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Abstract

Federated learning (FL) is a privacy-preserving
paradigm where multiple participants jointly
solve a machine learning problem without sharing
raw data. Unlike traditional distributed learning,
a unique characteristic of FL is statistical hetero-
geneity, namely, data distributions across partici-
pants are different from each other. Meanwhile,
recent advances in the interpretation of neural net-
works have seen a wide use of neural tangent ker-
nels (NTKs) for convergence analyses. In this pa-
per, we propose a novel FL paradigm empowered
by the NTK framework. The paradigm addresses
the challenge of statistical heterogeneity by trans-
mitting update data that are more expressive than
those of the conventional FL paradigms. Specifi-
cally, sample-wise Jacobian matrices, rather than
model weights/gradients, are uploaded by partic-
ipants. The server then constructs an empirical
kernel matrix to update a global model without ex-
plicitly performing gradient descent. We further
develop a variant with improved communication
efficiency and enhanced privacy. Numerical re-
sults show that the proposed paradigm can achieve
the same accuracy while reducing the number of
communication rounds by an order of magnitude
compared to federated averaging.

1. Introduction
Federated learning (FL) has emerged as a popular paradigm
involving a large number of clients collaboratively solving
a machine learning problem (Kairouz et al., 2021). In a
typical FL framework, a server broadcasts a global model
to selected clients and collects model updates without ac-
cessing the raw data. One popular algorithm is known as
federated averaging (FedAvg) (McMahan et al., 2017), in
which clients perform stochastic gradient descent (SGD) to
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update the local models and then upload the weight vectors
to the server. A new global model is constructed on the
server by averaging the received weight vectors.

Li et al. (2020) characterized some unique challenges for
FL. First, client data are generated locally and remain de-
centralized, which implies that they may not be independent
and identically distributed (IID). Prior work has shown that
statistical heterogeneity can negatively affect the conver-
gence of FedAvg (Zhao et al., 2018). This phenomenon
may be explained by noting that local updating under data
heterogeneity will cause cost-function inconsistency (Wang
et al., 2020). A more challenging issue is the system hetero-
geneity, including the diversity of client hardware, battery
power, and network connectivity. Local updating schemes
often exacerbate the straggler issue caused by heterogeneous
system characteristics (Li et al., 2020).

Recent studies have proposed various strategies to allevi-
ate the statistical heterogeneity. One possible solution is to
share a globally available dataset with participants to reduce
the distance between client-data distributions and the popu-
lation distribution (Zhao et al., 2018). In practice, though,
such a dataset may be unavailable or too small to meaning-
fully compensate for the heterogeneity. Some researchers
replaced the coordinate-wise weight averaging strategy in
FedAvg with nonlinear aggregation schemes (Wang et al.,
2020; Chen & Chao, 2021). The nonlinear aggregation re-
lies on a separate optimization routine, which can be elusive,
especially when the federated model does not perform well.
Another direction is to modify the local objectives or local
update schemes to cancel the effects of client drift (Li et al.,
2020; Karimireddy et al., 2020). However, some studies
reported that these methods are not consistently effective
when evaluated in various settings (Reddi et al., 2021; Had-
dadpour et al., 2021; Chen & Chao, 2021).

In this work, we present a neural tangent kernel empowered
federated learning (NTK-FL) paradigm. NTK-FL outper-
forms state-of-the-art methods by achieving the target accu-
racy with fewer communication rounds. We summarize our
contributions as follows.

• We propose a novel FL paradigm without requiring clients
to perform local gradient descent. To the best of our
knowledge, this is the first work using the NTK method
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to replace gradient descent to diversify the design of FL
algorithms.

• Our scheme inherently solves the non-IID data problem of
FL. Compared to FedAvg, it is robust to different degrees
of data heterogeneity and has a consistently fast conver-
gence speed. We verify the effectiveness of the paradigm
theoretically and experimentally.

• We add communication-efficient and privacy-preserving
features to the paradigm and develop CP-NTK-FL by
combining strategies such as random projection and data
subsampling. We show that some strategies can also be ap-
plied to traditional FL methods. Although such methods
cause performance degradation when applied to FedAvg,
they only slightly worsen the model accuracy when ap-
plied to the proposed CP-NTK-FL.

2. Related Work

Neural Tangent Kernel. Jacot et al. (2018) showed that
training an infinitely wide neural network with gradient
descent in the parameter space is equivalent to kernel regres-
sion in the function space. Lee et al. (2019) used a first-order
Taylor expansion to approximate the neural network output
and derived the training dynamics in a closed form. For the
analyses, Chen et al. (2020) established the generalization
bounds for a two-layer over-parameterized neural network
with the NTK framework. The NTK computation has been
extended to convolutional neural networks (CNNs) (Arora
et al., 2019), recurrent neural networks (RNNs) (Alemoham-
mad et al., 2021), and even to neural networks with arbitrary
architectures (Yang & Littwin, 2021). Empirical studies
have also provided a good understanding of the wide neural
network training (Lee et al., 2020).

Federated Learning. FL aims to train a model with dis-
tributed clients without transmitting local data (McMahan
et al., 2017; Kairouz et al., 2021). FedAvg has been pro-
posed as a generic solution with theoretical analyses and
implementation variants. Recent studies have shown a grow-
ing interest in improving its communication efficiency, pri-
vacy guarantees, and robustness to heterogeneity. To reduce
communication cost, gradient quantization and sparsifica-
tion were incorporated into FedAvg (Reisizadeh et al., 2020;
Sattler et al., 2019). From the security perspective, Zhu
et al. (2019) showed that sharing gradients may cause pri-
vacy leakage in the model inversion attack. To address this
challenge, differentially private federated optimization and
decentralized aggregation methods were developed (Girgis
et al., 2021; Cheng et al., 2021). Other works put the focus
on the statistical heterogeneity issue and designed methods
such as adding regularization terms to the objective func-
tion (Li et al., 2020; Smith et al., 2017) or employing person-
alized models (Liang et al., 2019). In this work, we focus

on a novel FL paradigm where the global model is derived
based on the NTK evolution. We show that the proposed
NTK-FL is robust to statistical heterogeneity inherently,
and extend it to a variant with improved communication
efficiency and enhanced privacy.

Kernel Methods in Federated Learning. The NTK frame-
work has been mostly used for convergence analyses in FL.
Seo et al. (2020) studied two knowledge distillation methods
in FL and compared their convergence properties based on
the neural network function evolution in the NTK regime.
Li et al. (2021) incorporated batch normalization layers to
local models and provided theoretical justification for its
faster convergence by studying the minimum nonnegative
eigenvalue of the tangent kernel matrix. To facilitate the
understanding of the conventional FL process, Huang et al.
(2021) directly used the NTK framework to analyze the con-
vergence rate and generalization bound of two-layer ReLU
neural networks trained with FedAvg. Likewise, Su et al.
(2021) studied the convergence behavior of a set of FL al-
gorithms in the kernel regression setting. In comparison,
our work does not focus on pure convergence analyses of
existing algorithms. We propose a novel FL framework by
replacing the gradient descent with the NTK evolution.

3. Background and Preliminaries
Symbol conventions are as follows. We use [N ] to de-
note the set of the integers {1, 2, . . . , N}. Lowercase non-
italic boldface, nonitalic boldface capital, and italic bold-
face capital letters denote column vectors, matrices, and
tensors, respectively. For example, for column vectors
aj ∈ RM , j ∈ [N ], A = [a1, . . . ,aN ] is anM ×N matrix.
A third-order tensor A ∈ RK×M×N can be viewed as a
concatenation of such matrices. We use a slice to denote a
matrix in a third-order tensor by varying two indices (Kolda
& Bader, 2009). Take tensor A, for instance: Ai:: is a ma-
trix of the ith horizontal slice, and A:j: is its jth lateral slice
(Kolda & Bader, 2009). The indicator function of an event
is denoted by 1 (·).

