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Abstract
We present BRIEE (Block-structured Representa-
tion learning with Interleaved Explore Exploit),
an algorithm for efficient reinforcement learning
in Markov Decision Processes with block struc-
tured dynamics (i.e., Block MDPs), where rich
observations are generated from a set of unknown
latent states. BRIEE interleaves latent states dis-
covery, exploration, and exploitation together, and
can provably learn a near-optimal policy with
sample complexity scaling polynomially in the
number of latent states, actions, and the time hori-
zon, with no dependence on the size of the po-
tentially infinite observation space. Empirically,
we show that BRIEE is more sample efficient than
the state-of-art Block MDP algorithm HOMER
and other empirical RL baselines on challeng-
ing rich-observation combination lock problems
which require deep exploration.

1. Introduction
Representation learning in Reinforcement Learning (RL)
has gained increasing attention in recent years from both
theoretical and empirical research communities (Schwarzer
et al., 2020; Laskin et al., 2020) due to its potential in en-
abling sample-efficient non-linear function approximation,
the benefits in multitask settings (Zhang et al., 2020; Yang
et al., 2022; Sodhani et al., 2021), and the potential to lever-
age advances on representation learning in related areas
such as computer vision and natural language processing.
Despite this interest, there remains a gap between the the-
oretical and empirical literature, where the theoretically
sound methods are seldom evaluated or even implemented
and often rely on strong assumptions, while the empirical
techniques are not backed with any theoretical guarantees
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even under stylistic assumptions. This leaves open the key
challenge of designing representation learning methods that
are both theoretically sound and empirically effective.

In this work, we tackle this challenge for a special class of
problems called Block MDPs, where the high dimensional
and rich observations of the agent are generated from certain
latent states and there exists some fixed, but unknown map-
ping from observations to the latent states (each observation
is generated only by one latent state). Prior works (Dann
et al., 2018; Du et al., 2019; Misra et al., 2020; Zhang et al.,
2020; Sodhani et al., 2021) have motivated the Block MDP
model through scenarios such as navigation tasks and image
based robotics tasks where the observations can often be
reasonably mapped to the latent physical location and states.
We develop a new algorithm BRIEE, which finds a provably
good policy for any Block MDP. It performs model-free rep-
resentation learning with a form of adversarial training to
learn the features, interleaved with deep exploration and ex-
ploitation. Unlike prior theoretical works, our new approach
does not require uniform reachability, i.e., every latent state
is reachable with sufficient probability, which is a strong
assumption that cannot be guaranteed or verified. We also
demonstrate the empirical effectiveness of our algorithm in
Block MDPs that are challenging to explore. Importantly,
our technique is model-free which means there is no need
to model the observation generation process that can be
complex for high dimensional sensory data.

Contributions Our key contributions are three folds:

1. We design a new algorithm BRIEE that solves any Block
MDP with polynomial sample complexity, with no ex-
plicit dependence on the number of states which could
be infinite;

2. BRIEE does not require reachability assumption, and
can directly optimize a given reward function;

3. BRIEE’s computation oracles can be easily implemented
using standard gradient based optimization. Our
experiments show that BRIEE is more sample efficient
than HOMER (Misra et al., 2020), can be extended to
richer MDPs where the block structure does not hold,
and can leverage dense reward structure to achieve
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Sample Complexity Reward

OLIVE (Jiang et al., 2017) |Z|3H3|A|2log|Φ|
ϵ2 Yes

REP-UCB (Uehara et al., 2021) |Z|4H5|A|2ln(|Φ||Υ|)
ϵ2 Yes

MOFFLE (Modi et al., 2021) |Z|7H8|A|13ln|Φ|
min(ϵ2ηmin,η5min)

No

HOMER (Misra et al., 2019) |Z|6H|A|(|Z|2|A|3+ ln|Φ|)
min(η3min,ϵ

2)
No

BRIEE (this paper) |Z|8H9|A|14ln|Φ|
ϵ4 Yes
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Figure 1. (a) Sample complexities of different approaches to learning an ϵ-optimal policy for Block MDPs on a given reward function.
Some approaches are reward-free and we only count the sample complexity of exploration in these cases. For MOFFLE and HOMER,
ηmin is the minimum probability of reaching any latent state and can be arbitrarily small or even zero in the worst case. Υ in REP-UCB
refers to the function class for modeling the emission distribution since their approach is model-based, which is an additional inductive
bias. We omit all log factors other than those depending on function class sizes. Our bound for OLIVE is a factor of |Z||A| larger than
that of (Jiang et al., 2017) as we include the uniform convergence over the linear function class {w⊤ϕ : ∥w∥2≤ 1, ϕ ∈ Φ}, where
ϕ ∈ R|Z||A|, to capture the Q⋆ function in a Block MDP. (b) Empirical evaluation of BRIEE against baselines in a challenging block
MDP (see Section 5 for details), showing the number of episodes required to find a near-optimal solution for varying horizon lengths.
Large marker indicates that the method fails to solve the problem (within the sample budget) for larger horizon. HOMER and ours can
solve the problem up to H = 100, but our method consistently outperforms HOMER.

improved sample efficiency.

We summarize our theoretical results in Figure 1(a). Note
that our strong empirical performance beyond Block MDPs
(e.g., low-rank MDPs) suggests that it might be possible to
extend the theoretical analysis to more general settings, and
we leave this as an important direction for future work.

1.1. Related Work

We survey some of the relevant literature here.

RL with function approximation. There has been con-
siderable progress on sample-efficient RL with function
approximation in recent years. While some of it focuses on
the linear case (e.g. (Jin et al., 2020; Yang & Wang, 2019))
which does not involve representation learning, other works
have developed information-theoretically efficient methods
for non-linear function approximation (Jiang et al., 2017;
Sun et al., 2019; Du et al., 2021; Jin et al., 2021), some of
which subsume our setup in this paper. Particularly relevant
is OLIVE (Jiang et al., 2017) which can solve Block MDPs
in a model-free manner and has a better sample complexity
than BRIEE. However, it is known to be computationally
intractable (Dann et al., 2018) even for tabular MDPs.

Low-rank MDPs Low-rank MDP is strictly more general
than linear MDPs which assume representation is known a
priori. There are several related papers come from the recent
literature on provable representation learning for low-rank
MDPs (Agarwal et al., 2020b; Modi et al., 2021; Uehara
et al., 2021; Ren et al., 2021). Low-rank MDPs generalize

Block MDPs, so these algorithms are applicable in our set-
ting. Of these, however, only Modi et al. (2021) handles
the model-free case, while the other approaches are model-
based and pay a significant sample complexity overhead in
modeling the generative process of the observations. The
model-free approach of Modi et al. (2021) is the closest to
our work and we build on some of their algorithmic and
analysis ideas. However, their work makes a significantly
stronger assumption that each latent state must be reachable
with at least constant probability and do not interleave ex-
ploration and exploitation. They also do not provide any
empirical validation of their approach. Taking a slightly
different approach, Sekhari et al. (2021) studies low-rank
MDP from an agnostic policy-based perspective and only
requires a policy class that not necessarily contains the opti-
mal policy (thus the name agnostic). However, they show
that exponential sample complexity in this setting is not
avoidable, which indeed justifies the need for using func-
tion approximation to capture representations. Zhang et al.
(2021) and Papini et al. (2021) also refer to their settings
as representation learning, their goal is to choose the most
efficient representation among a set of correct representa-
tions (i.e., every representation still linearizes the transition),
which is stronger than the typical notion of feature learning
from an arbitrary function class.

Block MDPs There are two prior results on sample-
efficient and practical learning in Block MDPs (Du et al.,
2019; Misra et al., 2019). Du et al. (2019) requires the start
state to be deterministic, makes the reachability assumption
on latent states, and their sample complexity has an undesir-
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able polynomial dependency on the failure probability 1/δ.
Misra et al. (2019) removes the deterministic start state as-
sumption but still requires reachability. Both approaches are
tailor-made for Block MDPs. These approaches also have
to learn in a layer-by-layer forward fashion, which is not
ideal in practice (i.e., they cannot learn stationary policies
for episodic infinite horizon discounted setting, while our
approach can be extended straightforwardly). In contrast,
BRIEE learns in all layers simultaneously. (Zhang et al.,
2020) extends the Block MDP to multi-task learning and
study how the error from a given state abstraction affects
the multi-task performance, but do not theoretically study
how to learn such an abstraction. Feng et al. (2020) assume
a high level oracle that can decode latent states. Foster
et al. (2021) focus on instance-dependent bounds, but their
bounds scale with a value function disagreement coefficient
and inverse value gap, both of which can be arbitrarily large
in general Block MDPs (e.g., disagreement coefficient is a
stronger notation than the usual classic notation of uniform
convergence which is what we use here). Finally, Duan et al.
(2019) and Ni et al. (2021) study state abstraction learning
from logged data, without identifying the optimal policy.

Approaches from the empirical literature There are ex-
ploration techniques with non-linear function approximation
from the deep reinforcement learning literature (e.g. (Belle-
mare et al., 2016; Pathak et al., 2017; Burda et al., 2018;
Machado et al., 2020; Sekar et al., 2020). Of these, we
include the RND approach of Burda et al. (2018) in our em-
pirical evaluation. The use of adversarial discriminators for
feature learning is somewhat related to the insights in Belle-
mare et al. (2019), but unlike our approach, they use random
adversaries in the empirical evaluation, and do not focus on
strategic exploration and data collection.

2. Preliminaries
We consider a finite horizon episodic Markov Decision Pro-
cess

〈
S,A, {rh}H−1

h=0 , H, {Ph}
H−1
h=0 , d0

〉
, where S and A

are the state and action space, Ph, rh are the transition and
reward at time step h ∈ [H], H being the episode length;
d0 ∈ ∆(S) is the initial state distribution. For normaliza-
tion, we assume the trajectory cumulative reward is bounded
in [0, 1].

An MDP is called a low-rank MDP (Rendle et al., 2010;
Yao et al., 2014; Jiang et al., 2017) if the transition matrix at
any time step h is low-rank, i.e., there exist two mappings
µ⋆h : S 7→ Rd, and ϕ⋆h : S × A 7→ Rd, such that for any
s, a, s′, we have P ⋆h (s

′|s, a) = µ⋆h(s
′)⊤ϕ⋆h(s, a). Denote d

the rank of P ⋆h . Note that for low-rank MDP, neither µ⋆h nor
ϕ⋆h are known, which is fundamentally different from the
linear MDP model (Jin et al., 2020; Yang & Wang, 2019)
where ϕ⋆h is known. Learning in low-rank MDPs requires ei-

ther directly learning a near-optimal policy through general
function approximation, or doing representation learning
first (again through nonlinear function approximation), fol-
lowed by linear techniques. Either way, low-rank MDPs
provide an expressive framework for analyzing non-linear
function approximation in RL.

In this work, we mainly focus on analyzing a special case
of low-rank MDPs, called Block MDPs (Du et al., 2019;
Misra et al., 2020). We denote Z as a latent state space
where |Z| is small. Denote Z ×A as a joint space whose
size is |Z||A|. In a Block MDP, each state s in generated
from a unique latent state z as described below (hence the
name block), which means that the latent state is decodable
by just looking at the state. Denote the (unknown) ground
truth mapping from s to the corresponding z as ψ⋆h : S 7→ Z
for all h. A Block MDP is formally defined as follows.

Definition 2.1 (Block MDP). Consider any h ∈ [H].
A Block MDP has an emission distribution oh(·|z) ∈
∆(S) and a latent state space transition Th(z′|z, a), such
that for any s ∈ S, oh(s|z) > 0 for a unique z ∈
Z denoted as ψ⋆h(s). Together with the ground truth
decoder ψ⋆h, it defines the transitions P ⋆h (s

′|s, a) =∑
z′∈Z oh(s

′|z′)Th(z′|ψ⋆h(s), a).

The Block MDP structure allows us to model the setting
where the states s are high dimensional rich observations
(e.g., images) and the state space S is exponentially large
or even infinite. In the rest of the paper, we use words state
and observation interchangeably for s with the impression
that s is a high dimensional object from an extremely large
space S . Block MDPs are generalized by the low-rank MDP
model. Denote the ground truth feature vector ϕ⋆h(s, a) at
step h as a |Z||A|-dimensional vector e(ψ⋆(s),a) where ei is
the ith basis vector, so that it is non-zero only in the coor-
dinate corresponding to (ψ⋆h(s), a) ∈ Z ×A. Correspond-
ingly, for any s ∈ S, µ⋆h(s) is a |Z||A| dimensional vector
such that the (z, a)th entry is

∑
z′∈Z oh(s|z′)Th(z′|z, a).

Then P ⋆h (s
′|s, a) = µ⋆h(s

′)⊤ϕ⋆h(s, a), so that the Block
MDP is a low-rank MDP with rank d = |Z||A|. We as-
sume that the reward function rh(s, a) is known.

Function approximation Our representation learning
approach to learn Block MDPs requires a feature class
{Φh}H−1

h=0 . Since the features ϕ⋆h are one-hot in a Block
MDP as described above, it is natural to use the same
structure in the class Φh as well, since it yields statisti-
cal and algorithmic advantages as we will explain in the
sequel. So any ϕh ∈ Φh is parameterized by a candidate
decoder ψh : S → Z that aims to approximate ψ⋆h, with
ϕh(s, a) = e(ψh(s),a). In algorithm and analysis, we will
mostly work with the state-action representation class Φh
directly, but discuss the benefits of the specific Block MDP
structure when important. This is because we intend to



Model-free Representation Learning in Block MDPs

make our algorithm as general as possible and indeed as we
will see, our algorithm can be directly applied to low-rank
MDP, although our analysis only focuses on Block MDPs.

We aim to learn a near optimal policy with sample complex-
ity scaling polynomially with respect to |Z|, |A|, H , and the
statistical complexity of Φh rather than the size of the state
space |S| which could be infinite here. In this work, we will
focus our analysis on the setting of finite Φh and thus the
statistical complexity Φh is simply log(|Φh|). Extending to
continuous Φh is straightforward by using statistical com-
plexities such as covering number, since our analysis only
uses the standard uniform convergence property on Φh.

Model-free vs model-based Like HOMER (Misra et al.,
2020), we only model ϕ⋆ via function approximation (hence
model-free), while FLAMBE and Rep-UCB (Agarwal et al.,
2020b; Uehara et al., 2021) additionally model omission
distributions o(·|z) (i.e., model-based), which could be com-
plex when observations are high dimensional.

