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Abstract

This paper investigates the problem of bounding
counterfactual queries from an arbitrary collec-
tion of observational and experimental distribu-
tions and qualitative knowledge about the under-
lying data-generating model represented in the
form of a causal diagram. We show that all coun-
terfactual distributions in an arbitrary structural
causal model (SCM) with discrete observed do-
mains could be generated by a canonical family
of SCMs with the same causal diagram where
unobserved (exogenous) variables are also dis-
crete, taking values in finite domains. Utilizing
the canonical SCMs, we translate the problem
of bounding counterfactuals into that of polyno-
mial programming whose solution provides opti-
mal bounds for the counterfactual query. Solving
such polynomial programs is in general compu-
tationally expensive. We then develop effective
Monte Carlo algorithms to approximate optimal
bounds from a combination of observational and
experimental data. Our algorithms are validated
extensively on synthetic and real-world datasets.

1. Introduction

This paper studies the problem of inferring counterfactual
queries from a combination of observations, experiments,
and qualitative assumptions about the phenomenon under in-
vestigation. The assumptions are represented in the form of
a causal diagram (Pearl, 1995), which is a directed acyclic
graph where arrows indicate the potential existence of func-
tional relationships among variables; some variables are
unobserved. This problem arises in diverse fields such as ar-
tificial intelligence, statistics, cognitive science, economics,
and the health and social sciences. For example, when inves-
tigating the gender discrimination in college admission, one
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may ask “what would the admission outcome be for a fe-
male applicant had she been a male?”” Such a counterfactual
query contains conflicting information: in the real world,
the applicant is female; in the hypothetical world, she is not.
Formally, counterfactual lies on top of a hierarchy of increas-
ingly expressive languages that also include observations
and interventions, which is called Pearl Causal Hierarchy
(Pearl & Mackenzie, 2018; Bareinboim et al., 2020). In
general, counterfactuals are not immediately computable
from observational and experimental distributions.

The problem of identifying counterfactual distributions from
the combination of data and a causal diagram has been stud-
ied in the causal inference literature. First, there exists
a sound and complete proof system for reasoning about
counterfactual queries (Halpern, 1998). While such a sys-
tem, in principle, is sufficient in evaluating any identifiable
counterfactual expression, it lacks a proof guideline that
efficiently determines the feasibility of such evaluation. Fur-
ther, Shpitser & Pearl (2007) studied an algorithm for the
identification of counterfactuals from all possible controlled
experiments. There exist also algorithms for identifying
path-specific effects from experimental data (Avin et al.,
2005) and observational data (Shpitser & Sherman, 2018).
More recently, Correa et al. (2021) developed the first sound,
complete, and efficient algorithm that decides whether any
nested counterfactual distribution is identifiable from an
arbitrary combination of observations and experiments.

In practice, the combination of qualitative assumptions and
data does not always permit one to uniquely determine the
target counterfactual query. In such cases, the counterfactual
query is said to be non-identifiable. Partial identification
methods concern with inferring about the target counterfac-
tual probability in non-identifiable settings. Several algo-
rithms have been developed to derive informative bounds
over counterfactual probabilities from the combination of
observational and experimental data (Manski, 1990; Robins,
1989; Balke & Pearl, 1994; 1997, Tian & Pearl, 2000; Evans,
2012; Richardson et al., 2014; Zhang & Bareinboim, 2017;
Kallus & Zhou, 2018; Finkelstein & Shpitser, 2020; Kilber-
tus et al., 2020; Zhang & Bareinboim, 2021).

In this work, we build on the approach introduced by (Balke
& Pearl, 1994), which involves direct discretization of un-
observed domains, also referred to as the canonical parti-
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tioning or the principal stratification (Frangakis & Rubin,
2002; Pearl, 2011). Consider the causal diagram in Fig. 1a,
where XY, Z are binary variables in {0,1}; Us is an un-
observed variable taking values in an arbitrary continuous
domain. Balke & Pearl (1994) showed that domains of
Uy could be discretized into 16 equivalent classes with-
out changing the original counterfactual distributions and
the graphical structure in Fig. la. For instance, suppose
that values of U; are drawn from an arbitrary distribution
P*(Us;) over a continuous domain. It has been shown
that the observational distribution P(z,y, z) could be re-
produced by a generative model of the form P(z,y,z2) =
>u P(z|ug, 2) P(y|z, uz) P(uz) P(2), where P(Us) is a
discrete distribution over a finite domain {1, ...,16}.

Using the finite-state representation of unobserved variables,
Balke & Pearl (1997) derived tight bounds on treatment ef-
fects under a set of constraints called instrumental variables
(e.g., Fig. 1a). Chickering & Pearl (1997); Imbens & Ru-
bin (1997); Richardson et al. (2011) applied the parsimony
of finite-state representation in a Bayesian framework, to
obtain credible intervals for the posterior distribution of
causal effects in noncompliance settings. Despite the op-
timality guarantees in their treatments, these bounds were
only derived for specific settings, but could not be imme-
diately extended to other causal diagrams without loss of
generality. A systematic strategy for partial identification
in an arbitrary causal diagram is still missing. There are
significant challenges in bounding any counterfactual query
in an arbitrary causal diagram given an arbitrary collection
of observational and experimental data.

