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Abstract

In practical federated learning scenarios, the par-
ticipating devices may have different bitwidths
for computation and memory storage by design.
However, despite the progress made in device-
heterogeneous federated learning scenarios, the
heterogeneity in the bitwidth specifications in the
hardware has been mostly overlooked. We in-
troduce a pragmatic FL scenario with bitwidth
heterogeneity across the participating devices,
dubbed as Bitwidth Heterogeneous Federated
Learning (BHFL). BHFL brings in a new chal-
lenge, that the aggregation of model parameters
with different bitwidths could result in severe
performance degeneration, especially for high-
bitwidth models. To tackle this problem, we pro-
pose ProWD framework, which has a trainable
weight dequantizer at the central server that pro-
gressively reconstructs the low-bitwidth weights
into higher bitwidth weights, and finally into full-
precision weights. ProWD further selectively ag-
gregates the model parameters to maximize the
compatibility across bit-heterogeneous weights.
We validate ProWD against relevant FL baselines
on the benchmark datasets, using clients with
varying bitwidths. Our ProWD largely outper-
forms the baseline FL algorithms as well as naive
approaches (e.g. grouped averaging) under the
proposed BHFL scenario.

1. Introduction
In recent decades, the drastic evolution of hardware tech-
nologies for edge devices has changed our lives from the
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root. Smart edge devices, which have the ability to pro-
cess sensory inputs and communicate, such as embedded
sensors, drones, phones, smart watches, and augmented
reality glasses, are now being used in our everyday lives.
Such accessibility of edge devices has led to the emergence
of Federated Learning (FL) (McMahan et al., 2017; Zhao
et al., 2018; Chen et al., 2019), a learning framework in
which multiple clients collaboratively train on private local
data while periodically communicating the trained mod-
els across them, often through a server which aggregates
and broadcasts the local models. Many previous works
have investigated the potential and applicability of FL in
various learning frameworks, such as semi-supervised learn-
ing (Jeong et al., 2021), bayesian learning (Wang et al.,
2020), graph neural networks (Mei et al., 2019; Wu et al.,
2021), meta-learning (Jiang et al., 2019; Fallah et al., 2020),
and continual learning (Yoon et al., 2021).

A crucial challenge in FL is that there could be a large dis-
crepancy among participants, in their data distribution, tasks,
model architectures, and devices which often leads to in-
compatibility of the models that are being aggregated. This
problem is often referred to as Heterogeneous Federated
Learning (Jiang et al., 2020; Lin et al., 2020; He et al., 2020;
Diao et al., 2021) problem. Many existing works have suc-
cessfully alleviated the adverse effect of data-, model-, and
device-heterogeneity. However, the most basic assumption
even in such heterogeneous FL scenarios, is that all models
have the same bitwidths.

Yet, in real-world FL scenarios, participating devices may
have heterogeneous bitwidth specifications. Suppose that
we are building a federated network of various health care
providers, such as hospitals, community health centers, and
clinics, as well as end-users, and even wearable devices, i.e.
smart watches. Each client has a health disorder prediction
model for the users themselves or their patients that contin-
uously learns to perform a diagnosis given the heart rates
or bioelectric signals. The scenario allows the participation
of local clients with various hardware infrastructures, some
of them using models built under lightweight devices based
on low-bitwidth hardware operations using FPGA, ASIC,
Raspberry Pi, or Edge GPUs. Here, BHFL enables local
devices with different hardware specifications to participate
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Figure 1: Bitwidth Heterogeneous Federated Learning. We
consider a FL setting where the participating devices have hetero-
geneous bitwidths. FL with different bitwidth models may cause
detrimental side effects due to (i) distributional shift of model
weights, and (ii) the limited expressiveness in low-bit weights.

in a single federated learning framework without the need
for uniformity of the infrastructure, enhancing the pool of
devices that could participate in collaborative learning. We
refer to this practical FL scenario as Bitwidth Heterogeneous
Federated Learning (BHFL), which we illustrate in Figure 1.

Tackling BHFL is a nontrivial problem, as it poses new
challenges such as (i) suboptimal loss convergence due to
distributional shift after aggregating the weights of bitwidth-
heterogeneous models, and (ii) inherent limitation of expres-
sive power in low-bitwidth weights. As shown in Table 1,
due to these challenges, existing methods cannot appropri-
ately handle the new setting. While there exists a line of
works that propose to quantize model weights to reduce the
communication cost when transmitting them to the server,
they assume that full-precision weights are being used at the
local devices. However, processing full-precision weights
may not be possible for resource-limited hardware devices.

In this paper, we propose a novel framework that can
succesfully deal with the new challenges posed by the
BHFL problem, which we name as Progressive Weight
Dequantization (ProWD), The ProWD framework enhances
the compatibility across bit-heterogeneous weights with se-
lective weight aggregation and weight dequantization. The
selective weight aggregation discards outliers from the low-
precision weights, and the trainable dequantizer at the server
recovers high-precision weight information from the given
low-bitwidth weights. These two methods collaboratively
alleviate the information loss resulting from the aggregation
of incompatible weights with heterogeneous bitwidths.

We evaluate the performance of our ProWD on various
benchmark datasets and show that our method significantly
outperforms previous FL methods that consider weight quan-
tization, while also outperforming naive heuristics to tackle
the bitwidth heterogeneity, such as grouped averaging. We

also provide comprehensive analyses which show that exist-
ing FL methods suffer from poor convergence and adapta-
tion under the bit-heterogeneous federated learning scenario,
while ProWD consistently increases the performance of all
local models regardless of their bitwidths.

In summary, our contributions are threefold:

• We define a practical federated learning scenario where
the participating devices may have largely different
bitwidths, which brings in new challenges such as de-
generate distributional shift of federated weights and
limited expressive power of low-bitwidth models.

• We propose ProWD, a novel framework that effectively
tackles the bitwidth heterogeneous FL problem, by
selectively aggregating the weights and hierarchically
dequantizing the weights prior to aggregation.

