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Abstract

Strong adversarial attacks are important for evalu-
ating the true robustness of deep neural networks.
Most existing attacks search in the input space,
e.g., using gradient descent, and may miss ad-
versarial examples due to non-convexity. In this
work, we systematically search adversarial exam-
ples in the activation space of ReLU networks
to tackle hard instances where none of the exist-
ing adversarial attacks succeed. Unfortunately,
searching the activation space typically relies on
generic mixed integer programming (MIP) solvers
and is limited to small networks and easy problem
instances. To improve scalability and practicabil-
ity, we use branch and bound (BaB) with spe-
cialized GPU-based bound propagation methods,
and propose a top-down beam-search approach
to quickly identify the subspace that may contain
adversarial examples. Moreover, we build an ad-
versarial candidates pool using cheap attacks to
further assist the search in activation space via
diving techniques and a bottom-up large neighbor-
hood search. Our adversarial attack framework,
BaB-Attack, opens up a new opportunity for de-
signing novel adversarial attacks not limited to
searching the input space, and enables us to bor-
row techniques from integer programming theory
and neural network verification. In experiments,
we can successfully generate adversarial exam-
ples when existing attacks on input space fail.
Compared to off-the-shelf MIP solver based at-
tacks that requires significant computations, we
outperform in both success rates and efficiency.
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1. Introduction
Adversarial attacks aim to find adversarial exam-
ples (Szegedy et al., 2013), which are close to benign inputs
in certain distance metrics yet trigger wrong behavior of neu-
ral networks (Carlini & Wagner, 2017; Madry et al., 2018;
Athalye et al., 2018; Croce & Hein, 2020b). Adversarial
attacks are important tools to gauge the empirical robustness
of neural networks (NNs). Finding an adversarial example
can be generally formulated as a constrained optimization:

xadv = arg min
x∈C

f(x) (1)

where C is often an `∞ or `2 norm ball around the original
input x0, and f(x) is an attack success criterion involving a
neural network (such as the margin between the groundtruth
class and another class): f(x) < 0 indicates a successful
attack. A straightforward way of solving Eq. (1) is via first-
order constrained optimization methods, such as projected
gradient descent (PGD) (Madry et al., 2018) and its vari-
ants (Croce & Hein, 2020b; Tashiro et al., 2020; Croce &
Hein, 2020a; Xie et al., 2019; Dong et al., 2018; Zheng
et al., 2019). Additionally, some gradient-free attacks were
proposed (Brendel et al., 2018; Cheng et al., 2018; Alzantot
et al., 2019; Andriushchenko et al., 2020), mostly based on
certain heuristic search on the input space x.

Are adversarial attacks a solved problem? Although it
is often easy to attack a model, the attack problem is far
from being completely solved. To precisely characterize the
robustness of a model, we must prove one of the following:

• There exists a x∗ ∈ C such that f(x∗) < 0 (attack)

• f(x) ≥ 0 for all x ∈ C (verification)

Unfortunately, even for small models, it can be hard to prove
either one of the two cases, leading to “unknown” robust-
ness for some examples and a large gap between attack
accuracy and verified accuracy. The NN verification com-
munity has been working valiantly to close this gap, and
developed several strong verification tools recently (Bak
et al., 2021), allowing a precise characterization of NNs in
mission-critical tasks such as aircraft control (Katz et al.,
2017; 2019) and cyber-physical systems (Tran et al., 2020).
However, even for small models that can be well handled by
NN verifiers, there still exists hard instances which cannot
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be attacked using PGD, nor be verified by the best verifier. It
is still unclear if this gap can be closed by a stronger attack.

Limitations of existing attacks. As f(x) usually consists
of a highly non-convex neural network, solving Eq. (1) to
its global minimum is challenging. This leads to failures in
adversarial attacks: an adversarial example may exist but no
attacks can find it, giving a false sense of security (Athalye
et al., 2018). Especially, gradient based attacks can be eas-
ily trapped into a local minimum or misguided by masked
gradients (Papernot et al., 2016; Tramèr et al., 2017). Even
if we give the attacker a practically infeasible amount of
time (e.g., run a very large number of PGD steps, or allow a
large number of samples on input space), it is still hard to
guarantee finding an adversarial example if it exists, since it
is extremely difficult to systematically search the high dimen-
sional and continuous input space. Models concluded robust
under existing attacks might still have security vulnerability
in practice, leading to an urgent need for stronger attacks
that can possibly approach ground-truth robustness.

The mixed-integer approach. This paper seeks stronger
adversarial attacks from a different angle: instead of search-
ing for adversarial examples in the input space, we look for
adversarial examples in the activation space. The main intu-
ition is that neural networks with piece-wise linear activation
functions (e.g., ReLU) can be seen as a piece-wise linear
function and each piece is uniquely defined by a specific
setting of activation function status. For ReLU networks,
each neuron can either be active (its input is positive) or in-
active (its input is negative so the output is 0), which can be
encoded by discrete 0-1 variables. The adversarial attacks
therefore can be formulated as a mixed integer program-
ming (MIP) formulation (Ehlers, 2017; Tjeng et al., 2019)
for solving Eq. (1) rather than directly minimizing Eq. (1)
using gradients on input x.

Benefits of the MIP formulation. The MIP formulation
with the 0-1 encoding of ReLU neurons allows us to sys-
tematically search all the linear pieces in the input space,
theoretically guarantee to enumerate the entire input space
and obtain the global minimum of Eq. (1) given sufficient
time. Assuming an attacker with massive computational
resources (e.g., nation-state actors), MIP formalizes the
strongest attack possible against a network. Therefore, MIP-
based attacks can often find adversarial examples that are
missed by existing attacks and identify true weaknesses of
a model, which helps to close the gap between the upper
and lower bounds of robust accuracy (attack accuracy vs.
verified accuracy). Existing NN verifiers conduct a system-
atic search via branch and bound (Bunel et al., 2020b; Wang
et al., 2021) in activation space to tighten the lower bound,
while we aim to tighten the upper bound by a systematic
search of adversarial examples. Closing this gap is difficult
even on small models (Dathathri et al., 2020).