3.1. Federated Learning Model

Consider an FL architecture where a server trains a global
model by indirectly using datasets distributed among M
workers. The local dataset of the mth worker is denoted by
Dm = {(xm,i,ym,i)}Nmi=1, where (xm,i,ym,i) is an input-
output pair. The local objective can be formulated as an
empirical risk minimization over Nm training examples:

Fm(w) =
1

Nm

Nm∑
i=1

R(w; xm,j ,ym,i), (1)

where R is a sample-wise risk function quantifying the error
of model with a weight vector w ∈ Rd estimating the label
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ym,i for an input xm,i. The global objective function is
denoted by F (w), and the optimization problem may be
formulated as:

min
w∈Rd

F (w) =
1

M

M∑
m=1

Fm(w). (2)

3.2. Linearized Neural Network Model

Let (xi,yi) denote a training pair, with xi ∈ Rd1 and
yi ∈ Rd2 , where d1 is the input dimension and d2 is the
output dimension. X , [x1, . . . ,xN ]> represents the input
matrix and Y , [y1, . . . ,yN ]> represents the label matrix.
Consider a neural network function f : Rd1 → Rd2 parame-
terized by a vector w ∈ Rd, which is the vectorization of all
weights for the multilayer network. Given an input xi, the
network outputs a prediction ŷi = f(w; xi). Let `(ŷi,yi)
be the loss function measuring the dissimilarity between the
predicted result ŷi and the true label yi. We are interested
in finding an optimal weight vector w? that minimizes the
empirical loss over N training examples:

w? = argmin
w

L(w; X,Y) ,
1

N

N∑
i=1

`(ŷi,yi). (3)

One common optimization method is the gradient descent
training. Given the learning rate η, gradient descent updates
the weights at each time step as: w(t+1) = w(t) − η∇wL.
To simplify the notation, let f (t)(x) be the output at time
step t with an input x, i.e., f (t)(x) , f(w(t); x). Following
Lee et al. (2019), we use the first-order Taylor expansion
around the initial weight vector w(0) to approximate the
neural network output given an input x, i.e.,

f (t)(x) ≈ f (0)(x) + J(0)(x)(w(t) −w(0)), (4)

where J(0)(x) = [∇f
(0)
1 (x), . . . ,∇f

(0)
d2

(x)]>, with

∇f
(t)
j (x) , [∂ŷ

(t)
j /∂w

(t)
1 , . . . , ∂ŷ

(t)
j /∂w

(t)
d ]> being the

gradient of the jth component of the neural network output
with respect to w(t). Consider the halved mean-squared er-
ror (MSE) loss `, namely, `(a,b) = 1

d2

∑d2

j=1
1
2 (aj − bj)2.

Based on the continuous-time limit, one can show that the
dynamics of the gradient flow are governed by the following
differential equation:

df

dt
= −ηH(0)

(
f (t)(X)−Y

)
, (5)

where f (t)(X) ∈ RN×d2 is a matrix of concatenated output
for all training examples, and H(0) is the neural tangent
kernel at time step 0, with each entry (H(0))ij equal to the
scaled Frobenius inner product of the Jacobian matrices:

(H(0))ij =
1

d2

〈
J(0)(xi), J(0)(xj)

〉
F
. (6)

The differential equation (5) has the closed-form solution:

f (t)(X) =
(
I− e−

ηt
N H(0)

)
Y + e−

ηt
N H(0)

f (0)(X). (7)

The neural network state f (t)(X) can thus be directly ob-
tained from (7) without running the gradient descent algo-
rithm.

4. Proposed FL Paradigm via the NTK
Framework

In this section, we present the NTK-FL paradigm (Figure 1)
and then extend it to the variant CP-NTK-FL (Figure 2) with
improved communication efficiency and enhanced privacy.
The detailed algorithm descriptions are presented as follows.

4.1. NTK-FL Paradigm

NTK-FL follows four steps to update the global model in
each round. First, the server will select a subset Ck of
clients and broadcast to them a model weight vector w(k)

from the kth round. Here, the superscript k is the commu-
nication round index, and it should be distinguished from
the gradient descent time step t in Section 3.2. Second,
each client will use its local training data Dm to compute
a Jacobian tensor J (k)

m ∈ RNm×d2×d, ∀ m ∈ Ck, which
is a concatenation of Nm sample-wise Jacobian matrices
(J (k)

m )i:: = [∇f
(k)
1 (xm,i), . . . ,∇f

(k)
d2

(xm,i)]
>, i ∈ [Nm].

The client will then upload the Jacobian tensor J (k)
m , la-

bels Ym, and initial condition f (k)(Xm) to the server. The
transmitted information corresponds to the variables in the
solution for the state evolution in (7). Third, the server will
construct a global Jacobian tensor J (k) ∈ RNk×d2×d based
on received J (k)

m ’s, with each client contributing Nm hori-
zontal slices to J (k). Here, we use Nk to denote the number
of training examples in communication round k when there
is no ambiguity.

We use a toy example to explain the process as follows.
Suppose the server selects client 1 and client 2 in a certain
round. Clients 1 and 2 will compute the Jacobian tensors
J

(k)
1 and J

(k)
2 , respectively. The global Jacobian tensor is

constructed as:

J
(k)
i:: =

{
J

(k)
1,i:: , if i 6 N1,

J
(k)
2,j:: , j = i−N1, if i > N1 + 1.

(8)

After obtaining the global Jacobian tensor J (k), the (i, j)th
entry of the global kernel H(k) is calculated as the scaled
Frobenius inner product of two horizontal slices of J (k),
i.e., (H(k))ij = 1

d2
〈J (k)

i:: ,J
(k)
j:: 〉F. Fourth, the server will

perform the NTK evolution to obtain the updated neural
network function f (k+1) and weight vector w(k+1). With a
slight abuse of notation, let f (k,t) denote the neural network
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Figure 1: Schematic of NTK-FL. Each client first receives
the weight w(k), and then uploads the Jacobian tensor J (k)

m ,
label Ym, and initial condition f (k)(Xm). The server builds
a global kernel H(k) and performs the weight evolution with
{t1, . . . , tΨ}. We use (11a) to find the best tj and update
the weight accordingly.

output at gradient descent step t in communication round k.
The neural network function evolution dynamics and weight
evolution dynamics are given by:

f (k,t) =
(
I− e−

ηt
Nk

H(k)
)

Y(k) + e
− ηt
Nk

H(k)

f (k), (9a)

w(k,t) =

d2∑
j=1

(J
(k)
:j: )>R

(k,t)
:j + w(k), (9b)

where J
(k)
:j: is the jth lateral slice of J (k), and R

(k,t)
:j is the

jth column of the residual matrix R(k,t) defined as follows:

R(k,t) ,
η

Nkd2

t−1∑
u=0

[
Y(k) − f (k,u)(X(k))

]
. (10)

Here, X(k) and Y(k) denote a concatenation of client train-
ing examples and labels, respectively. The weight evolution
in (9b) is derived by unfolding the gradient descent steps.
To update the global weight, the server performs the evo-
lution with various integer steps {t1, . . . , tΨ} and selects
the best one with the smallest loss value. Our goal is to
minimize the training loss with a small generalization gap
(Nakkiran et al., 2020). The updated weight is decided by
the following procedure:

t(k) = argmin
tj

L(f(w(k,tj); X(k)); Y(k)), (11a)

w(k+1) , w(k,t(k)). (11b)

Alternatively, if the server has an available validation dataset,
the optimal number of update steps can be selected based

on the model validation performance. In practice, such
a validation dataset can be obtained from held-out clients
(Wang et al., 2021). Based on the closed-form solution in
(9b), the search of t(k) over the grid {t1, . . . , tΨ} can be
completed in O(Ψ) time.

Robustness Against Statistical Heterogeneity. In
essence, statistical heterogeneity comes from decentral-
ized data with heterogeneous distributions owned by in-
dividual clients. If privacy is not an issue, the non-IID
challenge can be readily resolved by mixing all clients’
datasets and training a centralized model. In NTK-FL, in-
stead of building a centralized dataset, we use Jacobian
matrices to construct a global kernel H(k), which is a con-
cise representation of gathered data points from all selected
clients. This representation is yet more expressive/less
compact than that of a traditional FL algorithm. More
precisely, the update being sent for NTK-FL regarding
the ith training example of the mth client for NTK-FL is
Jm = [∇f1(xm,i), . . . ,∇fd2(xm,i)]

>, whereas the gradi-
ent update being sent for FedAvg is∇L(w; xm,i,ym,i) =
1
d2

∑d2

j=1 (ŷm,i,j − ym,i,j)∇fj(xm,i), a weighted sum of
row vectors in Jm. The gradient will be further averaged
over multiple training examples. By sending Jacobian matri-
ces Jm and jointly processing them on the server, NTK-FL
delays the more aggressive data aggregation step after the
communication stage and therefore better approximates the
centralized learning setting than FedAvg does.