The goal of this paper is to overcome these challenges. We
show that when inferring about counterfactual distributions
(over finite observed variables) in an arbitrary causal dia-
gram, one could restrict domains of unobserved variables to
a finite space without loss of generality. This result allows us
to develop novel partial identification algorithms to bound
unknown counterfactual probabilities from an arbitrary com-
bination of observational and experimental data. In some
ways, this paper can be seen as closing a long-standing open
problem introduced by (Balke & Pearl, 1994), where they
solve a special bounding instance from the observational
distribution in the case of the instrumental variable graph.

More specifically, our contributions are summarized as fol-
lows. (1) We introduce a special family of canonical struc-
tural causal models, and show that it could represent all cat-
egorical counterfactual distributions in any arbitrary causal
diagram. (2) Building on this result, we translate the partial
identification task into an equivalent polynomial program.
Solving such a program leads to optimal bounds over target
counterfactual probabilities. (3) We develop an effective
Monte Carlo Markov Chain algorithm to approximate op-
timal bounds from a finite number of observational and
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Figure 1: Causal diagrams containing treatment X, outcome
Y, ancestor Z, mediator W, and unobserved variables Uj;.

experimental data. Finally, our algorithms are validated
on synthetic and real-world datasets. Given the space con-
straints, all proofs are provided in the complete technical
report (Zhang et al., 2021, Appendix A).

1.1. Preliminaries

We introduce in this section some basic notations and def-
initions that will be used throughout the paper. We use
capital letters to denote variables (X'), small letters for their
values (x) and 2 x for their domains. For an arbitrary set
X, let | X| be its cardinality. The probability distribution
over variables X is denoted by P(X). For convenience,
we consistently use P(x) as a shorthand for the probability
P(X = x). Finally, the indicator function 1 x_,, returns 1
if an event X = « holds; otherwise, 1 x . is equal to 0.

The basic semantical framework of our analysis rests on
structural causal models (SCMs) (Pearl, 2000; Bareinboim
& Pearl, 2016). An SCM M is atuple (V,U, .#, P) where
V is a set of endogenous variables and U is a set of exoge-
nous variables. .7 is a set of functions where each fy € %
decides values of an endogenous variable V' € V taking
as argument a combination of other variables in the system.
That is, v < fy(pay,uy), PAy C V,Uy C U. Exoge-
nous variables U € U are mutually independent, values
of which are drawn from the exogenous distribution P(U ).
Naturally, M induces a joint distribution P(V') over en-
dogenous variables V', called the observational distribution.
Each SCM M is also associated with a causal diagram G
(e.g., Fig. 1), which is a directed acyclic graph (DAG) where
solid nodes represent endogenous variables V', empty nodes
represent exogenous variables U, and arrows represent the
arguments PAy , Uy of each structural function fy .

An intervention on an arbitrary subset X C V, denoted by
do(x), is an operation where values of X are set to con-
stants x, regardless of how they are ordinarily determined.
For an SCM M, let M, denote a submodel of M induced
by intervention do(x). For any subset Y C V/, the poten-
tial response Yy (u) is defined as the solution of Y in the
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submodel M, given U = wu. Drawing values of exogenous
variables U following the distribution P(U') induces a coun-
terfactual variable Y. Specifically, the event Y, = vy (for
short, y,) can be read as Y would be y had X been x”.
For subsets Y,..., Z, X,..., W C V, the distribution
over counterfactuals Yy, ..., Z,, is defined as:

P (Y- 20) = /Q Ly, (u) .. o) —edP(w). (1)
U

Distributions of the form P(YZ) are called interventional
distributions; when X = (), P(Y) coincides with the obser-
vational distribution. For a more detailed survey on SCMs,
we refer readers to (Pearl, 2000; Bareinboim et al., 2020).

2. Partial Counterfactual Identification

We introduce the task of partial identification of a coun-
terfactual probability from a combination of observational
and interventional distributions, which generalizes the pre-
vious partial identifiability settings that assume observa-
tional data are given (Balke & Pearl, 1997; Imbens & Rubin,
1997). ! Throughout this paper, we assume that domains of
endogenous variables V' are discrete and finite; while ex-
ogenous variables U could take values in any (continuous)
domains. P (Yy, ..., Zy) defined above is thus a categori-
cal distribution. Let Z = {z;}I", be a finite collection of
realizations z; for sets of variables Z; C V. The learner
has access to data collected from all of the interventional
distributions in {P(V;) | z € Z}. Note that Z = () corre-
sponds to the observational distribution P(V'). Our goal is
to find a bound [I, r] for an arbitrary counterfactual proba-
bility P (Yz, . - -, 24 ) from the collection of interventional
distributions { P(V) | z € Z} and the causal diagram G.

Definition 2.1 (Optimal Counterfactual Bound). For a
causal diagram G and distributions {P(V}) | z € Z}, the
optimal bound [l,r] over a counterfactual probability
P (Yz,...,2y) is defined as, respectively, the minimum
and maximum of the following optimization problem:

min /max Py (Y, -, Zw)
Me#(G) )

st. Py(Ve)=P(V,) Vz€Z

where .#(G) is the set of all SCMs associated with the
diagram G, i.e., #(G) = {VM | Gy = G}*.

Among quantities in Eq. (2), Py (Yz,...,Zy) and
Py (V) are given in the form of Eq. (1). By its formu-

"When a combination of observational and experimental data
is available, there exist necessary and sufficient conditions and
algorithms for deciding point identification (Bareinboim & Pearl,
2012; Lee et al., 2019; Correa et al., 2021).