Generic MIP solvers are inefficient for adversarial at-
tacks. Despite its strengths, a MIP-based attack are often
a few orders of magnitudes slower than existing attacks due
to the high cost of running an off-the-shelf solver (Tjeng
et al., 2019). There are three root causes for its inefficiency.
First, an off-the-shelf solver is not aware of the underly-
ing structure of the problem (i.e., it is a neural network),
and has to apply generic solving techniques (e.g., Simplex
algorithm with relaxations) which can be expensive or inef-
fective. Second, it cannot utilize solutions obtained cheaply
from gradient based attacks to accelerate its search. Third,
generic MIP solvers are mostly restricted to CPUs and can
hardly utilize GPU, which is crucial for efficiency.

Contributions of this paper. We address the above weak-
nesses in MIP solvers for adversarial attacks, by developing
a GPU-accelerated branch and bound procedure to system-
atically search adversarial examples in activation space via
branch and bound (BaB). We focus on solving hard in-
stances where none of existing adversarial attacks searching
on input space can succeed and no verifiers can prove their
robustness. Our contributions include:

• We design a novel BaB based attack framework that can
leverage the GPU-accelerated bound propagation based
methods (Wang et al., 2021; Wong & Kolter, 2018), which
were originally developed for neural network verification.
Our method can quickly examine thousands of suspicious
regions in activation space in parallel and rule out the re-
gions with no adversarial examples, which is difficult in
off-the-shelf MIP solvers with a generic solving procedure.

• We propose a top-down beam-search to explore the activa-
tion space. Unlike the best-first search used in NN verifiers,
we can quickly go deep in the search tree and identify the
most promising regions with adversarial examples.

• We propose to collect adversarial candidates generated
by cheap attacks to guide the search in activation space.
First, we conduct a bottom-up search on candidates close to
decision boundary by applying large neighborhood search
(LNS). Second, when conducting the top-down search, we
adopt diving by fixing integer variables according to adver-
sarial examples in the pool to reduce the search space.

• Our new attack framework, BaB-Attack, is designed to
tackle hard instances where existing strong adversarial at-
tacks (such as AutoAttack) cannot succeed. Despite being
more expensive than attacks on the input space, BaB-Attack
is about an order of magnitude faster than using an MIP
solver in our benchmarks, and can be easily integrated into
a branch-and-bound based NN verifier to further close the
gap between verified and attack accuracy.

2. Background
Notations. We define a L layer feed-forward ReLU net-
work as f : Rn0 → R and f(x) := z(L)(x), where
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Figure 1: A branch and bound search tree. Each node represents
a subdomain determined by S , and the numbers are LB(S) (lower
bound of domain S). No adversarial example exist in the subdo-
main if LB(S) > 0 (green). A concrete adversarial example is a
leaf node where LB(Sleaf) < 0.

z(i)(x) = W(i)ẑ(i−1)(x) + b(i) with i-th layer weight
matrix W(i) and bias b(i), ẑ(i)(x) = ReLU(z(i)(x)), and
input ẑ(0)(x) = x. Layer i has dimension ni, and N is the
total number of neurons. We denote the j-th neuron in layer
i as z(i)j . For a simpler presentation, we assume f(x) is a
binary classifier and benign input x0 has f(x0) > 0. An
attacker seeks to minimize f(x) within a `∞ norm pertur-
bation set C to make f(x) < 0. We can attack a multi-class
classifier by considering each pair of target and ground-truth
label individually where f is defined as the margin between
them, similarly to Gowal et al. (2019b). We use [N ] to rep-
resent the set {1, · · · , N}. We omit ·(x) when the context
is clear in the following paper.

The MIP formulation for adversarial attack. Tjeng
et al. (2019) showed that the adversarial attack and veri-
fication of ReLU networks can be generally formulated into
a mixed integer programming (MIP) problem, solved by
existing MIP solvers (refer to as “MIP attack” in our paper).
This formulation has binary variables s(i)j for each ReLU:

min f s.t. i ∈ [L], j ∈ [ni]

z(i) = W(i)ẑ(i−1) + b(i); f = z(L); ẑ(0) = x ∈ C;

ẑ
(i)
j ≥ z

(i)
j ; ẑ

(i)
j ≤ u

(i)
j s

(i)
j ; ẑ

(i)
j ≤ z

(i)
j − l

(i)
j (1− s

(i)
j );

ẑ
(i)
j ≥ 0; z

(i)
j ∈ [l

(i)
j , u

(i)
j ]; s

(i)
j ∈ {0, 1};

(2)

where s(i)j indicates the two status of ReLU: (1) inactive:

when s(i)j = 0, constraints on ẑ(i)j simplifies to ẑ(i)j = 0;

or (2) active: when s(i)j = 1 we have ẑ(i)j = z
(i)
j . Here

l
(i)
j , u(i)j are pre-computed intermediate lower and upper

bounds on pre-activation z(i)j such that l(i)j ≤ z
(i)
j (x) ≤

u
(i)
j for any x ∈ C. The complexity of this problem can

increase exponentially with the number of ReLU neurons,
so it can take hours to run even on a small network, unless
the network is trained with a strong regularization such as a
certified dense (Wong & Kolter, 2018; Xiao et al., 2019).