Comparison of NTK-FL and Huang et al. (2021).
Huang et al. (2021) presented the details of FedAvg by
letting clients use local updates and upload gradients to train
a two-layer neural network. In contrast, NTK-FL let each
client transmit Jacobian matrices without performing local
SGD steps. The model weight is updated via NTK evolution
in (9b). The main differences include: (1) clients transmit
more expressive Jacobian matrices to improve model perfor-
mance in the non-IID FL setting; (2) more computation is
shifted to the server.

4.2. CP-NTK-FL Variant

Compared to FedAvg, NTK-FL does not incur additional
client computational overhead since calculating the Jacobian
tensor enjoys the same computation efficiency as comput-
ing aggregated gradients. Without locally updating weight
vectors, NTK-FL is faster than FedAvg on the client side. In
this section, we focus on the perspectives of communication
efficiency and security in terms of data confidentiality and
membership privacy.

For communication, we follow the widely adopted analysis
framework in wireless communication to examine only the
client uplink overhead, assuming that the downlink band-
width is much larger and the server will have enough trans-
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Figure 2: Schematic of CP-NTK-FL. A trusted key server
(orange) sends an encrypted seed E(k+

m, ρ) with the public key
k+
m for random projection. The client transmits the required

message to the shuffling server (blue) to perform a permutation.
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Figure 3: Training results of 300 clients via NTK-FL and
FedAvg, along with variants with the local dataset sub-
sampling and random projection, denoted as NTK-FL′ and
FedAvg′, respectively. We train a two-layer multilayer per-
ceptron on the Fashion-MNIST dataset. The joint effect
causes more accuracy degradation in FedAvg (red) than in
NTK-FL (black).

mission power (Tran et al., 2019). In NTK-FL, the client
uplink communication cost and space complexity are dom-
inated by a third-order tensor J (k)

m , i.e., an O (Nmd2d)
complexity compared to O (d) in FedAvg. For security,
we investigate a threat model where a curious server may
perform membership inference attacks (Nasr et al., 2018)
or model inversion/data reconstruction attacks (Zhu et al.,
2019). Compared to the averaged gradient, sample-wise
Jacobian matrices are more expressive, which may facili-
tate such attacks from the aggregation server. We extend
NTK-FL by combining various tools to solve the afore-
mentioned problems without jeopardizing the performance
severely. These tools are optional building modules and can
be adopted separately or jointly, depending on the available
resources in practice. Although it is possible to incorporate
these tools into FedAvg, we will show that overall it will
lead to a more severe accuracy drop.

Jacobian Dimension Reduction. First, we let the mth
client sample a subset Bm from its dataset Dm uniformly
for the training. Let β ∈ (0, 1) denote the sampling rate,
Bm contains N ′m = βNm data points, with the training
pairs denoted by (X′m,Y

′
m). In general, using more data

points will improve the model generalizability (Mohri et al.,
2018). The sampling rate β controls the trade-off between
efficiency and model performance. Next, we consider us-
ing a random projection to preprocess the input data via a
seed shared by a trusted key server. Formally, the sampled
training examples are projected into Z′m, i.e., Z′m = X′mP,
where P ∈ Rd1×d′1 is a projection matrix generated based
on a seed ρ with IID standard Gaussian entries. In general,

we have d′1 < d1 and an non-invertible projection operation.
The concept of trusted key server follows the trusted third
party in cryptography (Van Oorschot, 2020), and we assume
it will not be compromised.

These two steps can already improve communication ef-
ficiency and confidentiality. We first examine the current
Jacobian tensor J ′(k)

m ∈ RN ′
m×d2×d′ . Compared with its

original version J (k)
m , it has reduced dimensionality at the

cost of certain information loss. Meanwhile, the random
projection will defend against the data reconstruction attack,
as the Jacobian tensor is now evaluated at the projected data
Z′m. We empirically verify their impact on the test accuracy
in Figure 3. We set d′1 = 100 and sampling rate β = 0.4,
and train a multilayer perceptron with 100 hidden nodes on
the Fashion-MNIST dataset (Xiao et al., 2017). The joint ef-
fect of these strategies is a slight accuracy drop in NTK-FL
and a nonnegligible accuracy degradation in FedAvg.

Jacobian Compression and Shuffling. We use a com-
pression scheme to reduce the size of the Jacobian tensor by
zeroing out the coordinates with small magnitudes (Alistarh
et al., 2018). In addition to the communication efficiency,
this compression scheme is empirically effective against
the data reconstruction attack (Zhu et al., 2019). To fur-
ther ensure the confidentiality and membership privacy, we
introduce a shuffling server, inspired by some recent frame-
works (Girgis et al., 2021; Cheng et al., 2021), to permute
Jacobian tensors J (k)

m ’s, neural network states f
(k)
m ’s, and

labels Ym’s. Based on (9b), we denote the model update by
∆w(k) , w(k+1) − w(k) =

∑d2

j=1(J
(k)
:j: )>R

(k,t)
:j , which
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is a sum of matrix products. If rows and columns are per-
muted in synchronization, the weight update ∆w(k) will
remain unchanged. Considering the high dimensionality
of the neural network weight, the reconstruction attack be-
comes computationally infeasible. Since introducing a new
differential privacy mechanism is not the main focus of this
work and the privacy protection analysis is consistent with
the existing framework (Girgis et al., 2021), we do not in-
tend to go into details. Meanwhile, as a provable differential
privacy guarantee does not explicitly protect against data
reconstruction attacks (Zhang et al., 2020), we empirically
study the privacy loss under the deep leakage from gradient
algorithm (Zhu et al., 2019) in Appendix B. A thorough
study of different attack schemes is out of the scope of this
work and we leave it for future work.

5. Analysis of Algorithm
In this section, we analyze the loss decay rate between
successive communication rounds in NTK-FL and make
comparisons with FedAvg. Similar to prior work (Du et al.,
2019; Dukler et al., 2020), we consider a two-layer neural
network f : Rd → R of the following form to facilitate our
analysis:

f(w; x) =
1√
n

n∑
r=1

crσ(v>r x), (12)

where x ∈ Rd1 is an input, vr ∈ Rd1 is the weight
vector in the first layer, cr is the weight in the second
layer, and σ(·) is the rectified linear unit (ReLU) func-
tion, namely σ(z) = max(z, 0), applied coordinatewise.
Without loss of generality, we assume the selected client
set Ck is {1, 2, . . . ,Mk} in communication round k. Let
X(k) = [X>1 , . . . ,X

>
Mk

]> ∈ RNk×d1 denote a concatena-
tion of client inputs and y(k) = [y>1 , . . . ,y

>
Mk

]> ∈ RNk×d2

denote a concatenation of client labels. In the following
analysis, we assume d2 = 1 for simplicity. We state two
assumptions as prerequisites.

Assumption 1 (Weight Distribution). When broadcast in
communication round k, the first layer v

(k)
r ’s follow the

normal distribution N (0,Σk). The minimum eigenvalue
of the covariance matrix is bounded by λmin(Σk) > α2

k,
where αk is a positive constant. The second layer cr’s are
sampled from {−1, 1} with equal probability and are kept
fixed during training.

Assumption 2 (Normalized input). The input data are nor-
malized, i.e., ‖xi‖2 = 1,∀ i ∈ [Nk].

For this neural network model, the (i, j)th entry of the
empirical kernel matrix H(k) given in (6) can be calcu-
lated as: (H(k))ij = 1

nx>i xj
∑n
r=1 1

(k)
ir 1

(k)
jr ,where 1(k)

ir ,

1{〈v(k)
r ,xi〉 > 0}, and the term c2r is omitted according to

Assumption 1. Define H
(k)
∞ , whose (i, j)th entry is given

by:
(H(k)
∞ )ij , Ev(k)

[
x>i xj1

(k)
i 1

(k)
j

]
, (13)

where 1(k)
i , 1(〈v(k),xi〉 > 0) and v(k) follows the nor-

mal distribution N (0,Σk). Let λk denote the minimum
eigenvalue of H

(k)
∞ , which is restricted as follows.