2We will use subscript M to represent the restriction to an
SCM M. Therefore, Gar represents the causal diagram associated
with M; so does counterfactual distributions Prs (Ya, . .., Zw).

lation, [I, 7] must be the tight bound containing all possible
values of the target counterfactual P (Y, . . ., Zw)-

Since we do not have access to the parametric forms of the
underlying structural functions fy nor the exogenous dis-
tribution P(u), solving the optimization problem in Eq. (2)
is technically challenging. It is not clear how the existing
optimization procedures can be used. Next we show the
optimization problem in Eq. (2) can be reduced into a poly-
nomial program by constructing a “canonical” SCM that is
equivalent to the original SCM in representing the objective
P (Yu, . .., 2) and all constraints P(V}),Vz € Z.

2.1. Canonical Structural Causal Models

Our construction relies on a special type of clustering of
endogenous variables in the causal diagram, which is called
confounded components (Tian & Pearl, 2002). For con-
venience, let a bi-directed arrow V; < V; between en-
dogenous nodes V;,V; € V be defined as a sequence
Vi « U — Vi where Uy € U is an exogenous parent
shared by V;, V;. A bi-directed path is a consecutive se-
quence of bi-directed arrows. Formally,

Definition 2.2. For a causal diagram G, a subset C' C V' is
said to be a c-component if any pair V;, V; € C'is connected
by a bi-directed path in G.

A c-component C' is maximal if there does not exist any
other c-component in the causal diagram G containing C'.
For an arbitrary exogenous variable U € U, we denote
by C(U) the maximal c-component covering U in G, i.e.,
U ¢ UVEC(U) Uy . For instance, Fig. 1a contains two c-
components C(U;) = {Z} and C(Uz) = {X,Y}. On
the other hand, exogenous variables Uy, Us in Fig. 1b are
covered by the same c-component C(U;) = C(Usz) =
{X.,Y, Z} since they share a common child node Y.

We are now ready to introduce a parametric family of canon-
ical SCMs where values of each exogenous variable are
drawn from a discrete distribution over a finite set of states.

Definition 2.3. An SCM M = (V, U, .#, P) is said to be
a canonical SCM if

1. For every endogenous V' € V| its values v are given by
a function v « fy (pay,, uy ) where for any pay,, uy,
fv(pay, uy) is contained in a finite domain Qv .

2. For every exogenous U € U, its values u are drawn
from a finite domain Qy; its cardinality is bounded by?

Q=[] IQpa, = Qvl. 3)
veC(U)

That is, the total number of functions mapping from
domains of input PAy to V for every endogenous V'

3For every V € V, we denote by (2pa,, — Qv the set of all
possible functions mapping from domains 2p4,, to Q.



Partial Counterfactual Identification

in the c-component C(U) covering U.

One may surmise that finite exogenous domains in canonical
SCMs are not sufficient in capturing all the uncertainties and
randomness introduced by other continuous variables. Per-
haps surprisingly, we will show that the SCMs class defined
above is indeed “canonical”. That is, it could represent all
counterfactual distributions in any SCM while maintaining
the same structure of its associated causal diagram.

Theorem 2.4. For an arbitrary SCM M = (V U, %, P),
there exists a canonical SCM N such that

1. M and N are associated with the same causal diagram,
i.e., QM = gN.

2. For any set of counterfactual variables Y, . . .
Py (Ye,. ... Zw)=Pn (Yg,..., Zyw).

s L

Thm. 2.4 establishes the expressive power of canonical
SCMs in representing counterfactual distributions in a
causal diagram G. As an example, consider the ”Non-IV”
diagram G in Fig. 1b where X, Y, Z are binary variables
in {0, 1}. Since Uy, U, are over by the same c-component
{X,Y, Z}, Eq. (3) implies that they must share the same
cardinality d = |Qz| x |z — Qx| X [Qx — Qy| = 32
in canonical SCMs compatible with G. It follows from
Thm. 2.4 that the counterfactual distribution P(X,/,Y,/)
in the causal diagram G could be generated by a canonical
SCM associated with G and be written as follows:

P(xz’a ZLL')

d )
= Z ﬂfx(Z’,uz):w]lfy(I/,uhw):yP(Ul)P(lQ)-

uy,up=1

More generally, Thm. 2.4 implies that counterfactual dis-
tributions P (Y, ..., Zy) in any SCM could always be
decomposed over a finite number of exogenous states. In
other words, when inferring about counterfactual probabili-
ties in an arbitrary causal diagram with discrete endogenous
domains, one could assume exogenous distributions to be
discrete and finite without loss of generality. Formally,

Proposition 2.5. For any SCM M = (V,U,.%#,P(U)),

let Yy, ..., Zy be an arbitrary set of counterfactual vari-
ables. The distribution P (Y, . .., Z,,) decomposes as
P Yoy -y 2Zw)
& (5)
= Z Z ]lym(u):y,A..}Zw(u):z H P(“))
UeU u=1 UeU

where for every exogenous U € U, P(U) is a discrete dis-
tribution over a finite domain {1, . .., dy } with cardinality
dv = Ilvecw) pay — Qv|. Counterfactual variables
Y. (u) = {Ya(u) | VY € Y} are recursively defined as:
ifyYyeX

— Ty
Yo(u) = {fy ((PAy), (uw),uy) otherwise ©

where xy is the value assigned to'Y in ; and (PAy ), (u)
is a set of potential responses {Vy(u) | VV € PAy}.