Notation We denote π = {π0, . . . , πH−1} as the non-
stationary Markovian policy, where each πh maps from
a state s to a distribution over actions ∆(A), and V πh (s)
as the value function of π at time step h, i.e., V πh (s) =

E
[∑H−1

τ=h rh|π, sh = s
]
. We denoteQπh(s, a) = rh(s, a)+

Es′∼P⋆
h (s,a)V

π
h+1(s

′). We denote V πP,r ∈ R+ as the ex-
pected total reward of π under non-stationary transitions
P := {Ph}h and rewards r := {rh}h.

We define dπh(s, a) as the probability of π visiting a state-
action pair (s, a) at time step h. We abuse notation a bit
and denote dπh(s) as the marginalized state distribution, i.e.,
dπh(s) =

∑
a d

π
h(s, a). Given dπh, we denote s ∼ dπh as

sampling a state at time step h from dπh , which can be done
by executing π for h − 1 steps starting from h = 0. We
denote U(A) as a uniform distribution over action space
A. For a vector x and a PSD matrix Σ, we denote ∥x∥2Σ=
x⊤Σx. For n ∈ N+, we use [n] = {0, 1, . . . , n−1}. Lastly,
we denote |Φ|:= maxh∈[H]|Φh|, and a ∧ b = min(a, b).

3. Our Algorithm
In this section, we present our algorithm BRIEE: Block-
structured Representation learning with Interleaved Explore
Exploit. We first give an overview of our algorithm and then
describe how to perform representation learning.

Algorithm Overview Algorithm 1 operates in an episodic
setting. In episode n, we use the latest policy π̂n−1 to col-
lect new data for every time step h. Note that in our data
collection scheme, for each time step h, we maintain two re-
play buffers Dh and D′

h of transitions (s, a, s′) which draw
the state s from slightly different distributions (line 4). With

Algorithm 1 Block-structured Representation learning with
Interleaved Explore Exploit (BRIEE)

1: Input: Representation classes {Φh}H−1
h=0 , discriminator

classes {Fh}H−1
h=0 , parameters N,Tn, αn, λn

2: Initialize policy π̂0 = {π0, . . . , πH−1} arbitrarily and
replay buffers Dh = ∅,D′

h = ∅ for all h
3: for n = 1→ N do
4: Data collection from π̂n−1: ∀h ∈ [H],

s ∼ dπ̂n−1

h , a ∼ U(A), s′ ∼ P ⋆h (s, a);
s̃ ∼ dπ̂n−1

h−1 , ã ∼ U(A), s̃′ ∼ P ⋆h−1(s̃, ã),
ã′ ∼ U(A), s̃′′ ∼ P ⋆h (s̃′, ã′)
Dh = Dh ∪{s, a, s′} and D′

h = D′
h ∪{s̃′, ã′, s̃′′}.

5: Learn representations for all h ∈ [H]:
ϕ̂nh = REPLEARN (Dh ∪ D′

h,Φh,Fh, λn, Tn, ℓn)
6: Define exploration bonus for all h ∈ [H]:

b̂nh(s, a) := min
{
αn

√
ϕ̂nh(s, a)

⊤Σ−1
h ϕ̂nh(s, a), 2

}
,

with Σh :=
∑
s,a,s′∼Dh

ϕ̂nh(s, a)ϕ̂
n
h(s, a)

⊤ + λnI .
7: Set π̂n as the policy returned by:

LSVI({rh + b̂nh}
H−1
h=0 , {ϕ̂nh}

H−1
h=0 , {Dh ∪D′

h}
H−1
h=0 , λn).

8: end for
9: Return π̂0, . . . , π̂N

Dh and D′
h, we update the representation ϕ̂h for time step

h by calling our REPLEARN oracle which is described in
Algorithm 2. We then formulate the linear-bandit and linear
MDP style bonus b̂nh(s, a) using the latest representation
ϕ̂nh . Note that the bonus is constructed using only the replay
buffer Dh. When the features ϕ̂nh are one-hot for a Block
MDP, the first term inside the minimum in the bonus defini-

tion (line 6) simplifies to αn/
√
λn +Nn

h (ψ̂
n
h(s), a), where

ψ̂nh(s) is the estimated latent state for s corresponding to the
index of the non-zero entry in ϕ̂nh(s, a) and Nn

h (ψ̂
n
h(s), a)

is the number of times we observe a transition (s̄, ā, s̄′) in
Dh with ψ̂nh(s̄) = ψ̂nh(s) and ā = a. With bonus b̂nh, the
representation ϕ̂nh , and the datasetDh+D′

h, we use the stan-
dard Least Square Value Iteration (LSVI) (Algorithm 3) to
update our policy to πn using the combined reward rh + b̂nh .

Our algorithm is conceptually simple: it resembles the UCB
style LSVI algorithm designed for linear MDPs where the
ground truth features ϕ⋆ are known. However, since ϕ⋆ is
unknown, we additionally update the representation ϕ̂nh in
every episode. Note that if the features ϕ̂nh are one-hot, we
can alternatively use the counts N(ψ̂nh(s), a) to estimate a
tabular transition model over the inferred latent states and
do tabular value iteration when the rewards only depend on
the latent states. We choose to use the more general LSVI
approach as it keeps our algorithm more general and we will
comment more on this aspect at the end of this section.
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Algorithm 2 Representation Learning Oracle (REPLEARN)

1: Input: Dataset D = {s, a, s′}, representation class Φ,
discriminator class F , regularization λ, iterations T ,
termination threshold ℓ.

2: Initialize ϕ0 ∈ Φ arbitrarily
3: Denote least squares loss:
Lλ,D(ϕ,w, f) := ED

(
w⊤ϕ(s, a)− f(s′)

)2
+ λ∥w∥22.

4: for t = 0→ T − 1 do
5: Discriminator selection:

# find a discriminator that cannot be linearly pre-
dicted by the current features
f t = argmaxf maxϕ̃∈Φ

[
minw [Lλ,D(ϕt, w, f)]

−minw̃ [Lλ,D(ϕ̃, w̃, f)]
]

6: If f t achieves an objective value at most ℓ: Break
and Return ϕt.

7: Feature selection via Least Square minimization:
# find a feature map that can linearly predict all
discriminators’ values at next states
ϕt+1 = argminϕ∈Φ min{wi}t

i=0

∑t
i=0 Lλ,D(ϕ,wi, f i).

8: end for

Representation Learning Now we explain our represen-
tation learning algorithm (Algorithm 2). This representation
learning oracle follows the algorithm from MOFFLE (Modi
et al., 2021). For completeness, we explain the intuition
of the representation learning oracle here. Given a dataset
D = {(s, a, s′)}, Algorithm 2 aims to learn a representation
via adversarial training using the following ideal objective:

min
ϕ∈Φh

max
f∈Fh

[
min
w

Es,a∈D
(
w⊤ϕ(s, a)− Es′∼P⋆(s,a)f(s

′)
)2]

where Fh ⊂ [S → R] are the discriminators. In Section 4,
we instantiate Fh as a class of linear functions on top of the
representations in Φh+1. To understand the intuition here,
first note that regardless of f , Es′∼P⋆

h (s,a)f(s
′) is always a

linear function with respect to the ground truth features ϕ⋆h
(see e.g. Proposition 2.3 in Jin et al. (2020)). Hence, ϕ⋆h is
always a minimizer of the objective above for any class Fh,
and by using a sufficiently rich class Fh, we hope that any
other approximate optimum is also a good approximation to
ϕ⋆h under the same distribution.

However, the conditional expectation inside the squared
loss in our ideal objective precludes easy optimization, or
even direct unbiased estimation from samples, related to
the ”double sampling” issue in Bellman Residual objectives
from the policy evaluation literature. Following a standard
approach from offline RL (Antos et al., 2008) also used
in MOFFLE, we instead rewrite the ideal objective with an
additional term to remove the residual variance:

minϕ∈Φh
max
f∈Fh

[
min
w

ED(w
⊤ϕ(s, a)− f(s′))2

−minw̃,ϕ̃∈Φh
ED(w̃

⊤ϕ̃− f(s′))2
]
. (1)

Algorithm 2 optimizes Eq. (1) through alternating updates
over f and ϕ. At each iteration, it first picks features that can
linearly capture expectations of all the discriminators found
so far by solving a least squares problem (line 7). If ϕ is a
parametric function, we can solve the least square regression
problem via gradient descent on the parameters of ϕ and
wi. Given the latest representation ϕt, we simply search for
a discriminator which cannot be linearly predicted by ϕt

for any choice of weights (line 5). If no such discriminator
can be found (line 6), then the current features ϕt are near
optimal and the algorithm terminates and returns ϕt. For a
Block MDP, our analysis shows this process will terminate
in polynomial number of rounds. Note that in line 5, since
we use ridge linear regression for w and w̃, both w and w̃
have closed form solutions given ϕt and ϕ̃. Thus, if f and ϕ̃
are parameterized functions, we can compute the gradient of
the objective function, which allows us to directly optimize
f and ϕ̃ jointly via gradient ascent.

Extensions and Computation Note that our algorithm is
stated in a general way that does not use any Block MDP
structures. This means that the algorithm can be applied to
any low-rank MDP directly. While our theoretical results
only hold for Block MDPs, our experimental results indi-
cate that the algorithm can work for more general low-rank
MDPs. Note that all prior Block MDP algorithms cannot be
directly applied to low-rank MDPs, and use very different
approaches than general low-rank MDP learning algorithms.

Another benefit of the algorithm being not tailored to the
Block MDP structure is that when we apply our algorithm
to linear MDPs where ϕ⋆h are known a priori, we can simply
set Φh = {ϕ⋆h} as a singleton, rendering it as efficient as
LSVI-UCB in this setting.

Compared to more general approaches such as OLIVE, our
main benefits are algorithmic and computational. Note that
OLIVE is provably intractable for even a tabular or linear
MDP (Dann et al., 2018), due to complicated version space
constraints. Empirically, the constraints in OLIVE are un-
suitable for gradient-based approaches due to the presence
of indicator functions involving the parameters.

4. Analysis
We start by specifying the discriminator class Fh
constructed using the representations from Φh+1.
Define two sets of discriminators F (1)

h and F (2)
h as{

f(s) : Ea∼U(A)[ϕ(s, a)
⊤θ − ϕ′(s, a)⊤θ′]

| ϕ, ϕ′ ∈ Φh+1 max(∥θ∥∞, ∥θ′∥∞)≤1
}
, and{

f(s):maxa

(rh+1(s, a) + w⊤ϕ(s, a) ∧ 2

2H + 1
+ ϕ(s, a)⊤w′

)
| ϕ ∈ Φh+1; ∥w∥∞≤ c, ∥w′∥∞≤ 1

}
,
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Algorithm 3 Least Square Value Iteration LSVI

1: Input: Reward {rh(s, a)}H−1
h=0 , features {ϕh}H−1

h=0 ,
datasets {Dh}H−1

h=0 , regularization λ
2: Initialize VH(s) = 0,∀s
3: for h = H − 1→ 0 do
4: Σh =

∑
s,a,s′∈Dh

ϕh(s, a)ϕh(s, a)
⊤ + λI

5: wh = Σ−1
h

∑
s,a,s′∈Dh

ϕh(s, a)Vh+1(s
′).

6: SetQh(s, a) = w⊤
h ϕh(s, a)+rh(s, a), and Vh(s) =

maxaQh(s, a)
7: Set πh(s) = argmaxaQh(s, a)
8: end for
9: Return π := {π0, · · · , πH−1}

respectively, where c ∈ R+ is some positive constant
that we will specify in the main theorem. We let our
discriminator class be Fh = F (1)

h ∪ F (2)
h . Note that Fh

contains linear functions of the features in Φh+1 which
makes bounding the statistical complexity (e.g., covering
number) of Fh straightforward. Using this definition of Fh
in Algorithm 1, we have the following guarantee when the
environment is a Block MDP:

Theorem 4.1 (PAC bound of BRIEE). Consider a Block
MDP (Definition 2.1) and assume that ϕ⋆h ∈ Φh for all
h ∈ [H]. Fix δ, ϵ ∈ (0, 1), and let π̂ be a uniform mixture
of π̂0, ..., π̂N−1. By setting the parameters as

αn = Θ̃
(
(nd5)

1
4 |A|ln |Φ|n

δ

)
, λn = Θ

(
d ln
|Φ|n
δ

)
,

Tn =


√

n

d ln( |Φ|
δ )

 , ℓn = Θ

d2
√

ln( |Φ|
δ )

n

 , c =
αN√
λN

with probability at least 1 − δ, we have V π
⋆

P⋆ − V π̂P⋆ ≤ ϵ,
after at most

H ·N ≤ O
(
H9|A|14|Z|8ln(H|A||Z||Φ|/δϵ)

ϵ4

)
episodes of interaction with the environment.

Theorem 4.1 certifies a polynomial sample complexity of
BRIEE for all Block MDPs. Furthermore, the bound on T
means that our overall computational complexity is favor-
able as long as one iteration of REPLEARN can be efficiently
executed. Compared to other efficient methods for solving
Block MDPs, our result is fully general and places no ad-
ditional assumptions on the reachability or stochasticity in
the underlying dynamics. Compared with statistically su-
perior methods like OLIVE, our algorithm is amenable to
practical implementation as we demonstrate through our
experiments. Finally, compared with prior works which are
primarily model-based, our model-free guarantees do not
require modeling the emission process of observations in a

Block MDP. Compared with the prior model-free represen-
tation learning guarantee of Modi et al. (2021), we do not
require reachability of latent states.

Our next result shows that our BRIEE framework is flex-
ible enough that a variation of the algorithm can solve
the reward-free exploration problem. To perform reward-
free exploration, we simply run BRIEE by setting reward
rh(s, a) = 0,∀h, s, a. After the exploration phase, once we
are given a new reward function that is linear in the ground
truth feature ϕ⋆, we can find a near optimal policy via LSVI.
The detailed procedure is described in Algorithm 4 in ap-
pendix.

Theorem 4.2 (Reward-free Exploration). Consider a Block
MDP and assume that ϕ⋆h ∈ Φh for all h ∈ [H]. Fix
δ, ϵ ∈ (0, 1), by setting the parameters as in Theorem 4.1,
given N episodes in the exploration phase, with probability
at least 1− δ, for all reward function r(s, a) that is linear
in ϕ⋆, Algorithm 4 finds a policy π̂ in the planning phase
such that

V π
⋆

P⋆,r − V π̂P⋆,r ≤ O
(
H5/2|A|1/2d log(|Φ|/δ)1/4N−1/4

)
.

4.1. The Representation Learning Oracle’s Guarantee

The following lemma gives a bound on the reconstruction
error with the learned features at any iteration of BRIEE,
under the data distribution used for representation learning.

