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Abstract

Adpversarial training (AT) is a widely recognized
defense mechanism to gain the robustness of deep
neural networks against adversarial attacks. It is
built on min-max optimization (MMO), where the
minimizer (i.e., defender) seeks a robust model
to minimize the worst-case training loss in the
presence of adversarial examples crafted by the
maximizer (i.e., attacker). However, the conven-
tional MMO method makes AT hard to scale.
Thus, FAST-AT (Wong et al., [2020) and other
recent algorithms attempt to simplify MMO by
replacing its maximization step with the single
gradient sign-based attack generation step. Al-
though easy to implement, FAST-AT lacks theo-
retical guarantees, and its empirical performance
is unsatisfactory due to the issue of robust catas-
trophic overfitting when training with strong ad-
versaries. In this paper, we advance FAST-AT
from the fresh perspective of bi-level optimiza-
tion (BLO). We first show that the commonly-
used FAST-AT is equivalent to using a stochas-
tic gradient algorithm to solve a linearized BLO
problem involving a sign operation. However, the
discrete nature of the sign operation makes it dif-
ficult to understand the algorithm performance.
Inspired by BLO, we design and analyze a new
set of robust training algorithms termed Fast Bi-
level AT (FAST-BAT), which effectively defends
sign-based projected gradient descent (PGD) at-
tacks without using any gradient sign method or
explicit robust regularization. In practice, we
show our method yields substantial robustness im-
provements over baselines across multiple models
and datasets. Codes are available atthttps://
github.com/OPTML-Group/Fast—BAT.
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1. Introduction

Given the fact that machine learning (ML) models can be
easily fooled by tiny adversarial perturbations (also known
as adversarial attacks) on the input (Goodfellow et al., 2014}
Carlini & Wagner, 2017} |Papernot et al.l 2016), training
robust deep neural networks is now a major focus in research.
Nearly all existing effective defense mechanisms (Madry
et al., 2018} |Zhang et al.,|2019b; |Shafahi et al., 2019; |Wong
et al.,|2020; | Zhang et al.,|2019a} [Athalye et al.| 2018a) are
built on the adversarial training (AT) recipe, introduced
by (Szegedy et al., 2014) and later formalized in (Madry
et al.,|2018) using min-max optimization (MMO), where a
minimizer (i.e. defender) seeks to update model parameters
against a maximizer (i.e. attacker) that aims to increase the
training loss by perturbing the training data.

Despite the effectiveness of the AT-type defenses in various
application domains, the min-max nature makes them dif-
ficult to scale, because of the multiple maximization steps
required by the iterative attack generator at each training
step. The resulting prohibitive computation cost makes AT
not suitable in practical settings. For example, (Xie et al.,
2019) used 128 GPUs to run AT on ImageNet. Thereby,
how to speed up AT without losing accuracy and robustness
is now a grand challenge for adversarial defense (Wong
et al., 2020).

Recently, (Wong et al., 2020; |Shafahi et al., |2019; |[Zhang
et al.l 2019a; |Andriushchenko & Flammarion, [2020) at-
tempted to develop computationally-efficient alternatives
of AT, that is, the ‘fast’ versions of AT. To the best of
our knowledge, FAST-AT (Wong et al., [2020) and FAST-
AT with gradient alignment (GA) regularization, termed
FAST-AT-GA (Andriushchenko & Flammarion, [2020)), are
the two state-of-the-art (SOTA) ‘fast’ versions of AT, since
they achieve the most significant reduction in computational
complexity and preserve accuracy and robustness to a large
extent. In particular, the inner-maximization in FAST-AT
(Wong et al., 2020) only calls for single-step attack gen-
eration. However, different from the direct application of
fast gradient sign method (Goodfellow et al.l 2015}, the
empirical success of FAST-AT also relies on a series of
heuristics-based strategies, e.g., using large attack step size,
cyclic learning rate schedule, and mixed-precision train-
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Table 1. Performance overview of proposed FAST-BAT vs. the baselines FAST-AT (Wong et al.;[2020) and FAST-AT-GA (Andriushchenko!
& Flammarion} 2020) on CIFAR-10, CIFAR-100 and Tiny-ImageNet with PreActResNet-18. All methods are robustly trained under two
perturbation budgets e = 8/255 and 16/255 over 20 epochs. We use the early-stopping policy (Rice et al.,|2020) to report the model with
best robustness for each method. The evaluation metrics include robust accuracy (RA) against PGD-50-10 attacks (50-step PGD attack
with 10 restarts) (Madry et al., 2018) at e = 8/255 and 16/255 (the test-time € is the same as the train-time), RA against AutoAttack
(AA) (Croce & Hein||2020) at e = 8/255 and 16/255, and computation time (per epoch). The result a-+b represents mean a and standard
deviation b over 10 random trials. All experiments are run on a single GeForce RTX 3090 GPU.

