as perfor-
mance measures to evaluate the quality of a given model’s
predictions. In each case, for each spectrum we compare
the predicted sequence to the ground truth peptide from
the database search. Following (Tran et al., 2017), for the
amino acid-level measures we first calculate the number
Na

match of matched amino acid predictions, defined as all
predicted amino acids which (1) differ by <0.1 Da in mass
from the corresponding ground truth amino acid, and (2)
have either a prefix or suffix that differs by no more than
0.5 Da in mass from the corresponding amino acid sequence
in the ground truth peptide. We then define amino acid-level
precision as Na

match/N
a
pred, where Na

pred is the number of pre-
dicted amino acids. For peptide predictions, a predicted
peptide is considered a correct match if all of its amino
acids are matched. Among a collection of Np

orig spectra,
if our model makes predictions on a subset of Np

pred and
correctly predicts Np

match peptides, we define coverage as
Np

pred/N
p
orig and peptide-level precision as Np

match/N
p
pred. To

plot a precision-coverage curve, we sort predictions by the
confidence score provided by the model. Amino acid-level
confidence scores are obtained by applying a softmax to
the output of the transformer decoder, which is a proxy for
the probability of each predicted amino acid to occur in
the given position along the peptide sequence. Casanovo
directly outputs amino acid-level confidence scores, and we
use the mean score over all amino acids as a peptide-level
confidence score.

5. Results
5.1. Casanovo outperforms state-of-the-art methods

We begin by using the previously described experimental
setup and evaluation metrics (Sections 4.2–4.3) to evaluate
Casanovo’s performance relative to two state-of-the-art neu-
ral network-based methods, DeepNovo (Tran et al., 2017)
and PointNovo (Qiao et al., 2021). In this comparison,
peptide-level performance measures are the primary quanti-
fier of the sequencing model’s practical utility, since the goal
is to assign a complete peptide sequence to each observed
spectrum. To characterize the performance of DeepNovo
and PointNovo, we rely on the pre-trained weights of the
former and the published results of the latter (Qiao et al.,
2021), since neither PointNovo’s pre-trained weights nor its
predictions for the benchmark data set are available.

At the peptide level, Casanovo substantially outperforms
both previous methods across all species, with a mean im-
provement of 0.373 and 0.310 in precision relative to Deep-
Novo and PointNovo, respectively, at a mean coverage of

https://github.com/Noble-Lab/casanovo


Table 2. Empirical comparison of Casanovo, DeepNovo and PointNovo. The table lists the peptide-level and amino acid-level precision
of three competing models and coverage of Casanovo with precursor m/z filtering on all nine benchmark cross-validation folds. Each
fold’s test set contains spectra from a single species, with nearly disjoint sets of peptides between species. For cross-validation folds
corresponding to mouse and human, five models were trained with different random initializations. For these species, we report standard
deviation of the performance measures.

Peptide-level performance Amino acid-level performance
DeepNovo PointNovo Casanovo DeepNovo PointNovo Casanovo