Related work The discretization procedure in (Balke &
Pearl, 1994) was originally designed for the “IV” diagram in
Fig. 1a, and was extended to causal diagrams satisfying gen-
eralized IV constraints (Sachs et al., 2020). However, this
procedure is not applicable to a general causal diagram with
arbitrary structure without loss of generality; see (Zhang
et al., 2021, Appendix E) for a detailed example. More
recently, Evans et al. (2018) showed that for a specific class
of causal diagrams satisfying a running intersection prop-
erty among exogenous variables, all equality and inequality
constraints over the observational distribution could be gen-
erated using discrete unobserved domains. Rosset et al.
(2018) applied the classic result of Carathéodory theorem
in convex geometry (Carathéodory, 1911) and developed
a generic model with finite-state unobserved variables that
could represent the observational distribution over discrete
domains in an arbitrary causal diagram.

Thm. 2.4 generalizes existing results in several important
ways. First, the theorem is applicable to any causal diagram,
thus not relying on additional graphical conditions, e.g., IV
constraints (Balke & Pearl, 1994). Second, we prove that
all counterfactual distributions could be generated using
discrete exogenous variables with finite domains, which
subsume both observational and interventional distributions.
Indeed, it is possible to show from Thm. 2.4 that there exists
a specific subset of canonical SCMs capable of representing
observational distributions in an arbitrary causal diagram.

Proposition 2.6. For any SCM M = (V U, %,P(U)),
P(V') decomposes as follows:

du
P(’U) = Z 21V(u):v H P(U), (7N

UeU u=1 veU
where for every U € U, du = [Iv-cpocvy) IV

The above result coincides with the parametrization intro-
duced in (Rosset et al., 2018). Similarly, we also describe a
more refined canonical representation for all interventional
distributions in a SCM with arbitrary causal relationships.

Proposition 2.7. For any SCM M = (V,U,.#,P(U)),
Sfor any subset XY C V', P(Y,) decomposes as follows:

duy
Plya) =YD Ay || Pw),  ®

UeU u=1 Ueu
where for every U € U, dy = HVeC(U) [Qpa, x Qv

One attractice property of the specific characterization pro-
vided in Props. 2.6 and 2.7, when compared to the most
general result given by Prop. 2.5 is that the cardinalities
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of the exogenous variables, di;, are smaller than that in a
general canonical SCM (Eq. (3)). This is due to the fact that
observational and interventional distributions are strictly
contained in the collection of all counterfactual distributions
in a causal diagram. The model complexity of canonical
SCMs could thus be reduced and will have implication to
the tasks downstream. More generally, the discretization
procedure in Thm. 2.4 relies on a generalized canonical par-
titioning over exogenous domains in an arbitrary SCM. Any
counterfactual distribution in this SCM could be written as
a function of joint probabilities assigned to intersections of
generalized canonical partitions. This allows us to discretize
exogenous domains while maintaining all counterfactual dis-
tributions and structures of the causal diagram. We refer
readers to the complete technical report (Zhang et al., 2021,
Appendix A.1) for more details about the Thm. 2.4’s proof.

2.2. Bounding Counterfactual Distributions

The expressive power of canonical SCMs in Thm. 2.4 sug-
gests a natural algorithm for the partial identification of
counterfactual distributions. For a causal diagram G, let
A (G) denote the set of all canonical SCM compatible with
G whose exogenous domain € for every U € U is dis-
crete, bounded by Eq. (3). We derive a bound [I, r] over a
counterfactual probability P (Y, . . . , 24, ) from an arbitrary
collection of interventional distributions { P(V) | z € Z}
by solving the following optimization problem:

min /max Px (Yz, - Zw)
NeN(G) 9)

st. Py(Va)=P(V,) Vz€Z

where the counterfactual probability Py (Y, - - ., Z.) and
interventional distributions Py (V) are given in the form
of Eq. (5). More generally, the optimization problem in
Eq. (9) is reducible to an equivalent polynomial program.
To witness, for every exogenous variable U € U, let pa-
rameters 6, represent discrete probabilities P(U = wu).
For every endogenous variable V' € V, we represent
the output of structural function fy (pay,uy) given in-
put PAy = pay, and Uy = wy using an indicator vector

Mg’“v’“") = (Mgp“"’"") | Vo € Qv) such that

S ) <1

vEQY

Mgpavﬂw) c {07 1}7

Doing so allows us to write any counterfactual probability
P (Yz,...,2y) in Eq. (5) as a polynomial function of pa-
rameters pq()p @vu) and 0,,- More specifically, the indicator
function 1y, (,,)—y is equal to a product [ [y oy Ly, (u)=y-
Forevery Y € Y, 1y, (u)—, is recursively given by:

1 ifYeX

Yy=zy

Ly, (wy=y = Zugp“Y’“Y)]l(pAy)m(u):paY otherwise

pay

For instance, consider again the causal diagram G in Fig. 1b.
The counterfactual distribution P(X,/,Y,/) and the obser-
vational distribution P(X,Y, Z) of any discrete SCM in
A (G) and be written as following polynomial functions:

d
Plaa,ye) = Y pF ) p 20,0, (10)

ul,ugzl
d
P(wy,z) = Y " ul 2 p 0,0, (A1)
ul,qul

where p{"", ﬂ;z"“Q), ul(/wl’ul “2) gre parameters taking val-

ues in {0, 1}; 6,,, i = 1, 2, are probabilities of the discrete
distribution P(u;) over the finite domain {1,...,d}. One
could derive a bound over P(z,,y,) from P(X,Y, Z) by
solving polynomial programs which optimize the objective
Eq. (10) over parameters 6, , 0,,,, ,ugul), /1562’"2)7 pgf’"l’W),
subject to the constraints in Eq. (11) for all entries z, y, 2.
(Zhang et al., 2021, Appendix D) includes additional exam-
ples demonstrating the reduction of partial counterfactual
identification to equivalent polynomial programs.