Searching in Activation Space via Branch and Bound.
Given Eq. (2), we can view a neural network in the activa-
tion space A = {0, 1}N where N is the total number of
neurons, and each dimension corresponds to the setting of a
s
(i)
j ∈ {0, 1} variable. To determine s(i)j corresponding to

a known adversarial example xadv, we can propagate xadv

through the network and check the sign of each neuron z(i)j ,

so s(i)j = 1(z
(i)
j ≥ 0). This uniquely locates the linear piece

of f(x) where xadv lies, because Eq. (2) becomes a set of
linear inequalities when all s(i)j are fixed. Intuitively, we

can search adversarial examples by fixing all s(i)j to one of
the 2N possible combinations in A , and then solve Eq. (2)
exactly using linear programming; an adversarial example
is found when the solution is negative. To avoid clutter, we
flatten the ordering of s(i)j for i ∈ [L], j ∈ [ni] and use a
single subscript s1, · · · , sN to denote all binary variables.
To effectively and systematically search in the activation
space, instead of fixing all si (i ∈ [N ]), we can first fix a
subset of them and bound the objective f(x) to guide the
search, leading to the branch and bound (BaB) method. In
BaB, we solve Eq. (2) by creating subproblems constraining
some binary variables, for example, s1 = 0 or s1 = 1 (since
we can branch on the neurons in any fixed order, without
loss of generality, we show branching chronologically). We
define a set S containing all the branching constraints (e.g.,
S = {s1 = 0, s2 = 1}), which corresponds to a subdomain
of the original problem Eq. (2). BaB requires the lower
bound primitive LB on S, which relaxes the remaining bi-
nary variables to obtain a lower bound of Eq. (2):
LB(S) ≤ min f(x) s.t. s ∈ S & other Eq. (2) constraints

Here s ∈ S means setting binary variables s(i)j according to
the constraints in S. Typically, more constraints in S lead
to tighter bounds. LB(S) > 0 indicates that no adversarial
example exist within this subdomain, otherwise adversarial
examples may exist in this subdomain.
We illustrate a BaB search tree in Fig. 1. Initially, Sroot = ∅,
where x ∈ C without any extra constraints in activation
space and a lower bound of Eq. (2) is obtained. When
LB(∅) < 0, an adversarial example may exist, and we
branch Sroot into two subdomains:
S1− = Sroot ∪ {s1 = 0}; S1+ = Sroot ∪ {s1 = 1}

Then we bound each subdomain. Since more constraints
are added, LB(S1−) and LB(S1+) are usually improved.
The branching procedure continues recursively, and if any
LB(S) > 0, no further branching is needed since no adver-
sarial examples exist in that subdomain. Each branching
increases the cardinality of S by 1. Eventually we reach leaf
nodes with |Sleaf| = N , each leaf locating a linear piece of
f(x). In that case, LB(Sleaf) is an exact solution since no
binary variables are left. If LB(Sleaf) < 0, a concrete adver-
sarial example is the minimizer x∗ of Eq. (2) with s ∈ Sleaf.
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Figure 2: Overview of BaB attack.

Since N can be quite large and adversarial examples lie
in the leaf level, we must guide the search to reach there
quickly. Although BaB is used in existing neural network
verifiers (Bunel et al., 2018; De Palma et al., 2021a), they do
not aim to reach the leaf level and typically branch the node
with the worst bound first, generally leading to a wide but
shallow search tree and unsuitable for detecting adversarial
examples. We will discuss our search algorithm in Sec. 3.
Bounding in Branch and Bound of Neural Networks.
The LB(S) primitive is crucial in the BaB process: it needs
to provide a tight lower bound efficiently. A simple way
to lower bound the objective of Eq. (2) is via relaxation of
integer variables and linear programming (LP) (Bunel et al.,
2018; Lu & Kumar, 2020); but an LP solver is needed which
restricts its efficiency. Recently, a popular choice in NN ver-
ifiers is the specialized bound propagation methods (Zhang
et al., 2018; Wong & Kolter, 2018) which exploit the struc-
ture of the optimization problem (which a generic LP/MIP
solver cannot) and give LB(S) efficiently on GPUs without
an LP solver. Essentially, they relax each ReLU neuron into
convex domains (Salman et al., 2019) and propagate them
layer by layer through the network while maintaining sound
bounds. We leverage the state-of-the-art bound propagation
based verifier, α,β-CROWN (Zhang et al., 2018; Xu et al.,
2021; Wang et al., 2021), to produce LB(S). Importantly,
we will show how we use LB(S) to guide attacks, while
existing works mostly use them for verification.

3. Method
Overview of BaB attack. To systematically search adver-
sarial examples in activation space, we must explore the
search tree and enumerate as more leaf nodes as possible.
Although the worst case search time complexity is exponen-
tial in the numbers of ReLU neurons (visiting every leaf
node of the tree), practically, if a right search procedure is
chosen, only a small fraction of nodes need to be visited
to find an adversarial example. In this paper, we propose
BaB attack, specializing the BaB searching strategy over
the activation space for the purpose of adversarial attacks.

The search is well guided by (1) a top-down beam-search
thread accelerated on GPUs which quickly goes deep into
the search tree, and (2) a bottom-up search thread on CPUs
for large neighborhood search. The top-down and bottom-
up searches run in parallel threads and they both benefit
from the adversarial candidates pool P , which contains ex-
amples P = {xc1 , · · · , xcM } where M is the pool capacity.
f(xci) is still positive but small; the pool keeps the M best
(ranked by f(xci); smaller is better) examples it receives.
The activation space representations of these candidates are
used as extra information to guide the search. We detail
each part of BaB attack (Fig. 2) in next sub-sections.

3.1. Top-down Beam Search Guided by Verifiers
Challenges in searching adversarial examples. The ac-
tivation space can be quite large (e.g., with thousands or
more dimensions), and adversarial examples are at the leaf
level of the search tree. Searching directly from the root
node and traversing the search tree in an exhaustive manner
(such as BFS or DFS) can be quite insufficient. To locate
adversarial examples faster, we propose to use beam search
guided by lower bounds LB(S) from NN verifiers.

