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Abstract
One important aspect of understanding behaviors
of information cascades is to be able to accurately
predict their popularity, that is, their message
counts at any future time. Self-exciting Hawkes
processes have been widely adopted for such
tasks due to their success in describing cascad-
ing behaviors. In this paper, for general, marked
Hawkes point processes, we present closed-form
expressions for the mean and variance of future
event counts, conditioned on observed events.
Furthermore, these expressions allow us to de-
velop a predictive approach, namely, Cascade
Anytime Size Prediction via self-Exciting Regres-
sion model (CASPER), which is specifically tai-
lored to popularity prediction, unlike existing gen-
erative approaches – based on point processes –
for the same task. We showcase CASPER’s mer-
its via experiments entailing both synthetic and
real-world data, and demonstrate that it consid-
erably improves upon prior works in terms of
accuracy, especially for early-stage prediction.

1. Introduction
Information cascades form, when people influence each
others’ perceptions and behaviors while partaking in a com-
munication network. A prominent setting, where such influ-
encing occurs, is social media, where online users propagate
each others’ contents and worldviews. Given an informa-
tion cascade, whose initial progression has been observed,
accurately predicting its total number of messages at any
future time – a task commonly referred to as anytime pop-
ularity prediction – is particularly useful in applications
such as marketing, spread of news and rumor control among
other; for indicative examples, refer to (Yu et al., 2011;
Wu et al., 2018; Singh & Chand, 2020; Gupta et al., 2020)
respectively.
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A large body of research has been devoted to popularity
prediction; such works are surveyed in (Gao et al., 2019;
Zhou et al., 2021). Generally speaking, relevant models and
approaches can be categorized into three groups: feature-
based models, deep learning models, and generative models.
Feature-based models, as the ones proposed by (Szabo &
Huberman, 2010; Bao et al., 2013; Yuan et al., 2016), ex-
tract various types of hand-crafted features, which are then
utilized in conjunction with various techniques to make pre-
dictions. While such models can be quite explainable, their
performance heavily depends on the quality of these feature
sets, whose extraction is often laborious and requires do-
main expertise. On the other hand, deep learning models,
like the ones put forward by (Li et al., 2017; Liao et al.,
2019; Chen et al., 2019; Xu et al., 2021), aspire to learn ef-
fective features, but are often opaque to interpretation and/or
explanation.

Moreover, both feature-based and deep learning approaches
almost always require an abundance of data and computing
effort to support model training and hyper-parameter tuning
in order to achieve satisfactory prediction performances.
For anytime prediction, i.e., accurately predicting for any
combination of observation duration tc ≥ 0 and forecast
horizon ∆t ≥ 0, such approaches require training a distinct
model for every desired (tc,∆t) pair, which exacerbates
their computational burden even further.

Generative models, on the other hand, instead of directly
tackling the prediction task, focus first on estimating cas-
cade densities in order to characterize and describe cascade
dynamics in the continuous temporal domain. Among them,
models based on Hawkes (self-exciting) point processes,
like the ones proposed in (Zhao et al., 2015; Kobayashi &
Lambiotte, 2016; Tan & Chen, 2021), are particular advan-
tageous since they exhibit emergent “rich-get-richer” phe-
nomena, which explain well the heavy-tailed distributions
of cascade sizes in empirical data.

In general, such models start by specifying a parameter-
ized conditional intensity function, which attempts to cap-
ture the underlying characteristics of the observed informa-
tion diffusion. For example, Chen & Tan (2018) choose a
power-law function to model “aging” effect of influences
and Kobayashi & Lambiotte (2016) use a sinusoidal func-
tion to model the circadian rhythm of Twitter users. Then, a
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unique set of parameter values is learned for each cascade
in order to describe its own self-exciting dynamics and pre-
dict its future evolution. In terms of parameters learning, in
works like (Chen & Tan, 2018), all the cascade-specific pa-
rameters are inferred solely from the cascade’s own past. In
other works, like (Zhao et al., 2015; Kobayashi & Lambiotte,
2016), a few selected parameters are assumed to be shared
across all cascade-generating processes, which are learned
through fully-observed cascades in the train set, while the
remaining parameters are learned from each cascade’s ob-
served history. In both cases, the parameters are learned via
maximum likelihood estimation by employing the process’
realization intensities. Finally, the conditional (on the pro-
cess’ observed history Htc ) mean count E{N(t|Htc)} – as
derived from the fitted process – is typically employed to
predict a cascade’s popularity at time t.

Hawkes process based generative models are inherently
interpretable and do not require intensive feature engineer-
ing. Moreover, their training is light-weight, as they nor-
mally feature much fewer parameters than the other two
approaches. Moreover, for anytime popularity prediction,
these models only need to be trained once for each observa-
tion duration tc. This is particularly advantageous given that
the other two approaches require training for each (tc,∆t)
pair.

Nevertheless, models based on Hawkes processes suffer
from a couple of important drawbacks. First, they are often
criticized for their lackluster prediction performances, as
discussed in (Mishra et al., 2016; Cao et al., 2017; Chen
et al., 2019). This drawback can be traced, in essence, to
the fact that these models are employed for a predictive task,
while being generative: instead of optimizing prediction
accuracy directly, they rely on likelihood maximization for
parameter estimation and, subsequently, use the estimated
parameters to produce point forecasts. The latter estimation
approach tends to yield poorer predictions, especially when
training data is limited.

Secondly, while the conditional mean count has been the
de facto point estimate of future cascade popularity, there
is no computationally-useful expression of it for general
marked Hawkes point process. That being the case, to make
predictions, existing works employing such processes are
forced to either rely on expensive simulations, as in (Xiao
et al., 2016; Ling et al., 2020), or rely on model-specific
estimation algorithms, such as the ones proposed in (Wang
et al., 2017; Kobayashi & Lambiotte, 2016; Chen & Tan,
2018). This lack of a computationally-useful expression for
the conditional mean count limits the potential of Hawkes
process-based approaches in the context of popularity pre-
diction.

The contributions of this work are two-fold. First, in our
main result, Theorem 4.7, we derive closed-form expres-

sions for the conditional (on the observed history Htc ) mean
and variance at t ≥ tc of the counting process N(t), which
is associated to an Marked Hawkes Point Processs (MHPPs)
with arbitrary, Lebesgue-integrable conditional intensity
function and unpredictable marks. Compared to prior works,
which also concern themselves with such moments, our
main result does not assume special forms of the intensity
functions involved and it is in closed-form as opposed to
being computed by numerically solving one or more differ-
ential equations, which may be intractable.

Our novel results are eventually reached by first viewing
an MHPP’s counting process N(t) as an equivalent branch-
ing process and, thus, determining – in Theorem 4.2 – the
probability generating function (PGF) of Nk(t) for each
generation k ≥ 0. Such generation-wise results aid in fur-
thering our understanding of MHPPs’ nature and evolution
over time and allowed us to determine closed form expres-
sions for N(t)’s mean and variance in Theorem 4.5. Our
final – and main – result is shown by interpreting N(t|Htc)
in Lemma 4.6 as a sum of already-observed event counts
plus an unconditional count process of suitable intensity. Fi-
nally, let us mention that we confirm our theoretical findings
through extensive simulations.

The second contribution of this work is a new approach
to anytime popularity prediction, which we dubbed Cas-
cade Anytime Size Prediction via self-Exciting Regres-
sion (CASPER). Its proposal is motivated by the aforemen-
tioned challenges faced by existing, state-of-the-art, Hawkes
process-based approaches to popularity prediction. Unlike
these generative approaches, the proposed predictive frame-
work fits an MHPP-based model by directly minimizing
the empirical mean squared prediction error between fu-
ture counts and predicted counts. For producing the latter,
CASPER leverages our new theoretical results and predicts
future counts of individual cascade given its observed past
via our new conditional mean count expression. Further-
more, costly simulations or approximations are avoided by
using this expression for prediction.

The merits of CASPER’s predictive nature are first demon-
strated via experiments using synthetic data, which compare
the results obtained via generative versus predictive training
(according to CASPER) in terms of prediction performance.
Additional experimental results on real-world Twitter data
show that CASPER considerably improves upon established
MHPP based models in forecasting accuracy, especially for
early-stage prediction, when the amount of already-observed
events is meager.