Assumption 3 The kernel matrix H
(k)
∞ is positive definite,

namely, λk > 0.

In fact, the positive-definite property of H
(k)
∞ can be shown

under certain conditions (Dukler et al., 2020). For simplicity,
we omit the proof details and directly assume the positive
definiteness of H

(k)
∞ in Assumption 3. Next, we study the

residual term ‖f (k)(X(k)) − y(k)‖22. We give the conver-
gence result by analyzing how the residual term decays
given training examples X(k).

Theorem 1 For the NTK-FL scheme under Assumptions
1 to 3, let the learning rate η = O

(
λk
Nk

)
and the neural

network width n = Ω
(
N2
k

λ2
k

ln
N2
k

δ

)
, then with probability at

least 1− δ,∥∥f (k+1)(X(k))− y(k)
∥∥2

2
6(

1− ηλk
2Nk

)t(k)∥∥f (k)(X(k))− y(k)
∥∥2

2
, (14)

where t(k) is the number of update steps defined in (11a).

The proof of Theorem 1 can be found in Appendix D. We
discuss the choice of the optimal number of update steps
t(k) below.

Remark 1 Based on the solution given by (9a), the neural
network prediction error is a decreasing function of the
update steps t. However, one could not pick an arbitrar-
ily large t as the final optimal number of update steps t(k).
When t increases, the neural network evolution in the func-
tion space does not consistently match with the evolution
in the weight space. Empirical studies in the centralized
training have confirmed the nonnegligible gap between the
NTK weight and gradient descent weight when t is greater
than the order of 102 to 103 (Lee et al., 2019). In Lemma 2
of Appendix C, we provide detailed explanations and show
that the difference between the NTK weight in (9b) and the
gradient descent weight increases with t.

Next, we compare the proposed NTK-FL with FedAvg. By
studying the asymmetric kernel matrix caused by local up-
date (Huang et al., 2021), we have the following theorem
for FedAvg, where the proof can be found in Appendix E.
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Figure 4: Test accuracy versus communication round of different methods evaluated on: (a) FEMNIST dataset, where
the heterogeneity comes from feature skewness. (b) non-IID MNIST dataset with label skewness (α = 0.5). (c) non-IID
Fashion-MNIST dataset with label skewness (α = 0.5). NTK-FL outperforms all baseline FL algorithms in different
scenarios and achieves similar test performance compared with the ideal centralized training case.

Theorem 2 For FedAvg under Assumptions 1 to 3, let the
learning rate η = O

(
λk

τNkMk

)
and the neural network

width n = Ω
(
N2
k

λ2
k

ln
N2
k

δ

)
, then with probability at least

1− δ,∥∥f (k+1)(X(k))− y(k)
∥∥2

2
6(

1− ητλk
2NkMk

)∥∥f (k)(X(k))− y(k)
∥∥2

2
, (15)

where τ is the number of local iterations, and Mk is the
number of clients in communication round k.

Remark 2 (Fast Convergence of NTK-FL). The conver-
gence rate of NTK-FL is faster than FedAvg. To see this,
we compare the Binomial approximation of the decay coeffi-
cient in Theorem 1 with the decay coefficient in Theorem 2,

1− η1t
(k)λk

2Nk
+O

(
η2

1

)
< 1− η2τλk

2NkMk
, (16)

where η1 � 1 for a large Nk. 1 The number of NTK
update steps t(k) is chosen dynamically in (11a), which is
on the order of 102 to 103, whereas τ is often on the order
of magnitude of 10 in the literature (Reisizadeh et al., 2020;
Haddadpour et al., 2021). One can verify that η1t

(k)λk is
larger than η2τλk/Mk and draw the conclusion.

6. Experimental Results

Federated Settings. We use three datasets, namely,
MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al.,
2017), and FEMNIST (Caldas et al., 2018) digits. All of
them contain C = 10 categories. For MNIST and Fashion-
MNIST, we follow Hsu et al. (2019) to simulate non-IID

1For example, if we have 100 clients, each of which has 100
data points, thenNk is on the order of 104. Considering the choice
of the learning rate η1, the Binomial approximation holds.

data with the symmetric Dirichlet distribution (Good, 1976).
Specifically, for the mth client, we draw a random vector
qm ∼ Dir(α), where qm = [qm,1, . . . , qm,C ]> belongs to
the (C − 1)-standard simplex. Images with category k are
assigned to the mth client in proportional to (100 · qm,k)%.
The heterogeneity in this setting mainly comes from label
skewness. FEMNIST splits the dataset into shards indexed
by the original writer of the digits. The heterogeneity mainly
comes from feature skewness. A multilayer perceptron
model with 100 hidden nodes is chosen as the target neural
network model. We consider a total of 300 clients and select
20 of them with equal probability in each round.

Convergence. We empirically verify the convergence rate
of the proposed method. For FedAvg, we use the number of
local iterations from {1, 3, . . . , 9, 10, 20, . . . , 50} and report
the best results. For NTK-FL, we choose t(k) over the set
{100, 200, . . . , 2000}. We use the following methods that
are robust to the non-IID setting as the baselines: (i) Data
sharing scheme suggested by Zhao et al. (2018), where a
global dataset is broadcast to clients for local training; the
size of the global dataset is set to be 10% of the total number
of local data points. (ii) Federated normalized averaging
(FedNova) (Wang et al., 2020), where the clients transmit
normalized gradient vectors to the server. (iii) Centralized
training simulation, where the server collects the data points
from subset Ck of clients and performs gradient descent to
directly train the global model. Scheme (iii) achieves the
performance that can be considered as an upper bound of all
other algorithms. The training curves over three repetitions
are shown in Figure 4. More implementation details and
the results on CIFAR-10 can be found in Appendix A. Our
proposed NTK-FL method shows consistent advantages
over other methods in different non-IID scenarios.

Degree of Heterogeneity. In this experiment,
we select the Dirichlet distribution parameter α from
{0.1, 0.2, 0.3, 0.4, 0.5} and simulate different degrees of
heterogeneity on Fashion-MNIST dataset. A smaller α
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Figure 5: Test accuracy versus the Dirichlet distribution param-
eter α for different methods evaluated on the non-IID Fashion-
MNIST dataset. Reducing the value of α will increase the
degree of heterogeneity in the data distribution. NTK-FL is
robust to different heterogeneous data distributions, and shows
more advantages over FedAvg and FedNova when the degree
of heterogeneity is larger.
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Figure 6: CP-NTK-FL test accuracy for different hy-
perparams. A larger data sampling rate β and a larger
dimension d′1 are expected to give a higher test accuracy.
In general, the scheme is robust to different combina-
tions of hyperparameters.

will increase the degree of heterogeneity in the data distri-
bution. We evaluate NTK-FL, DataShare, FedNova, and
FedAvg model test accuracy after training for 50 rounds.
The mean values over three repetitions are shown in Fig-
ure 5, where each point is obtained over five repetitions with
a standard deviation less than 1%. It can be observed that
NTK-FL achieves stable test accuracy in different heteroge-
neous settings. In comparison, FedAvg and FedNova show
a performance drop in the small α region. NTK-FL has
more advantages over baselines methods when the degree
of heterogeneity is larger.

Effect of Hyperparameters. We study the effect of the
tunable parameters in CP-NTK-FL. We change the local
data sampling rate β and dimension d′1, and evaluate the
model test accuracy on the non-IID Fashion-MNIST dataset
(α = 0.1) after 10 communication rounds. The results
are shown in Figure 6. A larger data sampling rate β or a
larger dimension d′1 will cause less information loss and are
expected to achieve a higher test accuracy. The results also
show that the scheme is robust to different combinations of
hyperparameters.