Beam search in activation space. Our key insight is to
accelerate the search by prioritizing suspicious subdomains
with small LB(S), to have no adversarial examples. At the
root node in the search tree, our beam search procedure
expands the tree by D levels, yielding 2D subdomains:

S1 = Sroot ∪ {s1 = 0, s1 = 0 · · · , sD = 0},
S2 = Sroot ∪ {s1 = 1, s1 = 0 · · · , sD = 0},
S3 = Sroot ∪ {s1 = 0, s1 = 1 · · · , sD = 0},

· · · ,
S2D = Sroot ∪ {s1 = 1, s1 = 1 · · · , sD = 1}

For each subdomain, we obtain its lower bound efficient
via the primitive LB(S) from a bound propagation based
NN verifier. Then, we sample K subdomains without re-
placement out of the 2D domains, with the probability pi
associated with each Si in Eq. (3), where i ∈ {1, · · · , 2D}
and T is the temperature set to 0.1 by default.

pi =
exp (−T · LB(Si)) · 1(LB(Si) < 0)∑2D

i=1 exp (−T · LB(Si)) · 1(LB(Si) < 0)
(3)

A subdomain with more negative lower bound has a higher
probability to be selected, since the large negative bounds
may indicate a higher chance of the existence of adversarial
examples. Subdomains with positive bounds will never be
selected, since they are guaranteed to not contain adversarial
examples. The picked out subdomains S ′1, · · · ,S ′K become
the parent nodes for the next iteration of beam search. In
the next iterations, we explore K · 2D subdomains and in-
crease the depth by D per iteration. Since all the subdomain
lower bounds are computed in a large batch on GPUs (com-
monly only a few seconds), our search procedure quickly
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Figure 3: (a) Beam search: we select K subdomains probabilistically according to LB(S) (lower bound of domain S), and expand
the search tree by D levels using bound propagation on GPU. (b) Diving with common adversarial patterns: We dive the search tree
with additional constraints constructed by common adversarial patterns to greatly reduce top-down sub-MIP search space. (c) Large
Neighborhood Search (LNS): In bottom-up search, we free some fixed integer variables at a leaf node (e.g., an adversarial candidate
which serves as a “reference point”) searching its neighborhood in activation space.

explore deep in the search tree. Our specialized top-down
beam search with lower bounds computed efficiently by
bound propagation on GPUs brings us great advantages
over existing MIP solvers, which conduct BaB on CPUs
using a generic procedure such as Simplex algorithm or
barrier method. In practice, we can visit several orders of
magnitudes more subdomains.

Sub-MIP on most promising subdomains. Before the
beam search reaches the leaf level, we start searching adver-
sarial examples in the most promising subdomains (e.g., in
some of the selected domains S ′1, · · · ,S ′K ), by constructing
a sub-MIP problem of Eq. (2): in the k-th sub-MIP, we fix
its binary variables s(i)j based on constraints in S ′k. In this
step, although a generic MIP solver is used, it is instructed
to search in subdomains guided by beam search to be likely
to contain adversarial examples. With a large number of
s
(i)
j fixed during beam search, the MIP solver only needs

to work on a much smaller problem and can be much more
effective than solving Eq. (2) directly.

Completeness. Beam search, if implemented with back-
tracking, can achieve completeness (Zhou & Hansen, 2005):
given sufficient time, it will systematically visit all leaf
nodes, and guarantee to either locate an adversarial exam-
ple, or prove the network safe. However, due to the large
number of neurons, achieving completeness often requires
an infeasibly large amount of time and space. We thus focus
on searching adversarial examples as fast as possible rather
than exhaustively visiting every node, although theoretically
our procedure can be made complete.

3.2. Diving in BaB with Common Adversarial Patterns
What is diving? “Diving” refers to diving deep in the BaB
search tree by heuristically fixing some integer variables
without exploring all possible branches. It is a common

strategy in generic MIP solvers, able to quickly uncover
feasible solutions of a MIP problem (Berthold, 2006; Nair
et al., 2020). In our case, we want to fix binary variables
s
(i)
j in Eq. (2), and a feasible solution x with f(x) < 0 is

an adversarial example (Figure 3b). A generic MIP solver
uses diving to hopefully find high quality feasible solutions
quickly, however it cannot use the information provided by
cheaply generated adversarial examples like PGD attack to
guide this heuristic. In this work, we propose a specialized
diving scheme in the activation space based on the statistics
in the adversarial candidates pool, and construct sub-MIPs
with additional diving constraints to reduce the search space.

Diving with common adversarial patterns. Given the
candidates pool P = {xc1 , · · · , xcM }, we first extract the
corresponding binary variables si for each example, by prop-
agating them through the network (see Section 2). The bi-
nary variable corresponds to the i-th neuron of the m-th
adversarial example is denoted as si,m (0 or 1). A variable
si is called a common activation when the function c(i) is
greater than a threshold C:

c(i) :=

∣∣∣∑M
m=1 si,m −M/2

∣∣∣
M

+ 0.5 ≥ C, C ∈ [0.5, 1.0]

For example, when C = 0.9, a common activation requires
that at least 90% examples in the pool share the same value
of si (0 or 1). All the common activations and their common
values are called common adversarial patterns, indicating
that an adversarial examples will be likely to contain these
settings of si. We then construct a set of constraints Scommon,
setting common activations to their common values:

Scommon = {si = 1(

M∑
m=1

si,m ≥
M

2
), c(i) ≥ C, i ∈ [N ]}

Then, when constructing the top-down sub-MIPs in Sec. 3.1,
we provide additional constraints Scommon as diving con-
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straints. They further reduces the search space for the MIP
solver (the MIP solver solves Eq. (2) with both beam search
constraints S ′1 and diving constraints Scommon), making it
easier to find an solution. The threshold C controls the ag-
gressiveness of diving; too much diving leads to a too small
search space so good adversarial examples cannot be found.