CIFAR-10, PreActResNet-18

Method SA (%) RA-PGD (%) | RA-AA (%) SA (%) RA-PGD (%) | RA-AA (%) Time
etho (e =8/255) | (e =8/255) | (e =8/255) | (e =16/255) | (e = 16/255) | (e = 16/255) | (s/epoch)
FAST-AT 82.39+0.14 45.494+0.21 41.874+0.15 44.1547.27 21.83+1.32 12.49+40.33 23.1
FAST-AT-GA | 79.71+0.24 47.27+0.22 43.24+0.27 58.294+1.32 26.014+0.16 17.97+0.33 75.3
FAST-BAT 79.97+0.12 | 48.83+0.17 | 45.19+0.12 | 68.16+0.25 27.69+0.16 18.79+0.24 61.4
CIFAR-100, PreActResNet-18
FAST-AT 52.62 £0.18 | 24.66+0.21 21.72+0.17 | 21.32+3.27 8.62+1.03 6.22+0.61 23.8
FAST-AT-GA | 50.06+£0.27 | 24.974+0.23 | 21.82+0.21 32.51+1.27 12.27+0.36 9.43+0.19 77.1
FAST-BAT 50.19+0.21 26.49+0.20 23.97+0.15 39.29+0.53 13.97+0.17 11.32+0.22 61.6
Tiny-ImageNet, PreActResNet-18

FAST-AT 41.37+3.08 17.05+3.25 12.31+£2.73 | 31.38+0.19 5.42+2.17 3.13+0.24 284.6
FAST-AT-GA | 45.524+0.24 | 20.39+0.19 16.25+£0.17 | 29.1740.32 6.79+0.27 4.27+0.15 592.7
FAST-BAT 45.80+0.22 | 21.97+0.21 17.64+0.15 | 33.78+0.23 8.83+0.22 5.52+0.14 572.4

ing. Yet, FAST-AT suffers from two main issues: (i) lack
of stability, i.e., it has a large variance in performance (Li
et al., [2020), and (ii) catastrophic overfitting, i.e., when
training with strong adversaries, the robustness of the re-
sulting model can drop significantly. To alleviate these
problems, |Andriushchenko & Flammarion| (2020) proposed
FAST-AT-GA by penalizing FAST-AT using an explicit GA
regularization. However, we will show that FAST-AT-GA
encounters another problem: (iii) It improves robust accu-
racy (RA) at the cost of a sharp drop in standard accuracy
(SA), leading to a poor accuracy-robustness tradeoff for
large attack budget (e.g., e = 16/255 in Table. Moreover,
(iv) there has been no theoretical guarantee for the optimiza-
tion algorithms used in FAST-AT and FAST-AT-GA. Given
the limitations (i)- (iv), we ask:

How to design a ‘fast’ AT with improved stability,
mitigated catastrophic overfitting, enhanced RA-SA
tradeoff, and some theoretical guarantees?

To address the above question, we formulate the AT problem
as a unified bi-level optimization (BLO) problem (Dempe,
2002). In the new formulation, the attack generation is cast
as a constrained lower-level optimization problem, while the
defense serves as the upper-level optimization problem. To
the best of our knowledge, this is the first work that makes a
rigorous connection between adversarial defense and BLO.
Technically, we show that FAST-AT can be interpreted as
BLO with linearized lower-level problems. Delving into
the linearization of BLO, we propose a novel, theoretically-
grounded ‘fast’ AT framework, termed fast bi-level AT
(FAST-BAT). Practically, Table[I] highlights some achieved
improvements over FAST-AT and FAST-AT-GA: When a
stronger train-time attack (i.e., e = 16/255) is adopted,

FAST-AT suffers from a large degradation of RA and SA,
together with a very high variances. Although FAST-AT-
GA outperforms FAST-AT, it still incurs a significant SA
loss at € = 16/255. In contrast, FAST-BAT produces the
best robustness with a more graceful SA-RA tradeoff: As
FAST-BAT brings an improvement of over 1.5% on RA in
all experimental settings, its SA still remains at a high level,
e.g. a significant improvement on SA by 9.9% and 6.7% at
€ = 16/255 for CIFAR-10 and CIFAR-100.