Lemma 4.3 (REPLEARN guarantee). Consider parameters
defined in Theorem 4.1 and time step h. Denote ρ as the
joint distribution for (s, a, s′) in the dataset D of size n. Let
ϕ̂ = REPLEARN(D,Φh,Fh, λn, Tn, ℓn). Denote ŵf =

argminw
∑
s,a,s′∈D(w

⊤ϕ̂(s, a) − f(s′))2 + λn∥w∥22 for
any f : S → R. Then, with probability at least 1− δ:

max
f∈Fh

Es,a∼ρ
[(
ŵ⊤
f ϕ̂(s, a)− Es′∼P⋆

h (s,a)[f(s
′)]
)2]

≤ ζn = O
(
d2
√
log (n|Φ|/δ) /n

)
.

Note that the guarantee above holds under the data distri-
bution ρ, which might not be sufficiently exploratory at
intermediate iterations of the algorithm. However, it shows
that our representation is always good for the entire set of
discriminators on the available data distribution, and any
deficiencies of the representation can only be addressed by
improving the data coverage in subsequent iterations. As
mentioned earlier, the number of iterations T of REPLEARN
before this guarantee is achieved is bounded by the setting
of T in Theorem 4.1.

Indeed the main challenge in the proof of Lemma 4.3 is
to establish that REPLEARN terminates in a small num-
ber of iterations T . While this need not be true for a
general MDP, the low-rank property which implies that
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E[f(s′)|s, a] = w∗⊤
f ϕ⋆(s, a) allows us to achieve this. We

do so by following a similar elliptical potential argument
proposed in MOFFLE. The main difference here is that we
need to incorporate ridge regularization to make it consis-
tent with the ridge regression used in LSVI. Note that ridge
linear regression is important in implementation as well
since it has closed-form solution which enables direct gra-
dient ascent optimization on discriminators. While the key
ideas follow from MOFFLE, there are technical differences
in our analysis, as well as room to additionally leverage the
Block MDP structure, which results in an improved bound.
To contrast, MOFFLE requires Õ(d7/3n−1/3) samples (c.f.
Lemma 5 in Modi et al. (2021)).

4.2. Proof Sketch

We now give a high-level proof sketch for Theorem 4.1.
Even though our algorithm is model-free, it would be help-
ful to leverage an equivalent non-parametric model-based
interpretation which has also been discussed before in Parr
et al. (2008); Jin et al. (2020); Lykouris et al. (2021). We de-
scribe this model-based perspective for completeness here,
before discussing how we utilize it.

A Model-based Perspective: Let us focus on an iteration
n. For notational simplicity, we drop the superscript n here.
Denote the learned features as ϕ̂h for h ∈ [H]. Define the
non-parametric model P̂h as follows:

P̂h(s
′|s, a) = ϕ̂h(s, a)

⊤Σ−1
h

∑
s̃,ã,s̃′∈Dh∪D′

h

ϕ̂h(s̃, ã)1(s′ = s̃′)

=
NDh∪D′

h
(ϕ̂(s, a), s′)

NDh∪D′
h
(ϕ̂(s, a)) + λ

,

where Σh :=
∑
s,a∈Dh∪D′

h
ϕ̂h(s, a)ϕ̂h(s, a)

⊤ + λI , 1(s =
s′) is the indicator function, and ND(x) is the number
of occurrences of x in the dataset D. The intuition be-
hind this model is that we learn the model via multi-
variate linear regression from representation ϕ̂h(s, a) to
the vector es′ . In particular, the conditional expecta-
tion EP̂h

[f(s′)|s, a] is w⊤ϕ̂h(s, a), where w minimizes∑
(s,a,s′)∈Dh∪D′

h
(w⊤ϕ̂h(s, a)− f(s′))2, underscoring the

connection between this model definition and our LSVI
planner. The second equality is specific to the block struc-
ture of our features and does not hold in general low-rank
MDPs. Interestingly, this is perhaps the only ingredient
of our analysis which does not generalize beyond Block
MDPs. Notice that P̂h is not a normalized conditional distri-
bution, in the sense that

∑
s′∈S P̂h(s

′|s, a) ̸= 1 for λ > 0.
Nevertheless, it is still non-negative and we can still define
the occupancy measures and value functions inductively as
follows:

dπ
P̂ ;0

(s, a) = d0(s)π(a|s); V π
(P̂ ,r);H

(s) = 0;

dπ
P̂ ;h+1

(s, a) =
∑
s̃,ã

dπ
P̂ ;h

(s̃, ã)P̂h(s|s̃, ã)π(a|s);

V π
(P̂ ,r);h

(s) = Ea∼π(s)
[
r(s, a) + P̂h(·|s, a)⊤V π(P̂ ,r);h+1

]
.

where P (·|s, a)⊤f is in short of
∑
s′∈S P (s

′|s, a)f(s′). As
we will see, these constructions are sufficient for us to carry
out a model-based analysis on our model-free algorithm.

Using our constructed representation {ϕ̂nh}h∈[H] and bonus
{b̂nh}h∈[H], we can prove the following near-optimism claim.
Note that the optimism only holds at the initial state distri-
bution, in contrast to the stronger versions that hold in a
point-wise manner. Note that from here, our analysis signif-
icantly departs from the prior Block MDP works’ analysis
and the analysis of MOFFLE which rely on a reachability
assumption. This part of our proof leverages some ideas in
the analysis of a recent model-based representation learning
algorithm REP-UCB (Uehara et al., 2021).

For π̂ := LSVI
(
{rh + b̂h}, {ϕ̂h}, {Dh +D′

h}, λn
)

, it is
not hard to see that π̂ is indeed the optimal policy for the
MDP model with transitions {P̂h} and rewards {rh + b̂h},
i.e., π̂ = argmaxπ′ V π

′

P̂ ,r+b̂
from our construction of P̂h.

The following lemma shows that V π
P̂ ,r+b̂

almost upper

bounds V π
⋆

P⋆,r, i.e., we achieve almost optimism.
Lemma 4.4 (Optimism). Using the settings of Theo-
rem 4.1, with probability 1 − δ, we have for all itera-
tions n ∈ [N ], V π̂

n

P̂n,r+b̂n
− V π

⋆

P⋆,r ≥ −σn, where σn =

O(|A|1/2d (log(n|Φ|/δ)/n)1/4).

Optimism allows us to upper bound policy regret as fol-
lows. For π̂n, conditioned on the optimism event and via
the standard simulation lemma (which also works on the
unnormalized transitions P̂n), we have:

V π
⋆

P⋆,r − V π̂
n

P⋆,r ≤ V π̂
n

P̂n,r+b̂n
− V π̂

n

P⋆,r + σn (2)

=

H−1∑
h=0

Edπ̂n

h
[b̂nh(s, a) + (P̂nh − P ⋆h )(s, a)⊤V̂ π̂

n

h+1︸ ︷︷ ︸
ξnh (s,a)

] + σn

where we denote V̂ π̂
n

h+1(·) as the expected total reward func-
tion of π̂n starting from time step h+ 1, under model P̂n

and reward r + b̂n.

The rest of the proof is to directly control the expecta-
tion of b̂nh + ξnh under dπ̂

n

h , which is done in Lemma A.2.
Lemma A.2 uses a key property of the low-rank MDP which
is that for any f , Es,a∼dπhf(s, a) can be written in a bilinear
form:〈

Es̃,ã∼dπh−1
ϕ⋆h−1(s̃, ã),

∫
s

µ⋆h−1(s)Ea∼π(s)f(s, a)ds
〉
.

This “one step back” trick (i.e., moving from h to h − 1)
leverages the bilinear structure in P ⋆h−1, and was first
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used in Agarwal et al. (2020b). Denote γnh (s, a) =∑n−1
i=0 d

πi

h (s, a)/n as the mixture state-action distribution,
and Σγn

h ,ϕ
⋆ = nEs,a∼γn

h
ϕ⋆h(s, a)(ϕ

⋆
h(s, a))

⊤ + λI as the
regularized covariance matrix under the ground truth repre-
sentation ϕ⋆. We can further upper bound the above bilinear
form via Cauchy-Schwart under norm induced by Σγn

h ,ϕ
⋆ :〈

Es̃,ã∼dπh−1
ϕ⋆h−1(s̃, ã),

∫
s

µ⋆h−1(s)Ea∼π(s)f(s, a)ds
〉

≤ Es̃,ã∼dπh−1

∥∥ϕ⋆h−1(s̃, ã)
∥∥
Σ−1

γn
h−1

,ϕ⋆

×
∥∥∥∥∫

s

µ⋆h−1(s)Ea∼π(s)f(s, a)ds
∥∥∥∥
Σn

γn
h−1

,ϕ⋆

.

The first term on the RHS of the above inequality is re-
lated to the classic elliptical potential function defined with
the true ϕ⋆. The second term on the RHS can be further
converted to the expectation of f2 under the training data
distribution (i.e., the distribution over Dh), which is control-
lable when f := b̂nh + ξnh . This step of distribution change
from dπ to the training data distribution is the key to directly
upper bounding regret. The detailed proof for Theorem 4.1
can be found in Appendix A.

5. Experiments
We test BRIEE on MDPs motivated by the rich observation
combination lock benchmark created by (Misra et al., 2019),
which contains latent states but the observed states are high-
dimensional continuous observations. We ask:

1. Is BRIEE more sample efficient than HOMER on their
own benchmark?

2. Can BRIEE solve an MDP where the block structure does
not hold, e.g., low-rank MDP?

3. If the MDP happens to have dense rewards that make it
easy for policy optimization, can BRIEE leverage that?

In short, our experiments provide affirmative answers to all
three questions above. Note that prior algorithms such as
HOMER and PCID cannot be applied to low-rank MDPs, and
are not able to leverage dense reward structures, since they
require a reward-free exploration phase. In what follows we
describe the experiment setup.

Reproducibility Our code can be find at https://
github.com/yudasong/briee. We include experi-
ment details in Appendix E.

The Environment We evaluate our algorithm on the di-
abolical combination lock (comblock) problem (Fig. 2a),
which has horizon H and 10 actions. At each step h, there

are three latent states zi;h for i ∈ {0, 1, 2}. We call zi;h for
i ∈ {0, 1} good states and z2;h bad states. For each zi;h with
i ∈ {0, 1}, we randomly pick an action a∗i;h from the 10
actions. While at zi;h for i ∈ {0, 1}, taking action a∗i;h tran-
sits the agent to z0;h+1 and z1;h+1 with equal probability.
Taking other actions transits the agent to z2;h+1 determin-
istically. At z2;h, regardless what action the agent takes, it
will transit to z2;h+1. For reward function, we give reward
1 at state zi;H for i ∈ {0, 1}, i.e., good states at H have
reward 1. With probability 0.5, the agent will also receive
an anti-shaped reward 0.1 from transiting from a good state
to a bad state. We have reward zero for any other states and
transitions. The observation s has dimension 2⌈log(H+4)⌉,
created by concatenating the one-hot vectors of latent state
z and the one-hot vectors of horizon h, followed by adding
noise sampled from N (0, 0.1) on each dimension, append-
ing 0 if necessary, and multiplying with a Hadamard matrix.
The initial state distribution is uniform over zi;0, i ∈ {0, 1}.
Note that the optimal policy picks the special action a∗i;h
at every h. Once the agent hits a bad state, it will stay in
bad states for the entire episode, missing the large reward
signal at the end. This is an extremely challenging explo-
ration problem, since a uniform random policy will only
have 10−H probability of hitting the goals.

BRIEE Implementation Here we provide the details for
implementing Algorithm 2. For features ϕh we have:
ϕh(s, a) = softmax(Ahs/τ)⊗ 1a, where Ah ∈ R3×dims , τ
is the temperature, and 1a ∈ {0, 1}|A| is the one-hot indi-
cator vector. This design of decoder follows from HOMER,
for the purpose of a fair comparison. For discriminator we
use two-layer neural network with tanh activation. In each
step of line 5, we perform gradient ascent on ϕ̃ and f jointly.
Similarly for line 7, we perform gradient descent on Ah.

Baselines In the following experiments, in addition to
HOMER, we compare with empirical deep RL baselines
Proximal Policy Optimization (PPO) (Schulman et al., 2017)
and Random Network Distillation (PPO+RND) (Burda et al.,
2018). We also include LSVI-UCB (Jin et al., 2020) with
ground-truth features (i.e., it is an aspirational baseline with
access to the latent state information), and LSVI-UCB with
Random Fourier Features, i.e., RFF directly on top of (s, a)
(Rahimi & Recht, 2007) (LSVI-UCB+RFF) as baselines.

Comparison with HOMER In this experiment we focus
on the comblock environment. We test BRIEE and base-
lines for different horizon values. We record the number of
episodes that each algorithm needs to identify the optimal
policy (i.e., a policy that achieves the optimal total reward
1). The results are shown in Fig. 1a. We compare with
HOMER, PPO+RND and LSVI-UCB+RFF. We reuse the
results of HOMER and PPO-RND from (Misra et al., 2019).
For BRIEE, we run 5 random seeds and plot the confidence

https://github.com/yudasong/briee
https://github.com/yudasong/briee
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(b) Comblock with simplex features.
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(c) Comblock dense reward.

Figure 2. (a): Visualization of comblock. The blue area denotes the (infinitely many) possible observations from one latent state. The top
vector denotes the one-hot vector and the bottom vector denotes the noise. Rot{·} denotes multiplying with the Hadamard matrix. The
dark arrows denote transiting from good states (white) to bad states (gray). Once the agent transits to a bad state, it stays in bad states for
the entire episode thus missing the goal. Note that in order to reach the goal (orange), one has to stay in good states which can only be
achieved by picking the right action (red) at every time step (thus the name combination lock). (b): Moving average of the evaluation
returns for comblock with simplex feature and H = 30. The converged return of LSVI-UCB with ground truth feature suggests the
optimal value. (c): Moving average of evaluation returns for comblock with dense reward and H = 30. The x-axis is scaled in natural log.

interval within 1 std. Note that LSVI-UCB + RFF can only
solve H up to 12, indicating that simply lifting linear MDPs
to RBF kernel space is not enough to capture the underlying
nonlinearity in our problem. PPO+RND can solve up to
H = 25. Both HOMER and BRIEE solve up to H = 100
with BRIEE being more sample efficient.

Visualization of decoders We visualize the outputs of
decoders in Fig. 3 in Appendix E.2. In short, our decoders
successfully decode latent states (up to a permutation).