How to fill the adversarial candidates pool? To obtain
useful common adversarial pattern, we maintain an adver-
sarial candidates pool with up to M most promising ad-
versarial candidates (f(x) is close to 0 but the label is not
yet flipped). The pool is initialized with perturbed samples
bounded within C found with output diversified sampling
PGD (Tashiro et al., 2020), which creates a diverse set of
adversarial candidates. During BaB attack, new adversarial
candidates come from three sources: (1) some NN verifier
provides upper bounds for each subdomain during beam
search; in α,β-CROWN these upper bounds are obtained
via conducting PGD on its dual solutions (Wang et al., 2021)
produced by the solver, and they are added to the pool; (2)
the solutions returned by the top-down sub-MIP solved with
beam search and diving constraints, and (3) the solutions re-
turned by the bottom-up sub-MIP with large neighborhood
search (which will be discussed in the next subsection).
When new adversarial candidates are inserted, they are com-
pared to existing ones in the pool, and we keep the best M
adversarial candidates with distinct activation patterns.

3.3. Bottom-Up Large neighborhood Search (LNS)
What is bottom-up search? The bottom-up search pro-
cedure starts at the leaf nodes of BaB search tree (Figure 3c):
we start from a known adversarial candidate xc that is close
to decision boundry (f(xc) > 0 but very small), and want
to further reduce f(xc) by searching around xc. A naive
way is to conduct PGD attack in the input space with xc
as the starting point, but we found it not helpful because
the adversarial candidates in the pool have already been
optimized using PGD or stronger attacks. Thus, we propose
to use a large neighborhood search in activation space.

Bottom-up search via large neighborhood search.
Large neighborhood Search (LNS) (Walser, 2003; Schri-
jver, 2003) is a generic local search heuristic: one defines
a neighborhood around a reference point (a feasible solu-
tion) and finds the optimum objective in this neighborhood,
typically by constructing a sub-MIP problem with neighbor-
hood constraints. In the setting of integer programming, the
neighborhood can be defined by freeing certain fixed integer
variables, allowing them to be optimized while fixing other
integer variables. However, traditional local search algo-
rithms in MIP solvers has little guidance regarding promis-
ing subdomains in common adversarial examples and can
be ineffective due to the high dimensional search space in
the adversarial attack problem.

In BaB attack, we extend the general idea of LNS to a
specialized local search for adversarial attacks by selecting
the most promising adversarial candidates in the pool as
the reference point and then use the statistics from the pool
to free certain binary variables si. Specifically, among all
the binary variables corresponding to ReLU neurons on
the selected candidate, we define the disagreed adversarial
patterns from ReLUs where adversarial candidates in the
pool that disagree the most. Formally, similar to the setting
in Sec. 3.2, a variable si is called a disagreed activation if:

c̄(i) := 1− c(i) ≥ C̄, C̄ ∈ [0.0, 0.5]

For example, when C̄ = 0.3, si is a disagreed activation
when there are at least 30% examples in the pool do not
share the same value of si. Since these variables are quite
different across existing adversarial examples, we remove
their corresponding binary variables to allow the MIP solver
to search for a better setting of them. The aggressiveness
of freeing variables in LNS is determined by C̄. The set of
disagreed adversarial patterns is a set of binary variables:

Sdisagreed = {si | c̄(i) ≥ C̄, i ∈ [N ]}
Formally, to search around an adversarial candidate xc, we
first propagate xc through the network and obtain activa-
tion values zi, extract the corresponding binary variables
si for xc, and remove the constraints that are in Sdisagreed to
construct the set of constraints for bottom-up search:
Sbottom-up = {si = 1(zi ≥ 0), si /∈ Sdisagreed, i ∈ [N ]}

We then construct a sub-MIP using Eq. (2) with the addi-
tional constraints Sbottom-up and solve it using a MIP solver.
The optimal solution to each sub-MIP (if still not an adver-
sarial example) will be added back to adversarial candidates
pool again waiting for another round of local search.

4. Experiments
Setup. We evaluate on all 10,000 test examples of
MNIST (LeCun, 1998) and CIFAR10 (Krizhevsky et al.,
2009) dataset, and select 8 models which are mostly bench-
marking models used in previous works or competitions
(details in Appendix A.1). For each model, we first run
three commonly used strong adversarial attacks: a multi-
targeted PGD (MT-PGD) attack (Gowal et al., 2019a)
with 1000 Adam steps and 500 random restarts; a multi-
targeted PGD attack with Output Diversified Sampling
(ODS-PGD) (Tashiro et al., 2020) with 1000 Adam steps
and 500 random restarts, and AutoAttack (Croce & Hein,
2020b) which is an ensemble of parameter-free attacks. The
remaining robust images are then tested with α,β-CROWN
verifier (Wang et al., 2021; Xu et al., 2021; Zhang et al.,
2018) to see if they can be verified robust so no further
attack is needed. Any images that failed with the veri-
fier are then evaluated in an MIP formulation (Tjeng et al.,
2019) solved using Gurobi. The MIP solver is used as
the last resort because it is usually much more expensive
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Table 1: Comparison between MIP attack (Tjeng et al., 2019) (using Gurobi) and our BaB Attack. Both attacks focus on hard instances
where a combination of MT-PGD, ODS-PGD with 1000 step and 500 restarts and AutoAttack cannot succeed and their robustness also
cannot be verified. Average time computed on non-timeout examples only. For a fair comparison, the MIP attack baseline and our BaB
attack use the same timeout. For a comparison to more input space attacks, see Table 2.