Contributions. We summarize our contributions below.

@ (Formulation-wise) We propose a unified BLO-based
formulation for the robust training problem. Within this
formulation, we show the conventional FAST-AT method
is solving a low-level linearized BLO problem, rather than
the vanilla min-max problem. This key observation not only
provides a new interpretation of FAST-AT, but most impor-
tantly, also explains why FAST-AT is difficult to possess
strong theoretical guarantees.

@ (Methodology-wise) We propose the new FAST-BAT
algorithm based on our new understanding of FAST-AT.
The key enabling technique is to introduce a new smooth
lower-level objective of BLO for robust training. In contrast
to MMO, BLO adopts a different optimization routine that
requires implicit gradient (IG) computation. We derive the
closed-form of IG for FAST-BAT.

@ (Experiment-wise) We made a comprehensive experimen-
tal study to demonstrate the effectiveness of FAST-BAT over
SOTA baselines across datasets and model types. Besides
its merit in robustness enhancement, we also show its im-
proved stability, lifted accuracy-robustness trade-off, and
mitigated catastrophic overfitting.



Revisiting and Advancing Fast Adversarial Training Through the Lens of Bi-Level Optimization

2. Related work

Adversarial attack. Adversarial attacks are techniques to
generate malicious perturbations that are imperceptible to
humans but can mislead the ML models (Goodfellow et al.|
2014; [Carlini & Wagnerl, [2017; |Croce & Hein, [2020; |Xu
et al., 2019; |Athalye et al.,[2018b)). The adversarial attack
has become a major approach to evaluate the robustness
of deep neural networks and thus, help build safe artificial
intelligence in many high-stakes applications such as au-
tonomous driving (Deng et al., 2020; | Kumar et al., [2020)
and surveillance (Thys et al.,|2019; [Xu et al.| 2020).

Adversarial defense and robust training at scale. Our
work falls into the category of robust training, which was
mostly built on MMO. For example, (Madry et al., [2018)
established the framework of AT for the first time, always
recognized as one of the most powerful defenses (Atha{
lye et al 2018a). Extended from AT, TRADES (Zhang
et al., 2019b)) sought the optimal balance between robust-
ness and generalization ability. Further, AT-type defense has
been generalized to the semi-/self-supervised settings (Car-
mon et al.,|2019; |Chen et al.} 2020b) and integrated [I| with
certified defense techniques such as randomized smooth-
ing (Salman et al.,2019).

Despite the effectiveness of AT and its variants, how to
speed up AT without losing performance remains an open
question. Some recent works attempted to impose algo-
rithmic simplifications to AT, leading to fast but approx-
imate AT algorithms, such as ‘free’ AT (Shafahi et al.
2019), you only propagate once (YOPO) (Zhang et al.|
2019a), FAST-AT (Wong et al.,[2020), and FAST- AT regu-
larized by gradient alignment (termed FAST-AT-GA) (An-
driushchenko & Flammarion), 2020). In particular, FAST-
AT and FAST-AT-GA are the baselines most relevant to
ours due to their low computational complexity. However,
their defense performance is still unsatisfactory. For exam-
ple, FAST-AT has poor training stability (Li et al., 2020)
and suffers catastrophic overfitting when facing strong at-
tacks (Andriushchenko & Flammarion, [2020)). In contrast,
FAST-AT-GA yields improved robustness but has a poor
accuracy-robustness tradeoff (see Table[T).