• We demonstrate the efficacy of our ProWD framework
by validating it on diverse compositions of bitwidth
specifications in local clients, against recent FL meth-
ods as well as naive remedies.

2. Related Works
Quantization for Federated learning While no existing
work considers the problem of federated learning across de-
vices with different innate bitwidths, several works propose
to quantize weights or gradients to reduce the communica-
tion cost, often referred to as Quantized Parameter Commu-
nication (QPC). FedPAQ (Reisizadeh et al., 2020) proposed
to send the quantized changes of the weights at each client,
instead of the full weights. FedCOMGATE (Haddadpour
et al., 2021) extends this idea by adopting a global learning
rate and guiding the update direction to stay close to each
other with an accumulated correction vector, to further ad-
dress data heterogeneity. While we empirically observed
that QPC approaches alleviate the performance degeneration
of the high-bitwidth models under the BHFL scenario since
they do not drastically change the weights as simple aver-
aging does, they are suboptimal since they do not explicitly
tackle the challenges posed by the BHFL problem.

Low-bitwidth training Low-bitwidth training is an ap-
proach to train a model using only low-bitwidth operations
and data types at training time, which enables on-device
learning with lightweight edge devices. BNN (Hubara
et al., 2016) and XNOR-Net (Rastegari et al., 2016) are
approaches to accelerate the training of the convolutional
neural networks using binary operations in the forward
pass with binarized weights and activations, with floating-
point operations to compute gradients in the backward
pass. Except for that, diverse approaches have been pro-
posed which focus on using 8-bit floating point numbers for
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Table 1: Categorization of existing methods for bitwidth heterogeneous federated learning.

METHODS FL Type BitsServer BitsClients BitsUplink BitsDownlink Communication

FEDAVG (McMahan et al., 2017) FL Float32 Float32 Float32 Float32 Weights
FEDPROX (Li et al., 2018) FL Float32 Float32 Float32 Float32 Weights
FEDPAQ (Reisizadeh et al., 2020) QPC1 Float32 Float32 Target bits Float32 QTarget bits(Diffs)2

FEDCOM (Haddadpour et al., 2021) QPC Float32 Float32 Target bits Float32 QTarget bits(Diffs)
FEDCOMGATE (Haddadpour et al., 2021) QPC Float32 Float32 Target bits Float32×2 QTarget bits(Diffs)
PROWD (OURS) BHFL Float32 Client-specific Client-specific Client-specific WQ

3

1 Quantized Parameter Communication (QPC) 2 QTarget bits(w): A function quantizes input w to the target bitwidth
3 Weights obtained from clients’ bit-dependent training

the weights, activations, and gradients (Zhou et al., 2018),
devising ternary gradients to reduce communication cost
(yet, it allows float32 operation for accumulating the gra-
dients) (Wen et al., 2017), training without floating-point
operations (Wu et al., 2018), adopting direction-sensitive
gradient clipping (Zhu et al., 2020), training for mixed-
bitwidth models (Zhang et al., 2020; Zhao et al., 2021; Sun
et al., 2020). Most existing neural quantization approaches
quantize only the weights or the gradients, while preserving
parts of the network that has a large impact on the perfor-
mance, such as activations, in full-precision, and thus are
not applicable to training on devices with limited bitwidths.

Neural dequantization The dequantization of low-
bitwidth signals into high-bitwidth signals has been studied
for diverse applications. For image reconstruction, Xing
et al. (2021) aims to recover the resolution of quantized
sRGB images to full-dynamic-range RAW image data via an
invertible dequantizer function. In generative flow models,
Nielsen & Winther (2020) dequantizes the discrete-valued
data by adding a uniform noise to guarantee that the data is
able to have any value in the continuous domain. Dequanti-
zatoin is also used for the process of converting the low-bit
representation of the weights to high-bit without changing
their values (Gholami et al., 2021), or to decode the en-
coded vectors using a codebook (Lee et al., 2020). In this
paper, we refer to “dequantization” to describe the process
of recovering the original high-bitwidth weights from the
low-bitwidth quantized weights received from local clients ,
so that a server can utilize the high-performing recovered
models for aggregation during FL. To our knowledge, our
work is the first work that provides an appropriate method
adopting the weight dequantization approach for solving
practical FL scenarios.

3. Bitwidth Heterogeneous Federated
Learning (BHFL)

We now introduce the problem setup for standard federated
learning and extends it to the Bitwidth Heterogeneous Fed-
erated Learning (BHFL) scenario, where a subset of the par-
ticipating devices train the local models with low-bitwidth
operations, according to their hardware specifications (Sec-
tion 3.1). We then describe the quantized computational

flow for the training of low-bitwidth clients in Section 3.2.

3.1. Problem statements

Federated Learning In a standard Federated Learning
(FL) scenario (McMahan et al., 2017; Chen et al., 2019),
each client trains the local model on the private data and peri-
odically transmits the model parameters to the central server,
where the models are aggregated and broadcasted back to
the clients. Let N different clients C = {c1, ..., cN} partic-
ipate in an FL system. Given training samples xn and its
corresponding labels yn, we suppose that a client cn solves
a local optimization problem Ln = CE(f(xn;wn);yn),
where CE is a cross-entropy loss and f(·;wn) is a neu-
ral network of client cn parameterized by wn. At each
communication round r, clients C(r) ⊆ C send the model
parameters to the central server, and the server aggregates
received weights, for exampling by averaging their weights.

Bitwidth heterogeneous federated learning The major-
ity of existing FL methods assume full-precision operations
for local clients, even when they consider device heterogene-
ity. However, the participating devices have largely hetero-
geneous bitwidths according to their hardware specifications.
To this end, we introduce a practical FL scenario, named
Bitwidth Heterogeneous Federated Learning (BHFL), in
which we relax the strong assumption that all clients are
capable of full-precision floating-point operations. We repre-
sent n-th local client as a tuple of the model weightswn and
the corresponding hardware bitwidth information sn ∈ S,
where S is a set of available bitwidth specifications for local
hardware devices. Then, the set of N clients, C can be repre-
sented as follows: C = {(w1, s1), . . . , (wN , sN )}. At each
round of communication, a central server receives client tu-
ples and aggregates model parameters which might be quan-
tized in various levels depending on hardware specifications.
We assume that the server allows the full-precision computa-
tion, which redistributes w(r)

G to all clients after quantizing
the aggregated weights according to the hardware specifica-
tions for each client; that is, w(r+1)

n ← Q(w
(r)
G , sn),∀n.