Note that the collection of all counterfactual distributions
subsume both observational and interventional ones. It
follows immediately from Thm. 2.4 that the solution [I, ]
of the optimization program in Eq. (9) is guaranteed to be a
valid, tight bound containing the target counterfactual.

Theorem 2.8. Given a causal diagram G and interven-
tional distributions {P(Vy) | z € Z}, the solution [l,r] of
the polynomial program Eq. (9) is a tight bound over the
counterfactual probability P (Y, . - . , Zaw)-

The optimization problem in Eq. (2) is generally reducible
to an equivalent polynomial program. Investigating effec-
tive polynomial optimization methods is an ongoing subject
of research (Lasserre, 2001; Parrilo, 2003). Our focus is on
the causal inference aspect of the problem, and like earlier
works (Balke & Pearl, 1994; 1997), we do not commit to
any particular solvers. For instance, in a quasi-Markovian
diagram where every endogenous node is affected by at
most one exogenous variable, (Zaffalon et al., 2020) showed
causal bounds are obtainable by applying variable elimi-
nation in credal networks. This corresponds to a mapping
between the bounding problem to multilinear programming
(De Campos et al., 1994). In some very specific cases,
the bounds are obtainable by solving linear programs (e.g.,
bounding P(y,) in the “IV” diagram of Fig. 1a). However,
it has been shown in (Zaffalon et al., 2021) that the par-
tial counterfactual identification is generally NP-hard and
takes exponentially long in some specific diagrams (e.g., a
polytree); let alone the most general case. Therefore, this
calls for the need of effective algorithms that approximate
optimal bounds over unknown counterfactual probabilities.



Partial Counterfactual Identification

U4 Uo UM u,M
b do(z™) PR 2
_

¥ BRI =1,..., N ¥ \’:\\:\
G—G— " F—F—0)
~ P(v)

SCM M v

Uy () U2(2) Uy (N) u,™

2
~ ~
SO 740N ~o /4N
~ 4 \ - ~7 \
:: ‘ \\b :: :j \\‘@

V@ ~ P(v, o) VN ~ P(v, 1)

Figure 2: The data-generating process for a finite dateset {z(™), y(™, 2("}N_  in an SCM associated with in Fig. 1b; the set
Z = {0,z = 0,z = 1} where the idle intervention do({)) corresponds to the observational distribution.

3. Bayesian Approach for Partial Identification

This section describes an algorithm to effectively ap-
proximate the optimal counterfactual bound in Eq. (9)
from finite samples drawn from interventional distributions
{P(V.) | z € Z}, provided with prior distributions over

(pay,uv)

parameters ¢, and fi, , possibly uninformative.

More specifically, the learner has access to a finite dataset
v ={V®W =v™|n=1,..., N}, where each V(™ is
an independent sample drawn from an interventional dis-
tribution P (V) for some z € Z. With a slight abuse of
notation, we denote by Z(") the set of variables Z that
are intervened for generating the n-th sample; therefore,
its realization (") = z. As an example, Fig. 2 shows a
graphical representation of the data-generating process for
a finite dateset {x(™),y(™) 2(M1N_ associated with SCMs
in Fig. 1b; the intervention set Z = {0,z = 0,z = 1}.

We first introduce effective Markov Chain Monte Carlo
(MCMC) algorithms that sample the posterior distribu-
tion P (O | ©) over an arbitrary counterfactual probability
Ot = P (Y- .-, 2w). Forevery V € V, Vpay,uy, en-
dogenous parameters uif “v:"V) are drawn uniformly over
the finite domain Q. For every U € U, exogenous param-
eters 6,, are drawn from a Dirichlet distribution, i.e.,

(01,...,04,) ~Dir (ag),...,agjdu)), (12)

where the cardinality dy = [[ycoqy [Qpay = Qv and

hyperparameters a{"), ..., a{*) > 0.

Gibbs sampling is a well-known MCMC algorithm that
allows one to sample posterior distributions. We first intro-
duce the following notations. Let parameters 6 and p be:

6 = {0, | VU € U,Vu},

= {M(V”“V*"” |VV € V,vpav,uv} . B
We denote by U = {U™ |n=1,...,N} exoge-
nous variables affecting N endogenous variables V =
{V(”) [n=1,..., N}; we use u to represent its realiza-
tion. Our blocked Gibbs sampler works by iteratively draw-
ing values from the conditional distributions of variables
as follows (Ishwaran & James, 2001). Detailed derivations

of complete conditionals are shown in the technical report
(Zhang et al., 2021, Appendix B).