Uplink Communication. In federated learning, uplink
communication overhead can be one of the bottlenecks in
the training stage. We evaluate the uplink communication
efficiency of CP-NTK-FL (d′1 =200, β=0.3) by measuring
the number of rounds and cumulative uplink communication
cost to reach a test accuracy of 85% on non-IID Fashion-
MNIST dataset (α = 0.1). The results over three repetitions
are shown in Table 1. Compared with federated learning
with compression (FedCOM) (Haddadpour et al., 2021),

Table 1: Uplink communication cost to reach an accuracy of
85% on non-IID Fashion-MNIST dataset (α = 0.1) for dif-
ferent methods. CP-NTK-FL can achieve the target within
the fewest communication rounds without incurring com-
munication cost significantly.

optimization algo-
rithms

comm.
rounds

comm. cost
(MB)

CP-NTK-FL 26 386

FedCOM 250 379

QSGD (4 bit) 614 465

FedAvg 284 1720

quantized SGD (QSGD) (Alistarh et al., 2017), and FedAvg,
CP-NTK-FL achieves the goal within an order of magnitude
fewer iterations, which is particularly advantageous for ap-
plications with nonnegligible encoding/decoding delays or
network latency.

7. Conclusion and Future Work
In this paper, we have proposed an NTK empowered FL
paradigm. It inherently solves the statistical heterogene-
ity challenge. By constructing a global kernel based on
the local sample-wise Jacobian matrices, the global model
weights can be updated via NTK evolution in the param-
eter space. Compared with traditional algorithms such as
FedAvg, NTK-FL has a more centralized training flavor by
transmitting more expressive updates. The effectiveness of
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the proposed paradigm has been verified theoretically and
experimentally.

In future work, it will be interesting to extend the paradigm
for other neural network architectures, such as CNNs, resid-
ual networks (ResNets) (He et al., 2016), and RNNs. It is
also worthwhile to further improve the efficiency of NTK-
FL and explore its savings in wall-clock time. We believe
the proposed paradigm will provide a new perspective to
solve federated learning challenges.
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A. Implementation and Additional Results
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Figure 7: Test accuracy versus communication round of dif-
ferent methods evaluated on the non-IID CIFAR-10 dataset,
where the Dirichlet distribution parameter α is set to 0.1.

We give the detailed setting of the learning rate and batch
size. For the learning rate η, we search over the set
{10−3, 3× 10−3, 10−2, 3× 10−2, 10−1}. The learning rate
is fixed during the training. For the client batch size, we
set it to 200 for all datasets. We use the same setup as
in Section 6. We evaluate different methods, including
the centralized training simulation, data sharing method
(Zhao et al., 2018), FedNova (Wang et al., 2020), FedAvg
(McMahan et al., 2017), and the proposed NTK-FL on the
non-IID CIFAR-10 dataset (Krizhevsky, 2009) and present
the results in Figure 7. NTK-FL outperforms other FL
algorithms and shows test accuracy close to the central-
ized simulation. The observation is consistent with the
results in Figure 4. The implementation is available at
https://github.com/KAI-YUE/ntk-fed.

B. Reconstruction Attack
In the following experiment, we measure the privacy loss when using Jacobian sparsification under the data reconstruction
attack. We compress the Jacobian tensor and perform the deep leakage attack (Zhu et al., 2019). The sparsity levels and
image structural similarity index measure (SSIM) (Gonzalez & Woods, 2014) are shown in Figure 8. When the sparsity
decreases, the reconstructions are closer to original images, which is consistent with Zhu et al. (2019). The sparsity is set
above 80%–90% when using the Top-k sparsification approach (Aji & Heafield, 2017), where the privacy loss becomes
difficult to quantify. A solid privacy-protection study is nontrivial and we leave it for future work.
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Figure 8: Attack results under different sparsity levels.

C. The Number of Update Steps
We explain below the reason that the optimal number of update steps, t(k), must not be too large in (11a). The weight w(k,t)

is generated by the NTK method in (9b). Let w̃(k,t) denote the weight generated by the gradient descent method. For the
two-layer neural network model given in (12), we will show the upper bound on the gap between w(k,t) and w̃(k,t). To this
end, we first give Lemma 1 as a prerequisite. Define S(k)

i as the set of indices corresponding to neurons whose activation
patterns are different from the broadcast version v(k) for an input xi:

S(k)
i ,

{
r ∈ [n]

∣∣ ∃ v(k), ‖v(k) − v(k)
r ‖2 6 R, 1

(k)
ir 6= 1

(
〈v(k),xi〉 > 0

)}
. (17)

We upper bound the cardinality of S(k)
i in Lemma 1.

Lemma 1 Under Assumptions 1 to 2, with probability at least 1− δ, we have

|S(k)
i | 6

√
2

π

nR

δαk
, ∀ i ∈ [Nk]. (18)

https://github.com/KAI-YUE/ntk-fed
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Proof. To bound |S(k)
i | =

n∑
r=1

1

(
r ∈ S(k)

i

)
, consider an event A(k)

ir defined as follows:

A
(k)
ir ,

{
∃ v(k), ‖v(k) − v(k)

r ‖2 6 R, 1
(k)
ir 6= 1

(
〈v(k),xi〉 > 0

)}
. (19)

Clearly, 1
(
r ∈ S(k)

i

)
= 1

(
A

(k)
ir

)
. According to Assumption 2, it can be shown that the event A(k)

ir happens if and only

if |(v(k)
r )>xi| 6 R based on a geometric argument. From Assumption 1, we have (v

(k)
r )>xi ∼ N (0,x>i Σkxi). The

probability of event A(k)
ir is

P[A
(k)
ir ] = P

[
|(v(k)

r )>xi| 6 R
]

(20a)

= erf

(
R√

2x>i Σkxi

)
6

√
2

π

R

αk
, (20b)

where the error function is given by erf(z) = 2√
π

∫ z
0
e−t

2

dt. By Markov’s inequality, we have with probability at least
1− δ,

n∑
r=1

1

(
r ∈ S(k)

i

)
6

√
2

π

nR

δαk
. (21)

The proof is complete. �

Lemma 2 Consider the residual term r(k,u) = y(k) − f (k,u)(X(k)). Suppose ∀i ∈ [Nk], |r(k,u)
i | < γ(k,u), where γ(k,u) is

a positive constant and limu→∞ γ(k,u) = 0. With probability at least 1− δ, we have

‖w(k,t) − w̃(k,t)‖1 6
√

2nd1η√
πδαk

t−1∑
u=1

γ(k,u). (22)

Proof. The weights w(k,t) and w̃(k,t) can be written as

w(k,t) =
η

Nk

t−1∑
u=0

∇f (k,0)(X(k))
[
y(k) − f (k,u)(X(k))

]
+ w(k,0), (23)

w̃(k,t) =
η

Nk

t−1∑
u=0

∇f (k,u)(X(k))
[
y(k) − f (k,u)(X(k))

]
+ w(k,0). (24)

The `1 norm of the difference between w(k,t) and w̃(k,t) is

‖w(k,t) − w̃(k,t)‖1 =

∥∥∥∥∥ η

Nk

t−1∑
u=1

[
∇f (k,u)(X(k))−∇f (k,0)(X(k))

] [
y(k) − f (k,u)(X(k))

]∥∥∥∥∥
1

(25a)

6
η

Nk

t−1∑
u=1

γ(k,u)
Nk∑
i=1

∥∥∥∥∥ 1√
n

n∑
r=1

crxi(1
(k,t)
ir − 1(k,0)

ir )

∥∥∥∥∥
1

(25b)

6
η

Nk

t−1∑
u=1

γ(k,u)
Nk∑
i=1

n∑
r=1

√
d1√
n
|1(k,t)
ir − 1(k,0)

ir | (25c)

=
η

Nk

t−1∑
u=1

γ(k,u)
Nk∑
i=1

n∑
r=1

√
d1√
n
1(r ∈ S(k)

i ) (25d)

6

√
2nd1η√
πδαk

t−1∑
u=1

γ(k,u). (25e)

�
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Figure 9: The `1 norm of the difference between the NTK weight w(k,t) and gradient descent weight w̃(k,t) on the
(a) Fashion-MNIST dataset and (b) FEMNIST dataset. For the analytical upper bound, we calculate the term

∑
u γ

(k,u) in
(25e) and set the coefficient to 2. Both the theoretical result and real experiments show that the weight difference increases
when more update steps are used.