In BHFL, what aggregation method we use could have a
strong impact on the overall performance of the model being
learned. Using a naive averaging technique, such as sim-
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Figure 2: Skewed weight distribution after the aggregation
of mixed bitwidth weights. The distribution of the last layer’s
weights of the full-precision and low-bitwidth models at the initial,
after 50, and 400 aggregation rounds.

ple averaging, to aggregate local clients’ model parameters
hinders the convergence. This is because the model falls
into a suboptimal local minimum due to the incompatibility
across the model weights with heterogeneous bitwidths, due
to large discrepancy in their distributions. The detrimental
effect is more severe for larger bitwidth models, as aggre-
gating the low-bitwidth model weights will result in the loss
of expressiveness in the model. In Figure 2, we observe
that the distribution of the full-precision weights quickly
degenerates into three peaks that correspond to the ternary
quantization values of the low-bitwidth models.

3.2. Local Computation for Limited Bitwidth Clients

We assume that the local clients are edge devices that per-
form limited bitwidth computations according to their hard-
ware specifications. Float32 clients perform regular full-
precision training, but quantized clients, such as Int6, Int8,
and Int16, perform training using low-precision integer op-
erations, following Wu et al. (2018).

Let ql and al be s-bit quantized weights and activations at
layer l for a client, respectively. We denote the convolution
operator as ∗. Since convolution involves multiplication
between the weights and the activations, naively computing
ql∗al−1 requires the hardware to support fast multiplication
of two s-bit integers. To relax this requirement, we ternarize
the quantized weights before the convolution operation:

al = ReLU
(
Qs
(
QInt2

(
ql
)
∗ al−1/αl

))
. (1)

Thus, Equation 1 only needs s-bit addition and subtraction
operations for training and inference, and the intermediate
results can be stored in (s+ 1)-bits while achieving a good
tradeoff between precision and computation (Li et al., 2016).

To prevent the activations from clipping out of range, we
rescale the activations with a pre-defined layerwise scalar
coefficient αl so that they are within the range for s-bit
integers. This rescaling can be implemented efficiently with
a hardware bit-shift operation. We further provide details
for training limited-bitwidth clients in Appendix B. After a
few local training steps, limited-bitwidth clients broadcast
original low-bitwidth weights q or the ternarized weights
QInt2 (q) to the server, like other QPC methods (Reisizadeh
et al., 2020; Haddadpour et al., 2021).

4. Bitwidth Heterogeneous FL with ProWD
We first introduce our naive remedies for alleviating the chal-
lenges posed by the BHFL problem, and their limitations
in Section 4.1. Then, we propose a novel FL framework to
properly handle BHFL scenarios, named as ProWD, which
consists of two core components: progressive weight de-
quantization and score-based selective weight aggregation,
described in Section 4.2 and Section 4.3, respectively.

4.1. Naive Remedies for Bitwidth Heterogeneity in FL

BHFL deteriorates the performance of higher-bitwidth
clients’ models, while the local models from low-bitwidth
clients often enjoy clear benefits due to knowledge transfer
from the high-bitwidth models (See Figure 2). We first sug-
gest a bitwidth-dependent averaging technique for BHFL,
preventing interference across different bitwidth weights
during aggregation, referred to as FedGroupedAvg. How-
ever, this method suffers from poor transferability, as the
rich knowledge obtained by expressive high-bitwidth mod-
els is not transferred to low-bitwidth ones, while it preserves
the performance of higher-bitwidth clients. Thus, we ad-
ditionally suggest a modified version of FedGroupedAvg
which allows the knowledge transfer from higher-bitwidth
clients to the lower ones, but not vice versa, named as
FedGroupedAvg-Asymmetric. These two simple baselines
can improve the performance of local model, but are sub-
optimal in that it does not utilize the full knowledge of the
participating models. We provide detailed descriptions for
FedGroupedAvg variants in ??. Thus, we propose a novel
method to effectively tackle the challenges in BHFL, which
overcomes the limitations of such naive remedies.

4.2. Progressive Weight Dequantization

Low-bitwidth models, while hardware-friendly, severely
limits the expressiveness of the model. Aggregating the pa-
rameters with such limited information thus may degrade the
quality of high-bitwidth models during federated learning.
To this end, we propose a trainable dequantizer that recon-
structs the full-precision weights for given low-precision
weights. Yet, directly reconstructing the low-bit weights to
the high-bit may not be as effective, especially when the
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Figure 3: (a) Illustration of our ProWD framework. Clients send their local models and hardware bitwith specifications to the server.
We reduce the distributional disparity among weights from different bitwidth devices during BHFL by introducing weight dequantization
and selective aggregation. (b) Progressive weight dequantizer recovers low-bit weights into the high-bit via minimizing two loss terms.

bitwidth gap is large, since there exists a significant dispar-
ity between their distributions. To alleviate this issue with
single-step reconstruction, our dequantizer breaks down the
problem into block-wise weight dequantization problems
by adopting a stack of network blocks.

Let a Π = {π0, · · · , πk} ⊇ S be an ordered set of bitwidth
precisions, where πj is a lower precision bitwidth than πj+1

∀j. The lowest and the higest bitwidths of Π correspond
to those of S, i.e., π0 = s1 and πk = sm. We denote a
progressive weight dequantization function φ as a stack of
k decomposable neural network blocks:

φ := φπ0→πk = φπ0→π1 ◦ φπ1→π2 ◦ · · · ◦ φπk−1→πk , (2)

where ◦ denotes the function composition and φπj→πj+1

indicates a block that recovers πj+1-bit weights from πj-
bit weights. That is, we design the set of bitwidths for
dequantizer blocks Π to include the client bitwidths so that
the dequantizer can directly reconstruct the desired bitwidths
from the received low-bit weights. We implement each
block using a dimensionality-preserving function h(·;θ)
with a residual connection to its input. When the model
(w, πj>0) arrives from a local client, the server quantizes
w into j lower-bitwidth weights Qw = {qπ0

, ..., qπj−1
}.