Comblock with Simplex Feature Here we extend the
above environment beyond Block MDP. Instead of decod-
ing s to a unique latent state, we modify the ground truth
decoder to make it stochastic. Given s, a, the ground truth
decoder maps s to a distribution over latent state space, then
a latent state is sampled from this distribution, and then to-
gether with a, it transits to the next latent state, followed by
generating the next s′ from the emission distribution. This is
not a block MDP anymore, and indeed it is a low-rank MDP
(i.e., ϕ⋆h(s, a) is not one hot, and it is from ∆(Z×A)). Note
that HOMER provably fails in this example. We show the
results forH = 30 in Fig. 2b. While PPO+RND completely
fails, BRIEE matches the return from LSVI-UCB with the
features ϕ⋆ (that are unknown to BRIEE and PPO+RND).

Dense Reward Comblock We also test if BRIEE can
leverage dense reward signals to further speed up learning.
We modify the reward as follows. Instead of getting an
anti-shaped reward from transition to a bad state, we get
a positive reward every time one transits to a good state.
Thus a greedy algorithm that collects one step immediate
reward should be able to reach the final goals. In Fig. 2c

we show the mean evaluation returns in the H = 30 dense-
reward comblock environment. Compared with PPO – a
greedy policy gradient algorithm, BRIEE can consistently
reach the optimal value (3.9) and uses orders of magnitude
fewer samples. Note that compared to the results in Fig. 1b
where reward is sparse and anti-shaped, BRIEE is able to
solve the problem two times faster, indicating that it indeed
can leverage the dense reward structure for further speedup.
Note that HOMER cannot leverage such informative reward
signals and will have to perform reward-free exploration
regardless, which is a huge waste of samples.

6. Conclusion
In this paper, we present a new algorithm BRIEE that prov-
ably solves block MDPs. Unlike prior block MDP algo-
rithms, BRIEE does not require any reachability assumption
and can directly optimize the given reward function. Un-
like FLAMBE and REP-UCB, BRIEE is model-free which
means that it is more suitable for tasks where states are
high dimensional objects. Experimentally, on the bench-
marks motivated by HOMER, we show our approach is more
sample efficient than HOMER and other empirical RL base-
lines. We also demonstrate the efficacy of our approach on
a low-rank MDP where the block structure does not hold.
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A. Sample Complexity Analysis
Recall that we define the non-parametric model P̂nh as follows:

P̂nh (s
′|s, a) =ϕ̂nh(s, a)⊤Σ−1

h

∑
s̃,ã,s̃′∈Dh∪D′

h

ϕ̂nh(s̃, ã)1(s
′ = s̃′), Σh :=

( ∑
s,a∈D′

h+D′
h

ϕ̂nh(s, a)ϕ̂
n
h(s, a)

⊤ + λnI
)−1

.

and we define
µ̂nh = Σ−1

h

∑
s̃,ã,s̃′∈Dh∪D′

h

ϕ̂nh(s̃, ã)1(s
′ = s̃′).

Throughout the appendix, we also abuse the notation E(s,a)∼p(s,a)[f(s, a)] =
∫
f(s, a)p(s, a)d(s, a) for any non-negative

function p(s, a) ≥ 0.

Recall that in the case of Block MDP where ϕ̂nh are one-hot vectors, and thus P̂nh (·|s, a) can be further simplified as

P̂nh (s
′|s, a) =

NDh+D′
h
(ϕ̂nh(s, a), s

′)

NDh+D′
h
(ϕ̂nh(s, a)) + λn

where ND(ϕ̂
n
h(s, a), s

′) denotes the number of triples (s̃, ã, s̃′) ∈ D such that ϕ̂nh(s̃, ã) = ϕ̂nh(s, a) and s̃′ = s′, and
ND(ϕ̂

n
h(s, a)) =

∑
s′∈S ND(ϕ̂

n
h(s, a), s

′). Therefore, we can clearly see that P̂nh (s
′|s, a) > 0 and

∑
s′∈S P̂

n
h (s

′|s, a) < 1
for λn > 0.

For π̂n := LSVI
(
{rh + b̂nh}

H−1
h=0 , {ϕ̂nh}

H−1
h=0 , {Dh +D′

h}
H−1
h=0 , λn

)
, π̂n is indeed the optimal policy for the MDP model

with transitions {P̂nh } and rewards {rh + b̂nh} (i.e., the output of Value Iteration in {P̂nh , rh + b̂nh}
H−1
h=0 ). In this section, we

will take the model-based perspective and analyze based on this fitted model P̂n.

We define a few mixture distributions that will be used extensively in the analysis. For any n, h, define ρnh ∈ ∆(S ×A) as
follows:

ρnh(s, a) =
1

n

n−1∑
i=0

dπ̂i

h (s)U(a),∀s, a ∈ S ×A.

For any n, h ≥ 1 define βnh as follows:

βnh (s, a) =
1

n

n−1∑
i=0

E
s̃∼dπ̂i

h−1,ã∼U(A)
P ⋆(s|s̃, ã)U(a).

For any n, h, we also define γnh ∈ ∆(S ×A) as follows:

γnh (s, a) =
1

n

n−1∑
i=0

dπ̂i

h (s, a).

For an iteration n, a distribution ρ and a feature ϕ, we denote the expected feature covariance as

Σnρ,ϕ = nE(s,a)∼ρ[ϕ(s, a)ϕ(s, a)
⊤] + λnI

which in the case of Block MDP is a diagonal matrix. Notice that the dataset Dh of size n is sampled from ρnh and the
dataset D′

h of size n is sampled from βnh . Below we focus on a particular iteration n, and drop the n superscript.

For the remainder of this section, we assume that we have learned a representation ϕ̂h such that the following generalization
bound holds:

max
f∈Fh

E(s,a)∼ρh [(P̂h(· | s, a)
⊤f − P ⋆h (· | s, a)⊤f)2] ≤ ζn,∀h ∈ [H]. (3)

max
f∈Fh

E(s,a)∼βh
[(P̂h(· | s, a)⊤f − P ⋆h (· | s, a)⊤f)2] ≤ ζn,∀h ∈ [H]\{0}.
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where again the discriminator class is set to F = F (1)
h

⋃
F (2)
h .

F (1)
h =

{
f(s) := Ea∼U(A)

[
ϕ(s, a)⊤θ − ϕ′(s, a)⊤θ′

] ∣∣∣ ϕ, ϕ′ ∈ Φh+1 max(∥θ∥∞, ∥θ′∥∞) ≤ 1
}
, (4)

F (2)
h =

{
f(s) := max

a

(
rh+1(s, a) + min

{
w⊤ϕ(s, a), 2

}
2H + 1

+ w′⊤ϕ(s, a)

)∣∣∣ϕ ∈ Φh+1; ∥w∥∞≤ c, ∥w′∥∞≤ 1

}
In the analysis below, we actually need Fh to capture the follow two forms of function:

f (1)(s) =Ea∼U(A)

[
EP̂h(s′h|sh,ah)

[V π
⋆

P⋆,r,h+1(s
′
h)]− EP⋆

h (s′h|sh,ah)[V
π⋆

P⋆,r,h+1(s
′
h)]
]

(5)

f (2)(s) =
1

2H + 1
V π̂

n

P̂ ,r+b̂,h+1
(s) =

1

2H + 1

(
max
a

rh+1(s, a) + b̂h+1(s, a) + ϕ̂⊤h+1(s, a)

∫
µ̂h+1(s

′)V π̂
n

P̂ ,r+b̂,h+2
(s′)ds′

)
(6)

f (1)(s) is naturally captured by F (1)(s) since V π
⋆

P⋆,r,h+1(s
′
h) is bounded in [0, 1], and by Lemma D.1, the expectation of

any bounded function under P̂h (resp. P ∗
h ) is a linear function of ϕ̂h (resp. ϕ∗h). For f (2)(s), the last term is captured by

w′⊤ϕ(s, a) in F (2), because V π
n

P̂ ,r+b,h+2
(s) is bounded in [0, 2H]. For the bonus term, recall that due to the Block MDP

structure, the bonus takes the form of

b̂nh(s, a) = αn

√
ϕ̂nh(s, a)

⊤Σ−1
h ϕ̂nh(s, a) = ϕ̂nh(s, a) ·

√
α2
n

N(ϕ̂nh(s, a)) + λn

which is in fact linear in ϕ̂nh(s, a) and can be captured by the 2nd term in F (2)
h , with c = αN√

λN
. Note that αN√

λN
≥ αn√

λn
for

all n ∈ [N ].

To begin with, we establish two forms of one-step-back tricks that are central to our analysis. They are of close resemblance
to the one-step-back lemmas in REP-UCB (Uehara et al., 2021).

Lemma A.1 (One-step-back inequality in the learned model). Consider a set of functions {gh}Hh=0 that satisfies gh ∈
S × A → R, s.t. ∥gh∥∞≤ B and Ea∼U(A)gh+1(s, a) ∈ Fh for all h ∈ [H]. We condition on the event where the
REPLEARN guarantee (3) holds, where Fh are defined as in Eq. (4). Then, we have for any policy π,

H−1∑
h=0

E(s,a)∼dπ
P̂ ,h

[gh(s, a)] ≤
H−2∑
h=0

E(s̃,ã)∼dπ
P̂ ,h
∥ϕ̂h(s̃, ã)∥Σ−1

ρh,ϕ̂h

·√
n|A|2E(s,a)∼βh+1

[
g2h+1(s, a)

]
+B2λnd+ n|A|2ζn +

√
|A|E(s,a)∼ρ0 [g

2
0(s, a)].

Proof. For step h = 0, we have

E(s,a)∼dπ
P̂ ,0

[g0(s, a)] =Es∼d0,a∼π0(s)[g0(s, a)]

≤

√
max
(s,a)

d0(s)π0(a | s)
ρ0(s, a)

E(s,a)∼ρ0 [g
2
0(s, a)] (Jensen)

≤

√
max
(s,a)

d0(s)π0(a | s)
d0(s)u(a)

E(s,a)∼ρ0 [g
2
0(s, a)] (behavior policy has uniform action)

≤
√
|A|E(s,a)∼ρ0 [g

2
0(s, a)].

For step h = 1, ...,H − 1, we observe the following one-step-back decomposition:

E(s,a)∼dπ
P̂ ,h

[gh(s, a)] =E(s̃,ã)∼dπ
P̂ ,h−1

,s∼P̂h−1(s̃,ã),a∼πh−1(s)
[gh(s, a)]

=E(s̃,ã)∼dπ
P̂ ,h−1

ϕ̂h−1(s̃, ã)
⊤
∫ ∑

a

µ̂h−1(s)πh−1(a | s)gh(s, a)ds
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≤E(s̃,ã)∼dπ
P̂ ,h−1

∥ϕ̂h−1(s̃, ã)∥Σ−1

ρh−1,ϕ̂h−1

∥∥∥∥∥
∫ ∑

a

µ̂h−1(s)πh−1(a | s)gh(s, a)d(s)

∥∥∥∥∥
Σρh−1,ϕ̂h−1

.

For any h,∥∥∥∥∥
∫ ∑

a

µ̂h(s)πh(a | s)gh+1(s, a)d(s)

∥∥∥∥∥
2

Σρh,ϕ̂h

=

{∫ ∑
a

µ̂h(s)πh(a | s)gh+1(s, a)d(s)

}⊤ {
nE(s̃,ã)∼ρh [ϕ̂hϕ̂

⊤
h ] + λnI

}{∫ ∑
a

µ̂h(s)πh(a | s)gh+1(s, a)d(s)

}

≤nE(s̃,ã)∼ρh


[∫ ∑

a

µ̂h(s)
⊤ϕ̂h(s̃, ã)πh(a | s)gh+1(s, a)d(s)

]2+B2λnd

(Use the assumption ∥
∑
a πh(a | s)gh+1(s, a)∥∞≤ B and

∫
∥µ̂h(s)h(s)d(s)∥2≤

√
d for any h : S → [0, 1].)

=nE(s̃,ã)∼ρh

[{
Es∼P̂h(s̃,ã),a∼πh(s)

[gh+1(s, a)]
}2
]
+B2λnd

=n|A|2E(s̃,ã)∼ρh

[{
|A|Es∼P̂h(s̃,ã),a∼U(A) [gh+1(s, a)]

}2
]
+B2λnd (Importance Sampling)

≤n|A|2E(s̃,ã)∼ρh

[{
Es∼P⋆

h (s̃,ã),a∼U(A) [gh+1(s, a)]
}2
]
+B2λnd+ n|A|2ζn (REPLEARN: Ea∼U(A)gh+1(s, a) ∈ Fh)

≤n|A|2E(s̃,ã)∼ρh,s∼P⋆
h (s̃,ã),a∼U(A)

[
g2h+1(s, a)

]
+B2λnd+ n|A|2ζn. (Jensen)

=n|A|2E(s,a)∼βh+1

[
g2h+1(s, a)

]
+B2λnd+ n|A|2ζn

Summing the decomposition for all steps h gives the desired result.

Lemma A.2 (One-step back inequality for the true model). Consider a set of functions {gh}Hh=0 that satisfies gh ∈ S×A →
R, s.t. ∥gh∥∞≤ B for all h ∈ [H]. Then, for any policy π,

H−1∑
h=0

E(s,a)∼dπ
P⋆,h

[gh(s, a)] ≤
H−2∑
h=0

E(s̃,ã)∼dπ
P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

·√
n|A|E(s,a)∼ρh+1

[
g2h+1(s, a)

]
+B2λnd+

√
|A|E(s,a)∼ρ0 [g

2
0(s, a)].

Proof. For step h = 0, we similarly have

E(s,a)∼dπ
P⋆,0

[g0(s, a)] =Es∼d0,a∼π0(s)[g0(s, a)]

≤

√
max
(s,a)

d0(s)π0(a | s)
ρ0(s, a)

E(s,a)∼ρ0 [g
2
0(s, a)] (Jensen)

≤

√
max
(s,a)

d0(s)π0(a | s)
d0(s)u(a)

E(s,a)∼ρ0 [g
2
0(s, a)] (behavior policy has uniform action)

≤
√
|A|E(s,a)∼ρ0 [g

2
0(s, a)].

For step h = 1, ...,H − 1, we observe the following one-step-back decomposition:

E(s,a)∼dπ
P⋆,h

[gh(s, a)] =E(s̃,ã)∼dπ
P⋆,h−1

,s∼P⋆
h−1(s̃,ã),a∼πh−1(s)[gh(s, a)]

=E(s̃,ã)∼dπ
P⋆,h−1

ϕ⋆h−1(s̃, ã)
⊤
∫ ∑

a

µ⋆h−1(s)πh−1(a | s)gh(s, a)ds
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≤E(s̃,ã)∼dπ
P⋆,h−1

∥ϕ⋆h−1(s̃, ã)∥Σ−1
γh−1,ϕ⋆

h−1

∥∥∥∥∥
∫ ∑

a

µ⋆h−1(s)πh−1(a | s)gh(s, a)d(s)

∥∥∥∥∥
Σγh−1,ϕ⋆

h−1

.