The theoretical result indicates that the difference between the NTK weight w(k,t) and gradient descent weight w̃(k,t)

increases with the number of update steps t. We validate our theoretical result using real experiments and report the results
in Figure 9. The consistent trend between the empirical weight difference and the analytical upper bound confirms our
analysis that increasing the number of update steps enlarges the gap between w(k,t) and w̃(k,t). In the NTK evolution
scheme, one cannot choose an arbitrarily large t as the final number of update step t(k).

D. Proof of Theorem 1
We first present some lemmas to facilitate the convergence analysis. We bound the perturbation of the kernel matrix H(k,t)

in Lemma 3.

Lemma 3 Under Assumptions 1 to 2, if ∀ r ∈ [n], ‖v(k,t)
r − v

(k)
r ‖2 6 R, then

‖H(k,t) −H(k)‖2 6
2
√

2NkR√
πδαk

. (26)

Proof. We have

‖H(k,t) −H(k)‖22 6 ‖H(k,t) −H(k)‖2F (27a)

=

Nk∑
i=1

Nk∑
j=1

[
(H(k,t))ij − (H(k))ij

]2
(27b)

=
1

n2

Nk∑
i=1

Nk∑
j=1

(x>i xj)
2

(
n∑
r=1

1
(k,t)
ir 1

(k,t)
jr − 1(k)

ir 1
(k)
jr

)2

. (27c)

Consider the event Air defined in (19). Let φ(k,t)
ijr , 1

(k,t)
ir 1

(k,t)
jr − 1

(k)
ir 1

(k)
jr . If ¬Air and ¬Ajr happen, clearly we have

|φ(k,t)
ijr | = 0. Therefore, the expectation of |φ(k,t)

ijr | can be bounded as

E
[∣∣∣φ(k,t)

ijr

∣∣∣] 6 P(Air ∪Ajr) · 1 (28a)

6 P(Air) + P(Ajr) (28b)

¬
6 2

√
2

π

R

αk
, (28c)

where ¬ comes from (20b). By Markov’s inequality, we have with probability at least 1− δ,

|φ(k,t)
ijr | 6 2

√
2

π

R

δαk
. (29)
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Plugging (29) into (27c) yields

‖H(k,t) −H(k)‖22 6
N2
k

n2

8n2R2

πδ2α2
k

=
8N2

kR
2

πδ2α2
k

. (30)

Taking the square root on both sides completes the proof. �

Lemma 4 With probability at least 1− δ,

‖H(k) −H(k)
∞ ‖2 6 Nk

√
ln (2N2

k/δ)

2n
. (31)

Proof. We have

‖H(k) −H(k)
∞ ‖22 6 ‖H(k) −H(k)

∞ ‖2F =

Nk∑
i=1

Nk∑
j=1

[
(H(k))ij − (H(k)

∞ )ij

]2
. (32)

Note that (H(k))ij = 1
nx>i xj

n∑
r=1

1
(k)
ir 1

(k)
jr , (H(k))ij ∈ [−1, 1]. By Hoeffding’s inequality, we have with probability at least

1− δ/N2
k , ∣∣∣(H(k))ij − (H(k)

∞ )ij

∣∣∣ 6√ ln (2N2
k/δ)

2n
. (33)

Applying the union bound over i, j ∈ [Nk] yields

‖H(k) −H(k)
∞ ‖2 6 Nk

√
ln (2N2

k/δ)

2n
. (34)

The proof is complete. �

Now we are going to prove Theorem 1.

Theorem 1 For the NTK-FL scheme under Assumptions 1 to 3, let the learning rate η = O
(
λk
Nk

)
and the neural network

width n = Ω
(
N2
k

λ2
k

ln
N2
k

δ

)
, then with probability at least 1− δ,

∥∥f (k+1)(X(k))− y(k)
∥∥2

2
6

(
1− ηλk

2Nk

)t(k)∥∥f (k)(X(k))− y(k)
∥∥2

2
, (35)

where t(k) is the number of update steps defined in (11a).

Proof. Taking the difference between successive neural network predictions yields

f (k,t+1)(xi)− f (k,t)(xi) =
1√
n

n∑
r=1

[
crσ

(
(v(k,t+1)
r )>xi

)
− crσ

(
(v(k,t)
r )>xi

)]
. (36)

We decompose the difference term to the sum of dI
i and dII

i , based on the set S(k)
i :

dI
i ,

1√
n

∑
r/∈S(k)

i

[
crσ

(
(v(k,t+1)
r )>xi

)
− crσ

(
(v(k,t)
r )>xi

)]
, (37a)

dII
i ,

1√
n

∑
r∈S(k)

i

[
crσ

(
(v(k,t+1)
r )>xi

)
− crσ

(
(v(k,t)
r )>xi

)]
. (37b)

Consider the residual term∥∥f (k,t+1)(X(k))− y(k)
∥∥2

2
(38a)

=
∥∥f (k,t+1)(X(k))− f (k,t)(X(k)) + f (k,t)(X(k))− y(k)

∥∥2

2
(38b)

=
∥∥f (k,t)(X(k))− y(k)

∥∥2

2
+ 2

〈
dI + dII, f (k,t)(X(k))− y(k)

〉
+
∥∥f (k,t+1)(X(k))− f (k,t)(X(k))

∥∥2

2
. (38c)
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We will give upper bounds for the inner product terms
〈
dI, f (k,t)(X(k))− y(k)

〉
,
〈
dII, f (k,t)(X(k))− y(k)

〉
, and the

difference term
∥∥f (k,t+1)(X(k))− f (k,t)(X(k))

∥∥2

2
, separately. Based on the property of the set S(k)

i , we have

dI
i = − η√

n

∑
r/∈Si

cr 〈∇vrL,xi〉1
(k,t)
ir (39a)

= − η

nNk

Nk∑
j=1

(
f (k,t)(xj)− yj

)
x>j xi

∑
r/∈Si

c2r 1
(k,t)
ir 1

(k,t)
jr (39b)

= − η

Nk

Nk∑
j=1

(
f (k,t)(xj)− yj

)(
(H(k,t))ij − (H⊥(k,t))ij

)
, (39c)

where (H⊥(k,t))ij is defined as

(H⊥(k,t))ij ,
1

n
x>i xj

n∑
r∈S(k)

i

1
(k,t)
ir 1

(k,t)
jr . (40)

For the inner product term
〈
dI, f (k,t)(X(k))− y(k)

〉
, we have〈

dI, f (k,t)(X(k))− y(k)
〉

= − η

Nk
(f (k,t)(X(k))− y(k))>(H(k,t) −H⊥(k,t))(f (k,t)(X(k))− y(k)). (41)

Let T1 and T2 denote the following terms

T1 , −(f (k,t)(X(k))− y(k))>H(k,t)(f (k,t)(X(k))− y(k)), (42a)

T2 , (f (k,t)(X(k))− y(k))>H⊥(k,t)(f (k,t)(X(k))− y(k)). (42b)

With probability at least 1− δ, T1 can be bounded as:

T1 = −(f (k,t)(X(k))− y(k))>(H(k,t) −H(k) + H(k) −H(k)
∞ + H(k)

∞ )(f (k,t)(X(k))− y(k)) (43a)

6 −(f (k,t)(X(k))− y(k))>(H(k,t) −H(k))(f (k,t)(X(k))− y(k))

− (f (k,t)(X(k))− y(k))>(H(k) −H(k)
∞ )(f (k,t)(X(k))− y(k))− λk

∥∥f (k,t)(X(k))− y(k)
∥∥2

2
(43b)

¬
6

(
2
√

2NkR√
πδαk

+Nk

√
ln (2N2

k/δ)

2n
− λk

)∥∥f (k,t)(X(k))− y(k)
∥∥2

2
, (43c)

where ¬ comes from Lemma 3 and Lemma 4. To bound the term T2, consider the `2 norm of the matrix H⊥(k,t). With
probability at least 1− δ, we have:

‖H⊥(k,t)‖2 6 ‖H⊥(k,t)‖F (44a)

=

Nk∑
i=1

Nk∑
j=1

 1

n

∑
r∈S(k)

i

x>i xj1
(k,t)
ir 1

(k,t)
jr


2

1
2

(44b)