Given πj<k-bit quantized weights qπj , the block operation
is formulated as follows:

q̂πj+1
= φπj (qπj

;θj) = qπj
+ h(qπj

;θj). (3)

The central server constructs a weight dataset out of received
local model weights, by segmenting them into uniformly-
sized blocks (e.g., 64 × 24 × 24). Thus, our dequantizer
can utilize differently-shaped weights from different layers
or across heterogeneous neural architectures. We describe
details of the weights dataset construction process and the
design of network block φ in ?? and Appendix C. For the
training of the weight dequantizer, we introduce two dif-
ferent loss terms. The first term is the reconstruction loss,
which is defined as the average difference of the blockwise
weight reconstruction of quantized input weights qπj and

its higher bitwidth ground truth weights qπj+1
:

Lrecon =

k−1∑
j=0

∥∥qπj+1 − φπj→πj+1(qπj ;θj)
∥∥
1
. (4)

Minimizing the blockwise reconstruction error allows the
model to progressively extrapolate missing links between
the low-bitwidth weights and high-bitwidth weights and
not to stray far from the intermediate reconstructions. We
note that there is no strict rule for the choices of the target
bitwidths of dequantizer blocks, but we design the dequan-
tizer in which the bitwidth difference between consecutive
blocks is maintained to a similar degree until reaching the
target high-bitwidth, avoiding drastic increase in bitwidth
for each reconstruction step.

The second term is a distillation loss, for minimizing the
descrepancy in the predictions from the model with high-
bitwidth ground truth weights, and the model with dequan-
tized low-bitwidth weights. To this end, the central server
utilizes a tiny buffer U independent of the local data to
compare the prediction between high-bit model and recov-
ered model from the low-bit weights. Given the w and its
quantized low-precision qπ0 = Qπ0(w), we compute a dis-
tillation loss using a randomly sampled minibatch u ∼ U
from the buffer as follows:

Ldistill = −Sim
(
f(u;w), f

(
u;φ0→k(qπ0

; Θ)
))
, (5)

where Sim(·) is a similarity metric for the two output distri-
butions (we use cosine similarity) and Θ = {θ0, · · · ,θk}.
Note that f(u;w) is a softmax class probability of a neural
network parameterized byw given input u. This distllation
loss allows ProWD to directly tackle the prediction task
with the reconstructed weights, which helps it recover full-
precision weights while considering the downstream task
performance. The final objective for training ProWD at the
server is given as follows:

L = Lrecon + λLdistill, (6)
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where λ is a hyperparameter to balance the two loss terms.
Note that the model is not very sensitive to the choice of λ
and thus we set λ = 1 in all our experiments. The training
steps of our dequantizer is described in Algorithm 1.

Algorithm 1 Training of progressive weight dequantizer

input set of bitwidths Π = {π0, . . . , πk}, dequantizer φπ0→πk
Θ ,

input weights and corresponding bitwidth (w, πj), neural net-
work f , unsupervised buffer U , balancing coefficient λ.

1: qi<j = {Qπi(w)}j−1
i=0 B Quantize into each of the lower bitwidths

2: Construct data loader Dw using {qi<j ,w}
3: for (q0, . . . , qj−1, w) ∼ Dw do
4: Sample u ∼ U augmented with gaussian noise
5: Lrecon =

∑j−1
i=0

∥∥qi+1 − φπi→πi+1(qi;θi)
∥∥

1

6: Ldistill = −Sim(f(u;w), f(u;φΘ(q0)))
7: L = Lrecon + λLdistill
8: Update weight dequantizer φΘ to minimize L

4.3. Score-based Selective Weight Aggregation

As described in Figure 2, using a naive aggregation tech-
nique such as simple averaging, may lead the model train-
ing to fall into a suboptimal local minimum. To prevent
such distribution shifts of weights during BHFL, we assert
that the low-bitwidth models should share similar gradient
directions as the full-precision model, as inspired by the
observation in Zhu et al. (2020) that there exists a strong
correlation between the training stability and the deviation
of the quantized model’s gradient directions from the full-
precision model, measured by the cosine similarity. Let us
consider a simple two-client federated learning framework
where a server communicates with a full-precision model
parameterized withwHigh and a low-bitwidth model param-
eterized with wLow. The goal of the low-bitwidth model
then is to distill the knowledge of wHigh:〈

∂`(f(B;wHigh))

∂wHigh
,
∂Q`(fQ(B;wLow))

∂QwLow

〉
≥ 0, (7)

where ` is a task loss and f(·;w) is a neural network pa-
rameterized by w. The subscript Q denotes the quantized
operations on the weights, activations, and gradients.

However, unlike the setting of Zhu et al. (2020), under
BHFL scenarios, it is impossible to preserve full-precision
knowledge on low-bitwidth local devices as they have no
means to represent them. Thus, we impose a selective
weight aggregation technique based on the relevancy among
the weights from the local clients. When a central server
receives the local models from different bitwidth clients,
we select sparse sub-weights from lower-bitwidth models
that are compatible with the weights of the full-precision
aggregated weights.