Dataset Model eps Clean Acc. Total verified Total attacked Hard instances MIP attack Avg. time(s) BaB attack Avg. time(s)

A 0.3 97.94% 8171 1576 47 20 65.82 20 36.18
MNIST B 0.3 96.33% 6746 2271 616 20 2210.06 32 166.60

C 2/255 65.63% 4748 1664 151 3 989.06 3 55.23
D 2/255 68.73% 4965 1643 265 1 867.25 1 96.17
E 2/255 74.18% 4435 2069 914 3 1852.14 6 107.72

CIFAR F 2/255 63.14% 900 4207 1207 9 937.77 26 65.92
G 2/255 60.86% 5015 1071 0 Used in (Tjeng et al., 2019), however the gap between lower and upper bounds

is closed with recently proposed strong verifiers, thus not suitable for evaluationH 8/255 27.07% 2243 463 1

Table 2: Number of successfully (# succ.) attacked hard instances (from Table 1) under more attacks. Here we run FAB and Square
attacks with much more steps than default to increase their power. All examples here cannot be attacked by AutoAttack and MT-PGD,
ODS-PGD with 1000 step and 500 restarts. Although we cannot practically include all existing attack algorithms here, the results show
the limitation of representative attacks that search input space, so activation space search based attack like BaB attack is useful.

Dataset Model # Total FAB Square DIFGSM MIFGSM Distributional AutoAttack+ BaB attack (ours)
# succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s) # succ. Time(s)

A 47 0 3.25 4 7.96 0 0.04 0 0.02 0 0.03 2 0.31 20 36.18
MNIST B 616 0 3.40 3 11.75 0 0.04 0 0.02 1 0.01 0 0.28 32 166.60

C 151 0 3.32 0 11.61 0 0.39 0 0.02 0 0.01 0 0.36 3 55.23
D 265 0 3.38 0 11.68 0 0.39 0 0.02 0 0.01 0 0.19 1 96.17

CIFAR E 914 0 3.45 0 11.76 0 0.04 0 0.02 0 0.02 0 0.22 6 107.72
F 1207 0 2.92 0 11.70 0 0.04 0 0.02 1 0.03 0 0.15 26 65.92

than other approaches. Both MIP attack and BaB attack
use 8 CPU cores with an one hour timeout, but our attack
usually terminates much faster than the MIP solver. Addi-
tionally, we implement MIP attack using the same code base
as our BaB attack, and the MIP formulation benefits from
the tightest intermediate layer bounds from α-CROWN;
the original implementation in (Tjeng et al., 2019) used
quite weak intermediate layer bounds and is much less
powerful than our MIP implementation. Any instance that
cannot be attacked via a combination of MT-PGD, ODS-
PGD and AutoAttack nor verified is referred to as a hard
instance, and the main evaluation is conducted on these
instances. All attacks are `∞ norm-based with ε listed
in Table 1. More details can be found in Appendix A.2.
Our code is available at https://github.com/
tcwangshiqi-columbia/BaB-Attack.git.

Results. Table 1 shows a breakdown of all 10,000 test ex-
amples on the 8 models. In these models, CIFAR Model G
and H (ResNet) are among the largest models from (Tjeng
et al., 2019) to evaluate the MIP formulation. These models
were trained using certified defense. The recent progress
of NN verifiers makes them quite easy to verify, leaving
almost no hard instances, so a stronger attack is no longer
needed. The remaining models are trained using adversarial
training and their robustness are much harder to characterize
precisely, with many hard instances left. Among these mod-
els, MNIST model A and CIFAR model C, D are relatively
small, so an off-the-shelf MIP solver can give a reasonable
amount of adversarial examples; in this case, BaB-attack
finds the same number or more adversarial examples within
a shorter time. The MNIST model B, CIFAR model E, F
are even more challenging. MIP attack takes a very long

(a) MNIST Model A (b) MNIST Model B

(c) CIFAR Model E (d) CIFAR Model F

Figure 4: For examples that all attacks failed, we compare the
minimum margin between the ground-truth label and all other
target labels for the adversarial candidate. A smaller margin is
better. Our attack achieves noticeably smaller margins compared
to other attacks (margins from other attacks are below y = x line).

time and timeouts more often, while our attack consistently
finds more adversarial examples under 10x less time. Our
speedup is more clearly shown in Fig. 5, where we plot
the the number of attacked examples vs. solving time. For
images that none of the attacks work, we plot the minimum
margin between the ground-truth label and other labels in
Fig. 4 and compare the margins against ODS-PGD, MT-
PGD attacks and AutoAttack. Our method still consistently
achieves smaller margins on all 4 models.

https://github.com/tcwangshiqi-columbia/BaB-Attack.git
https://github.com/tcwangshiqi-columbia/BaB-Attack.git
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Table 3: Ablation study on how each proposed component contributes to the overall performance on attacking hard instances.
MNIST Model A MNIST Model B

# success # total Avg. time (s) # success #total Avg. time (s)

Random top-down beam search 8 20 38.82 4 616 49.22
Verifier guided beam search 16 20 43.60 6 616 417.83
Verifier guided beam search + diving 16 20 42.20 10 616 102.44
Verifier guided beam search + bottomup search 20 20 38.50 31 616 149.85
Verifier guided beam search + diving + bottomup search 20 20 36.18 32 616 166.60
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MNIST Model B: running time (in s)
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Figure 5: Running time vs. number of attacked images.