6
Nk
n
|S(k)
i |

¬
6

√
2

π

NkR

δαk
, (44c)

where ¬ comes from Lemma 1. Therefore, with probability at least 1− δ, we have

T2 6

√
2

π

NkR

δαk

∥∥f (k,t)(X(k))− y(k)
∥∥2

2
. (45)

Combine the results of (43c) and (45):〈
dI, f (k,t)(X(k))− y(k)

〉
6 η

(
3
√

2R√
πδαk

+

√
ln (2N2

k/δ)

2n
− λk
Nk

)∥∥f (k,t)(X(k))− y(k)
∥∥2

2
. (46)
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For the inner product term
〈
dII, f (k,t)(X(k))− y(k)

〉
, we first bound ‖dII‖22 as follows:

‖dII‖22 =

Nk∑
i=1

 1√
n

∑
r∈S(k)

i

[
crσ

(
(v(k,t+1)
r )>xi

)
− crσ

(
(v(k,t)
r )>xi

)]
2

(47a)

¬
6
η2

n

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

(cr〈∇vrL,xi〉)2 (47b)

­
6
η2

n

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

‖∇vrL‖22 ‖xi‖22 (47c)

6
η2Nk
n
|S(k)
i |

2 max
r∈[n]

∥∥∇vrL
∥∥2

2
(47d)

6
η2|S(k)

i |2

n2

∥∥f (k,t)(X(k))− y(k)
∥∥2

2
, (47e)

where ¬ comes from the Lipschitz continuity of the ReLU function σ(·), ­ holds due to Cauchy–Schwartz inequality. Plug
(21) into (47e), we have with probability at least 1− δ:

‖dII‖22 6
2η2R2

πδ2α2
k

∥∥f (k,t)(X(k))− y(k)
∥∥2

2
. (48)

The inner product term
〈
dII, f (k,t)(X(k))− y(k)

〉
can be bounded as〈

dII, f (k,t)(X(k))− y(k)
〉
6

√
2ηR√
πδαk

∥∥f (k,t)(X(k))− y(k)
∥∥2

2
. (49)

Finally, the bound for the difference term is derived as

∥∥f (k,t+1)(X(k))− f (k,t)(X(k))
∥∥2

2
6

Nk∑
i=1

(
η√
n

n∑
r=1

cr〈∇vrL,xi〉

)2

6 η2
∥∥f (k,t)(X(k))− y(k)

∥∥2

2
. (50)

Combine the results of (46), (49) and (50):

∥∥f (k,t+1)(X(k))− y(k)
∥∥2

2
6

[
1 +

8
√

2ηR√
πδαk

+ 2η

√
ln (2N2

k/δ)

2n
− 2ηλk

Nk
+ η2

]∥∥f (k,t)(X(k))− y(k)
∥∥2

2
. (51)

Let R = O
(
δαkλk
Nk

)
, n = Ω

(
N2
k

λ2
k

ln
N2
k

δ

)
, and η = O( λkNk ), we have

∥∥f (k,t+1)(X(k))− y(k)
∥∥2

2
6

(
1− ηλk

2Nk

)∥∥f (k,t)(X(k))− y(k)
∥∥2

2
. (52)

Invoking the inequality (52) recursively completes the proof. �

E. Proof of Theorem 2
Theorem 2 For FedAvg under Assumptions 1 to 3, let the learning rate η = O

(
λk

τNkMk

)
and the neural network width

n = Ω
(
N2
k

λ2
k

ln
N2
k

δ

)
, then with probability at least 1− δ,

∥∥f (k+1)(X(k))− y(k)
∥∥2

2
6

(
1− ητλk

2NkMk

)∥∥f (k)(X(k))− y(k)
∥∥2

2
, (53)

where τ is the number of local iterations, and Mk is the number of clients in communication round k.
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Proof. We first construct a different set of kernel matrices {Λ(k),Λ
(k,τ)
m } similar to Huang et al. (2021). Let 1(k,u)

imr ,

1{〈v(k,u)
m,r ,xi〉 > 0}, the (i, j)th entry of Λ

(k,u)
m and Λ(k,u) is defined as

(Λ(k,u)
m )ij ,

1

n
x>i xj

n∑
r=1

1
(k,0)
imr 1

(k,u)
jmr , (54a)

(Λ(k,u))ij , (Λ(k,u)
m )ij , if (xj , yj) ∈ Dm. (54b)

Taking the difference between successive terms yields

f (k+1)(xi)− f (k)(xi) =
1√
n

n∑
r=1

[
crσ

(
(v(k+1)
r )>xi

)
− crσ

(
(v(k)
r )>xi

)]
. (55)

We decompose the difference term to the sum of dI
i and dII

i , based on the set S(k)
i and its complement:

dI
i ,

1√
n

∑
r/∈S(k)

i

[
crσ

(
(v(k+1)
r )>xi

)
− crσ

(
(v(k)
r )>xi

)]
, (56a)

dII
i ,

1√
n

∑
r∈S(k)

i

[
crσ

(
(v(k+1)
r )>xi

)
− crσ

(
(v(k)
r )>xi

)]
. (56b)

Consider the residual term∥∥f (k+1)(X(k))− y
∥∥2

2
(57a)

=
∥∥f (k+1)(X(k))− f (k)(X(k)) + f (k)(X(k))− y

∥∥2

2
(57b)

=
∥∥f (k)(X(k))− y(k)

∥∥2

2
+ 2

〈
dI + dII, f (k)(X(k))− y

〉
+
∥∥f (k+1)(X(k))− f (k)(X(k))

∥∥2

2
. (57c)

We will give upper bounds for the inner product terms
〈
dI, f (k)(X(k))− y

〉
,
〈
dII, f (k)(X(k))− y

〉
, and the difference

term
∥∥f (k+1)(X(k))− f (k)(X(k))

∥∥2

2
, separately. For an input x ∈ Rd1 , let f (k,u)

m (x) , 1√
n

n∑
r=1

crσ(〈v(k,u)
m,r ),x〉). By the

update rule of FedAvg, the relation between the weight vector v
(k)
r in successive communication rounds is:

v(k+1)
r = v(k)

r −
η

Mk

∑
m∈Ck

τ−1∑
u=0

∇L
v

(k,u)
r

(58a)

= v(k)
r −

ηcr
Nk
√
nMk

∑
m∈Ck

τ−1∑
u=0

∑
j∈Im

(f (k,u)
m (xj)− yj)xj1(k,u)

jmr . (58b)

Based on the property of the set S(k)
i , we have

dI
i = − 1√

n

∑
m∈Ck

τ−1∑
u=0

∑
r/∈S(k)

i

cr

〈
v(k+1)
r − v(k)

r ,xi

〉
1

(k)
ir (59a)

= − η

NknMk

∑
m∈Ck

τ−1∑
u=0

∑
r/∈S(k)

i

∑
j∈Im

(f (k,u)
m (xj)− yj)x>i xj1

(k)
ir 1

(k,u)
jmr (59b)

= − η

NkMk

∑
m∈Ck

τ−1∑
u=0

∑
j∈Im

(f (k,u)
m (xj)− yj)

[
(Λ(k,u)

m )ij − (Λ⊥(k,u)
m )ij

]
. (59c)

For the inner product term
〈
dI, f (k)(X(k))− y

〉
, we have〈

dI, f (k)(X(k))− y(k)
〉

= − η

NkMk

τ−1∑
u=0

(f (k)(X(k))− y(k))>(Λ(k,u) −Λ⊥(k,u))(f (k,u)
m (X(k))− y(k)). (60)
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Let T1 and T2 denote the following terms

T1 , −(f (k)(X(k))− y(k))>Λ(k,u)(f (k,u)
g (X(k))− y(k)), (61a)

T2 , (f (k)(X(k))− y(k))>Λ⊥(k,u)(f (k,u)
g (X(k))− y(k)), (61b)

where f (k,u)
g (X(k)) , [f

(k,u)
1 (X1)>, · · · , f (k,u)

Mk
(XMk

)>]>. We are going to bound T1 and T2 separately. T1 can be written
as:

T1 = −(f (k)(X(k))− y(k))>(Λ(k,u) −H(k) + H(k) −H(k)
∞ + H(k)