Letw(r)
High andw(r)

Low denote average high-bit weights and the
low-bit weights that the server received at communication

round r, respectively. When ∆wHigh = w
(r)
High − w

(r−1)
High

and ∆wLow = w
(r)
Low −w

(r−1)
Low , we encourage the high-bit

and low-bit model weights to have similar update directions
by disregarding a few outliers in the low-bit models. That
is, Given a sparsity ratio τ , we encourage a server to obtain
the binary mask c∗ as follows:

c∗ = argmax
c

(c�∆wLow)>∆wHigh

‖c�∆wLow‖‖∆wHigh‖
, s.t. |c∗| ≤ τ. (8)

For BHFL scenarios with multiple bitwidths, we split high-
/low-bitwidths weights based on the mean bit-width of given
a bitwidth set. We formulate the equation as a simple op-
timization problem to obtain a desired binary mask c∗ to
maximize the cosine similarity between sparsified averaged
weight movement of low-bitwidth models and the averaged
movement of high-bitwidth model. The process is rapidly
optimized within a few steps (e.g., 10) and a marginal train-
ing time (∼ 10ms per client). To this end, we perform
selective weight aggregation as follows:

wG ←
1

N

N∑
n=1

cn �wn, (9)

where cn = c∗, if sn is one of low-bitwidth specifications,
otherwise, cn is a all-one tensor with the same shape aswn.
The overall procedure of our BHFL framework is described
in Algorithm 2. Note that the dequantizer can be updated
anytime during the FL process in a concurrent manner, be-
cause it does not require the latest client model weights for
training. Thus, there is no training time bottleneck intro-
duced by the training of our dequantizer.

Algorithm 2 ProWD framework for BHFL

input clients C ← {wn, sn}Nn=1, sj ∈ Π = {π0, . . . , πk}, ∀j,
weight dequantizer φπ0→πk

Θ , global weightswG.
1: for each round r = 1, 2, ..., R do
2: Sample C(r) ⊆ C where |C(r)| = M

3: Distribute federated weightswG to clients C(r)

4: for each client (wn, sn) ∈ C(r) in parallel do
5: wn ← Qsn(wG) B send sn-bit quantized weights
6: wn ← LocalUpdate(wn, sn)
7: Broadcast (wn, sn) to the central server
8: wn ← φΘ(wn), if sn 6= πk B Dequantize weights
9: Obtain binary masks c∗ using Equation 8

10: wG ← 1
M

∑M
n=1 cn �wn B Equation 9

5. Experiments
Datasets We validate our method against the relevant
FL methods under several BHFL scenarios, with varying
bitwidth configurations of participating clients. We use
the widely used benchmark dataset for federated learning
methods, CIFAR-10 to validate our method following the
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Table 2: Average accuracy at each bitwidth and average accueacy across all clients on CIFAR-10 dataset. We set participating clients with
50% of Int8 and 50% of Float32 models (Left), and 50% of Int8 and 50% of Float32 models (Right). All of the results are measured by
computing the 95% confidence interval over three independent runs.

METHOD CIFAR-10, Int8 (50%) - Float32 (50%) CIFAR-10, INT8 (80%) - FLOAT32 (20%)

INT8 ACC FLOAT32 ACC GAP AVERAGE INT8 ACC FLOAT32 ACC GAP AVERAGE

LOCAL TRAINING 69.59 (± 0.34) 75.82 (± 0.41) +6.23 72.71 (± 0.26) 69.39 (± 0.34) 76.41 (± 0.52) +7.02 70.79 (± 0.34)

FEDAVG (McMahan et al., 2017) 76.88 (± 0.49) 76.23 (± 0.36) -0.65 76.56 (± 0.36) 77.43 (± 0.83) 74.64 (± 1.21) -2.79 76.87 (± 0.87)
FEDPROX (Li et al., 2018) 71.16 (± 0.35) 69.28 (± 0.90) -1.88 70.22 (± 0.55) 69.60 (± 0.50) 66.28 (± 1.24) -3.32 68.94 (± 0.57)
FEDPAQ (Reisizadeh et al., 2020) 78.01 (± 0.55) 84.93 (± 0.30) +6.93 81.47 (± 0.29) 76.61 (± 0.60) 82.27 (± 0.42) +5.66 77.74 (± 0.49)
FEDCOM (Haddadpour et al., 2021) 75.37 (± 0.52) 77.69 (± 0.45) +2.32 76.53 (± 0.38) 73.60 (± 1.08) 80.73 (± 0.73) +7.12 75.03 (± 0.94)
FEDCOMGATE (Haddadpour et al., 2021) 76.74 (± 0.59) 77.36 (± 0.55) +0.62 77.05 (± 0.36) 74.48 (± 0.63) 81.18 (± 0.56) +6.70 75.82 (± 0.53)
FEDGROUPEDAVG 61.85 (± 0.78) 85.08 (± 0.28) +23.23 73.46 (± 0.29) 71.76 (± 0.68) 78.07 (± 0.58) +6.31 73.02 (± 0.65)
FEDGROUPEDAVG-ASYMMETRIC 78.39 (± 0.54) 84.97 (± 0.27) +6.57 81.68 (± 0.26) 70.14 (± 0.36) 78.70 (± 0.48) +8.56 71.85 (± 0.36)

PROWD (OURS) 82.87 (± 0.37) 85.99 (± 0.20) +3.12 84.43 (± 0.22) 79.23 (± 0.25) 81.26 (± 0.45) +2.03 79.63 (± 0.23)
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Figure 4: Visualization of average test accuracy on CIFAR-10 with 10 clients where the bitwidth of the clients is composed of (a) 50% of
Int8 and 50% of Float32 and (b) 80% of Int8 and 20% of Float32 during BHFL. We average the results over three independent runs.

IID experimental settings of the existing works (Reisizadeh
et al., 2020; Haddadpour et al., 2021). CIFAR-10 is a im-
age classification dataset that consists of 10 object classes
each of which has 5,000 training instances and 1,000 test
instances. For FL purposes, we uniformly split the training
instances per class by the number of clients participating in
the federated learning system. We use a modified version of
VGG-7 network (Simonyan & Zisserman, 2015) for all our
experiments.

Data augmentation We perform the standard random
crop with 4-pixel padding followed by a random horizontal
flip and a random rotation of maximum 15◦ for all clients.