Comparison to more attacks. We compare our BaB at-
tack to 6 additional state-of-the-art attacks on all hard in-
stances in Table 2. Attacks we evaluated include 1) FAB
attack (Croce & Hein, 2020a): a white-box boundary ad-
versarial attack; 2) Square attack (Andriushchenko et al.,
2020): a query-efficient black-box adversarial attack using
randomized search with localized square-shaped updates;
3) DIFGSM attack (Xie et al., 2019): a white box attack
leveraging input diversity; 4) MIFGSM attack (Dong et al.,
2018): a momentum-based iterative white box attack to
escape from poor local maxima and 5) Distributional at-
tack (Zheng et al., 2019): a white box attack considering
adversarial-data distribution. We increased steps and itera-
tions to make some attacks stronger; hyperparameters are
in Appendix A.3. 6) AutoAttack+: AutoAttack with more
expensive and powerful parameter settings. Most attacks are
not effective on these hard instances. Square attack is the
strongest among them but still finds much less adversarial
examples than us and is also relatively slow.

Ablation study. To fully understand how each proposed
component contributes to the overall performance of BaB at-
tack, we conduct ablation study on MNIST Model A and B,
and show the number of successfully attacked instances and
average time in Table 3. We first show that the beam search
guided by verifier α,β-CROWN significantly helps the per-
formance compared to random top-down search without
any guidance. We then show that the top-down diving and
bottom-up large neighborhood search contribute to different
hard instances and the combination of them leads to the best
attack results. Note that the average time here is on success-
fully attacked samples by each method only, showing the
efficiency of each component instead of strength.

5. Related Work
Adversarial examples and attacks. Adversarial examples
were first discovered in (Szegedy et al., 2013; Biggio et al.,

2013) and they can be easily constructed by single-/multi-
step gradient descent to fool regularly trained neural net-
works (Kurakin et al., 2016; Goodfellow et al., 2015). How-
ever, purely gradient-based methods can fail due to gradient
masking and obfuscated gradients (Tramèr et al., 2017; Pa-
pernot et al., 2016; Athalye et al., 2018). Popular attacks
like PGD (Madry et al., 2018) or CW (Carlini & Wagner,
2017) can lead to overestimation of robustness (Mosbach
et al., 2018; Croce et al., 2020) despite their empirically
good performance and efficiency. A large body of white-
box adversarial attacks have been proposed to strengthen
adversarial attacks; many of them are variants of PGD based
attacks (Zheng et al., 2019; Tashiro et al., 2020; Gowal
et al., 2019b; Wang et al., 2019). Due to non-convexity of
the adversarial attack objective, gradient-free methods and
black-box attacks are also widely explored but mostly result
in similar or worse performance compared to gradient-based
ones (Papernot et al., 2017; Chen et al., 2017; Ilyas et al.,
2018a;b; Xiao et al., 2018; Andriushchenko et al., 2020).
Recently, stronger attacks (Croce & Hein, 2020a;b) are pro-
posed but they are also restricted to searching in input space.
In this paper, we are the first to conduct a systematic and
efficient search of adversarial examples in activation space
inspired by branch and bound techniques.

Neural network verification. Early neural network veri-
fiers solve the verification problem with satisfiability mod-
ulo theories (SMT) or MIP solvers and can only scale to
very small networks (Katz et al., 2017; Huang et al., 2017;
Ehlers, 2017; Dutta et al., 2018; Tjeng et al., 2019). Efficient
verification methods with various sound relaxations are then
proposed for verifying larger networks but without com-
pleteness guarantee (Wong & Kolter, 2018; Dvijotham et al.,
2018; Raghunathan et al., 2018a;b; Singh et al., 2018b;a;
Zhang et al., 2018; Tjandraatmadja et al., 2020). Branch and
bound (BaB) based verifiers can efficiently branch on ReLU
neurons and achieve completeness on ReLU networks us-
ing efficient incomplete verifiers (Bunel et al., 2018; Wang
et al., 2018a; Lu & Kumar, 2020; Botoeva et al., 2020).
BaB based methods with input domain split and refinements
are also investigated but they are limited to low input di-
mensions (Wang et al., 2018b; Royo et al., 2019; Anderson
et al., 2019). Recent verifiers use GPU accelerated incom-
plete solvers to further scale up verification and achieve
several orders of magnitude speedup (Bunel et al., 2020a;
De Palma et al., 2021b; Anderson et al., 2020; Xu et al.,
2021; Müller et al., 2021; 2020; Wang et al., 2021).
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6. Conclusion
In this paper, we proposed BaB attack, a strong adversar-
ial attack using branch and bound to systematically search
adversarial examples in activation space. We provide a
new perspective of adversarial attack and borrow techniques
from NN verification and integer optimization theory. Our
attack can be integrated into existing bound propagation
based NN verifiers to further close the gap between verified
accuracy and attack accuracy, allowing us to further reduce
“unknowns” when characterizing model robustness.

Limitations of this study. One limitation of BaB Attack
is speed - it easily takes a few minutes to explore a branch
and bound tree using beam search, while gradient based
adversarial attacks are often very fast, in a few seconds.
Practically, BaB attack is mostly useful for hard instances,
and we can use other simpler attacks as a filter to reduce the
number of inputs for BaB attack. Additionally, BaB attack
is designed as an integral part of a NN verifier and aimed for
models whose robustness must be precisely characterized to
guarantee their performance, rather than large vision models
beyond the capability of state-of-the-art verifiers.
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A. More details on experiments
A.1. Details of Models
MNIST Model-A, CIFAR Model-C, CIFAR Model-D and CIFAR Model-E are provided by (Dathathri et al., 2020) and
were trained with adversarial training, except that CIFAR CNN-A-Mix is trained with a mixture of adversarial training
loss and certified defense loss. These models were used as a benchmark to evaluate the gap between verified accuracy
and attack acucracy in a few papers (Dathathri et al., 2020; Wang et al., 2021; Müller et al., 2021). MNIST Model-A is
trained using adversarial training with architecture similar to the MNIST model used in (Madry et al., 2018) but scaled
down by 4X and maxpool layers removed. The CIFAR Model-F is from the marabou-cifar10 benchmark in 2nd
International Verification of Neural Networks Competition (VNN-Comp) 2021 (Bak et al., 2021); the model (original name
cifar10 small.onnx) is naturally trained on CIFAR-10 dataset. CIFAR Model-G and CIFAR Model-H (Tjeng et al.,
2019) are trained using a dual linear programming based certified defense (Wong et al., 2018), so they are relatively easy to
attack and verify. All details of the model structures are presented in Table 4.