Species Prec. Prec. Prec. Cov. Prec. at Cov.=1 Prec. Prec. Prec. Prec at Cov.=1

Mouse 0.286 0.355 0.665±0.015 0.666±0.013 0.443±0.019 0.623 0.626 0.899±0.018 0.562±0.021
Human 0.293 0.351 0.683±0.014 0.537±0.015 0.367±0.017 0.610 0.606 0.898±0.015 0.424±0.019
Yeast 0.462 0.534 0.824 0.681 0.561 0.750 0.779 0.952 0.591
M. mazei 0.422 0.478 0.771 0.630 0.486 0.694 0.712 0.935 0.518
Honeybee 0.330 0.396 0.732 0.557 0.408 0.630 0.644 0.920 0.461
Tomato 0.454 0.513 0.771 0.557 0.460 0.731 0.733 0.929 0.471
Rice bean 0.436 0.511 0.798 0.547 0.437 0.679 0.730 0.920 0.442
Bacillus 0.449 0.518 0.805 0.671 0.540 0.742 0.768 0.943 0.573
Clam bacteria 0.253 0.298 0.695 0.534 0.371 0.602 0.589 0.908 0.405
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Figure 3. Precision-coverage curves for Casanovo and DeepNovo. Curves are shown for each species (two per row) at the peptide
level (left sub-column) and amino acid level (right sub-column). Curves are computed by sorting predicted peptides according to their
confidence scores. For the amino acid level curves, all amino acids within a given peptide receive equal scores. For Casanovo at both
amino acid and peptide level, all peptides that pass the precursor m/z filtering are ranked above peptides that do not pass the filter, and
similarly for all amino acids from peptides that pass the precursor m/z filtering versus those that do not pass the filter. The boundary
between unfiltered and filtered entries is indicated by a red star on each curve. Error bars are provided for human and mouse species, for
which five models were trained with different random initializations.



0.60 (Table 2). Even when precursor m/z filtering is turned
off and the model is forced to make a prediction for all
spectra, i.e. coverage is 1.0, Casanovo shows a mean im-
provement of 0.076 and 0.013 relative to DeepNovo and
PointNovo, respectively. Indeed, the peptide-level precision-
coverage curves (Figure 3) show that Casanovo consistently
outperforms DeepNovo over a range of peptide confidence
thresholds. This trend is also reflected by the area under the
curve (AUC) metric (Figure 3), with Casanovo outperform-
ing DeepNovo by 0.131 on average.

Similarly, at the amino acid level, Casanovo outperforms
DeepNovo and PointNovo, particularly in the high-precision
portions of the curves. As expected, the precursor m/z fil-
tering, which prioritizes predicting full peptide sequences
with high precision over partially correct peptide predic-
tions, yields better overall precision at the cost of reduced
precision at full coverage. In all nine species, the point on
the Casanovo curve corresponding to the filter lies above the
DeepNovo precision-coverage curve, and in eight of the nine
species Casanovo’s AUC exceeds DeepNovo’s. We further
discuss the effects of precursor m/z filtering in Section 5.2.

Complementing its improved de novo peptide sequencing
performance, Casanovo achieves these results with fewer
model parameters (47 M) than DeepNovo (86 M). (The num-
ber of parameters and model dimensions were not reported
for PointNovo.) Casanovo also runs inference at a faster rate
of 119 spectra/s on an RTX 2080 compared to DeepNovo’s
36 spectra/s and PointNovo’s reported 20 spectra/s on an
RTX 2080 Ti (a comparatively faster GPU) (Qiao et al.,
2021).

5.2. Precursor m/z post-processing

One of the key components of DeepNovo, and its succes-
sor PointNovo, is a post-processor that uses the knapsack
dynamic programming algorithm to ensure that the mass
of the predicted peptide is close to the observed precursor
mass. Ablation experiments in the DeepNovo experiment
paper show that removing this component leads to a de-
crease in peptide-level precision of 12.4% (averaged over
test sets) (Tran et al., 2017). Accordingly, we tested three
variants of Casanovo on the yeast species test set: no post-
processor, the knapsack post-processor, and our simple m/z
filter (Figure 4).

At the peptide level, we observe a much smaller benefit from
the knapsack algorithm—an increase in the peptide-level
precision from 0.561 to 0.565 when models are compared
at full coverage—than was reported in the DeepNovo pa-
per. On the other hand, a comparison of precision-coverage
curves indicates that the knapsack algorithm hurts the AUC
metric and precision at most coverage values.