Baselines We compare our method BiTAT against follow-
ing FL baselines: FedAvg (McMahan et al., 2017): A
popular federated learning method that performs simple
averaging of the local models at the server at each round.
FedProx (Li et al., 2018): A federated learning method that
aims to deal with device heterogeneity, with additional `2
distance regularization terms during the update of local mod-
els to prevent the model divergence. FedPAQ (Reisizadeh
et al., 2020): A quantized parameter communication (QPC)-
based FL method, which at each round quantizes the differ-
ence between the current local weights and the last aggre-
gated weights at each client, then sends it to the server for ag-
gregation. FedCOM (Haddadpour et al., 2021): An exten-

sion of FedPAQ with a learnable global learning rate, which
achieves faster convergence in data-homogeneous settings.
FedCOMGATE (Haddadpour et al., 2021): An extension
of FedCOM to data-heterogeneous settings, which uses a
correction vector that constrains the local models to evolve
in a similar direction. FedGroupedAvg: A variant of Fe-
dAvg in which the server separately aggregates weights only
from the same bitwidth clients, and redistributes them to cor-
responding local clients. FedGroupedAvg-Asymmetric:
A modified version of FedGroupedAvg that sends clients
only the aggregated weights of other clients that has the
same bitwidth or higher.

Due to the page limit, we provide the details of hyperparam-
eters for baselines and ours in Appendix A.

5.1. Quantitative Evaluation

We validate our methods under multiple BHFL scenarios
with heterogeneous proportions of bitwidths among the
clients. We first report the experimental results with 50%
of Int8 and 50% Float32 clients (Left) and 80% of Int8 and
20% Float32 clients (Right) in Table 2. Int8 models in Fe-
dAvg obtain superior performance to local training, where
each client trains independently on its local task due to pos-
itive knowledge transfer from the full-precision weights.
This is also evident in the poor performance of Int8 clients
in FedGroupedAvg which demonstrates that FL only with



Bitwidth Heterogeneous Federated Learning with Progressive Weight Dequantization

low-bitwidth clients is highly limited due to the lack of
information the low-bit weights provide. QPC-based FL
methods, FedPAQ, FedCOM, and FedCOMGATE, com-
municate the quantized form of accumulated gradients at
each round, and the server adds the accumulated gradients
to the global model at each round, before broadcasting it
to the clients. Such gradient communication does not de-
grade the local task information during FL, which is helpful
for Float32 models to mitigate the interference from the
low-bit weights. However, the low-bit clients (e.g., Int8)
cannot directly amalgamate the expressive knowledge from
the high-bitwidth weights, easily falling into suboptimal
local minima. FedGroupedAvg variants, while preserving
the performance of the high-bit models, they often obtain
inferior performance as they do not exploit the full knowl-
edge provided by other models. On the other hand, our
ProWD consistently outperforms all baselines with varying
compositions of bitwidths, yielding small performance gap
between low- and high-bitwidths, which demonstrates the
effectiveness of the proposed progressive weight dequan-
tization scheme with selective weight aggregation. The
convergence plot in Figure 4 shows that our method rapidly
converges to good performance while baselines converge to
suboptimal local minima.

We further demonstrate the versatility of the ProWD frame-
work under a BHFL scenario with multiple bitwidths in
Table 3, using devices with diverse bitwidths. Note that
we allow local clients to send the parameters with local
bitwidth for this experiment, rather than ternarizing them
for uplink communication. Int6 and Int8 are considered as
low-bitwidths and Int12 and Int16 are considered as high-
bitwidths. Our ProWD consistently outperforms baselines
with any bitwidths while achieving a small accuracy gap be-
tween Int6 and Int16 clients. We expect that the reduced per-
formance gap between ours and FedAvg is due the smaller
disparity between weight distributions compared to those
in Table 2 (Int8↔Float32), since all clients perform low-
bit operations with slightly different bitwidths, in which
case FedAvg may suffer less from distributional shift at ag-
gregation. To validate that, we further provide additional
experiments with larger variance among the bitwidths of the
participating devices in Figure 5, which shows a significant
performance gain of our ProWD to FedAvg (Int6 clients acc:
5.9%↑, average acc: 2.7%↑, performance gap: 36%↓).

Ablation study Now we explicate the effect of each ingre-
dient of our ProWD on the CIFAR-10 with an ablation study.
We experiment on both the uniform (50% of Float32 and
50% of Int8 clients) and low-bitwidth dominant scenario
(20% of Float32 and 80% of Int8 clients). As shown in
Table 4, thanks to its ability to reconstruct full-precision
weights from low-bitwidth weights, our weight dequan-
tizer (Deq) improves the performance by 5.5% and 2.8%

Table 3: Average accuracy at each bitwidth, and across all clients
on CIFAR-10. We set clients with 30% of Int6, 30% of Int8, 20%
of Int12, and 20% of Int16 models. All the results are measured
by computing and standard deviation over three independent runs.

METHOD INT6 INT8 INT12 INT16 GAP AVGACC

LOCAL TRAINING 69.51 69.25 68.96 70.40 +0.89 69.50

FEDAVG 80.17 85.71 86.49 87.02 +6.85 84.47
FEDPAQ 80.78 85.30 85.98 86.93 +6.15 84.40
FEDCOM 39.47 55.14 53.07 53.26 +13.79 49.65
FEDCOMGATE 56.74 68.43 67.63 68.14 +11.69 64.70
FEDGROUPEDAVG 79.27 80.62 76.94 77.39 -1.88 78.83
FEDGROUP-ASYM 80.25 79.74 79.18 77.73 -2.52 79.38

PROWD (OURS) 82.89 86.11 86.47 87.51 +4.62 85.50
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Figure 5: BHFL with Int6, Int7, Int8, and Float32 clients.

over that of FedAvg, respectively for each scenario. Also,
our selective weight aggregation (SWA) minimizes the dis-
crepancy across the model updates from different bitwidth
clients, obtaining the significant performance gain of 9.2%
and 2.6% for each scenario. This experimental result con-
firms the efficacy of both components, progressive weight
decomposition, and selective weight aggregation.