Bi-level optimization (BLO). BLO is a unified hierarchi-
cal learning framework, where the objective and variables
of the upper-level problem depend on the lower-level prob-
lems. The BLO problem in its most generic form is very
challenging, and thus, the design of algorithms and the-
ory for BLO focuses on special cases (Vicente et al., |1994;
White & Anandalingam| |1993; |Gould et al., 2016; |Ghadimi
& Wang, |2018; [Khanduri et al., 2021} J1 et al., 2020; Hong
et al.,[2020). In practice, BLO has been successfully applied
to meta-learning (Rajeswaran et al.,|2019), data poisoning
attack design (Huang et al.,2020), and reinforcement learn-

ing (Chen et al.,2019). However, as will be evident later, the
existing BLO approach is not directly applied to adversarial
defense due to the presence of the constrained non-convex
lower-level problem (for attack generation). To the best
of our knowledge, our work makes a rigorous connection
between adversarial defense and BLO for the first time.

3. A Bi-Level Optimization View on FAST-AT

Preliminaries on AT and FAST-AT. Let us consider the
following standard min-max formulation for the robust ad-
versarial training problem (Madry et al., 2018))

rniniemize Ex,y)ep mais(inclizeétr(e,x—l— 5,9, )
€

where 8 € R” denotes model parameters; D is the train-
ing set consisting (a finite number) of labeled data pairs
with feature x and label y; § € R4 represents adversarial
perturbations subject to the perturbation constraint C, e.g.,
C={d]]0]|cc <¢€,8 € [0,1]} for e-toleration £,-norm
constrained attack (normalized to [0, 1]); £, (-) is the train-
ing loss; (x + &) represents an adversarial example.

The standard solver for problem (TJ) is known as AT (Madry
et al., [2018)). However, it has to call an iterative optimiza-
tion method (e.g., K-step PGD attack) to solve the inner
maximization problem of (T)), which is computationally ex-
pensive. To improve its scalability, the FAST-AT algorithm
(Wong et al., [2020) was proposed to take a single-step PGD
attack for inner maximization. The algorithm backbone of
FAST-AT is summarized below.

FAST-AT algorithm Let 0; be parameters at iteration ¢.
The (¢ + 1)th iteration becomes (Wong et al., 2020):

o [nner maximization by 1-step PGD:
8 + Pc (80 + o - sign (Vsler (01, % + 60,9))),

where P¢(a) denotes the projection operation that projects
the point a onto C, i.e., Pc(z) = argmingec |6 — z||3,
dp is a random uniform initialization within [0, 1], & > 0
is a proper learning rate (e.g., 1.25¢), and sign(-) is the

element-wise sign operation.

o Outer minimization for model training: This can be con-
ducted by any standard optimizer, e.g.,

0,11 < 0, — BVl (0, x+8,Yy)

where 5 > 0 is a proper learning rate (e.g., cyclic learning
rate), and é is provided from the inner maximization step.

A few remarks about FAST-AT are given below.

@ Roughly speaking, FAST-AT is a simplification of AT
using 1-step PGD for inner maximization. However, it is not
entirely clear which problem FAST-AT is actually solving.
If we take a closer look at the algorithm, we will see that the
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inner update only changes to the initial §y, not the most re-
cent §. Clearly, this scheme is fundamentally different from
the classical gradient descent-ascent algorithm for min-max
optimization (Razaviyayn et al., 2020), which alternatively
updates the inner and outer variables. Therefore, it remains
elusive if FAST-AT is solving the original problem ({I)).

@ |Andriushchenko & Flammarion| (2020) demonstrated
that FAST-AT could lead to catastrophic overfitting when
using strong adversaries for training. However, there was
no grounded theory to justify the pros and cons of FAST-AT.
We will show that BLO provides a promising solution.

BLO: Towards a unified formulation of robust training.
BLO (bi-level optimization) is an optimization problem
that involves two levels of optimization tasks, where the
lower-level task is nested inside the upper-level task. More
precisely, it has the following generic form:
min - f(u,v*(u)) . 2
s.t. v*(u) = arg minyey g(v,u)
where U and V are the feasible sets for the variables u
and v, respectively; f(-) and g(-) are the upper- and the
lower-level objective functions, respectively. Intuitively, the
BLO (2) can be used to formulate the adversarial training
problem as the latter also involves two problems, one nested
in the other. Importantly, it is more powerful than the min-
max formulation (I)) as it allows the two problems to have
different objective functions. This flexibility provided by
BLO is the key to the generality of our proposed framework.