For any h,∥∥∥∥∥
∫ ∑

a

µ⋆h(s)πh(a | s)gh+1(s, a)d(s)

∥∥∥∥∥
Σγh,ϕ⋆

h

≤

{∫ ∑
a

µ⋆h(s)πh(a | s)gh+1(s, a)d(s)

}⊤ {
nE(s̃,ã)∼γh [ϕ

⋆
hϕ

⋆⊤
h ] + λnI

}{∫ ∑
a

µ⋆h(s)πh(a | s)gh+1(s, a)d(s)

}

≤nE(s̃,ã)∼γh


[∫ ∑

a

µ⋆h(s)
⊤ϕ⋆h(s̃, ã)πh(a | s)gh+1(s, a)d(s)

]2+B2λnd

(Use the assumption ∥
∑
a πh(a | s)g(si, ai)∥∞≤ B and

∫
∥µ⋆h(s)h(s)d(s)∥2≤

√
d for any h : S → [0, 1].)

=nE(s̃,ã)∼γh

[{
Es∼P⋆

h (s̃,ã),a∼πh(s) [gh+1(s, a)]
}2
]
+B2λnd

≤nE(s̃,ã)∼γh,s∼P⋆
h (s̃,ã),a∼πh(s)

[
g2h+1(s, a)

]
+B2λnd. (Jensen)

≤n|A|E(s̃,ã)∼γh,s∼P⋆
h (s̃,ã),a∼U(A)

[
g2h+1(s, a)

]
+B2λnd (Importance Sampling)

≤n|A|E(s,a)∼ρh+1

[
g2h+1(s, a)

]
+B2λnd

Then, the final statement is immediately concluded.

Notice that compared to Lemma A.1, Lemma A.2 post no structural assumption on gh other than boundedness, and does not
rely on the REPLEARN guarantee. Next, we prove the almost optimism Lemma presented in Lemma 4.4, restated below.
Lemma A.3 (Almost Optimism at the Initial Distribution). Consider an episode n(1 ≤ n ≤ N) and set

αn =
√
n|A|2ζn + 4λnd+ nζn/c, λn = O (d ln(|Φ|n/δ)) .

where c is an absolute constant. Conditioning on the event that the REPLEARN guarantee (3) holds, then with probability
1− δ, we have for all n ∈ [1, · · · , N ],

V π
⋆

P̂n,r+b̂n
− V π

⋆

P⋆,r ≥ −
√
|A|ζn.

Proof. Then, from simulation lemma (Lemma D.6), we have

V π
⋆

P̂ ,r+b̂
− V π

⋆

P⋆,r

=

H−1∑
h=0

E(sh,ah)∼dπ
⋆

P̂ ,h

[
b̂h(sh, ah) + EP̂h(s′h|sh,ah)

[V π
⋆

P⋆,r,h+1(s
′
h)]− EP⋆

h (s′h|sh,ah)[V
π⋆

P⋆,r,h+1(s
′
h)]
]

≥
H−1∑
h=0

E(sh,ah)∼dπ
⋆

P̂ ,h

[
min

(
cαn∥ϕ̂h(s, a)∥Σ−1

ρh,ϕ̂h

, 2

)
+ EP̂h(s′h|sh,ah)

[V π
⋆

P⋆,r,h+1(s
′
h)]− EP⋆

h (s′h|sh,ah)[V
π⋆

P⋆,r,h+1(s
′
h)]

]
(7)

where in the last step, we apply Lemma D.5 to replace the empirical covariance by the population covariance and c is an
absolute constant. Denote

fh(s, a) = EP̂h(s′h|s,a)
[V π

⋆

P⋆,r,h+1(s
′
h)]− EP⋆

h (s′h|s,a)[V
π⋆

P⋆,r,h+1(s
′
h)]

Notice that we have ∥fh(s, a)∥∞≤ 2,and since V π
⋆

P⋆,r,h+1(s
′) = maxa rh+1(s

′, a) + P⋆h+1V
⋆
P⋆,r,h+2 and P⋆h+1V

⋆
P⋆,r,h+2 is

linear in ϕ⋆h+1 ∈ Φh+1, we know V π
⋆

P⋆,r,h+1 ∈ Fh. Then, by the REPLEARN guarantee, we have

E(s,a)∼ρh
[
f2h(s, a)

]
≤ ζn,E(s,a)∼βh

[
f2h(s, a)

]
≤ ζn
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Also, since EP̂h(s′h|sh,ah)
[V π

⋆

P⋆,r,h+1(s
′
h)] is linear in ϕ̂h and EP⋆

h (s′h|sh,ah)[V
π⋆

P⋆,r,h+1(s
′
h)] is linear in ϕ⋆h, we have

Ea∼U(A)fh(s, a) ∈ Fh as well.

Then, substituting gh(s, a) = fh(s, a) in Lemma A.1, we have:

H−1∑
h=0

E(s,a)∼dπ⋆

P̂ ,h

[gh(s, a)]

≤
H−2∑
h=0

E(s̃,ã)∼dπ⋆

P̂ ,h

∥ϕ̂h(s̃, ã)∥Σ−1

ρh,ϕ̂h

·
√
n|A|2E(s,a)∼βh

[
g2h+1(s, a)

]
+ 4λnd+ nζn +

√
|A|E(s,a)∼ρ0 [g

2
0(s, a)]

≤
H−2∑
h=0

E(s̃,ã)∼dπ⋆

P̂ ,h

∥ϕ̂h(s̃, ã)∥Σ−1

ρh,ϕ̂h

·
√
n|A|2ζn + 4λnd+ nζn +

√
|A|ζn

≤
H−2∑
h=0

cαnE(s̃,ã)∼dπ⋆

P̂ ,h

∥ϕ̂h(s̃, ã)∥Σ−1

ρh,ϕ̂h

+
√
|A|ζn

where in the last step we denote

αn =
√
n|A|2ζn + 4λnd+ nζn/c

Going back to (7), we have

V π
⋆

P̂ ,r+b
− V π

⋆

P⋆,r

=

H−1∑
h=0

E(sh,ah)∼dπ
⋆

P̂ ,h

[
min

(
cαn∥ϕ̂h(s, a)∥Σ−1

ρh,ϕ̂h

, 2

)
+ EP̂h(s′h|sh,ah)

[V π
⋆

P⋆,r,h+1(s
′
h)]− EP⋆

h (s′h|sh,ah)[V
π⋆

P⋆,r,h+1(s
′
h)]

]

=

H−1∑
h=0

E(sh,ah)∼dπ
⋆

P̂ ,h

[
min

(
cαn∥ϕ̂h(s, a)∥Σ−1

ρh,ϕ̂h

, 2

)]
−
H−2∑
h=0

E(sh,ah)∼dπ
⋆

P̂ ,h

[
min

(
cαn∥ϕ̂h(s, a)∥Σ−1

ρh,ϕ̂h

+
√
|A|ζn, 2

)]
≥−

√
|A|ζn

From the second line to the third line, we again use ∥V π⋆

P⋆,r∥∞≤ O(1). This concludes the proof.

With the above preparations, we are now ready to prove our main theorem.
Theorem A.4 (Pseudo-Regret of BRIEE). With probability 1− δ, we have

N−1∑
n=0

V π
⋆

P⋆,r − V π̂
n

P⋆,r ≤ O
(
H5/2|A|1/2d log(|Φ|/δ)1/4N3/4

)
Proof. Similar to Lemma A.3, we condition on the event that the REPLEARN guarantee (3) holds, which by Theorem B.4
happens with probability 1− δ.

For any fixed episode n we have

V π
⋆

P⋆,r − V π̂
n

P⋆,r

≤V π
⋆

P̂ ,r+b̂
− V π̂

n

P⋆,r +
√
|A|ζn (Lemma A.3)

≤V π̂
n

P̂ ,r+b̂
− V π̂

n

P⋆,r +
√
|A|ζn (π̂n = argmaxπ V

π
P̂n,r+b̂n

)

=

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h

[
b̂h(sh, ah) + EP̂h(s′h|sh,ah)

[V π̂
n

P̂ ,r+b̂,h+1
(s′h)]− EP⋆

h (s′h|sh,ah)[V
π̂n

P̂ ,r+b̂,h+1
(s′h)]

]
+
√
|A|ζn

We used the 2nd form of Simulation Lemma (Lemma D.6) in the last display. Denote

fh(s, a) =
1

2H + 1

{
EP̂h(s′h|sh,ah)

[V π̂
n

P̂ ,r+b̂,h+1
(s′h)]− EP⋆

h (s′h|sh,ah)[V
π̂n

P̂ ,r+b̂,h+1
(s′h)]

}
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Then, noting ∥b̂∥∞≤ 2, we have ∥V π̂n

P̂ ,r+b,h+1
∥∞≤ (2H + 1), and 1

2H+1V
π̂n

P̂ ,r+b,h+1
∈ Fh. Combining this fact with the

above expansion, we have

V π
⋆

P⋆,r − V π̂
n

P⋆,r =

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h

[
b̂h(sh, ah)

]
︸ ︷︷ ︸

(a)

+(2H + 1)

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h
[fh(sh, ah)]︸ ︷︷ ︸

(b)

+
√
|A|ζn (8)

First, we calculate the first term (a) in Eq. (8). Following Lemma A.2 and noting again ∥b̂h∥∞≤ 2, we have

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h

[
b̂h(sh, ah)

]
≤
H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

√
n|A|E(s,a)∼ρh+1

[
(b̂h+1(s, a))2

]
+ 4λnd+

√
|A|E(s,a)∼ρ0 [(b̂0(s, a))

2].

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

√√√√n|A|α2
nE(s,a)∼ρh+1

[
∥ϕ̂h+1∥2Σ−1

ρh+1,ϕ̂h+1

]
+ 4λnd+

√
|A|α2

0E(s,a)∼ρ0

[
∥ϕ̂0∥2Σ−1

ρ0,ϕ̂0

]
.

Note that we use the fact that B = 2 when applying Lemma A.2. In addition, we have that for any h ∈ [H],

nE(s,a)∼ρh

[
∥ϕ̂h(s, a)∥2Σ−1

ρh,ϕ̂h

]
= nTr(Eρh [ϕ̂hϕ̂⊤h ]{nEρh [ϕ̂hϕ̂⊤h ] + λnI}−1) ≤ d.

Then,

H∑
h=1

E(s,a)∼dπ̂n

P⋆,h
[bh(s, a)] ≤

H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

ρh,ϕ⋆
h

√
|A|α2

nd+ 4λnd+
√
|A|α2

1d/n.

Second, we calculate the term (b) in Eq. (8). Following Lemma A.2 and noting ∥fh(s, a)∥∞≤ 1, we have

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h
[fh(sh, ah)]

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

√
n|A|E(s,a)∼ρh+1

[
f2h+1(s, a)

]
+ 4λnd+

√
|A|E(s,a)∼ρ0 [f

2
0 (s, a)].

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

√
n|A|ζn + 4λnd+

√
|A|ζn.

where in the second inequality, we use Es,a∼ρh [f2h(s, a)] ≤ ζn. Then, by combining the above calculation of the term (a)
and term (b) in Eq. (8), we have:

V π
⋆

P⋆,r − V π̂
n

P⋆,r

=

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h
[bh(sh, ah)] + (2H + 1)

H−1∑
h=0

E(sh,ah)∼dπ̂
n

P⋆,h
[fh(sh, ah)] +

√
|A|ζn

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

√
|A|α2

nd+ 4λnd+
√
|A|α2

1d/n+
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(2H + 1)

H−2∑
h=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆h(s̃, ã)∥Σ−1

γh,ϕ⋆
h

√
n|A|ζn + 4λnd+ (2H + 1)

√
|A|ζn +

√
|A|ζn.

Hereafter, we take the dominating term out. First, recall

αn = O(
√
n|A|2ζn + 4λnd+ nζn)

Second, recall that γnh (s, a) =
1
n

∑n−1
i=0 d

πi

h (s, a), and thus

N−1∑
n=0

E(s̃,ã)∼dπ̂n

P⋆,h
∥ϕ⋆(s̃, ã)∥Σ−1

γn
h

,ϕ⋆
h

≤

√√√√N

N∑
n=1

E(s̃,ã)∼dπ̂n

P⋆,h
[ϕ⋆h(s̃, ã)

⊤Σ−1
γn
h ,ϕ

⋆
h
ϕ⋆h(s̃, ã)] (CS inequality)

≤

√√√√N

(
ln det(

N∑
n=1

E(s̃,ã)∼dπ̂n

P⋆,h
[ϕ⋆h(s̃, ã)ϕ

⋆
h(s̃, ã)

⊤])− ln det(λ1I)

)
(Lemma D.2 and λ1 ≤ · · · ≤ λN )

≤

√
dN ln

(
1 +

N

dλ1

)
. (Potential function bound, Lemma D.3 noting ∥ϕ⋆h(s, a)∥2≤ 1 for any (s, a).)

Finally, The REPLEARN guarntee gives

ζn = O

(
d2
√

log (dn|Φ|/δ)
k

)

Combining all of the above, we have

N∑
n=1

V π
⋆

P⋆,r − V π̂
n

P⋆,r ≤O
(
H2|A|3/2d2n3/4 log (dn|Φ|/δ)1/4

)

This concludes the proof and gives us a sample complexity of O
(
H8|A|6d8 log(d|Φ|/δϵ)

ϵ4

)
.

B. Representation Learning Analysis
In this section we prove Lemma 4.3. Below we omit the superscript n and subscript h when clear from the context. Denote

Lλ,D(ϕ,w, f) =
1

|D|
∑

(s,a,s′)∈D

(
ϕ(s, a)⊤w − f(s′)

)2
+

λ

|D|
∥w∥22 (9)

LD(ϕ,w, f) =
1

|D|
∑

(s,a,s′)∈D

(
ϕ(s, a)⊤w − f(s′)

)2
(10)

Lρ(ϕ,w, f) = E(s,a)∼ρ,s′∼P⋆(·|s,a)
(
ϕ(s, a)⊤w − f(s′)

)2
(11)

The following lemma quantifies the complexity of our discriminator class Fh using its covering number.