5.2. Qualitative Analysis

The effect of progressive weight dequantization To fur-
ther analyze the role of the progressive weight dequantizer
in our method, we visualize stepwise distributions of recon-
structed weights using our dequantizer. For ease of interpre-
tation, we use the initial input as the quantized weight from
the last convolution layer in the Int8 client for training on
CIFAR-10, where the result is illustrated in Figure 6. As
low-bitwidth clients transmit ternarized model weights to
the central server, the distribution of input weights to the
dequantizer is visualized in three peaks. We also visualize
the distribution from reconstructed weights after forwarding
initial weights up to the first, second, and last block in our
dequantizer, colored by orange, pink, and navy, respectively.
As we expected, our dequantizer progressively recovers
ternary weights towards the high-bitwidths by forwarding
them through sequential dequantization blocks.

Weight distance between local clients Next, we visual-
ize the distance of model weights between clients in Fig-
ure 7 to dissect the difference of learned representations
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Table 4: Ablation study for ProWD. DEQ and SWA refer the
progressive weight dequantizer and selevtive weight aggregation,
respectively. We report the results over three independent runs.

METHOD CIFAR-10, INT8 (50%) - FLOAT32 (50%)

DEQ SWA INT8 ACC FLOAT32 ACC AVERAGE

FEDAVG − − 76.55 (± 0.44) 75.71 (± 0.32) 75.83 (± 0.41)
+DEQ X − 79.60 (± 0.39) 80.38 (± 0.44) 79.99 (± 0.26)
+SWA − X 79.79 (± 0.98) 85.94 (± 0.92) 82.84 (± 0.55)
OURS X X 82.87 (± 0.37) 85.99 (± 0.20) 84.43 (± 0.22)

METHOD CIFAR-10, INT8 (80%) - FLOAT32 (20%)

DEQ SWA INT8 ACC FLOAT32 ACC AVERAGE

FEDAVG − − 77.43 (± 0.83) 74.64 (± 1.21) 76.87 (± 0.87)
+DEQ X − 78.52 (± 0.50) 76.08 (± 0.44) 79.03 (± 0.31)
+SWA − X 78.42 (± 0.47) 80.82 (± 0.31) 78.90 (± 0.37)
OURS X X 79.23 (± 0.25) 81.26 (± 0.45) 79.63 (± 0.23)

during BHFL. We use the cosine distance, computed by
1 − cos sim(wn,wm) between n- and m-th local clients.
Weights obtained using FedAvg have smaller distances be-
tween Int8 and Float32 models than the distances among
the Int8 models, caused by the distributional shift of the
high-bitwidth model weights towards the distribution of
low-bitwidth model weights (Please see Figure 2).

Clients in FedPAQ communicate accumulated local gra-
dients while keeping their local weights, alleviating the
detrimental distributional shift of weights to some degree,
resulting in a bigger similarity among the same bitwidth
clients than in bit-heterogeneous cases. Int8 client weights
in FedGroupedAvg stay close to each other while straying
far from the Float32 client weights, which is expected as it
only allows communication among clients with the same
bitwidth. Interestingly, ProWD keeps the clients’ weights
sufficiently different between each bitwidthobtains suffi-
ciently low proximity across bit-heterogeneous clients, suc-
cessfully preventing the distributional shift in high-precision
weights due to weight averaging. Our proposed method also
allows high transferability of the learned knowledge across
clients that shows better adaptation on the local tasks over
QPC-based methods (Please see Table 2 and Figure 4). We
provide more similarity analysis of the local models for
other baselines and our models in Appendix D.

6. Conclusion
We proposed a novel yet practical heterogeneous feder-
ated learning scenario where the participating devices have
different bitwidth specifications, in which case the model
aggregation could have a highly detrimental effect. We
further identify the two main causes of the performance
degeneration, which are the suboptimal loss convergence
due to distributional shift from aggregation, and the lim-
ited expressive power of the low-bitwidth weights. To
tackle these challenges, we proposed a novel framework
for bit-heterogeneous FL, based on progressive dequan-
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Dequantized Weight Distribution
after 4th block
after 2nd block
after 1st block
input weights

Figure 6: The Weight Distribution after Progressive Dequanti-
zation. Visualization of the distribution after the reconstruction
of low-bitwidth model weights. We visualize the last Convolution
layer weights in neural network, trained on CIFAR-10.
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Figure 7: Cosine distance matrix between the weights of each
client. Elements in a row and column describe the index of local
clients. We set the first five clients to Int8 (Top left) and the other
five to Float32 (Bottom right) for training on CIFAR-10. Darker
colors indicate a bigger similarity.

tization of the weights and selective weight aggregation.
The progressive dequantizer at the server receives weights
from low-bitwidth clients and recovers them into higher
bitwidth weights by forwarding them through a sequence of
dequantizer blocks. Further, selective weight aggregation
determines which low-bit weight elements are compatible
with higher-bit ones. Empirical evaluations of our frame-
work across two BHFL scenarios with varying degrees of
bitwidth-heterogeneity on the benchmark dataset demon-
strate the effectiveness of our framework, which largely
outperforms relevant FL baselines.
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A. Hyperparameters
At each round, we train each client for 200 local steps. The Float32 network is trained with SGD with learning rate 0.1,
and momentum value 0.9. Additionally, the gradient `2 norm is clipped to 2.0. The quantized fixed-point (Int2, Int4,
Int8, Int12, and Int16) networks are trained with the low-bitwidth training method detailed in Appendix B, with η = 8.0.
For FedProx, we explored several l2 coefficients (0.01, 0.1, and 1), and found that 0.01 had the best final test accuracy.
For FedCOM and FedCOMGATE, we use the global step size γ = 10, since Haddadpour et al. (2021) only specifies
that γ should be greater than or equal to the number of clients participating in the FL process. For FedGroupedAvg and
FedGroupedAvg-Asymmetric, for fair comparison, we scale down the local learning rates by the number of clients with the
same bitwidth divided by the total number of clients, because the number of clients participating in the aggregation affects
the convergence speed of the FL process proportionately (Haddadpour et al., 2021). We train a weight dequantizer φ with a
SGD optimizer with the learning rate of 0.01, batch size of 16, for 5 epochs for all experiments.