The rest of the paper is organized as follows: Section 2 sur-
veys related works, while Section 3 introduces the marked
Hawkes process and the assumptions made throughout this
work. Section 4 presents our main theoretical results, fol-
lowed by Section 5, where CASPER is described. Section 6
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presents experimental results for both synthetic and real-
world (Twitter) data. Finally, we briefly discuss our work
and future works in Section 7.

2. Related Works
For cascade popularity prediction tasks, we have already
outlined different approaches (feature-based, deep learning,
and generative models) and prediction procedures with ex-
isting (marked) Hawkes point process based models. In this
section, we briefly describe several notable works in find-
ing the counting distribution/moments of (marked) Hawkes
point processes.

A temporal Hawkes point process N(t) is called stationary,
if the distribution of N(t, t+ τ ] only depends on the inter-
val’s length τ ≥ 0, which implies a conditional intensity
with constant base function, i.e., b(t) ≜ b ≥ 0,∀t ≥ 0.
Assuming stationarity, Hawkes (1971a;b) have provided
the second order counting properties of the process and its
multivariate equivalent by finding their mean and covari-
ance density through point spectra analysis. Bacry & Muzy
(2016) extend these early works to the marked case, and pro-
vide a non-parametric kernel estimation method that relies
on the previously found second order statistical properties.
In the same vein, Hawkes & Oakes (1974) demonstrate
the existence of an equivalent branching (cluster) process
representation of the process and go on to provide inte-
gral equations for N(t)’s PGF. However, the calculation
of the PGF is intractable, and, hence, only asymptotic re-
sults were entertained. Following this work, Oakes (1975)
finds explicit equations for the mean and the variance of the
counting distribution as a function of t > 0 for the special
case of exponential excitation functions.

For another special case of the Hawkes process, where both
the base and excitation function can be expressed as a mix-
ture of exponential terms, Errais et al. (2010) and Dassios
& Zhao (2011) find the second-order moments of the inten-
sity via infinitesimal generators that are then used to solve
differential equations. Haimovich et al. (2020) find the con-
ditional (on observed events) mean and variance of such a
process and adopt the conditional mean as a point predictor
for future event counts over arbitrary times.

Recently, Cui et al. (2020) derived the moments of the count-
ing distribution for the most general form of Hawkes pro-
cesses, which employ arbitrary base and excitation intensi-
ties. They accomplished this via an elementary approach
by considering infinitesimal generators and by leveraging
Dynkin’s formula. A benefit of this approach is that it can
also be applied to the marked process case. However, unlike
our work, they do not consider the conditional case; further-
more, they lack closed-form expressions for the resulting
moments. Related to our work, O’Brien et al. (2020) derive

the counts’ PGF for such self-exciting processes and find
their conditional mean count to use as a point predictor for
future counts. However, unlike us, they have to resort to
solving the differential equations governing the equivalent
branching process representation in lieu of closed-form ex-
pressions. Additionally, they do not consider the marked
case, which is widely used in cascade modeling (Zhao et al.,
2015; Mishra et al., 2016; Chen & Tan, 2018).

3. Marked Hawkes Point Process
A marked temporal point process extends the ordinary tem-
poral point process by associating each event time with a
stochastic mark taking values in the mark space M. Such a
process can also be regarded as a point process on the prod-
uct space (R+ × M) with conditional intensity λ∗(t,m),
where R+ denotes the set of non-negative real numbers1.
Its marginal temporal process is called ground process with
ground intensity λ∗(t). In this paper, we consider a Marked
Hawkes Point Process (MHPP) N(t) with ground intensity

λ∗(t) ≜ b(t) +
∑
i:ti<t

ϕmi(t− ti) (1)

where b(·) : R+ → R+ is its base intensity and ϕm(·) :
R+ × M → R+ is the mark-indexed excitation function.
The former models exogenous (to the process) influences,
while the latter models self-excitation effects. Here, the
pairs (ti,mi) reflect the process’ event times and associated
marks observed up to time t. Throughout this paper, we will
make the following two assumptions:

A.1 Both the base intensity function b(·) and the family
of excitation functions {ϕm(·)}m∈M are Lebesgue-
integrable and non-zero almost everywhere on R+. If
we define η ≜

∫∞
s=0

b(s)ds and γm ≜
∫∞
s=0

ϕm(s)ds
for all m ∈ M, then this implies that η, γm ∈ (0,∞)
for all m ∈ M.

A.2 Any MHPP we will consider is assumed to feature
unpredictable marks following mark distribution g(m),
i.e., the mark distribution is independent of past event
times and marks.

By virtue of Assumption A.2, the conditional intensity of
such MHPPs takes the form:

λ∗(t,m) =λ∗(t)g(m) =

=

(
b(t) +

∑
i:ti<t

ϕmi
(t− ti)

)
g(m) (2)

1Without loss of generality, we will assume that such processes
start at time t = 0. Results for an arbitrary starting time t0 can be
easily obtained by applying a mere time shift.
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First noted by Hawkes & Oakes (1974), any Hawkes process
can be equivalently viewed as a branching process. Under
this prism, the mechanism for generating events from an
MHPP with conditional intensity specified by Eq. (2) pro-
ceeds as follows: (a) 0th-generation (immigrant) events have
event times drawn from a Poisson process of intensity b(·);
and, (b) for k ≥ 0, each kth-generation event (tk,mk) will
independently give birth to a number of offspring events that
belong to the (k+1)th generation and whose event times are
sampled from a Poisson process with intensity ϕmk(t− tk).
All aforementioned events bare unpredictable marks.

4. MHPP Count Moments
By viewing an MHPP N(t) as an equivalent branching pro-
cess, we have that N(t) =

∑
k≥0 Nk(t), where Nk(t) is the

number of kth-generation events up to time t. In this section,
we first derive the probability generating function (PGF) of
Nk(t) in Section 4.1. Subsequently, the first two moments
of N(t) are identified in Section 4.2. Due to space limita-
tions, the proofs of our results are provided in Appendix
A.

In what follows, δ(·) will stand for the Dirac delta distri-
bution located at t = 0 and u(·) for the Heavyside step
function, which equals 1 for non-negative argument values
and equals 0 otherwise. Note that all our results pertain
to MHPPs with conditional intensity given by Eq. (2) and
obeying Assumption A.1 and Assumption A.2.

4.1. kth-Generation Event Count Distribution

For k ≥ 0, let Zk ≜ Nk(∞) indicate the total count of kth-
generation events on R+. To find the distribution of Nk(t),
we will start by finding the probability density function
(PDF) of the event time occurrence in k-th generation.

Proposition 4.1 (PDF of kth-generation occurrence times).
For k ≥ 0 and given the total count Zk of kth-generation
events, the occurrence times of those Zk events are i.i.d.
with PDF

fk(t) ≜
1

η
(b ∗ ξ∗k)(t), t ≥ 0 (3)

where ξ(t) ≜ Em

{
ϕm(t)
γm

}
and ξ∗k is the k-fold convolution

of ξ with itself, with the convention that ξ∗0 ≜ δ.

Above, the expectation Em{·} with respect to the mark
m is computed by utilizing the mark’s PDF g(·), if the
mark is continuous, or using the mark’s probability mass
function (PMF) g(·), if the mark is discrete. Eq. (3) reveals
that kth-generation event times are given as the sum of k i.i.d.
random variables (RVs) with PDF ξ(·) plus an independent
RV with PDF 1

η b(·). For example, if 1
η b(t) = ξ(t) = βe−βt,

then, given the number Zk of kth-generation events, their

event times are i.i.d. Erlang-distributed with parameters
(k + 1, β).

This Proposition allows us now to identify the PGF of Nk(t)
at an arbitrary time t ≥ 0, as presented in the following
Theorem.