* Sampling P (@ | 9,0, ). Exogenous variables U (™),
n =1,..., N, are mutually independent given parame-
ters 6, p. We could draw each (U™ | 8, u, V) corre-

sponding to the n-th sample induced by do(z(™) inde-
pendently. The complete conditional of U (™ is given by

P (um) | v("),O,u)

«~ ]I

Vev\z()

( (), (m) (14)

pay, Uy, ) 0
Hoin H -

veUu

* Sampling P (p, 0 | v,u). Note that parameters , 6 are
mutually independent given V', U. Therefore, we will
derive complete conditionals over p, @ separately.

Consider first endogenous parameters p. For every V' €

V, fix pay,, uy. If there exists an instance n = 1,..., N
such that V ¢ Z(™) and pagl) = pav,ugf) = uy, the
(pay ,uv)

POSIETIOr OVer fiy is given by, for Vv € Qy/,

P (ugpawuw —1] 'D,ﬁ) — 1y, (15)

(pay,uv)

Otherwise, py, is drawn uniformly from /.

Consider now exogenouszarameters 0. For every U €
U, fix u. Letn, = >, 1,m—, be the number of
instances in u(™ equal to u. By the conjugacy of the
Dirichlet distribution, the complete conditional of 6, is,

(91,...,9dU)NDir( W g;lw), o
where ﬂ((]u) :aéu)—&—nu foru=1,...,dy.

Doing so eventually produces values drawn from the pos-
terior distribution over (6, u,U | V'). Given parameters
0, 1, we compute the counterfactual probability 0.y =
P(Yg, - - - , 24 ) following the three-step algorithm in (Pearl,
2000) which consists of abduction, action, and prediction.
Thus computing 6. from each draw @, u, U eventually
gives us the draw from the posterior distribution P (8. | ).
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3.1. Collapsed Gibbs Sampling

We describe next an alternative MCMC algorithm that ap-
plies to Dirichlet priors in Eq. (12),and which will be ad-
vantageous in some other settings. For n=1,...,N,let
U_,, denote the set difference U \ Ut s1m11arly, we write
V_, =V \ V®. Our collapsed Gibbs sampler first iter-
atively draws values from the conditional distribution over
(U™ | V,U_,) foreveryn =1,..., N as follows.

« Sampling P (u(™ | 9,%_,). At each iteration, draw
U™ from the conditional distribution given by
P <u<"> | 1776_”)

o H P(U(") |pa Uv ,v,n,u n)
Vev\zm)

HP(u

veUu

| G, @t ) . (17)

Among quantities in the above equation, for every V' €
V\Z (") if there exists an instance i # n such that

V & Z() and pa( i) _ pa(n) g) u%}l)
P (v(”) | pag}’),uwﬁ—n,ﬁ—ﬁ =T m—p. (18)

Otherwise, the above probability is equal to 1/|Qy/|.

For every U € U, let u_,, be a set of exogenous samples
{u® ™I\ {u™}. Let {u],...,u}} denote K
unique values that samples in %_,, take on. The condi-
tional distribution over (U ") V., U,n) is given by,

for hyperparameters ay = Ziil agl),
P (u<"> |f;,n,a,n) (19)
(ug)
np +ay () _
R TTU f _
ey N — ifu uy,
=)
« . n * *
m lfu( )¢{U1,...,UK}
where n} = Z#n L)y » for k=1,..., K, records

the number of values u(?) € @_,, that are equal to ug.

Doing so eventually produces exogenous variables drawn
from the posterior distribution of (U | V). We then sample
parameters from the posterior distribution of (07 u|U, ‘7);
complete conditional distributions P (p, 0 | ©, @) are given
in Egs. (15) and (16). Finally, computing 6. from each
sample 0, p gives a draw from the posterior P (6. | ©).

When the cardinality di; of exogenous domains is high, the
collapsed Gibbs sampler described here is more computa-
tional efficient than the blocked sampler, since it does not

iteratively draw parameters 6, p in the high-dimensional
space. Instead, the collapsed sampler only draws @, p once
after samples drawn from the distribution of (U | V') con-
verge. On the other hand, when the cardinality d; is reason-
ably low, the blocked Gibbs sampler is preferable since it
exhibits better convergence (Ishwaran & James, 2001).

3.2. Credible Intervals over Counterfactuals

Given a MCMC sampler, one could compute credible inter-
vals over the unknown counterfactual probability 6.s from
the posterior distribution P (6. | ©).

Definition 3.1. Fix a € [0,1]. A 100(1 — «)% credible
interval [l, 7] for O is given by

lo =sup{z | POy <z |0) =a/2}, 20

=inf{x | POy <z|0)=1-—a/2}. 0
For a 100(1 — «)% credible interval [l,, 74, any counter-
factual probability 6. that is compatible with observational
data v lies between the interval [, and r,, with probability
1 — a. For consistency, we also define I, £ [y and r, £ 7,
if a < 0. Credible intervals have been widely applied in
the literature for computing bounds over unknown coun-
terfactual probabilities provided with finite observational
data (Imbens & Manski, 2004; Vansteelandt et al., 2006;
Romano & Shaikh, 2008; Bugni, 2010; Todem et al., 2010).

Formally, let p (0) and p (p) be probability density func-
tions for prior distributions over to model parameters 0
and p. We say priors over @ and p have full support if
density functions p (6) > 0 and p () > 0 for every pos-
sible realization of 6, u. For any z € Z, let N, denote
the number of samples in v drawn from P (V); therefore,
> »cz N= = N. Our next result shows that credible inter-
vals from the posterior distribution effectively approximate
the optimal counterfactual bounds in Eq. (2) with increasing
accuracy as more observational data is obtained.