In the experiments in Table 2, we use Π = {Int2, Int4, Int8, Int16,Float32} for the dequantizer blocks, whereas in the
experiment in Table 3, we use Π = {Int6, Int8, Int10, Int12, Int16}.

B. Low-bitwidth Training for Bit-limited Hardware Devices
Weight initialization. In order to prevent weights from vanishing due to the intermediate ternarization, we adjust the scale
of the initialization as follows:

wq ∼ U(−L,L), (10)

where L = max{0.75,
√

3/fan inl}. Note that when L =
√

3/fan inl, it is equivalent to the Kaiming uniform initialization.
The layer-wise scaling factor αl is defined as follows:

αl = Shift(0.75/
√

3/fan inl). (11)

This modified initialization strategy has consequences for the full-precision model, since the scale of the weights aggregated
are not the same across bitwidths. We alleviate this problem by initializing the full-precision model weights with the
same distribution as the quantized model weights, and using Weight Normalization (Salimans & Kingma, 2016) in the
full-precision clients to compensate for the scale difference.

Backward pass. The errors are calculated by using the chain rule, except we normalize the errors at each layer to prevent
saturation. Specifically, we apply the following before propagating the error value to every subsequent layer in the chain
rule:

eq = Qs(e/Shift(max{|e|})), (12)

where Shift(x) = 2dlog2 xc finds the nearest power-of-two to the input, and max{|e|}) represents the layer-wise maximum
absolute value among the elements of the error e, and s is the bitwidth of the client. The quantizer function is defined as

Qs(x) := clips(d(2s−1 · x)c/2s−1), (13)

clips(x) := max(min(x, (2s−1 − 1)/2s−1), (−2s−1 + 1)/2s−1). (14)

For the weight update, we similarly apply the following rescaling operation to the gradient value before applying the weight
update:

q ← clips(q −Qstoch
s (η · g/Shift (max{|g|}))), (15)

where Qstoch
sn (·) is a stochastic quantization function defined elementwise as follows:

Qstoch
s (x) =

{
21−s · d|x|e w.p. |x| − b|x|c
21−s · b|x|c otherwise.

(16)
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Note that the scale of the learning rate η is different from regular full-precision network training, because of the rescaling of
the gradient values.

C. Training of Progressive Weight Dequantizer
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Figure 8: Illustration of a reshaping process
on the weight module.

Construction of the weights dataset. Given the local model weights w,
we construct the weight datasets to learn the progressive weight dequantizer.
Since layers in deep neural networks is often composed of the weights with
different dimensionality each other, we split them into the uniformly-sized
subweights. As following common structures for CNN models that mostly
composed of a number of convolution layers, such as VGG (Simonyan
& Zisserman, 2015) and ResNet (He et al., 2016), we basically utilize
convolution weights with a filter size of 3 × 3 and input dimension is 64
or larger to construct the weight dataset. That is, we use all convolution
weights except the weights from the first layer (input dimension is the channel of Image, 3). We split the weights at each
convolution layer to partial modules with the shape of 64×64×3×3, (e.g., the weights with the shape of 256×128×3×3
is splitted to 4 ·2 = 8 different modules. Next, we reshape each module sized by 24×24 with 64 channels (i.e., 64×24×24)
to as illustrated in Figure 8.

Block design for progressive weight dequantizer. We implement our dimensionality-preserving network block φ for
our dequantizer using two layered of affine coupling layers, and the design of each layer ρ is as follows:

ŵ1:d = w1:d + α(wd+1:D),

ŵd+1:D = wd+1:D � exp
(
β(ŵ1:d)

)
+ γ(ŵ1:d),

(17)

where ŵ = ρ(w), α, β, and γ are DenseNet (Iandola et al., 2014) blocks while we omit the notation of weights in each
layer for readability. To this end, a jth network block of progressive weight dequantizer is formulated as follows:

ŵ = φπj→πj+1(w;θj) = w + τρ(ρ(ŵ)), (18)

where τ is a scaling coefficient and we set τ = 0.1 for all experiments. We want to note that there is a huge potential to
further develop the design of our dequantizer. We intend to suggest a better design for the dequantization function for
recovering high-bitwidth weights from low-bitwidth weights in future work.

D. Additional Experiments

Local FedAvg FedProx FedPAQ FedCOM FedCOMGATE Grouped Asymm. Ours

0.00

0.02

0.04

0.06

0.08

0.10

(a) INT8 (50%) - FLOAT32 (50%)

Local FedAvg FedProx FedPAQ FedCOM FedCOMGATE Grouped Asymm. Ours

0.00

0.02

0.04

0.06

0.08

0.10

(b) INT8 (80%) - FLOAT32 (20%)

Figure 9: Cosine distance matrix between the weights of each client. Elements in a row and column describe the index of local clients.
(a) the first five clients correspond to Int8 (Top left) and the other five to Float32 (Bottom right). (b) the first eight clients correspond to
Int8, and the other two to Float32. Darker colors indicate higher similarities between clients.
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Weight similarity anlaysis. We further provide the cosine distance matrix between the weights of each client for all
baselines in Figure 9. Each client in the local training (Local) model does not share the knowledge with other clients, resulting
in a large weight distance. FedProx (Li et al., 2018) shows similar tendency with FedAvg. Interestingly, the Int8 clients in
FedCOMGATE show different behaviors with FedCOM, with the weight distance among them farther than any other BHFL
methods. This phenomenon is due to the “correction vectors” utilized in the FedCOMGATE algorithm designed to adapt
to data heterogeniety and enable the weights to behave semi-independently. This seems to improve the model accuracy
compared to FedCOM with a marginal amount, as shown in Table 2. While FedGroupedAvg-Asymmetric (Asym.) shows
a similar distance matrix with FedGroupedAvg (Grouped), it allows the knowledge transfer from-high-to-low-bitwidths
clients, performing higher weight similarity between bitwidth heterogeneous clients.