Theorem 4.2 (PGF of Nk(t)). For k ≥ 1, the PGF of Nk(t)
is given as

GNk(t)(w) = G0

(
G◦k(Gk(w))

)
(4)

where G0(w) ≜ eη(w−1) is the PGF of a Poisson-
distributed RV with parameter η and G◦k(w) is the k-fold
composition of G(w) ≜ Em

{
eγm(w−1)

}
with itself, where

eγm(w−1) is the PGF of a Poisson-distributed RV with pa-
rameter γm. Finally, Gk(w) ≜ 1 + Fk(t)(w − 1) is the
PGF of a Bernoulli-distributed RV with parameter Fk(t),
where Fk(t) ≜ 1

η

(
u ∗ b ∗ ξ∗k

)
(t) is the cumulative distri-

bution function (CDF) of the kth-generation event occur-
rence times.

This Theorem provides a complete view of the distribution
of kth-generation event counts at any time t. The mean and
variance of Nk(t) can now be found by relying on well-
known relations between an RV’s PGF and its moments.
The results are provided in the following Corollary.

Corollary 4.3 (Mean & Variance of Nk(t)). Define γ ≜
Em{γm} and ν ≜ Em

{
γ2
m

}
. Let ζ(·) ≜ γξ(·), where ξ(·)

is defined as in Proposition 4.1. For k ≥ 1, we have

E{Nk(t)} =
(
u ∗ b ∗ ζ∗k

)
(t) (5)

Var(Nk(t)) = E{Nk(t)}+ (E{Nk(t)})2
(

ν

ηγ2

) k−1∑
j=0

1

γj

(6)

4.2. Process Event Count Moments

It turns out that, since N(t) =
∑

k≥0 Nk(t), in order to
derive Var(N(t)), one must first determine the covariance
between different Nk(t)’s. This is what is done next.

Proposition 4.4. For p, q ≥ 0, the covariance between
Np(t) and Nq(t) is given as

Cov(Np(t), Nq(t)) =
E
{
Nmax(p,q)(t)

}
E
{
Nmin(p,q)(t)

} Var
(
Nmin(p,q)(t)

)
(7)

Now, equipped with the outcomes of Corollary 4.3 and
Proposition 4.4, the mean and variance of N(t) can be eas-
ily determined. The exact expressions are provided in our
next result and play an important role in examining and un-
derstanding the behavior of MHPPs in terms of event counts
over time (via the mean) and the associated uncertainty
about these counts over time (via the variance).



Anytime Information Cascade Popularity Prediction via Self-Exciting Processes

(a) conditional mean (b) conditional variance (c) Chebyshev bounds

Figure 1. Comparison of theoretical versus simulation-stemming results for an MHPP, whose conditional intensity takes the form of
Eq. (15) with α = 0.87, β = 1.27 and κ = 0.46, while the marks are uniformly-distributed with support [1, 2]. A censoring time
tc = 4 is used resulting in 5 observed events Htc = {(0.0, 1.6), (0.36, 1.52), (2.40, 1.66), (2.60, 1.23), (2.81, 1.76)}. The theoretical
conditional mean and variance (green curves) are found based on Theorem 4.7, while the simulation results (red curves) are obtained
empirically via 50, 000 cascades generated via Ogata’s thinning algorithm. The Chebyshev-based 95% bounds (grey) are computed based
on Eq. (14), while the simulated bounds (yellow) are based on the empirical 95% quantiles of the predicted counts.

Theorem 4.5 (Unconditional Mean & Variance of MHPP
Event Counts). The mean and variance of N(t) follows,

E{N(t)} =
∑
k≥0

E{Nk(t)} (8)

Var(N(t)) =
∑
k≥0

(
1 +

2

E{Nk(t)}

∞∑
j=k+1

E{Nj(t)}
)
·

·Var(Nk(t)) (9)

where E{Nk(t)} and Var(Nk(t)) are given by Eq. (5) and
Eq. (6) of Corollary 4.3.

The results above provide the moments of MHPP with no ob-
served history (unconditional moments), i.e., tc = 0. Hence,
they cannot be directly leveraged to tackle real-world cas-
cades popularity prediction problems. For this purpose, one
would need to utilize moments that are conditioned on the
cascades’ past history instead (tc > 0). The final, upcom-
ing result of this work provides precisely such conditional
means and variances and hinges on the next lemma.
Lemma 4.6. Consider an MHPP N(t) with conditional
intensity as given in Eq. (2). Assume that we have observed
the process’ history Htc = {(ti,mi)}i:ti≤tc up to some
censoring time tc > 0 and that it consists of N(tc) ≥
0 events. Then, the conditional count N(t|Htc) for t ≥
tc can be decomposed as N(t|Htc) = N(tc) + N̂(∆t),
where ∆t ≜ t − tc ≥ 0 and N̂(∆t) is the count of a new
MHPP, which (i) starts at time tc (∆t = 0) with N̂(tc) = 0,
(ii) features the same excitation function ϕm(·) and mark
distribution g(·) as the original process N(t), and (iii) has
a base intensity b̂(·) given as

b̂(∆t) ≜ b(∆t+ tc) +
∑

(ti,mi)∈Htc

ϕmi
(∆t+ tc − ti) (10)

This Lemma, while seemingly straight-forward, to the best
of our acknowledge, has not been adopted by existing works

for finding conditional moments. Works like (O’Brien et al.,
2020; Haimovich et al., 2020) could have used this Lemma
to directly determine the conditional count moments for
MHPPs, instead of following a long and unnecessary detour.

Theorem 4.7 (Conditional Mean & Variance of MHPP
Event Counts). Consider the setting of Lemma 4.6, and
let ∆t = t − tc. Then, for t ≥ tc, E{N(t|Htc)} =

N(tc)+E
{
N̂(∆t)

}
and Var(N(t|Htc)) = Var

(
N̂(∆t)

)
.

Note that E
{
N̂(∆t)

}
and Var

(
N̂(∆t)

)
can be computed

based on the results of Theorem 4.5, since N̂(∆t) is an
unconditional MHPP.

Figure 1 demonstrates that the expressions we derived for
the conditional mean count and its associated variance in
Theorem 4.7 strongly match the results obtained via time-
consuming simulations.

Finally, let us remark that, even though all of our theoretical
results presented in here pertain to the marked case, the
corresponding results for unmarked Hawkes processes stem
as special cases by using a Dirac delta distribution located
at a fixed mark value in place of g(·).

5. CASPER
Motivated by the challenges faced by existing Hawkes pro-
cess based generative models and by taking advantage of
the closed-form expressions presented in Theorem 4.7, we
propose Cascade Anytime Size Prediction via self-Exciting
Regression model (CASPER), a MHPP-based predictive
model for anytime popularity prediction. A notable char-
acteristic of this model is that it can provide useful count
predictions of an unfolding cascade based on its observed
history without the need of assuming access to additional,
fully-observed cascades generated by the same process.
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Formulation. Consider a cascade that we have observed
up until time tc, during which N(tc) events have occurred,
i.e., Htc = {(ti,mi)}i=1,...,N(tc). To predict its future size
(total count) at time t > tc, we start by assuming that its un-
derlying diffusion process is an MHPP with ground intensity
function λ∗(·;θ) and with unpredictable mark distribution
g(·). The intensity function’s parameters θ constitute the
model’s parameters and their optimal values are determined
via training as discussed next. The mark distribution g(·)
is assumed to be known or empirically estimated from the
observed mark values {mi}i=1,...,N(tc).

Learning. Let N(t;θ) denote the counting process in
question and consider the event times ti < tj ≤ tc. Then,
E{N(tj |Hti ;θ)}, the average event count at time tj con-
ditioned on Hti is the quantity generally adopted as the
predicted popularity at time tj given observations up to time
ti. Given that there are j events by time tj , we define the
squared loss ℓij(θ) for observations up to time ti as

ℓij(θ) ≜ (E{N(tj |Hti ;θ)} − j)
2 (11)

By evaluating such loss terms for each ordered pair of ob-
served event times (ti, tj), CASPER’s overall loss function
takes the form

L(θ|Htc) ≜
1

|S(tc)|
∑∑

(i,j)∈S(tc)

ℓij(θ) (12)

where S(tc) ≜ {(i, j) : 0 < ti < tj ≤ tc} and |S(tc)| is its
cardinality. Note that, S(tc) consists of n(n− 1)/2 terms
for n ≜ N(tc) observed events.