Theorem 3.2. Given a causal diagram G and finite samples
v = {v(")}i[:l, let [lo, 0] be the 100% credible inter-
val for Oy = P (Yo, . . ., Zw), and let [1, 7] be the optimal
bound over P (Yq, - . . , Z4) given by Eq. (9). If priors over
0, u have full support,

1. The credible interval [ly, o) contains the optimal coun-
terfactual bound [l, 7], i.e., [I,7] C [lo, ro]-

2. The credible interval [ly, o] converges almost surely to
the tight bound 1, 7] as more samples N, are obtained,
ie., [lo,r0] 225 [1,7] when N, — oo for every z € 7.

Let {G(t)}z;l be T samples drawn from P (0 | ©). One
could compute the 100(1 — «)% credible interval for O
using following estimators (Sen & Singer, 1994):

[o(T) = oL@/DTIHD) - 5y = g([(A=e/DTD) (71
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Algorithm 1 CREDIBLEINTERVAL

1: Input: Credible level a, tolerance level J, €.

2: Output: An credible interval [I,, 7] for Oy

3: Draw T' = [2¢ 2In(4/4)] samples {6
from the posterior distribution P (0. | ©).

4: Return interval [Za(T),fa(T)} (Eq. (21)).

LM}

where estimates §(L(*/2T1+1) and (IA=2/2T1) are the
([(«/2)T| + 1)th smallest and the [(1 — «/2)T"|th small-
est samples of {#()}*. Our next results establish non-
asymptotic deviation bounds for empirical estimates of cred-
ible intervals defined in Eq. (21). This allows us to deter-
mine the sufficient number of draws 7 that is required for

approximating a 100(1 — «)% credible interval.
Lemma 33. Fix T > 0 and 6 € (0,1). Letfuncnon

= /2T~11n (4/6). With probability at least 1 —

estimators lo(T), 7o (T) for any a € [0,1) is bounded by

laet(1,6) < 1a(T) < layp(1,6); 22)
Ta+f(T,5) < fa (T) < Ta—f(T,5)-

We summarize our algorithm, CREDIBLEINTERVAL, in
Alg. 1. It takes a credible level « and tolerance levels d, €
as inputs. In particular, CREDIBLEINTERVAL repeatedly
draw T > [2¢721n(4/5)] samples from P (O | ©). It then
computes estimates lo (T'), ho (T') from drawn samples fol-
lowing Eq. (21) and return them as the output. It follows
immediately from Lem. 3.3 that such a procedure efficiently
approximates a 100(1 — a))% credible interval.

Corollary 34. Fix 6 € (0,1) and ¢ > 0. With
probability at least 1 — 6, the interval [I,7] =
CREDIBLEINTERVAL(, 6, €) for any o € [0, 1) is bounded
by le la—eslate) and # € [rote, Fa—c)-

Corol. 3.4 implies that any counterfactual probability 6
compatible with the dataset v falls between [[,7] =

CREDIBLEINTERVAL(«, 6, €) with P (00tf e i, 7] | f:) ~

1 — « £ €. As the tolerance rate € — 0, [/, 7] converges to a
100(1 — «)% credible interval with high probability.

4. Simulations and Experiments

We demonstrate our algorithms on various synthetic and
real datasets in different causal diagrams. Overall, we found
that simulation results support our findings and the pro-
posed bounding strategy consistently dominates state-of-art
algorithms. When target probabilities are identifiable (Ex-
periment 1), our bounds collapse to the true counterfactual

*For any o € R, let [a] = min{n € Z | n > a} denote the
smallest integer n € Z larger than cv. Similarly, || = max{n €
Z | n < a} is the largest integer n € Z smaller than ov.

probabilities. For non-identifiable settings, our algorithm
obtains sharp asymptotic bounds when the closed-form so-
lutions already exist (Experiments 2 & 3); and obtains novel
bounds in other more general cases that consistently im-
prove over existing strategies (Experiment 4).

In all experiments, we evaluate our proposed strategy using
credible intervals (ci). We draw at least 4 x 10® samples
from the posterior distribution P (6 | ©) over the target
counterfactual. This allows us to compute 100% credible
interval over 6. within error ¢ = 0.05, with probability
at least 1 — & = 0.95. As the baseline, we include the
true counterfactual probability 6*. We refer readers to the
complete technical report (Zhang et al., 2021, Appendix
C) for more details on the simulation setup and additional
experiments on other causal diagrams and datasets.

Experiment 1: Frontdoor Graph. In this experiment,
we evaluate our algorithm on interventional probabilities
that are identifiable from the observational data. In this case,
the bounds over the target probability should collapse to a
point estimate. Consider the “Frontdoor” graph described
in Fig. 1c where X,Y, W are binary variables in {0,1};
Ui,Us € R. In this case, any interventional probability
P(y.) is identifiable from the observational distribution
P(X,W,Y) through the frontdoor adjustment (Pearl, 2000,
Thm. 3.3.4). We collect N = 10* observational samples
o = {z(™ y) wIN_ from a synthetic SCM instance.
Fig. 3a shows samples drawn from the posterior distribution
(P(Yz—0 = 1) | ©). The analysis reveals that these samples
collapse to the actual probability P(Y,—o = 1) = 0.5085,
which confirms the identifiability of P(y,,) in the “frontdoor”
graph. This result shows that our sampler is able to draw
values from the posterior of identifiable probabilities.