Lemma B.1 (Covering Number of Fh). The γ-covering number of Eq. Fh defined in (4) is at most 2|Φh+1|2·
(

2αN√
λNγ

)2d
.

Proof. Recall that the discriminator class is defined as follows:

F (1)
h =

{
f(s) := Ea∼U(A)

[
ϕ(s, a)⊤θ − ϕ′(s, a)⊤θ′

] ∣∣∣ ϕ, ϕ′ ∈ Φh+1 max(∥θ∥∞, ∥θ′∥∞) ≤ 1
}
,

F (2)
h =

{
f(s) : max

a

(
rh+1(s, a) + min

{
w⊤ϕ(s, a), 2

}
2H + 1

+ w′⊤ϕ(s, a)

)∣∣∣ϕ, ϕ′ ∈ Φh+1; ∥w∥∞≤ c, ∥w′∥∞≤ 1

}
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We cover F (1)
h and F (2)

h separately. For F (1)
h , let Θ be an ℓ∞-cover of the set {θ ∈ Rd : ∥θ∥∞≤ 1} at scale γ. Then, we

know |Θ|≤
(

2
γ

)d
. Define the γ-covering set of F (1)

h as

F̃ (1)
h =

{
s 7→

(
Ea∼U(A)

[
ϕ(s, a)⊤θ − ϕ′(s, a)⊤θ′

])
| ϕ, ϕ′ ∈ Φh+1, θ, θ

′ ∈ Θ
}

Then, we have that for any f ∈ F (1)
h , there exists a f̃ ∈ F̃ (1)

h , s.t. ∥f − f̃∥∞≤ γ, where we use the fact that ϕ(s, a) are

one-hot vectors, and we have |F̃ (1)
h |≤ |Φh+1|2·

(
2
γ

)2d
.

For F (2)
h , similarly let W be an ℓ∞-cover of the set {w ∈ Rd : ∥w∥∞≤ c} at scale γ. Let W ′ be an ℓ∞-cover of the

set {w′ ∈ Rd : ∥w′∥∞≤ 1} at scale γ. Then, we know that |W ′|≤
(

2
γ

)d
and |W|≤

(
2c
γ

)d
, c = αN/

√
λN . Define the

γ-covering set of F (2)
h as

F̃ (2)
h =

{
s 7→ max

a

(
rh+1(s, a) + min

{
w⊤ϕ(s, a), 2

}
2H + 1

+ w′⊤ϕ(s, a)

) ∣∣∣ ϕ ∈ Φh+1, w ∈ W, w′ ∈ W ′

}

Then, we have that for any g ∈ G′, there exists a g̃′ ∈ G̃′, s.t. ∥g − g̃∥∞≤ γ, and |G̃′|≤ |Φh+1|·
(

2
γ

)d (
2αN√
λNγ

)d
. So the

γ-covering number of Fh is

|G̃|+|G̃′|=|Φh+1|2·
(
2

γ

)2d

+ |Φh+1|·
(
2

γ

)d(
2αN√
λNγ

)d
≤2|Φh+1|2·

(
2αN√
λNγ

)2d

where the last step is due to αN/
√
λN ≥ 1.

Lemma B.2 (Uniform Convergence for Square Loss). Let there be a dataset D := {(si, ai, s′i)}ki=1 collected in k episodes.
Denote that the data generating distribution in iteration i by di, and ρ = 1

k

∑k
i=0 di. Note that di can depend on the

randomness in episodes 0, ..., i− 1. For a finite feature class Φ and a discriminator class F : S → [0, L] with γ-covering
number ∥F∥γ , we will show that, with probability at least 1− δ:∣∣[Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)]− [LD(ϕ,w, f)− LD(ϕ

⋆, θ⋆f , f)
]∣∣

≤1

2

[
Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)

]
+

28L2 log(
2(4k)d·|Φ|·∥F∥L/2k

δ )

k

for all ϕ ∈ Φ, ∥w∥∞≤ L and f ∈ F , where recall that ϕ⋆ is the true feature and θ⋆f is defined as Es′∼P⋆(·|s,a)[f(s
′)|s, a] =

⟨ϕ⋆(s, a), θ⋆f ⟩.

Proof. Note that in REPLEARN, everything is happening at a fixed time step and we drop the time step indexing for brevity.
To start, we focus on a given f ∈ F . We first give a high probability bound on the following deviation term:∣∣Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)− (LD(ϕ,w, f)− LD(ϕ

⋆, θ⋆f , f)
)∣∣ .

Denote g(si, ai) = ⟨ϕ(si, ai), w⟩ and g⋆(si, ai) =
〈
ϕ⋆(si, ai), θ

⋆
f

〉
.

At episode i, let Fi−1 be the σ-field generated by all the random variables over the first k − 1 episodes, for the random
variable Yi := (g(si, ai)− f(s′i))

2 − (g⋆(si, ai)− f(s′i))
2, we have:

E[Yi|Fi−1] = E
[
(g(si, ai)− f(s′i))

2 − (g⋆(si, ai)− f(s′i))
2
]

= E [(g(si, ai) + g⋆(si, ai)− 2f(s′i)) (g(si, ai)− g⋆(si, ai))]

= E
[
(g(si, ai)− g⋆(si, ai))2

]
.
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Here the conditional expectation is taken according to the distribution [di|Fi−1]. The last equality is due to the fact that

E [(g⋆(si, ai)− f(s′i)) (g(si, ai)− g⋆(si, ai))] = Esi,aiEs′i|si,ai [(g
⋆(si, ai)− f(s′i)) (g(si, ai)− g⋆(si, ai))] = 0

Next, for the conditional variance of the random variable, we have:

V[Yi|Fi−1] ≤ E
[
Y 2
i |Fi−1

]
= E

[
(g(si, ai) + g⋆(si, ai)− 2f(s′i))

2
(g(si, ai)− g⋆(si, ai))2

]
≤ 16L2E

[
(g(si, ai)− g⋆(si, ai))2

]
≤ 16L2E[Yi|Fi−1].

Noticing Y ∈ [−4L2, 4L2].

From here on, we use E[Y ] to denote the conditional expectation and V[Y ] to denote the conditional variance for all Yi,
since they are all the same. Now, applying Azuma-Bernstein’s inequality on Y1 + ...+Yk with respect to filtration {Fk}k≥0,
with probability at least 1− δ′, we can bound the deviation term above as:∣∣Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)− (LD(ϕ,w, f)− LD(ϕ

⋆, θ⋆f , f)
)∣∣

≤

√
2V[Y ] log 2

δ′

k
+

16L2 log 2
δ′

3k

≤

√
32L2E[Y ] log 2

δ′

k
+

16L2 log 2
δ′

3k

where in the last inequality is obtained by choosing γ = L
2k .

Further, consider a finite point-wise cover of the function class G := {g(s, a) = ⟨ϕ(s, a), w⟩ : ϕ ∈ Φ, ∥w∥∞≤ L}.
Note that, with a ℓ∞-coverW ofW = {∥w∥∞≤ L} at scale γ, we have for all (s, a) and ϕ ∈ Φ, there exists w̄ ∈ W ,

|⟨ϕ(s, a), w − w̄⟩|≤ γ, and we have |W|=
(

2L
γ

)d
. Let F̃ be a γ-covering set of F .

Then, applying a union bound over elements in Φ×W × F̃ , with probability 1− |Φ|·|W|·|F̃ |δ′, for all w ∈ W , f ∈ F , we
have: ∣∣Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ∗f , f)− (LD(ϕ,w, f)− LD(ϕ

⋆, θ∗f , f)
)∣∣

≤
∣∣Lρ(ϕ, w̄, f)− Lρ(ϕ⋆, θ⋆f , f)− (LD(ϕ, w̄, f)− LD(ϕ

⋆, θ⋆f , f)
)∣∣+ 4Lγ

≤

√
32L2E[Y ] log 2

δ′

k
+

16L2 log 2
δ′

3k
+ 4Lγ

≤ 1

2
E[Yw̄] +

16L2 log 2
δ′

k
+

16L2 log 2
δ′

3k
+ 4Lγ

≤ 1

2
E[Yw] + 2Lγ +

16L2 log 2
δ′

k
+

16L2 log 2
δ′

3k
+ 4Lγ

≤ 1

2

(
Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)

)
+

22L2 log 2
δ′

k
+ 6Lγ

≤ 1

2

(
Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)

)
+

28L2 log 2
δ′

k
(setting γ = L/k)

where we add subscript to Y to distinguish Yw̄ := (⟨ϕ(s, a), w̄⟩ − f(s′))2 − (g∗(s, a)− f(s′))2 from Yw :=

(⟨ϕ(s, a), w⟩ − f(s′i))
2 − (g∗(si, ai)− f(s′i))

2.

Finally, setting δ = δ′/
(
|Φ||W||F̃ |

)
, we get log 2

δ′ ≤ log 2(4k)d|Φ||F̃|
δ . This completes the proof.

We will see now how the above lemma can be adapted to the regularized objective.

Below, we use ŵtf to denote argminw Lλ,D(ϕt, w, f), ŵti a shorthand for ŵtfi , and θ⋆i = argminθ Lλ,D(ϕ⋆, θ, f i).
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Lemma B.3 (Deviation Bounds for Algorithm 2). Let ϵ̃ = 56L2 log(
2(4k)d·|Φ|·∥F∥L/2k

δ )

k . If Algorithm 2 is called with a dataset
D of size k and terminal loss cutoff ℓ = 3

2ϵ1+ ϵ̃+
2λL2d
k , then with probability at least 1− δ, for any f ∈ F ⊂ (S → [0, L])

and t ≤ T , we have ∑
i≤t

Eρ
[(
ϕt(s, a)⊤ŵti − ϕ⋆(s, a)⊤θ⋆i

)2] ≤ t(ϵ̃+ 2λL2d

k

)
Eρ
[(
ϕt(s, a)⊤w − ϕ⋆(s, a)⊤θ⋆t+1

)2] ≥ ϵ1, for all w ∈ Rd.

Furthermore, at termination, the learned feature ϕt satisfies:

max
f∈F

Eρ
[
(ϕt⊤ŵtf − ϕ⋆⊤θ⋆f )2

]
≤ 3ϵ1 + 3ϵ̃+

4λL2d

k
.

Proof. We begin by using the result in Lemma B.2 such that, with probability at least 1− δ, for all ∥w∥∞≤ L, ϕ ∈ Φ and
f ∈ F , we have∣∣[Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)]− [LD(ϕ,w, f)− LD(ϕ

⋆, θ⋆f , f)
]∣∣ ≤ 1

2

[
Lρ(ϕ,w, f)− Lρ(ϕ⋆, θ⋆f , f)

]
+ ϵ̃/2.

Thus, for the feature selection step in iteration t, with probability at least 1− δ we have:∑
i≤t

Eρ
[(
ϕt⊤ŵti − ϕ⋆⊤θ⋆i

)2]
=
∑
i≤t

(
Lρ(ϕt, ŵti , f i)− Lρ(ϕ⋆, θ⋆i , f i)

)
(since Es′∼P⋆(s,a)f

i = (θ⋆i )
⊤ϕ∗(s, a))

≤
∑
i≤t

2
(
LD(ϕ

t, ŵti , f
i)− LD(ϕ

⋆, θ⋆i , f
i)
)
+ tϵ̃ (Lemma B.2, and ∥ŵti∥∞≤ L by Lemma D.1)

≤
∑
i≤t

2

(
Lλ,D(ϕt, ŵti , f i)− Lλ,D(ϕ⋆, θ⋆i , f i) +

λ

k
∥θ⋆i ∥22

)
+ tϵ̃

≤ t
(
ϵ̃+

2λL2d

k

)
, (by the optimality of ϕt, ŵti under Lλ,D(·, ·, f i), see Algorithm 2 line 7)

which means the first inequality in the lemma statement holds. Here, we use ∥θ∗i ∥22≤ L2d, which is easily derived using the
block MDP assumption.

For the discriminator selected at iteration t, let w̄ := argminw Lλ,D(ϕt, w, f t+1). Using the same sample size for the
adversarial test function at each non-terminal iteration with loss cutoff ℓ, for any vector w ∈ Rd, ∥w∥∞≤ L we get:

Eρ
[(
ϕt⊤w − ϕ⋆⊤θ⋆t+1

)2]
= Lρ(ϕt, w, f t+1)− Lρ(ϕ⋆, θ⋆t+1, f

t+1)

≥ 2

3

(
LD(ϕ

t, w, f t+1)− LD(ϕ
⋆, θ⋆t+1, f

t+1)
)
− ϵ̃

3
(Lemma B.2)

≥ 2

3

(
Lλ,D(ϕt, w, f t+1)− Lλ,D(ϕ⋆, θ⋆t+1, f

t+1)− λL2d

k

)
− ϵ̃

3

≥ 2

3

(
Lλ,D(ϕt, w̄, f t+1)− Lλ,D(ϕ⋆, θ⋆t+1, f

t+1)− λL2d

k

)
− ϵ̃

3
(w̄ := argminw Lλ,D(ϕt, w, f t+1))

≥ 2ℓ

3
+

2

3

(
min

ϕ̃∈Φh,w̃
Lλ,D(ϕ̃, w̃, f t+1)− Lλ,D(ϕ⋆, θ⋆t+1, f

t+1)

)
− 2λL2d

3k
− ϵ̃

3

≥ 2ℓ

3
+

2

3

(
min

ϕ̃∈Φh,w̃
LD(ϕ̃, w̃, f

t+1)− LD(ϕ
⋆, θ⋆t+1, f

t+1)− λL2d

k

)
− 2λL2d

3k
− ϵ̃

3
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≥ 2ℓ

3
+

1

3

(
L(ϕ̃t+1, w̃t+1, f

t+1)− L(ϕ⋆, θ⋆t+1, f
t+1)

)
− 4λL2d

3k
− 2ϵ̃

3
(∥w̃t+1∥∞≤ L, ∥θ∗t+1∥∞≤ L, Lemma B.2)

≥ 2ℓ

3
− 4λL2d

3k
− 2̃ϵ

3
.

where (ϕ̃t+1, w̃t+1) denote argminϕ̃∈Φh,w̃
Lλ,D(ϕ̃, w̃, f t+1). In the first inequality, we invoke Lemma B.2 to move to

empirical losses. In the fourth inequality, we add and subtract the bias correction term along with the fact that the termination
condition is not satisfied for f t+1. In the next step, we again use Lemma B.2 for the bias correction term for f t+1.