The optimal model parameters θ∗ are thus found by min-
imizing the above overall loss function, that is, θ∗ ∈
arg min

θ∈Θ
L(θ|Htc), where Θ is the feasible parameter set.

Prediction. Finally, a cascade’s size at time t > tc, given
observations up to time tc, is predicted as

Npred(t) ≜ E{N(t|Htc ;θ
∗)} (13)

If Ntrue(t) is the true cascade size at time t, then the
Chebyshev-based 100(1− α)% prediction intervals can be
established as

|Ntrue(t)−Npred(t)| <
√

Var(N(t|Htc ;θ
∗))

α
(14)

These bounds are unsurprisingly very loose (as also wit-
nessed in Figure 1) and, hence, are indicative, but of limited
practical use. Finding tighter bounds could be a subject of
future work.

Runtime Considerations. For n observed events, the loss
function in Eq. (12) consists of O(n2) terms for large n.

When n is large, only a subset of them can be used to
speed up training, without necessarily sacrificing prediction
accuracy. Also, runtimes typically depend on the particular
intensity functions employed. For reference, regarding the
tweet prediction setup described in Section 6.1, CASPER’s
training2 takes about 0.1207 seconds per (ti, tj) pair on a
Windows 10 machine with an Intel® Core™ i7− 4720HQ
CPU 2.60GHz processor and 16.0 GB of RAM.

6. Tweet Popularity Prediction
In this section, we employ CASPER for tweet popularity
prediction tasks and report its prediction performances on
both synthetic and real-world Twitter data.

6.1. CASPER Specifics

Here, we briefly describe the specific setting for CASPER
that we used in order to conduct all of our experiments. For
i ≥ 0, let ti be the ith retweet time and let the associated
mark mi reflect the number of followers that the retweet’s
user has. Then, we choose the following conditional inten-
sity for our modeling purposes:

λ∗(t,m;α, β, κ) =

(
α
∑
i:ti<t

mκ
i e

−β(t−ti)

)
g(m) (15)

where α > 0 can be regarded as the “quality” of the tweet
and β > 0 describes how fast a retweet’s influence on other
users fades away with time. The mark value mi is inter-
preted as the strength of a user’s influence. This strength is
regulated by a parameter 0 < κ < 1; the larger the value of
κ, the more influence users with large number of followers
exert on the rest of the social network. Moreover, the dis-
crete mark distribution g(m) is empirically estimated via a
histogram of the observed mark values.

Using the results of Theorem 4.7, we obtain the following
conditional mean count expression:

E{N(tc +∆t|Htc)} = N(tc)+

+

ηβ∆t, γ = 1
η

1− γ

(
1− e−β(1−γ)∆t

)
, γ ̸= 1

(16)

where η ≜ α
β

∑
ti≤tc

mκ
i e

−β(tc−ti) and γ ≜
α
β

∑
m mκg(m). Numerical details for finding this

conditional mean and the associated conditional variance
are provided in Appendix B.1.

The optimal parameter values θ∗ ≜ {α, β, κ} are found
by minimizing the overall loss function of (12) using a
projected gradient descent algorithm, which is detailed in
Appendix B.2.

2Python 3.9.12 code for CASPER can be found at https:
//github.com/xizhang-cc/casper.

https://github.com/xizhang-cc/casper
https://github.com/xizhang-cc/casper
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Table 1. The median and mean of prediction APEs% for different learning approaches on a synthetic dataset. Here, GT stands for the
ground truth models, i.e., the models used to generated the synthetic data, MSE represents models trained by minimizing the overall loss
of Eq. (12) – CASPER’s approach – and, finally, MLL stands for generative models trained by maximizing their likelihood.

MEDIAN APES% MEAN APES%

∆t
tc 2 4 6 2 4 6

GT MSE MLL GT MSE MLL GT MSE MLL GT MSE MLL GT MSE MLL GT MSE MLL

5 43.63 53.36 68.41 30.76 30.54 35.05 17.18 16.14 20.32 46.99 55.31 67.04 35.08 36.50 41.50 22.30 22.99 27.72
10 58.24 67.02 79.35 47.68 41.70 60.78 27.56 23.68 38.30 66.25 75.16 95.06 54.55 55.67 79.41 35.46 36.92 53.58
15 65.10 73.06 83.15 57.04 48.18 83.22 33.76 27.61 54.78 78.12 91.41 119.3 66.40 70.90 117.3 43.19 47.86 79.63
20 68.74 75.90 84.81 61.68 51.74 110.6 37.08 29.80 69.34 84.95 104.9 140.3 73.24 83.54 153.2 47.65 56.95 104.5

The learned γ parameter constitutes the estimated branching
factor of the cascade. Note that a cascade will converge
for γ < 1 and diverge otherwise. All cascades that we will
consider will be of the former case.

6.2. Evaluation Metric

Following the prior works of Zhao et al. (2015); Mishra et al.
(2016); Chen & Tan (2018), we use the Absolute Percentage
Error (APE) as a form of prediction performance measure
for each cascade. Specifically, for a given cascade w and a
prediction time t, its APE metric is defined as,

APEw(t) =

∣∣Nw
pred(t)−Nw

true(t)
∣∣

Nw
true(t)

(17)

Smaller APE values reflect better prediction performances.

6.3. Synthetic Data

To compare our predictive learning approach (optimized
to minimize the loss function in (12)) vis-à-vis the gener-
ative learning approach (optimized to maximize the likeli-
hood function), we generate a synthetic dataset with the
same intensity function as the one we assumed for the
retweeting process in Eq. (15) with two different setups
for the parameter values, mark distribution, and the fol-
lower number m0 of the user that tweets to initiate the
cascade: (i) θ1 = {α = 0.018, β = 1.8, κ = 0.54},
with g(·) being a discrete uniform distribution over the
set {1, . . . , 10, 000} and m0 = 9, 000 followers; and (ii)
θ2 = {α = 1.7, β = 2.4, κ = 0.24}, with g(·) being a con-
tinuous Pareto distribution with shape parameter c = 1.016
and m0 = 100 followers. Finally, we used Ogata’s thinning
algorithm (Ogata, 1981) to generate 10, 000 cascades per
setup.

Table 1 presents the median and mean values of APEs%
across 20, 000 cascades with varying (tc,∆t) for the two
training approaches. For reference, the prediction perfor-
mance of the ground truth models, i.e., the models used to
generate the cascades, is also reported. First of all, with

consistently lower mean and median APE values, it is clear
that CASPER’s predictive learning approach (MSE) outper-
forms the generative learning approaches (MLL) in every
scenario, that is, for short- and long-term predictions with
either short or long censoring times. Secondly, CASPER’s
predictive performance (MSE) is highly competitive to the
one of ground truth models (GT). It is worth noting that,
except for the case when tc = 2, for which the censoring
time is very short (a challenging learning scenario), in both
tc = 4 and tc = 6 cases, the CASPER-trained models
report lower median APEs% values than the ground truth
models.

6.4. Real-World Twitter Data

Here, we apply CASPER to real-world Twitter data for
tweet popularity prediction and compare its prediction per-
formance with existing point process based popularity mod-
els. Results from an additional comparison to CasFlow (Xu
et al., 2021), a state-of-the-art deep learning approach, are
presented in Appendix C.

6.4.1. SEISMIC DATA

Released by Zhao et al. (2015), SEISMIC is a widely
adopted Twitter dataset for social media popularity pre-
diction tasks (Mishra et al., 2016; Chen & Tan, 2018; Tan
& Chen, 2021). It contains 166, 076 tweets, all of which
have at least 50 retweets. For each tweet and corresponding
retweets, all their posting times and relevant users’ follower
numbers are included. Following the setup of Zhao et al.
(2015), we split the data into a training set with 71, 815
tweets and a test set with 94, 254 tweets. We then randomly
select 40, 000 cascades from the test set to conduct our ex-
periments. Notice that, unlike TiDeH and EB-MaSEPTide,
CASPER does not need to utilize multiple cascades to learn
to predict the future event count of a given cascade.
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(a) Short-term prediction with ∆t = 4 hours (b) Long-term prediction with ∆t = 4 days

Figure 2. Boxplots of short- and long-term prediction APE values between our and comparison models on SEISMIC data, with various
censoring times. The Horizontal bars within the boxes indicate the median values, and the white triangles indicate the mean values. Some
triangle indicated means are omitted as their values exceeds the y-axis limits in the plots

6.4.2. COMPARISON ALGORITHMS

We consider three state-of-the-arts point process based mod-
els for comparison.