At the amino acid level, the effects of these two post-

Peptide Amino acid
Model variant Prec. Prec. at Cov.=1 Prec. Prec. at Cov.=1

Standard Casanovo 0.851 0.561 0.965 0.576
Focal loss 0.802 0.532 0.938 0.543
I x m/z embedding 0.736 0.446 0.841 0.463
Sinusoidal I embedding 0.817 0.538 0.943 0.552

Table 3. Performance comparison of different Casanovo vari-
ants. All results are for the yeast test set.

processors is different. Relative to Casanovo with no post-
processing, applying the knapsack algorithm yields a small
decrease in precision at full coverage (0.769 → 0.726),
whereas adding the precursor m/z filtering yields much
higher precision (0.769→ 0.965) which decreases substan-
tially when the coverage is extended to all spectra (0.769→
0.576). Similar to the peptide level, the standard Casanovo
model with the simple filter consistently yields the highest
precision for differenct values of coverage as well as the
largest AUC.

To better understand these results, we performed a qualita-
tive review of the predictions from the three models. This
analysis suggests that incorrect amino acid predictions in
earlier decoding steps cause the post-processor to discard
correct amino acids from among options in later decoding
steps, leading to a drop in amino acid-level performance.
This observation is supported by the plot of the precision-
coverage curve with and without the precursor m/z filter
(Figure 4), where we see that the effect of the filter is to
boost precision along the entire curve.

5.3. Peak embeddings and loss function

Finally, we train three additional variants of Casanovo, none
of which provides any performance improvements over the
standard model (Table 3). The first variant uses a focal
loss function, adopted from (Qiao et al., 2021), instead of
cross entropy. We also investigated two alternate methods
of peak embedding. The first, also adopted from PointNovo,
replaces summation of m/z and I embeddings with direct
multiplication of the I value and the m/z embedding. The
second peak embedding strategy implements a sinusoidal
encoding for I , similar to the m/z embedding, although
using only 32 dimensions, and concatenates I with the m/z
embeddings instead of summing the two.

6. Discussion
Prior work in de novo peptide sequencing has used deep
learning models that combine separate neural network ar-
chitectures followed by complex post-processing steps. Our
approach, Casanovo, leverages the transformer architec-
ture to produce a unified solution to translate mass spectra



Figure 4. Precision-coverage curves for Casanovo models with different post-processors Standard Casanovo model with simple filter
outperforms both no filter and dynamic programming post-processor on the yeast test set, where we see that the effect of the filter is to
boost precision along the entire curve.

directly into peptide sequences, without resorting to dis-
cretization of the spectrum m/z axis and without complex
post-processing. We find that Casanovo achieves state-of-
the-art performance on the standard benchmark data set,
with fewer model parameters compared to existing methods.

Casanovo’s inference speed is fast enough to allow real time
de novo sequencing, i.e., sequencing at the speed that the
mass spectrometer generates spectra, raising the possibility
of helping guide mass spectrometry experiments as they
are being conducted (Ma, 2015). In practice, real-time
search results can be useful for making decisions about
peptide elution order (Bailey et al., 2014), improving the
accuracy of stable isotope labeling (Bailey et al., 2012), post-
translational modification site localization (Bailey et al.,
2012), or deciding whether to trigger an MS3 (secondary
fragmentation) scan (Schweppe et al., 2020).

Casanovo improves substantially over the previous state of
the art in terms of peptide-level precision, but this leaves
a significant portion of the test spectra without plausible
predictions. Clearly, exploring methods to find good pre-
dictions for these spectra is an avenue for future research.
To explore the potential benefit of such an approach, we
combined Casanovo and DeepNovo predictions by inserting
DeepNovo predictions whenever the m/z filter eliminates a
Casanovo prediction. The resulting model achieves up to
10% higher peptide precision than Casanovo and exceeds
the previous state-of-the-art method, PointNovo, on all eval-
uation metrics across species. This observation suggests
that precursor information should be included as a stronger
prior in modeling mass spectra. A straightforward approach
might involve choosing among a larger set of peptide can-
didates generated by beam search during inference, with a
constraint on the predicted mass. Alternatively, Casanovo’s
loss function could be modified to penalize peptide predic-
tions which do not match the precursor mass.
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