∞ )(f (k,u)
g (X(k))− y(k)) (62a)

= −(f (k)(X(k))− y(k))>(Λ(k,u) −H(k))(f (k,u)
g (X(k))− y(k))

− (f (k)(X(k))− y(k))>(H(k) −H(k)
∞ )(f (k,u)

g (X(k))− y(k))

− (f (k)(X(k))− y(k))>H(k)
∞ (f (k)(X(k))− y(k))

− (f (k)(X(k))− y(k))>H(k)
∞ (f (k,u)

g (X(k))− f (k)(X(k))). (62b)

First, we bound the norm of f (k,u)
g (X(k))− y(k). It can be shown that

‖f (k,u)
m (Xm)− ym‖2 = ‖f (k,u)

m (Xm)− f (k,u−1)
m (Xm) + f (k,u−1)

m (Xm)− ym‖2 (63a)

6 ‖f (k,u)
m (Xm)− f (k,u−1)

m (Xm)‖2 + ‖f (k,u−1)
m (Xm)− ym‖2 (63b)

¬
6 (1 + η)‖f (k,u−1)

m (Xm)− ym‖2, (63c)

where ¬ holds based on the derivation of (50). Applying (63c) recursively yields

‖f (k,u)
m (Xm)− ym‖2 6 (1 + η)u‖f (k)(Xm)− ym‖2. (64)

The bound for ‖f (k,u)
g (X(k))− y(k)‖22 can thus be derived as

‖f (k,u)
g (X(k))− y(k)‖22 =

Nk∑
i=1

[
f (k,u)
g (xi)− yi

]2
(65a)

=
∑
m∈Ck

∥∥f (k,u)
m (Xm)− ym

∥∥2

2
(65b)

6 (1 + η)2u
∥∥f (k)(X(k))− y(k)

∥∥2

2
. (65c)

Second, following the steps in Lemma 3, it can be shown that with probability at least 1− δ,

‖Λ(k,t) −H(k)‖2 6
2
√

2NkR√
πδα

. (66)

We also bound the difference between f (k,u)
g (X(k)) and f (k)(X(k)) as follows:

‖f (k,u)
g (X(k))− f (k)(X(k))‖2

¬
6

u∑
v=1

‖f (k,v)
g (X(k))− f (k,v−1)

g (X(k))‖2 (67a)

­
6

u∑
v=1

η‖f (k,v−1)
g (X(k))− y(k)‖2 (67b)

®
6

u∑
v=1

η(1 + η)v−1‖f (k)(X(k))− y(k)‖2 (67c)

= [(1 + η)u − 1] ‖f (k)(X(k))− y(k)‖2, (67d)

where ¬ holds due to triangle inequality, ­ comes from (50), ® comes from (65c). Plugging the results from (65c), (66),
and (67d) into (62b), we have with probability at least 1− δ,

T1 6

[
(1 + η)u

(
2
√

2NkR√
πδα

+Nk

√
ln (2N2

k/δ)

2n
+ κλk

)
− (1 + κ)λk

]
‖f (k)(X(k))− y(k)‖22, (68)



Neural Tangent Kernel Empowered Federated Learning

where κ is the condition number of the matrix H
(k)
∞ . Next, consider the bound for T2. The `2 norm of Λ⊥(k,u) can be

bounded as

‖Λ⊥(k,u)‖2 6 ‖Λ⊥(k,u)‖F (69a)

=

Nk∑
i=1

∑
m∈Ck

∑
j∈Im

 1

n

∑
r∈S(k)

i

x>i xj1
(k)
ir 1

(k,u)
jmr


2

1
2

(69b)

6
Nk
n
|S(k)
i |

¬
6

√
2

π

NkR

δα
, (69c)

where ¬ comes from Lemma 1. Therefore, we have with probability at least 1− δ,

T2 6 (1 + η)u
√

2

π

NkR

δα

∥∥f (k)(X(k))− y(k)
∥∥2

2
. (70)

Combine the results of (68) and (70):

〈
dI, f (k)(X(k))− y(k)

〉
6

τ

Mk

[(
η +

(τ − 1)

2
η2 + o(η2)

)3
√

2R√
πδα

+

√√√√ ln
(

2N2
k

δ

)
2n

+
κλk
Nk


− (1 + κ)ηλk

Nk

]∥∥f (k)(X(k))− y(k)
∥∥2

2
.

(71)

For the inner product term
〈
dII, f (k)(X(k))− y

〉
, we first bound ‖dII‖22 with probability at least 1− δ:

‖dII‖22 =

Nk∑
i=1

 1√
n

∑
r∈S(k)

i

[
crσ

(
(v(k+1)
r )>xi

)
− crσ

(
(v(k)
r )>xi

)]
2

(72a)

6
1

n

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

(
cr〈v(k+1)

r − v(k)
r ,xi〉

)2

(72b)

6
1

n

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

 ηcr
Nk
√
nMk

∑
m∈Ck

τ−1∑
u=0

∑
j∈Im

(f (k,u)
m (xj)− yj)1(k,u)

jmr

2

(72c)

6
η2

N2
kn

2M2
k

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

∑
m∈Ck

τ−1∑
u=0

∑
j∈Im

∣∣∣f (k,u)
m (xj)− yj

∣∣∣
2

(72d)

6
η2

N2
kn

2M2
k

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

( ∑
m∈Ck

τ−1∑
u=0

|Im|
∥∥∥f (k,u)
m (Xm)− ym

∥∥∥
2

)2

. (72e)
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By apply the results from previous steps, we have

‖dII‖22
¬
6

η2

N2
kn

2M2
k

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

( ∑
m∈Ck

τ−1∑
u=0

(1 + η)u|Im|
∥∥∥f (k)(Xm)− ym

∥∥∥
2

)2

(73a)

­
6

1

N2
kn

2M2
k

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

( ∑
m∈Ck

((1 + η)τ − 1) |Im|
∥∥∥f (k)(Xm)− ym

∥∥∥
1

)2

(73b)

®
6

1

Nkn2M2
k

Nk∑
i=1

|S(k)
i |

∑
r∈S(k)

i

(
((1 + η)τ − 1)

∥∥∥f (k)(X(k))− y(k)
∥∥∥

2

)2

(73c)

¯
6

2R2

πδ2α2M2
k

(
τη +

τ(τ − 1)

2
η2 + o(η2)

)2 ∥∥f (k)(X(k))− y(k)
∥∥2

2
. (73d)

where ¬ comes from (64), ­ holds due to ‖a‖1 6 ‖a‖2, ® holds due to ‖a‖1 6
√

dim(a)‖a‖2, ¯ is from Lemma 1. With
probability at least 1− δ, the inner product term can thus be bounded as〈

dII, f (k)(X(k))− y
〉
6

√
2τR√

πδαMk

(
η +

(τ − 1)

2
η2 + o(η2)

)∥∥f (k)(X(k))− y(k)
∥∥2

2
. (74)

The bound for the difference term is derived as

∥∥f (k+1)(X(k))− f (k)(X(k))
∥∥2

2
6

Nk∑
i=1

(
η√
n

n∑
r=1

cr〈v(k+1)
r − v(k)

r ,xi〉

)2

(75a)

6
1

M2
k

(
τη +

τ(τ − 1)

2
η2 + o(η2)

)2 ∥∥f (k)(X(k))− y(k)
∥∥2

2
. (75b)

Combine the results of (71), (74) and (75b):

∥∥f (k+1)(X(k))− y(k)
∥∥2

2
6

{
1 +

2ητ

Mk

[4
√

2R√
πδα

+

√√√√ ln
(

2N2
k

δ

)
2n

+
κλk
Nk


− (1 + κ)λk

Nk

]
+
η2τ2

M2
k

+ o(η2)

}∥∥f (k)(X(k))− y(k)
∥∥2

2
.

(76)

Let R = O
(
δαλk
Nk

)
, n = Ω

(
N2
k

λ2
k

ln
N2
k

δ

)
, and η = O

(
λk

τNkMk

)
, we have

∥∥f (k+1)(X(k))− y(k)
∥∥2

2
6

(
1− ητλk

2NkMk

)∥∥f (k+1)(X(k))− y(k)
∥∥2

2
. (77a)
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