TiDeH (Kobayashi & Lambiotte, 2016) models the retweet-
ing processes as Hawkes processes with consideration of
the circadian nature of users activities. In model fitting,
three shape parameters are optimized using an extra training
set consisting of 100 fully observed cascades. The infec-
tious rate of the target cascade is then estimated by the
maximum likelihood method based on the observed events.
A cascade’s future popularity is calculated from the esti-
mated retweet rate, which is evaluated by numerically solv-
ing TiDeH’s self-consistent equation. As discussed in the
TiDeH paper, this model works best with long observation
periods, when there exist enough observed events (at least
2000) for model training.

MaSEPTiDE (Chen & Tan, 2018) is a Hawkes process
based prediction model with time-varying background in-
tensity, whose model parameters are learned generatively
by maximizing the likelihood of the observed events. This
model is the most similar to ours in term of amount of in-
formation used for model training, as it too does not need
additional fully-observed cascades for model training. To
predict, the future conditional mean intensity is estimated by
numerically solving an integral equation and using a flexible
parametric function.

EB-MaSEPTiDE (Tan & Chen, 2021) extends MaSEP-
TiDE by adopting an empirical Bayes approach to estimate
MaSEPTiDE’s parameters based on the observed events of
the targeted tweet, but also on an extra set of fully-observed
cascades. The fitted models were found to perform bet-
ter in popularity prediction tasks, especially when making
early-stage predictions (when only few events have been
observed).

6.4.3. PREDICTION PERFORMANCE

The prediction performances of CASPER and the com-
parison models on the SEISMIC data are reported in Fig-
ure 2. The APEs across cascades for short-term prediction
(∆t = 4 hours) for various censoring times are presented in
Figure 2a, while for long-term prediction (∆t = 4 days) are
presented in Figure 2b. Overall, it is clear that CASPER con-
sistently exhibits competitive, if not the best performance
among all models.

A closer look at the comparisons between our model and
MaSEPTiDE, the most similar approach to ours in terms
of training information amount being used, shows that our
model clearly outperform MaSEPTiDE across all scenarios.

Now, let’s examine prediction performance per scenario,
with special focus on comparisons with TiDeH in cases with
relatively long observation periods (tc = 2h, 3h, 4h) and on
comparisons with EB-MaSEPTiDE in cases with shorter
observation periods (tc = 10mins, 30mins, 1h).

First, short-term prediction with long observation period
is a much easier task compared to other scenarios, and as
expected, all models report similar prediction performances
as shown in the right side of Figure 2a. Secondly, regard-
ing long-term prediction with long observation period, the
right side of Figure 2b indicates that the performances of
CASPER and EB-MaSEPTiDE are quite similar: CASPER
exhibits a slightly lower median and EB-MaSEPTiDE shows
a slightly lower mean. Rather surprisingly, TiDeH exhibits
large mean APE values, although it has the lowest median
value for tc = 4 hours.

Finally, let us compare model performance for early stage
predictions – the most interesting and, yet, the most chal-
lenging task in real-world settings. As very scarce infor-
mation is available in terms of the observed history of the
target cascade, EB-MaSEPTiDE resorts to using additional
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fully-observed cascades for better model training. As shown
on the left side of both Figure 2a and Figure 2b, compared
to EB-MaSEPTiDE, CASPER consistently reports higher
mean APE values, but lower median APE values for both
short- and long-term predictions. This indicates that EB-
MaSEPTiDE is more stable at providing relatively good
estimations, while CASPER, although having a larger vari-
ance of prediction accuracy across cascades, offers better
predictions for the majority of the cascades under consider-
ation.

7. Conclusion
In this paper, by viewing a Hawkes process as an equiva-
lent branching process, we present novel theoretical results
that culminate in closed-form expressions for the condi-
tional mean and variance for counting processes of gen-
eral MHPPs. Secondly, by leveraging these results and
motivated by the limitations of current Hawkes process
based generative approaches, we introduced CASPER, a
MHPP based predictive model for anytime popularity pre-
diction. We showcased experiment results on synthetic data
to demonstrate forecasting improvements gained by such a
predictive approach. Moreover, experimental results with
real-world (Twitter) data showcase that CASPER appre-
ciably improves upon prior works in terms of prediction
accuracy, especially for early-stage prediction.

Possible directions of extending this work include finding
tighter prediction bounds and employing other commonly-
used excitation functions aside from the exponential func-
tion. In this work, we used the latter excitation function
due to its mathematical simplicity and the fact that it allows
for a simple expression of the conditional count moments.
Foreseeably, one could, derive workable expressions for
other excitation functions by taking advantage of prior work
on sums of independent random variables, such as the one
of Nadarajah (2008).
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A. Proofs
Occasionally, in the proofs that are presented here, we will make use of the following well-known facts regarding a Poisson
process with intensity function λ(t) : R+ → R+:

F.1 If N(t) is the count of events generated by this process in [0, t], then N(t) ∼ Poisson
(∫ t

τ=0
λ(τ)dτ

)
.

F.2 For some T > 0, given that N(T ) = n ≥ 1, the occurrence times {ti}ni=1 of these n events are all i.i.d. distributed
according to the PDF f(t) ≜ λ(t)∫ T

τ=0
λ(τ)dτ

with support t ∈ [0, T ].

Notice that, we derive and present our results for continuous mark distributions that have a PDF g(m). Nevertheless, results
for discrete mark distributions can easily be derived by following the general approaches presented in this work.

A.1. Proof of Proposition 4.1

Proof. We show this result via induction. The base case proceeds as follows: the 0th-generation events, i.e., the immigrants,
arrive as a Poisson process with intensity b(·). By virtue of Fact F.2, consider a total Z0 immigrants on R+, their occurrence
times are i.i.d. with PDF f0(t) ≜

b(t)∫ ∞
τ=0

b(τ)dτ
= 1

η (b ∗ ξ
∗0)(t) for t ≥ 0, no matter what their observed total count Z0 is.

Now, assume that, for k ≥ 1, the occurrence times of the Zk−1 number of (k − 1)th-generation events are i.i.d. distributed
with PDF fk−1(t) =

1
η (b ∗ ξ

∗(k−1))(t). Each of these (k − 1)th-generation events will produce kth-generation offspring
events, which will be mutually independent with respect to each other. Let us consider a given (k − 1)th-generation event
(p,m) with occurrence time p and associated mark m. Then, its offspring will stem from a Poisson process with intensity
ϕm(t− p). Fact F.2 implies that the occurrence times of the offspring events will be i.i.d. and distributed with PDF

fk(t|(p,m)) ≜
ϕm(t− p)∫∞

τ=p
ϕm(τ − p)dτ

=
1

γm
ϕm(t− p) t ≥ p (18)

Then, the PDF of the unconditional distribution of kth-generation occurrence times can be computed as

fk(t) =

∫ t

p=0

∫
m∈M

fk(t|(p,m))fk−1(p,m)dmdp (19)

With unpredictable marks, we have that the joint distribution of occurrence times and associated marks follows the PDF
fk−1(p,m) = fk−1(p)g(m). Using this fact and defining ξ(t) ≜ Em

{
ϕm(t)
γm

}
, (19) becomes

(19) ⇒ fk(t) =

∫ t

p=0

[∫
m∈M

ϕ(t− p)

γm
g(m)dm

]
fk−1(p)dp =

∫ t

p=0

ξ(t− p)fk−1(p)dp

= (ξ ∗ fk−1)(t) =
1

η
(b ∗ ξ∗k)(t) (3)

for t ≥ 0.