Thus, if we set the cutoff ℓ for test loss to 3ϵ1/2+ ϵ̃+ 2λL2d
k , for a non-terminal iteration t, for any w ∈ Rd with ∥w∥∞≤ L,

we have:

Eρ
[(
ϕt⊤w − ϕ⋆⊤θ⋆t+1

)2] ≥ ϵ1. (12)

Now, since we know ϕ⋆⊤θ⋆t+1 = Es′∼P⋆(s,a)f
t+1 ≤ L, and we know the Bayes optimal solution

wϕt = argmin
w∈Rd

Eρ
[(
ϕt⊤w − ϕ⋆⊤θ⋆t+1

)2]
satisfies ∥wϕt∥∞≤ L by Lemma D.1. Therefore, Eq. (12) also applies to wϕt , and since wϕt is the minimizer, we have in
fact for all w ∈ Rd,

Eρ
[(
ϕt⊤w − ϕ⋆⊤θ⋆t+1

)2] ≥ ϵ1.
which implies the second inequality in the lemma statement holds.

At the same time, for the last iteration t, for all f ∈ F , define ŵf = argminw Lλ,D(ϕt, w, f), then the feature ϕt satisfies:

Lρ(ϕt, ŵf , f)− Lρ(ϕ⋆, θ⋆f , f)

≤ 2

(
Lλ,D(ϕt, ŵf , f)− Lλ,D(ϕ⋆, θ⋆f , f) +

λL2d

k

)
+ ϵ̃ (Lemma B.2, and ∥θ∗f∥∞≤ L by Lemma D.1)

≤ 2
(
Lλ,D(ϕt, ŵf , f)− Lλ,D(ϕ̃f , w̃f , f) + Lλ,D(ϕ̃f , w̃f , f)− Lλ,D(ϕ⋆, θ⋆f , f)

)
+

2λL2d

k
+ ϵ̃

≤ 2
(
Lλ,D(ϕt, ŵf , f)− Lλ,D(ϕ̃f , w̃f , f)

)
+

2λL2d

k
+ ϵ̃ (optimality of ϕ̃f , w̃f on Lλ,D(·, ·, f).)

≤ 2ℓ+
2λL2d

k
+ ϵ̃

= 3ϵ1 + 3ϵ̃+
4λL2d

k
.

This gives us the third inequality in the lemma, thus completes the proof.

Theorem B.4 (Sample and Iteration Complexity of Algorithm 2). Let ϵ1 be set to 16
√
2Ld3/2ϵ̃1/2 and the termination

threshold be set to ℓ = 3
2ϵ1 + ϵ̃+ 2λL2d

k as in Lemma B.3, then Algorithm 2 terminates in at most T =
√

L2d
2ϵ̃ iterations,

and returns a ϕt such that
max
f∈F

Eρ
[
(ϕt⊤ŵf − ϕ⋆⊤θ⋆f )2

]
≤ 75Ld3/2ϵ̃1/2.

For Fh defined in Lemma B.1, we have

max
f∈Fh

Eρ
[
(ϕt⊤ŵf − ϕ⋆⊤θ⋆f )2

]
≤ ζn := O

(
d2
√

log (dk|Φ|/δ)
k

)

Proof. We first incur Lemma B.3 and get that when ℓ = 3
2ϵ1 + ϵ̃+ 2λL2d

k ,

∑
i≤t

Eρ
[(
ϕt(s, a)⊤ŵti − ϕ⋆(s, a)⊤θ⋆i

)2] ≤ t(ϵ̃+ 2λL2d

k

)
≤ 2tϵ̃ (13)
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Eρ
[(
ϕt(s, a)⊤w − ϕ⋆(s, a)⊤θ⋆t+1

)2] ≥ ϵ1 (14)

for all w and t ≤ T .

At round t, for functions f1, . . . , f t ∈ F in Algorithm 2, let θ⋆i = θ⋆fi as before and further let Λt =
∑t
i=1 θ

⋆
i θ
⋆⊤
i + λ′Id×d.

Further, let Wt = [wt,1 | wt,2 | . . . | wt,t] ∈ Rd×t be the matrix with columns W i
t as the linear parameter ŵti =

argminw Lλ,D(ϕt, w, f i). Similarly, let At = [θ⋆1 | θ⋆2 | . . . | θ⋆t ].

Using the linear parameter θ⋆t+1 of the adversarial test function f t+1, define ŵt = WtA
⊤
t Λ

−1
t θ⋆t+1. For this ŵt, we can

bound its norm as:

∥WtA
⊤
t Λ

−1
t θ⋆t+1∥2≤ ∥Wt∥2∥A⊤

t Λ
−1
t ∥2∥θ⋆t+1∥2≤ L2d

√
t

4λ′
.

Here, ∥Wt∥2≤ L
√
dt, ∥θ⋆t+1∥2≤ L

√
d, and ∥A⊤

t Λ
−1
t ∥op can be shown to be less than

√
1/4λ′ 1. From Eq. (14), we have

ϵ1 ≤ E
[(
ϕt⊤ŵt − ϕ⋆⊤θ⋆t+1

)2]
= E

[(
ϕ̂⊤t WtA

⊤
t Λ

−1
t θ⋆t+1 − ϕ⋆⊤ΛtΛ−1

t θ⋆t+1

)2]
≤ ∥Λ−1

t θ⋆t+1∥22·E
[
∥ϕt⊤WtA

⊤
t − ϕ⋆⊤Λt∥22

]
≤ 2∥Λ−1

t θ⋆t+1∥22·E
[
∥ϕt⊤WtA

⊤
t − ϕt⊤AtA⊤

t ∥22+λ′2∥ϕ⋆⊤∥22
]

≤ 2∥Λ−1
t θ⋆t+1∥22·

(
σ2
1(At)E

[
∥ϕt⊤Wt − ϕ⋆⊤At∥22

]
+ λ′2

)
≤ 2∥Λ−1

t θ⋆t+1∥22·
(
2L2dt2ϵ̃+ λ′2

)
.

The second inequality uses (a + b)2 ≤ 2a2 + 2b2. The last inequality applies the upper bound σ1(At) ≤ L
√
dt and the

guarantee from Eq. (13). Using the fact that t ≤ T , this implies that

∥Λ−1
t θ⋆t+1∥2≥

√
ϵ1

2(2L2dT 2ϵ̃+ λ′2)
.

We now use the generalized elliptic potential lemma to upper bound the total value of ∥Λ−1
t θ⋆t+1∥2. From Lemma D.4, if we

set λ′ = L2d and we do not terminate in T rounds, then

T

√
ϵ1

2(2L2dT 2ϵ̃+ λ′2)
≤

T∑
t=1

∥Λ−1
t θ⋆t+1∥2≤ 2

√
Td

λ′
.

From this chain of inequalities, we can deduce

Tϵ1 ≤ 8(d/λ′)
(
2L2dT 2ϵ̃+ λ′2

)
,

therefore

T ≤ 8dλ′

ϵ1 − 16L2d2T ϵ̃/λ′
.

Now, if we set ϵ1 = 32L2d2T ϵ̃/λ′ in the above inequality, we can deduce that

T ≤ λ′2

2L2dT ϵ̃
=⇒ T ≤

√
L2d

2ϵ̃
.

and the proper value for ϵ1 is 16
√
2Ld3/2ϵ̃1/2. The sample complexity then readily follows from Lemma B.3.

Combining with Lemma B.1, and noting that ∥f∥∞≤ 2 for all f ∈ Fh, we have that

max
f∈Fh

Eρ
[
(ϕt⊤ŵf − ϕ⋆⊤θ⋆f )2

]
≤ ζn := O

(
d2
√

log (dk|Φ|/δ)
k

)
which gives us Lemma 4.3.

1Applying SVD decomposition and the property of matrix norm, ∥A⊤
t Λ

−1
t ∥op can be upper bounded by maxi≤d

√
λi

λi+λ′ ≤ 1√
4λ′ where

λi are the eigenvalues of AtA
⊤
t and the final inequality holds by AM-GM.
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Algorithm 4 Reward-free BRIEE

Exploration Phase:

1: Input: Representation classes {Φh}H−1
h=0 , discriminator classes {Fh}H−1

h=0 , parameters N,Tn, αn, λn
2: Initialize policy π̂0 = {π0, . . . , πH−1} arbitrarily and replay buffers Dh = ∅,D′

h = ∅ for all h
3: for n = 1→ N do
4: Data collection from π̂n−1: ∀h ∈ [H],

s ∼ dπ̂n−1

h , a ∼ U(A), s′ ∼ P ⋆h (s, a);
s̃ ∼ dπ̂n−1

h−1 , ã ∼ U(A), s̃′ ∼ P ⋆h−1(s̃, ã), ã
′ ∼ U(A), s̃′′ ∼ P ⋆h (s̃′, ã′)

Dh = Dh ∪ {s, a, s′} and D′
h = D′

h ∪ {s̃′, ã′, s̃′′}.
5: Learn representations for all h ∈ [H]:

ϕ̂nh = REPLEARN (Dh ∪ D′
h,Φh,Fh, λn, Tn, ℓn)

6: Define exploration bonus for all h ∈ [H]:

b̂nh(s, a) := min
{
αn

√
ϕ̂nh(s, a)

⊤Σ−1
h ϕ̂nh(s, a), 2

}
, with Σh :=

∑
s,a,s′∼Dh

ϕ̂nh(s, a)ϕ̂
n
h(s, a)

⊤ + λnI .

7:
(
π̂n, V̂ n0 (s0)

)
← LSVI({b̂nh}

H−1
h=0 , {ϕ̂nh}

H−1
h=0 , {Dh ∪ D′

h}
H−1
h=0 , λn).

8: end for
9: ñ = argminn V̂

n
0 (s0).

Planning Phase:

1: Input: Reward function rh(s, a).
2: π̂ ← LSVI({rh + b̂ñh}

H−1
h=0 , {ϕ̂ñh}

H−1
h=0 , {Dñh ∪ D′ñ

h }
H−1
h=0 , λñ).

C. Reward-free Exploration

Exploration Stage Run BRIEE with reward function set to zero and discriminator class set to{
f(s)=Ea∼U(A)[ϕ(s, a)

⊤θ − ϕ′(s, a)⊤θ′] | ϕ, ϕ′ ∈ Φh+1 max(∥θ∥∞, ∥θ′∥∞)≤1
}⋃

{
f(s)=

ϕ′(s, π′(s))⊤θ +min{w⊤ϕ(s, π(s)), 2}
2H + 1

+ w′⊤ϕ(s, π(s)) | ϕ, ϕ′ ∈ Φh+1; ∥w∥∞, ∥w′∥∞, ∥θ∥∞≤ c;π, π′ ∈ Π̃
}

where

Π̃ = {f(ψ(s)) | f : Z → A, ψ ∈ Ψ}

Then main difference to the discriminator class in the reward-driven setting is that we replace the known reward function
rh+1(s, a) in F (2) with a linear term ϕ′(s, a)⊤θ which covers all possible reward functions that depends on the latent states
and actions, i.e., rh+1(z, a). We also replace maxa by a pre-defined policy class that covers all possible policies π̂ that can
be returned by Algorithm 4. Π̃ has cardinality |Φ|·|A||Z|. So the log-covering number of Fh does not change more than
constant factors and Lemma 4.3 remains to hold.

We collect all historical version of the datasets as {Dnh} and {Dn′h }, bonuses as {b̂nh} and learned features as {ϕnh}, for all
h ∈ [H] and n ∈ [N ].

Planning Stage The key observation here is that V π
n

P̂n,b̂n
can actually observed as the returned value V̂ n0 (s0) of LSVI for

each iteration n (assuming a unique starting state). Therefore, we can choose ñ = argminn V
πn

P̂n,b̂n
and let the exploration

stage output P̂ ñ, b̂ñ.

Then, during planning stage, simply return π̂ = argmaxπ V
π
P̂ ñ,r+b̂ñ

, which is done by LSVI.

Lemma C.1. For any n ∈ [N ],

NV π̂
ñ

P̂n,b̂ñ
≤
N−1∑
n=0

V π̂
n

P̂n,b̂n
≤ O

(
H5/2|A|1/2d log(|Φ|/δ)1/4N3/4

)
.



Model-free Representation Learning in Block MDPs

Proof. This follows the exact same proof as Theorem A.4 (starting from the 3rd equation), plus noting that during exploration,
since the reward is 0, V π

n

P⋆,r = 0.

Lemma C.2. We have

V π̂
P̂n,r+b̂n

− V π̂P⋆,r ≤ C · V π̂P̂n,b̂n
+
√
|A|ζn

for an absolute constant C.

Proof. Below we drop the superscript n. First we apply simulation lemma (Lemma D.6)

V π̂
P̂ ,r+b̂

− V π̂P⋆,r

=

H−1∑
h=0

E(sh,ah)∼dπ̂
P̂ ,h

[
b̂h(sh, ah) + EP̂h(s′h|sh,ah)

[V π̂P⋆,r,h+1(s
′
h)]− EP⋆

h (s′h|sh,ah)[V
π̂
P⋆,r,h+1(s

′
h)]
]

=V π̂
P̂ ,b̂

+

H−1∑
h=0

E(sh,ah)∼dπ̂
P̂ ,h

EP̂h(s′h|sh,ah)
[V π̂P⋆,r,h+1(s

′
h)]− EP⋆

h (s′h|sh,ah)[V
π̂
P⋆,r,h+1(s

′
h)]︸ ︷︷ ︸

gh(s,a)


We know gh ∈ Fh, ∥gh∥∞≤ 2. Therefore, by the REPLEARN guarantee, we have

E(s,a)∼ρh
[
g2h(s, a)

]
≤ ζn,E(s,a)∼βh

[
g2h(s, a)

]
≤ ζn

Then, we apply one-step-back trick to
∑H−1
h=0 E(sh,ah)∼dπ̂

P̂ ,h
gh(s, a),

H−1∑
h=0

E(s,a)∼dπ̂
P̂ ,h

[gh(s, a)]

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂
P̂ ,h
∥ϕh(s̃, ã)∥Σ−1

ρh,ϕh

·
√
n|A|2E(s,a)∼βh

[
g2h+1(s, a)

]
+ 4λnd+ nζn +

√
|A|E(s,a)∼ρ0 [g

2
0(s, a)]

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂
P̂ ,h
∥ϕh(s̃, ã)∥Σ−1

ρh,ϕh

·
√
n|A|2ζn + 4λnd+ nζn +

√
|A|ζn

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂
P̂ ,h
αn · ∥ϕh(s̃, ã)∥Σ−1

ρh,ϕ̂h

+
√
|A|ζn

≤
H−2∑
h=0

E(s̃,ã)∼dπ̂
P̂ ,h
c · b̂(s̃, ã) +

√
|A|ζn (by Lemma D.5)

Theorem C.3 (Reward-free PAC bound). Let π⋆ be the optimal policy under P ⋆ and r. Then,

V π
⋆

P⋆,r − V π̂P⋆,r ≤ O
(
H5/2|A|1/2d log(|Φ|/δ)1/4N−1/4

)
Proof. We have

V π
⋆

P⋆,r − V π̂P⋆,r ≤
√
|A|ζn + V π

⋆

P̂ ñ,r+b̂ñ
− V π̂P⋆,r (Apply Lemma A.3 to π∗)

≤
√
|A|ζn + V π̂

P̂ ñ,r+b̂ñ
− V π̂P⋆,r (π⋆ ∈ Π̃ and π̂ = argmaxπ V

π
P̂ ñ,r+b̂ñ

)

≤2
√
|A|ζn + CV π̂

P̂ ñ,b̂ñ
(by Lemma C.2)
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≤2
√
|A|ζn + CV π̂

n

P̂ ñ,b̂ñ
(π̂n = argmaxπ V

π
P̂n,b̂n

)

≤O
(
H5/2|A|1/2d log(|Φ|/δ)1/4N−1/4

)
(by Lemma C.1)

D. Auxiliary Lemmas
Lemma D.1 (bounded LSVI solution for Block MDP). For any ϕ ∈ Φ, f : S → [0, L], dataset D = {(si, ai, s′i)}ni=1, the
ridge regression solution

ŵf = argmin
w

n∑
i=1

(ϕ(s, a)⊤w − f(s′))2 + λ∥w∥22 (15)

satisfies ∥ŵf∥∞≤ L.