To make the above intuition precise, we use the upper-level
problem to model the training loss minimization, while the
lower-level problem to model the attack generation process,
and consider the following BLO problem:

I’I’lgl’l E(xyy)e’D[Etr(67X+ 6*(0;)(7 y)vy)]
st 6%(0;x,y) = argmin £ak (0, 5; %, ), 3)
sec

where the training loss function ¢, (-) has been defined in
, and /,4x(-) denotes an attack objective. For the notation
simplicity, in the subsequent discussion, we will not indi-
cate the dependency of the functions £y, £k, and §* with
respect to (w.r.t.) the data samples (x, y). The formulation
(3) has two key differences from (TI)):

® When we choose £,tx = —F¢;, problem becomes
equivalent to the min-max formulation (T). It follows that
the BLO is suitable to formulate the adversarial training
problem. Moreover, we will see shortly that the flexibility
provided by choosing the lower-level objective indepen-
dently of the upper-level one enables us to interpret FAST-
AT as solving a certain special form of the BLO problem.
Note that prior to our work, it was not entirely clear what is
the problem that FAST-AT is trying to solve.

@ BLO calls a different optimization routine from those to
solve the original min-max problem (. As will be evident

later, even if we set £, = —04, in (3), the BLO-enabled
solver does not simplify to FAST-AT (see more details in
Appendix[B). This is because for a given data sample (x, y),
the gradient for the upper-level problem of (3)) yields:

dly (6,67 (6))

ds*(0)"
2 = Volin(6,5°(0)) + 20 L0)

de
——
1G

where the superscript T denotes the transpose operation, and
Vol (6,6*(0)) denotes the partial derivative w.r.t. the first
input argument 8; and % € R™*4_if exists, is referred
to as implicit gradient (IG) because it is defined through an
implicitly constrained optimization problem mingec £atk.
The dependence on IG is a ‘fingerprint’ of BLO (T) in con-
trast to AT or FAST-AT.

Vsl (97 8" (9))7 (4)

BLO-enabled interpretation of FAST-AT. Next, we
demonstrate how FAST-AT relates to BLO. FAST-AT can
be interpreted as an approximated stochastic gradient algo-
rithm for solving the following lower-level linearized BLO.
That is to say, FAST-AT is not solving the original min-max
problem (T)), but its linearized version below:

mgin ]E(x,y)ep[étr(ey 6*(0))] (5)
st 8°(6)=arg min [(6 — =) sign(Va=alu(6,)) + (4/2)8 — 23],

where z = §p and A = 1/c. Our justification for the above
interpretation is elaborated on below.

@ The simplified lower-level problem of leads to the
closed-form solution:

67(0) :argenciin (A/2)16 — 2z + (1/N)sign(Ve=zlaik (6, )13
=Pc (z — (1/N\)sign(Vs=zlak (0, 9))) ,

which is exactly given by the 1-step PGD attack with initial-
ization z and learning rate (1/)\). In the linearization used
in (5), a quadratic regularization term (with regularization
parameter ) is introduced to ensure the strong convexity of
the lower-level objective within the constraint set § € C so
as to achieve the unique minimizer (6). Note that imposing
such a strongly convex regularizer is also commonly used
to stabilize the convergence of MMO (min-max optimiza-
tion) and BLO (Qian et al.,|2019; [Hong et al.l [2020). If
wesetz =dpand A = 1/q, @) precisely depicts the inner
maximization step used in FAST-AT.

@ By substituting (6) into the upper-level problem of (5),
we can then use (@) to compute the stochastic gradients of
the upper-level problem. If the stochastic gradient can be
precisely computed, we can update the model parameters 6
using SGD based on . That is, eeefﬁw (with
learning rate 3). However, generally speaking, the IG func-
tion 42 d(g ) involved in (4)) may not be differentiable, and
even it is, the computation may not be easy. For our case,
6*(8) expressed in (6] involves both a projection and a sign
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operation, which can be particularly difficult to compute.
To proceed, let us make the following approximations. We
assume that the chain rule of the derivative of §*(8) holds
w.r.t. 8, implying the differentiability of the projection oper-
ation and the sign operation. Then, based on the closed-form
of §*(0) in (6), IG is approximately equal to d‘s*d#:o ,
where we use two facts: (1) The linearization point z is inde-
pendent of 8, i.e. z = §y; And (2) %;(') = 0 holds almost
everywhere. Clearly, the use of the gradient sign method
simplifies the IG computation. Further, the upper-level gra-
dient is approximated by Wzvezn(s,a*(o))::ﬁ(e),
and the upper-level optimization of problem (3)) becomes
0+—6—ph(0), which is the same as the outer minimization
step in FAST-AT. In a nutshell, the BLO solver of problem
(5), which calls the IG computation based on (6)), eventually
reduces to the FAST-AT algorithm.