A.2. Proof of Theorem 4.2

Proof. Define Zk ≜ Nk(∞), i.e., Zk is the total count of kth generation events. Then, by Fact F.1, Z0 ∼ Poisson(η) and,
therefore, Z0’s PGF is given as G0(w) ≜ GZ0

(w) = eη(w−1). Next, for k ≥ 1, given that Zk−1 = zk−1, consider any
(k− 1)th-generation event (tk−1

i ,mk−1
i ), where i = 1, . . . , zk−1, and denote by Zk,i the count of kth-generation offspring it

gives rise to. Then, again by Fact F.1, Zk,i|mk−1
i = m ∼ Poisson(γm) for any k ≥ 1 and, therefore,

P{Zk,i = x} =

∫
m∈M

P
{
Zk,i = x|mk−1

i = m
}
g(m)dm = Em

{
(γm)xe−γm

x!

}
(20)
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for any k ≥ 1 and i = 1, . . . , zk−1. Thus, Zk,i’s PGF is computed as

GZk,i
(w) =

∑
x≥0

P{Zk,i = x}wx (20)
=
∑
x≥0

wx E
{
(γm)xe−γm

x!

}
=

= E

e−γm

∑
x≥0

(wγm)x

x!

 = E
{
eγm(w−1)

}
(21)

for any k ≥ 1 and i = 1, . . . , zk−1. Let G(w) ≜ GZk,i
(w). Since Zℓ =

∑Zℓ−1

i=1 Zℓ,i for ℓ ≥ 1, a standard result in the
theory of branching processes (e.g., see page 5 of (Harris, 1964)) implies that GZℓ

(w) = GZℓ−1
(GZℓ,i

(w)) = GZℓ−1
(G(w))

for ℓ ≥ 1. Hence, by straightforward induction, one obtains the PGF of the kth-generation event count Zk as

GZk
(w) = G0

(
G◦k(w)

)
k ≥ 1 (22)

where G◦k(·) is the k-fold composition of G(·) with itself.

Finally, notice that Nk(t) =
∑Zk

i=1 u(t− tki ). Per our discussion in the proof of Proposition 4.1, given Zk = zk, the random
variables {tki }

zk
i=1 are i.i.d. distributed. If Gk(·) is their common PGF, then

GNk(t)(w) = GZk
(Gk(w)) k ≥ 1 (23)

Furthermore, the random variables {u(t−tki )}
zk
i=1 are i.i.d. distributed as Bernoulli(Fk(t)), where Fk(t) is the tki ’s common

CDF and, therefore, Gk(w) ≜ 1 + Fk(t)(w − 1) is their common PGF. Combining (22) and (23) yields the final result of
(4).

A.3. Proof of Corollary 4.3

Proof. For k ≥ 0, given the PGF of Nk(t), one can derive its mean and variance through a well-known result about PGFs
(e.g., see page 6 of (Harris, 1964)), which states that

E{Nk(t)} = lim
w↑1

G′
Nk(t)

(w) (24)

Var(Nk(t)) = lim
w↑1

G′′
Nk(t)

(w) + E{Nk(t)} − (E{Nk(t)})2 (25)

where G′
Nk(t)

(·) and G′′
Nk(t)

(·) are the first- and second-order derivatives of GNk(t)(·), whose exact form is provided in (4)
of Theorem 4.2. This form entails the PGFs G0(·), G(·) and Gk(·), which are also defined in Theorem 4.2. In what follows,
we will rely on the following facts: G′

o(1) = η, G′′
o(1) = η2, G(1) = 1, G′(1) = γ ≜ E{γm}, G′′(1) = ν ≜ E

{
γ2
m

}
,

Gk(1) = 1, G′
k(1) = Fk(t) and G′′

k(1) = 0.

Derivation of G′
Nk(t)

(w) and E{Nk(t)}. For k ≥ 1, the derivative of G′
Nk(t)

(w) is computed as

(4) ⇒ G′
Nk(t)

(w) = G′
0

(
G◦k(Gk(w))

) dG◦k(Gk(w))

dw
(26a)

and, hence,

(26a)
w=1⇒ G′

Nk(t)
(1) = η

dG◦k(Gk(w))

dw

∣∣∣∣
w=1

(26b)

By applying the differentiation chain rule, we obtain

dG◦k(Gk(w))

dw
= G′

k(w)

k∏
i=1

G′
(
G◦(k−i)(Gk(w))

)
(27a)

with the convention that G◦0(u) = u. This leads to

(27a) ⇒ dG◦k(Gk(w))

dw

∣∣∣∣
w=1

= Fk(t)γ
k (27b)
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for k ≥ 1. Combining the results obtained so far yields

(26b)
(27b)⇒ G′

Nk(t)
(1) = ηFk(t)γ

k (28)

which implies

(24)
(28)⇒ E{Nk(t)} = ηFk(t)γ

k (5)

Derivation of G′′
Nk(t)

(w) and Var(Nk(t)). For k ≥ 1, the second order derivative of GNk(t)(w) is computed via the chain
rule as

(4) ⇒ G′′
Nk(t)

(w) = G′′
0

(
G◦k(Gk(w))

) [dG◦k(Gk(w))

dw

]2
+

+G′
0

(
G◦k(Gk(w))

) d2G◦k(Gk(w))

dwk
(29a)

and, thus,

(29a)
w=1,(27b)⇒ G′′

Nk(t)
(1) = η2

[
Fk(t)γ

k
]2

+ η
d2G◦k(Gk(w))

dw2

∣∣∣∣
w=1

(29b)

Also, after applying once again the chain rule and performing some algebraic manipulations, one obtains that

(27a) ⇒ d2G◦k(Gk(w))

dw2
=

dG◦k(Gk(w))

dw
·

·

[
G′′

k(w)

G′
k(w)

+

k∑
i=1

G′′(G◦(k−i)(Gk(w))
)

G′
(
G◦(k−i)(Gk(w))

) dG◦(k−i)(Gk(w))

dw

]
(30a)

and, thus,

(30a)
(27b)⇒ d2G◦k(Gk(w))

dw2

∣∣∣∣
w=1

= νFk(t)γ
k−1

k∑
i=1

dG◦(k−i)(Gk(w))

dw

∣∣∣∣
w=1

(30b)

Finally, once again, using the chain rule, one obtains that

dG◦(k−i)(Gk(w))

dw
= G′

k(w)

k−i∏
j=1

G′
(
G◦(k−i−j)(Gk(w))

)
1 ≤ i ≤ k (31a)

with the convention that
∏0

j=1 (·) = 1. This yields

(31a) ⇒ dG◦(k−i)(Gk(w))

dw

∣∣∣∣
w=1

= Fk(t)γ
k−i 1 ≤ i ≤ k (31b)

Putting everything together yields

(29b)
(30b),(31b)⇒ G′′

Nk(t)
(1) =

[
ηFk(t)γ

k
]2

+ ηνF 2
k (t)γ

k−1
k−1∑
i=0

γi =

=

1 +
ν

ηγ2

k−1∑
j=0

1

γj

 (E{Nk(t)})2 (32)

which finally yields

Var(Nk(t)) = E{Nk(t)}+ (E{Nk(t)})2
(

ν

ηγ2

) k−1∑
j=0

1

γj
(6)
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Proof. The results are derived by taking the first- and second-order derivative of GNk(t)(w) at 1−. Let’s start by G(k)(w), the
k-fold composition of G(w). Define γ ≜ G′(1) =

∫
m
γmg(m)dm and ν ≜ G′′(1) =

∫
m
(γm)

2
g(m)dm, by composition

rules, we have

G′
(k)(1) = γk and G′′

(k)(1) = νγk−1
k−1∑
j=0

γj

It is also trivial to show G′
0(1) = η, and G′′

0(1) = η2 for G0(w), and G′
δk(t)

(1) = Fk(t), and G′′
δk(t)

(1) = 0 for Gδk(t)(w).
Hence,

G′
Nk(t)

(1) = G′
0(1)G

′
(k)(1)G

′
δtk
(s) = ηγkFk(t)

and

G′′
Nk(t)

(1) =G′′
0(1)

(
G′

(k)(1)G
′
δk(t)

(1)
)2

+G′
0(1)G

′′
(k)(1)

(
G′

δk(t)
(1)
)2

+G′
0(1)G

′
(k)(1)G

′′
δk(t)

(1)

=η2
(
γkFk(t)

)2
+ ηνγk−1

k−1∑
j=0

γj (Fk(t))
2

And the mean and variance are derived by E{Nk(t)} = G′
Nk(t)

(1) and Var(Nk(t)) = G′′
Nk(t)

(1) + G′
Nk(t)

(1) −(
G′

Nk(t)
(1)
)2

.