Proof. In Block MDP, ŵf takes the following closed-form

ŵf (z, a) =
1

ND(ϕ(s, a) + λ

∑
i:ϕ(si,ai)=(z,a)

f(s′i) ≤
ND(ϕ(s, a))

ND(ϕ(s, a) + λ
L ≤ L

as needed.

The following is a standard inequality to prove regret bounds for linear models. Refer to Agarwal et al. (2020a, Lemma
G.2.).

Lemma D.2. Consider the following process. For n = 1, · · · , N , Mn = Mn−1 + Gn with M0 = λ0I and Gn being a
positive semidefinite matrix with eigenvalues upper-bounded by 1. We have that:

2 ln det(MN )− 2 ln det(λ0I) ≥
N∑
n=1

Tr(GnM−1
n−1).

Lemma D.3 (Potential Function Lemma). Suppose Tr(Gn) ≤ B2.

2 ln det(MN )− 2 ln det(λ0I) ≤ d ln
(
1 +

NB2

dλ0

)
.

Lemma D.4 (Generalized Elliptic Potential Lemma, Lemma 24 of (Modi et al., 2021)). For any sequence of vectors
θ⋆1 , θ

⋆
2 . . . , θ

⋆
T ∈ Rd×T where ∥θ⋆i ∥≤ L

√
d, for λ ≥ L2d, we have:

T∑
t=1

∥Σ−1
t θ⋆t+1∥2≤ 2

√
dT

λ
.

Next, we provide an important lemma to ensure the concentration of the bonus term. The version for fixed ϕ is proved in
Zanette et al. (2021, Lemma 39). Here, we take a union bound over the whole feature ϕ ∈ Φ.

Lemma D.5 (Concentration of the Bonus). Set λn = Θ(d ln(n|Φ|/δ)) for any n. Let D = {si, ai}n−1
i=0 be a stochastic

sequence of data where (si, ai) ∼ ρi where ρi can depend on the history of time steps 1, ..., i− 1. Let ρ = 1
n

∑n−1
i=0 ρ and

define

Σρ,ϕ = nEρ[ϕ(s, a)ϕ⊤(s, a)] + λnI, Σ̂n,ϕ =

n−1∑
i=0

ϕ(si, ai)ϕ
⊤(si, ai) + λnI.

Then, with probability 1− δ, we have

∀n ∈ N+,∀ϕ ∈ Φ, c1∥ϕ(s, a)∥Σ−1
ρ,ϕ
≤ ∥ϕ(s, a)∥Σ̂−1

n,ϕ
≤ c2∥ϕ(s, a)∥Σ−1

ρ,ϕ
.
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Lemma D.6 (Simulation Lemma). Given two MDPs (P ′, r + b) and (P, r), for any policy π, we have:

V πP ′,r+b − V πP,r =
H∑
h=1

E(sh,ah)∼dπP ′,h

[
bh(sh, ah) + EP ′

h(s
′
h|sh,ah)[V

π
P,r,h+1(s

′
h)]− EPh(s′h|sh,ah)[V

π
P,r,h+1(s

′
h)]
]

and

V πP ′,r+b − V πP,r =
H∑
h=1

E(sh,ah)∼dπP,h

[
bh(sh, ah) + EP ′

h(s
′
h|sh,ah)[V

π
P,r+b,h+1(s

′
h)]− EPh(s′h|sh,ah)[V

π
P,r+b,h+1(s

′
h)]
]

We note that since both the occupancy measure and Bellman updates under P̂ are defined in the exact same way as if P̂ is a
proper probability matrix, the classic simulation lemma also applies to P̂ .

E. Experiment Details
E.1. Setup Details and Hyperparameters

CombLock environment Details For the design of the diabolical combination lock environment in our comparison with
HOMER, we follow the design as in HOMER, but we present the environment hyperparameters in Table. 1 for completeness.
We also provide a more detailed explanation of how we record result in Fig. 1b: after each policy update, we perform 20
i.i.d. rollouts using the latest policy and record the mean returns in these 20 evaluation runs. If one algorithm can get a
mean return of 1 for 5 consecutive policy updates, we count the algorithm solving the environment and record the number of
episodes it uses.

Value
Horizon 6,12,25,50,100

Switch probability 0.5
Anti reward 0.1

Anti reward probability 0.5
Final reward 1

Number of actions 10
Observation noise std 0.1

Random seeds 1,12,123,1234,12345

Table 1. Hyperparameters for the rich observation comblock environment with sparse and anti-shaped reward.

BRIEE Implementation for CombLock Environment For the dense reward diabolical combination lock environment,
we first use a random policy to collect 10000 episodes of samples before our first iteration of feature learning. We perform
this sample warm-up procedure for H = 50 and H = 100 experiments only. We maintain a separate buffer for each timestep
h, and in practice we mix the samples in D and D′ together. For each buffer, we limit the size of the buffer to 10000 and
update the buffer with first-in-first-out procedure. Between each update we rollout 50×H episodes to collect data. For
the optimization method we use SGD with a momentum factor of 0.99. Finally due to a different latent state distribution,
we use softmax with temperature 0.1 for ϕ0 and a temperature of 1 for all the other timesteps. We provide the full list of
hyperparameters in Table. 2.

Baseline Implementation for CombLock Environment In this section we provide the hyperparameteres we use for
PPO-RND in Table. 3 and LSVI-UCB in Table. 4.2 For the RFF feature, we choose the bandwidth with median trick.

Simplex Feature Experiment Details We first present detailed description of dynamics of the new MDP. Given a
observation-action pair s, a, the simplex feature is given by z(s) = softmax(I3R−1s/τenv), where R−1 ∈ Rdims×dims is
the inverse of the Hadamard matrix, and I3 ∈ R3×dims , a matrix with a 3× 3 identity matrix at its first three columns and

2We use the public code for PPO-RND, which is available at here.

https://github.com/mbhenaff/PCPG
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Value Considered Final Value
Decoder ϕ learning rate {1e-2, 5e-3, 1e-3} 1e-2

Discriminator f learning rate {1e-2, 5e-3, 1e-3} 1e-2
Discriminator f hidden layer size {256,512} 256

RepLearn Iteration T {10,20,30} 30
Decoder ϕ number of gradient steps {32,64,128,256} 64

Discriminator f number of gradient steps {128,256} 128
Decoder ϕ batch size {128,256,512} 512

Discriminator f batch size {128,256,512} 512
RepLearn regularization coefficient λ {1,0.1,0.01} 0.01

Decoder ϕ softmax temperature {1,0.5,0.1} 1
Decoder ϕ0 softmax temperature {1,0.1} 0.1

LSVI bonus coefficient β {10, H5 }
H
5

LSVI regularization coefficient λ {1} 1
Buffer size {1e5} 1e5

Update frequency {50,100} 50
Warm up samples (H = 50, 100) {10000} 10000

Table 2. Hyperparameters for BRIEE in sparse reward comblock experiment.

Value
Learning rate 1e-3

Hidden layer size 64
τGAE 0.95

Gradient clipping 5.0
Entropy bonus 0.01

Clip ratio 0.2
Minibatch size 160

Optimization epoch 5
Intrinsic reward normalization False

Intrinsic reward coefficient 1e3
Extrinsic reward coefficient 1.0

Table 3. Hyperparameters for PPO-RND in comblock sparse reward experiment.

zero everywhere else. Thus the ground truth feature is given by ϕ∗ = z(s) ⊗ a. With a observation-action pair s, a, the
environment first sample a latent state according to the probability simplex z(s), and then transit according to the action a
and the transition rules of the original comblock environment. For our results in Fig. 2b, we use τenv = 0.2. The moving
average is cross 50 evaluations (and 20 i.i.d. rollouts per evaluation). We use the same set of hyperparameters for BRIEE as
in Table. 2 and for LSVI as in Table. 4.

Dense Reward Environment Details In the dense reward environment, we remove the anti-shaped reward and the agent
receives rewards while staying in the good states. We keep the final reward if the correct actions are taken in the last layer.
We provide the hyperparameters of the environment in Table. 5. We provide the hyperparameters of BRIEE for the dense
reward environment in Table.6 (note only the LSVI bonus coefficients are different). We provide the hyperparameters of
PPO for the dense reward environment in Table.7.

E.2. Visualization of the decoder

In Figure 3, we visualize the decoder on the combination lock example (with the Block MDP structure). We run BRIEE on
the Block MDP combination lock until it solves the problem (i.e., achieve the optimal total reward). Denote the learned
decoders as ψ̂h for all h ∈ [H]. Note that ψ̂h maps from state (i.e., observation) s to a 3-dimensional vector in the simplex
(since we use softmax, i.e., ψ̂(s) = softmax(Ahs/τ), as defined in the implementation section). Ideally, we hope that ψ̂h
can output pretty deterministic distribution over 3 latent states (i.e., ψ̂h(s) is close to a one-hot encoding vector), and can
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Value Considered Final Value
LSVI bonus coefficient β {10, H5 }

H
5

LSVI regularization coefficient λ {1} 1
Buffer size {1e5,5e5,1e6} 1e6

Update frequency {50,100,250} 250
Kernel bandwidth Median Trick 5

Feature dimension H = 6 {200} 200
Feature dimension H = 12 {200,500} 500
Feature dimension H = 25 {500,800,1000} 1000

Table 4. Hyperparameters for for LSVI-UCB with RFF feature in comblock sparse reward experiment.

Value
Horizon 30

Switch probability 0.5
Step reward 0.1
Final reward 1

Reward probability 1
Number of actions 10

Observation noise std 0.1
Random seeds 1,12,123,1234,12345

Table 5. Hyperparameters for the rich observation comblock environment with dense reward.

decode the latent state (up to permutation).

We test the decoders as follows. For each state zi;h for i ∈ {0, 1, 2} and h ∈ [H], where in this section we use H = 25, we
sample 50 observations for each state (following the emission distribution described in the environment section), and we
take the average of the 50 decoded states (decoded by ψ̂h).

In Fig. 3, we demonstrate the decoded states. The h-th column in the i-th image denotes the average of the 50 decoded
states from observations generated from zi,h, for i ∈ {0, 1, 2} and h ∈ [25] (i.e., the image number denotes the ground truth
state, the x-axis denotes the timestep, and the y-axis in each image denotes the averaged value of the decoded states on each
dimension).

Interestingly, we notice that our decoder ψ̂h fails to decode the two good latent states (i.e., state 0 and state 1) confidently at
h = 10 and h = 20. However, this is not a failure case. The reason is that at h = 10 and h = 20, the two good latent states
share the same optimal action (i.e., the action that transits the agent from a good state to the next two good states). Namely,
the two good states at h = 10 (and h = 20) share the same transition. Hence, there is no need for the decoder to distinguish
these two states. Note that our decoders still successfully differentiate the bad state and the two good states at h = 10 and
20. This phenomenon is also observed in HOMER. Also note that for h = 0, the decoder is only required to distinguish state
0 from state 1, because the initial distribution is uniform over state 0 and state 1 only, and assigns 0 mass to state 2 (i.e., we
never reach state 2 in h = 0).
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Value Considered Final Value
Decoder ϕ learning rate {1e-2, 5e-3, 1e-3} 1e-2

Discriminator f learning rate {1e-2, 5e-3, 1e-3} 1e-2
Discriminator f hidden layer size {256,512} 256

RepLearn Iteration T {10,20,30} 30
Decoder ϕ number of gradient steps {32,64,128,256} 64

Discriminator f number of gradient steps {128,256} 128
Decoder ϕ batch size {128,256,512} 512

Discriminator f batch size {128,256,512} 512
RepLearn regularization coefficient λ {1,0.1,0.01} 0.01

Decoder ϕ softmax temperature {1,0.5,0.1} 1
Decoder ϕ0 softmax temperature {1,0.1} 0.1

LSVI bonus coefficient β {H5 ,H50}
H
50

LSVI regularization coefficient λ {1} 1
Buffer size {1e5} 1e5

Update frequency {50,100} 50
Warm up samples {0} 0

Table 6. Hyperparameters for BRIEE in sparse reward comblock experiment.

Value Considered Value
Learning rate {1e-3,5e-4,1e-4} 1e-3

Hidden layer size {64} 64
τGAE {0.95} 0.95

Gradient clipping {5.0} 5.0
Entropy bonus {0.01,0.001} 0.01

Clip ratio {0.2} 0.2
Minibatch size {160} 160

Optimization epoch {5} 5

Table 7. Hyperparameters for PPO in comblock sparse reward experiment.
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Figure 3. Visualization of the decoder. The h-th column in the i-th image denotes the averaged decoded states from the 50 observations
generated by latent state zi,h, for i ∈ {0, 1, 2} and h ∈ [25]. The heatmap color transits in log scale. Note that we have near one-hot
encoding in most of the levels, except h = 10 and h = 20. This is because we have the same optimal actions for the good states in
h = 10 and h = 20 thus we still recover the ground-truth features (see text for more details). Also note that the optimal features are
recovered up to permutation (e.g., in this case we decode state 0 as state 1 and state 1 as state 0, but this is still the optimal decoding).