Experiment 2: Probability of Necessity and Sufficiency.
In this experiment, we compare credible intervals obtained
by our algorithm with sharp bounds over unknown coun-
terfactual probabilities derived from the observational data.
Consider the “Bow” diagram in Fig. 1d where X,Y €
{0,1} and U € R. We study the problem of evaluating
the probability of necessity and sufficiency (for short, PNS)
P(Y,=1 = 1,Y,—9 = 0) from the observational distri-
bution P(X,Y’). The non-identifiability of PNS with the
unobserved confounding between X and Y has been ac-
knowledged in (Avin et al., 2005). Tian & Pearl (2000)
introduced the sharp bound for P(Y,—; = 1,Y,—¢ = 0)
from P(X,Y), labelled as opt. We collect N = 103 obser-
vational samples @ = {z(™), y(™}N_, from a randomly gen-
erated SCM instance. Fig. 3¢ shows samples drawn from the
posterior distribution over (P(Yy—1 =1,Y,—0 =0) | 0).
The analysis reveals that the 100% credible interval (ci)
matches the optimal PNS bound [ = 0,7 = 0.6775 over the
actual PNS probability P(Y,—1 = 1,Y,—9 = 0) = 0.1867,
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Figure 3: Simulation results for Experiments 1-4 showing posterior samples of target counterfactuals. For all plots (a - d), ci
represents our proposed algorithm; 6* is the actual counterfactual probability; and opt is the optimal asymptotic bounds.

which confirms the efficacy of the proposed approach.

Experiment 3: International Stroke Trials (IST). In this
experiment, we evaluate our algorithm on a real-life dataset
and show that it could consistently obtain sharp bounds over
unknown counterfactual probabilities. International stroke
trials was a large, randomized, open trial of up to 14 days
of antithrombotic therapy after stroke onset (Carolei et al.,
1997). The aim of the trial was to provide reliable evidence
on the efficacy of aspirin and of heparin. In particular, the
treatment X is a pair (4, j) where ¢ € {0, 1} stands for as-
pirin allocation; 5 € {0, 1,2} stands for heparin allocation.
The primary outcome Y € {0, ..., 3} is the health of the
patient 6 months after the treatment, where 0 stands for
death, 1 for being dependent on the family, 2 for the partial
recovery, and 3 for the full recovery.

To emulate the presence of unobserved confounding, we
filter the experimental data following a procedure in (Kallus
& Zhou, 2018). Doing so allows us to obtain N = 103 syn-
thetic observational samples © = {z("), y(™}N_  that are
compatible with the “Bow” diagram of Fig. 1d. We are in-
terested in evaluating the probability P (Yx:(l,o) > 2) ,1.e.,
the treatment effect of only assigning aspirin X = (1, 0) for
the recovery of patients Y > 2. As a baseline, we also in-
clude the optimal bound for P(y,) from P(X,Y") (Manski,
1990), labeled as opt, which coincides with the solution of
the credal network solver (Zaffalon et al., 2020). Simulation
results, shown in Fig. 3c, reveal that both algorithms achieve
effective bounds containing target interventional probability
P (Y,—(1,0) > 2) = 0.3775. The 100% credible interval
is l; = 0.1905,r,; = 0.6239, which matches the optimal
bounding strategy (I, = 0.1861,7,, = 0.6343).

Experiment 4: Non-IV This experiment evaluates our
algorithm in a novel partial identification setting where the
closed-form bounding solution does not exist. Our pro-
posed approach is able to obtain a valid bound over the
unknown counterfactual probability. Consider the “Non-
IV’ diagram in Fig. 1b where X,Y,Z € {0,...,9} and
Uy, U, € R. We are interested in evaluating counterfactual

probabilities P (z, ./, y,+) from the observational distribu-
tion P(X,Y, Z) and interventional distributions P(X,,Y>)
induced by interventions do(Z = z) for z = 0,...,9.
We collect N = 103 samples © = {z(™), y(™) 2(WIN
from a SCM instance of Fig. 1b where each sample
Xy z(") is an independent draw from P(X,Y, Z)
or P(X,,Y,). To address the challenge of the high-
dimensional exogenous domains, we apply the proposed col-
lapsed Gibbs sampler to obtain samples from the posterior
distribution (P (Z + X,—9 + Y;—0 > 14) | ©). Simulation
results, shown in Fig. 3d, reveal that our proposed approach
is able to achieve an effective bound that contains the actual
counterfactual probability P (Z + X,_o + Y=o > 14) =
0.6378. The 100% credible interval (ci) is equal to | =
0.4949, r = 0.8482, which is a valid bound containing the
target countrefactual. To our best knowledge, no existing
bounding strategy is applicable for this setting.

5. Conclusion

This paper investigated the problem of partial identification
of counterfactual distributions, which concerns with bound-
ing counterfactual probabilities from an arbitrary combina-
tion of observational and experimental data, provided with a
causal diagram encoding qualitative assumptions about the
data-generating process. We introduced a special parametric
family of SCMs with discrete exogenous variables, taking
values from a finite set of unobserved states, and showed
that it could represent all counterfactual distributions (over
finite observed variables) in any causal diagram. Using
this result, we reduced the partial identification problem
into a polynomial program and developed novel algorithms
to approximate the optimal asymptotic bounds over target
counterfactual probabilities from finite samples obtained
through arbitrary observations and experiments.
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