A.4. Proof of Proposition 4.4

Proof. For some p ≥ 0, consider the ith event of the pth generation (tpi ,m
p
i ) of the process and let Ñi(t) indicate the number

of offspring this event causes and that belong to the qth generation of the process by time t ≥ tpi , where q > p. Due to the
particular generative structure of an MHPP, one can easily argue that Ñi(t) has the same distribution as the event count
Nq−p(t) of the (q − p)th generation at time t of a similar process, which has been started at time tpi instead of at time t = 0
and that has a base intensity of δ(·) instead of b(·). This is the key observation for this result.

Moreover, let fp(·|tpi ≤ t) be the conditional PDF of tpi given that its associated event occurs before time t. Then,
fp(x|tpi ≤ t) =

fp(x)
(u∗fp)(t) for 0 ≤ x ≤ t (and equals 0, if otherwise), where fp(·) is tpi ’s unconditional PDF, which, Then,

we have that

E
{
Ñi(t)

}
= E{Nq−p(t− tpi )} = Etpi

{E{Nq−p(t− tpi )| t
p
i }} =

∫
R
E{Nq−p(t− x)| tpi = x}fp(x|tpi ≤ t)dx

(3)
=

=
1

(u ∗ fp)(t)

∫
R
E{Nq−p(t− x)| tpi = x}fp(x)dx (33)

By virtue of Proposition 4.1, fp(·) is given by (3) in the main paper as

fp(x)
(3)
=

1

η
(b ∗ ξ∗p)(x) x ≥ 0 (34)

Furthermore, based on our key observation and (5) of Corollary 4.3, E{Nq−p(t− x)| tpi = x} is given as

E{Nq−p(t− x)| tpi = x} (5)
= (u ∗ ζ∗(q−p))(t− x) t ≥ x > 0 (35)

As a reminder, ζ(·) ≜ γξ(·). Thence, we obtain

(33)
(34),(35)⇒ E

{
Ñi(t)

}
=

(u ∗ b ∗ ξ∗q)(t)
(u ∗ b ∗ ξ∗p)(t)

=
E{Nq(t)}
E{Np(t)}

(36)

Based on our earlier statements, it holds that Nq(t) =
∑Np(t)

i=1 Ñi(t) and, therefore,

E{Nq(t)|Np(t)} = Np(t)E
{
Ñi(t)

}
(36)
= Np(t)

E{Nq(t)}
E{Np(t)}

(37)
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Since one has that

E{Nq(t)Np(t)} = E{Nq(t)|Np(t)}E{Np(t)} (38)
and

E
{
N2

p (t)
}
= Var(Np(t)) + (E{Np(t)})2 (39)

we readily obtain that

Cov(Np(t), Nq(t))
(37),(38),(39)

=
E{Nq(t)}
E{Np(t)}

Var(Np(t)) (40)

which holds for 0 ≤ p ≤ q. Interchanging the roles of p and q in (40) yields (7) of Proposition 4.4.

A.5. Proof of Theorem 4.5

Proof. In light of Proposition 4.4, the proof of this result is straightforward. Obviously, N(t) =
∑

p≥0 Np(t), where Np(t)

is the count of pth-generation events up to time t. Taking expectations yields (8). Next, based on the same fact, we have that

Var(N(t)) =Cov

∑
p≥0

Np(t),
∑
q≥0

Nq(t)

 =
∑
p≥0

∑
q≥0

Cov(Np(t), Nq(t)) (41)

By virtue of (7) of Proposition 4.4, after some manipulations of the sums involved in (41) and noting that Cov(·, ·) ≡ Var(·),
one arrives at the expression for the variance of N(t) given in (9).

A.6. Proof of Lemma 4.6

Proof. Let us assume an MHPP with ground intensity λ(t|Ht−) ≡ λ∗(t) as given by

λ(t|Ht−) = b(t) +
∑
i:ti<t

ϕmi
(t− ti) (1)

and assume that we have observed the process’ history Htc = {(ti,mi)}i:ti≤tc up to some censoring time tc > 0, which
consists of N(tc) events. Then, for t > tc we can express (1) as

λ(t|Ht−) = b(t) +
∑

i:ti≤tc

ϕmi
(t− ti)︸ ︷︷ ︸

≡λ(t|Htc )

+
∑

i:tc<ti<t

ϕmi
(t− ti) (42)

From this decomposition, if we concern ourselves only with events occurring past tc, having observed all N(tc) prior events
in [0, tc], we can view the relevant generating process as another MHPP, which starts at time tc and features a conditional
event time intensity given by (42). Note that, under these circumstances, λ(t|Ht−c

) is a non-stochastic intensity and serves
as the base intensity b̂(·) of the newly-defined MHPP. In particular, since the newly-defined process is active for t > tc,
let ∆t ≜ t − tc; then, b̂(∆t) = λ(∆t + tc|Htc) and is given by (10). Furthermore, the latter process features the same
excitation function ϕm(·) as the original process. Also, it is easy to discern that, if the original process features independent
marks, then so does the newly-defined one; both processes are endowed with the same mark distribution g(·). Finally, it is
obvious that the event count N(t) = N(∆t+ tc) of the original process is going to be given as the sum of N(tc), plus the
event count N̂(∆t) of the newly-defined process, i.e., N(∆t+ tc) = N(tc) + N̂(∆t).
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B. Tweet Popularity Prediction with CASPER
B.1. Calculating Conditional Mean and Variance

Here we present the numerical details involved in getting the conditional mean count shown in Eq. (16) for MHPP with
conditional intensity Eq. (15), i.e.

λ∗(t,m) = α
∑
i:ti<t

mκ
i e

−β(t−ti)g(m) (15)

For deriving the conditional moments, we first find the new base function b̂(·) following Eq. (10) as shown in Lemma 4.6,

b̂(τ) =
∑
ti≤tc

αmκ
i e

−β(τ+tc−ti) (43)

Now, following Theorem 4.7, we calculate the following terms

η =

∫ ∞

s=0

b̂(s)ds =
α

β

∑
ti≤tc

mκ
i e

−β(tc−ti) (44)

γm =

∫ ∞

s=0

αmκe−βsds =
αmκ

β
(45)

γ =
∑
m

γmg(m) =
α

β

∑
m

mκg(m) =
αf1(κ)

β
, where f1(κ) ≜

∑
m

mκg(m) (46)

ν =
∑
m

γ2
mg(m) =

α2

β2

∑
m

m2κg(m) =
α2f2(κ)

β2
, where f2(κ) ≜

∑
m

m2κg(m) (47)

And the ζ function,

ζ(τ) = γ
∑

m
1

γm
ϕm(τ)g(m) = γβ

∑
m

e−βτg(m) = γβe−βτ (48)

For mathematical simplicity, we do not explicitly show α and instead refer to its relation with γ, i.e. our parameter set id
θ = {γ, β, κ}. The α value can be retrieved by α = γβ/f1(κ). Accordingly,

η =
γ

f1(κ)

∑
ti≤tc

mκ
i e

−β(tc−ti) (49)

ν =
γ2f2(κ)

f2
1 (κ)

(50)

and

b̂(τ) =
γβ

f1(κ)

∑
ti≤tc

mκ
i e

−β(τ+tc−ti) (51)

The k-fold convolution of the function ζ follows

ζ(∗k)(τ) =
(γβ)kτk−1

(k − 1)!
e−βτ (52)

and (
u ∗ ζ(∗k)

)
(τ) = γk

1−
k−1∑
j=0

(βτ)j

j!
e−βτ

 (53)
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Also,

b̂(τ) =
γβ

f1(κ)

∑
ti≤tc

mκ
i e

−β(τ+tc−ti) =
1

f1(κ)