Table 4: Model structures used in our experiments. For example, Conv(1, 4, 5) stands for a conventional layer with 1 input
channel, 4 output channels, and a kernel size of 5× 5. Linear(1568, 100) stands for a fully connected layer with 1568 input
features and 100 output features. We have ReLU activation functions between two consecutive layers.

Model name Model structure

MNIST-Model-A Conv(1, 4, 5) - Conv(4, 8, 5) - Linear(392, 128) - Linear(128, 10)
MNIST-Model-B Conv(1, 16, 4) - Conv(16, 32, 4) - Linear(1568, 100) - Linear(100, 10)

CIFAR-Model-C Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CIFAR-Model-D Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CIFAR-Model-E Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CIFAR-Model-F Conv(3, 8, 4) - Conv(8, 16, 4) - Linear(576, 128) - Linear(128, 64) - Linear(64, 10)
CIFAR-Model-G Conv(3, 16, 4) - Conv(16, 32, 4) - Linear(2048, 100) - Linear(100, 10)
CIFAR-Model-H Conv(3, 16, 3) - Residual block * 4 - Linear(4096, 1000) - Linear(1000, 10)

A.2. Hyperparameters for our BaB Attack
We set the common adversarial pattern threshold C to be 1.0 for both top-down diving and disagreed adversarial pattern
threshold C̄ to 0.0 for bottom-up large neighborhood search. We use state-of-the-art verifier α,β-CROWN to provide
verified lower bounds LB(S), prioritizing suspicious subdomains. We use the default learning rates 0.01 and 0.05 for
both α-CROWN and β-CROWN. To tighten the estimation for each subdomain and provide more accurate guidance for
suspicious ones, we increase the optimization iterations to 100 for both α-CROWN and β-CROWN with a learning rate
decay of 0.999. We use the maximal batch size B to fit into the GPU memory. For each step of our beam search, we set the
depth for each iteration of beam search D to be 8 and the number of picked out subdomains K to be B/2D. One can adjust
D to control the searching speed.
We run all our experiments on a system with EPYC 7502 CPU and RTX 3080 Ti GPU, and use up to 8 sub-MIP threads for
top-down or bottom-up search. We set a timeout threshold for each sub-MIP to be 30 seconds for MNIST Model A, 180s for
the MNIST model B and 360s for CIFAR-10 models. We run each attack for up to an hour to be consistent with the timeout
threshold of baseline MIP attack while our BaB attack usually terminates much faster.

A.3. Setup for Compared Attacks
We did a small scale grid search for the best combination of hyperparameters for each attack. For FAB attack, we select a
100-steps attack with 50 restarts and set αmax = 0.1, β = 0.9 and η = 1.05; for Square attack, we use 7000 queries, 20
restarts and set 0.6 as the size of squares. Note that FAB and Square attacks are part of the AutoAttack suite, but here we
significantly increased their steps and number of iterations compared to the defaults in AutoAttack. For DIFGSM attack,
we set α = 6/255, decay rate as 0.9, number of iterations as 50 and the probability of applying input diversity as 0.5; for
MIFGSM attack, we set α = 2/255, decay rate as 0.9 and number of iterations as 20; for Distributional attack, we used 100
attack iterations, step size 0.01, and a balancing parameter of 0.05; for AutoAttack+, we enable the ‘plus’ argument provided
in the official code link at https://github.com/fra31/auto-attack#autoattack-1 to further improve the
attacking strength.

https://github.com/fra31/auto-attack#autoattack-1
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Figure 6: Running time vs. number of attacked images compared to MIP attack on four models.

A.4. More Experimental Results
We plot running time vs. number of attacked images for five more models in Fig. 6. Our BaB attack achieves distinctly
faster running time and produces more successful attacked images compared to the MIP attack using an off-the-shelf solver.
For the smallest MNIST Model A, the problem is relatively easy and can be solved by both MIP attack and BaB attack
almost instantly, so for examples with running time about 10 seconds it essentially measures the startup overhead of each
method rather than true performance. In all other scenarios, BaB attack significantly outperforms MIP attack.

B. Ethics Statement
This work contributes to strong adversarial attacks, aiming for benign purposes on reliably evaluating the robustness of
neural networks and identifying potential threats that none of the existing approaches can find. Our paper builds on a
large body of existing works on developing stronger adversarial attacks, which shares the same ethical concern of being
potentially misused. However, our work conducted experiments in controlled toy environments and we did not cause harm
on any deployed system; furthermore, our main goal is to develop a more reliable way for robustness evaluation, which is
beneficial for building more robust, reliable, and trustworthy machine learning systems in many ways. Irrespective of our
work, malicious attackers always exist in the wild, and we believe studying these potential vulnerabilities before real attacks
have taken place can help improve security. Our BaB attack can effectively pinpoint previously hidden vulnerabilities in
neural networks so that the users can be prepared and develop counter-measures in advance. For example, our BaB attack
can be potentially incorporated into widely adopted defenses like adversarial training or certified defense. Well-studied
strong adversarial attacks, such as the one presented in our work, often lead to strong defenses, because these attacks can
be considered during training so that the models are also more resistant to strong attacks in the wild. Additionally, our
approach is built for model designers and requires white-box access to all model parameters, which is often impractical in
malicious use cases. In the future, we plan to study how to build stronger adversarial defenses based on the branch and
bound framework discussed in this work and further advance the research in trustworthy machine learning.