∑
ti≤tc

mκ
i ζ(τ + tc − ti)u(τ) (54)

hence (
b̂ ∗ ζ∗k

)
(τ) =

1

f1(κ)

∑
ti≤tc

mκ
i

(
ζ∗k(τ) ∗ ζ(τ + tc − ti)u(τ)

)
(55)

=
1

f1(κ)

∑
ti≤tc

mκ
i e

−β(tc−ti)ζ∗(k+1)(τ) (56)

Now, combining all of the above expressions to derive the conditional mean count,

E
{
N̂k(τ)

}
=
(
u ∗ b̂ ∗ ζ∗k

)
(τ) (57)

=
1

f1(κ)

∑
ti≤tc

mκ
i e

−β(tc−ti)
(
u ∗ ζ∗(k+1)

)
(τ) (58)

=
1

f1(κ)

∑
ti≤tc

mκ
i e

−β(tc−ti)γk+1

1−
k∑

j=0

(βτ)j

j!
e−βτ

 (59)

=γkη

1−
k∑

j=0

(βτ)j

j!
e−βτ

 (60)

The variance Var
(
N̂k(τ)

)
directly follows Eq. (6),

Var
(
N̂k(τ)

)
= E

{
N̂k(τ)

}
+
(
E
{
N̂k(τ)

})2( ν

ηγ2

) k−1∑
j=0

1

γj

For the exponential triggering function, we can obtain a closed form solution for the mean as,

∞∑
k=1

ζ(∗k)(τ) = γβe−β(1−γ)τ (61)

(
u ∗

∞∑
k=1

ζ(∗k)

)
(τ) =

γ

1− γ

(
1− e−β(1−γ)τ

)
(62)

And thus, for γ ̸= 1,

E
{
N̂(τ)

}
=

(
u ∗ b̂ ∗

∞∑
k=0

ζ(∗k)

)
(τ)

=
1

f1(κ)

∑
ti≤tc

mκ
i e

−β(tc−ti)

(
u ∗

∞∑
k=1

ζ∗k(τ)

)

=
η

1− γ

(
1− e−β(1−γ)τ

)

When γ = 1, it can be easily shown that E
{
N̂(τ)

}
= ηβτ , and therefore, we obtain Eq. (16).
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For the variance, unfortunately, we cannot find a closed form solution. Hence, we estimate the variance by truncating the
infinite sum,

Var
(
N̂(τ)

)
≈

Kmax∑
k=0

1 +
2

E
{
N̂k(τ)

}
E
{
N̂(τ)

}
−

k∑
j=0

E
{
N̂j(t)

} ·Var
(
N̂k(τ)

)
(63)

B.2. Training Details

As noted in the paper, our model is optimized by minimizing the proposed objective function Eq. (12) using a projected
gradient descent algorithm. In this section, we provide the objective function for the retweeting process, and obtain its
gradients with respect to the model parameters.

Let S(tc) ≜ i, j : 0 < ti < tj ≤ tc and n ≜ N(tc)

L(θ|Htc) =
2

n(n+ 1)

∑∑
(i,j)∈S(tc)

(
E
{
Ñ(tj |Hti)

}
−N(tj)

)2

=
2

n(n+ 1)

∑∑
(i,j)∈S(tc)

(pij(γ, β)qi(κ, β)−N(tj))
2 (64)

where,

pij(γ, β) =

(
γ

1− γ

(
1− e−β(1−γ)(tj−ti)

))Jγ ̸=1K

(γβτ)
Jγ=1K (65)

qi(κ, β) =
1

f1(κ)

∑
tv≤ti

mκ
i e

−β(ti−tv)

 (66)

And its gradients with respect to the model parameters are,

∂f(γ, β, κ)

∂γ
=

2

n(n+ 1)

∑∑
(i,j)∈S(tc)

2

(
pij(γ, β)qi(κ, β)− (j − i)

)
qi(κ, β)

∂pij(γ, β)

∂γ
(67)

∂f(γ, β, κ)

∂κ
=

2

n(n+ 1)

∑∑
(i,j)∈S(tc)

2

(
pij(γ, β)qi(κ, β)− (j − i)

)
pij(γ, β)

∂qi(κ, β)

∂κ
(68)

∂f(γ, β, κ)

∂β
=

2

n(n+ 1)

∑∑
(i,j)∈S(tc)

2

(
pij(γ, β)qi(κ, β)− (j − i)

)(
pij(γ, β)

∂qi(κ, β)

∂β
+ qi(κ, β)

∂pij(γ, β)

∂β

)
(69)

(70)

where,

∂pij(γ, β)

∂γ
=

(
1

(1− γ)2

(
1− e−β(1−γ)(tj−ti)

)
− γ

1− γ
β(tj − ti)e

−β(1−γ)(tj−ti)

)Jγ ̸=1K

(βτ)
Jγ=1K (71)

∂pij(γ, β)

∂β
=
(
γ(tj − ti)e

−β(1−γ)(tj−ti)
)Jγ ̸=1K

(γτ)
Jγ=1K (72)

∂qi(κ, β)

∂κ
= − f ′

1(κ)

f2
1 (κ)

∑
tv≤ti

mκ
i e

−β(ti−tv)

+
1

f1(κ)

∑
tv≤ti

(lnmi)m
κ
i e

−β(ti−tv)

 (73)

∂qi(κ, β)

∂β
= − 1

f1(κ)

∑
tv≤ti

mκ
i (ti − tv)e

−β(ti−tv)

 (74)
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C. Comparison with CasFlow
Deep learning based prediction models, such as (Cao et al., 2017; Li et al., 2017; Chen et al., 2019; Xu et al., 2021), have
gained their popularity in recent year. However, they all require (at the minimum, among all exploited features) the cascade
graph structure, i.e., the explicit retweeting paths, to construct their networks’ input layers. Such information, however, is
not always available. Twitter, for example, does not disclose such information. Furthermore, these models need excessively
large number of fully-observed cascades for model training and validation, which makes the comparison with point process
based models, unreasonable.

Regardless, due to the increasing popularity of deep learning approaches, we compare our model with CasFlow (Xu
et al., 2021), the state-of-the-art deep learning model, for Weibo message popularity prediction. Sina Weibo is the largest
microblogging platform in China. Each tweet and its retweets form a retweeting cascade, and the explicit retweeting path
can be retrieved.

Following the same setup of CasFlow, we first filter out cascades who has less than 10 observed events, and focus on
tweets posted between 8 a.m. and 6 p.m., leaving each tweet at least 6 hours to reap retweets. The filtered data is then
randomly split it into training set (70%), validation set (15%), and test set (15%). Again, following the setup of CasFlow,
which observe the Weibo cascades for 30 minutes and 1 hour, and predict their retweet counts at 24 hours, we have
(tc = 0.5 hour,∆t = 23.5 hour), and (tc = 1 hour,∆t = 23 hour).

In the case of (tc = 0.5 hour,∆t = 23.5 hour), after filtering and splitting, we end up with 21463 training, 4599 validation,
and 4599 test cascades. In case of (tc = 1 hour,∆t = 23 hour), we end up with 29908 training, 6409 validation, and 6408
test cascades. As CASPER does not need any full-observed cascades for train and validation, only the test set is used in
producing the prediction results of CASPER. The train and validation sets are used solely in training the CasFlow model.

Further, CasFlow build a global network graph from all queried Weibo cascades. We estimate the number of followers (mark
values) with the count of edge from this global graph. Unlike CasFlow, which use the retweeting path information of each
cascade, CASPER only use the time stamps, together with the follower numbers extracted above for model train and predict.

Figure 3. Boxplots of APE values between CASPER and CasFlow model on Weibo data for the above two setups. The Horizontal bars
within the boxes indicate the median values, and the white triangles indicate the mean values.

We report the Absolute Percentage Error (APE) values across test cascades in Figure 3. As showed, for tc = 30min, CasFlow
reports slightly lower median and lower mean APE values. In the case of tc = 1hour, our CASPER reports much lower
median APE values, but with higher mean and larger variance.

Again, let’s emphasis, the comparison between our model and deep learning model CasFlow, is not rigid due to the extreme
imbalance of data used in model training and prediction, and the huge difference in computational cost.