The aforementioned analysis shows that FAST-AT can be
viewed as using an approximated stochastic gradient algo-
rithm to solve the linearized BLO (3)), with the linearization
point z and the regularization parameter \ set as z = dg
and A = 1/«. However, since a series of approximations
have been used when arriving at the approximated gradient
E(G) used by FAST-AT, it is no longer clear if the resulting
algorithm can still sufficiently reduce the objective function
of the upper-level problem. Additionally, based on the fact
that the lower-level problem of (5) involves the discrete sign
operator, it is unlikely (if not impossible) that any approxi-
mated stochastic gradient-based algorithms developed for it
can possess any strong theoretical guarantees.

4. FAST-BAT: Advancing FAST-AT by BLO

FAST-BAT and rationale. The key take-away from
is that the conventional FAST-AT adopts the sign of input
gradient to linearize the lower-level attack objective. How-
ever, a more natural choice is to use the first-order Taylor
expansion for linearization. By doing so, problem (3)) can
be modified to the following form:

min Egyenlor (6,6 (6)) 7
st 8°(0)=arg min (8~ 2) " (Vs=zlanc(8,6)) + (A/2)]|6 — z[3],
€

Similar to (6), problem (7)) can be solved as:
§°(0) = Pe (2 — (1/N)Vs—alan(6, 8)) - @®)

In contrast to (6)), the IG associated with (7) cannot be
approximated by zeros since the gradient sign operation is
not present in (§). To compute IG, the auto-differentiation
(the chain rule) can be applied to the closed-form of §*(6).
However, this will not give us an accurate and generalizable
IG solution since the projection operation P¢ is not smooth
everywhere and thus, the use of chain rule does not yield a
rigorous derivation. In the following subsection, we address

the IG challenge in a theoretically-grounded manner.

IG theory for FAST-BAT. The problem of FAST-BAT
(7) falls into a class of very challenging BLO problems,
which requires constrained lower-level optimization. The
unconstrained case is easier to handle since one can apply
the implicit function theory to the stationary condition of the
lower-level problem to obtain IG (Hong et al.|[2020). Yet, in
our case with constrained problems, a stationary point could
violate the constraints, and thus, the stationary condition
becomes non-applicable. Fortunately, in problem (7), we
are dealing with a special class of lower-level constraints —
linear constraints. Let us rewrite the constraints below:
16]lc < €6 €[—%x,1—x] <= Bd<b, )
min{el,1—x}
— max{—el,—x}
above linearly constrained problem structure, we show that
the IG challenge associated with (7)) can be addressed via
Karush—Kuhn—Tucker (KKT) conditions. We present our
main theoretical results (Proposition[T]and Corollary[T)) be-
low and refer readers to Appendix[A]for detailed derivation.

where B::[_II}, b::[ } By exploiting the

Proposition 1 For the BLO problem @) let (0, 8*) denote
its lower-level objective function evaluated at 8* given 0,
then the analytical form of IG (implicit gradient) is given by
ds*(0)"
a6
+V059(0,8°)V559(8,6°) ' Bg [BoVs59(8,8") "By ] 'BoVss9(6,8") ",

= —Vos9(0,8")Vs59(0,6")" (10)

where §* is given by (the dependence on 0 is omitted
for ease of notation), Vesg(0,5*) € R"*? denotes the
second-order partial derivatives evaluated at (0,8*), and
By denotes the sub-matrix of B that only corresponds to
the active constraints at 6, i.e., those in B6* < b satisfied
with equality.

It is clear from (T0) that the computation of IG requires
the second-order derivatives as well as matrix inversion.
This is computationally intensive. Recall from (/) that the
Hessian matrix V549 of the lower-level objective function is
given by Vs59(0,0%) = Vsslatk + AL This inspires us to
impose the Hessian-free approximation, i.e., Vgslatx = O.
The rationale behind the Hessian-free assumption is that
ReLU-based neural networks commonly lead to a piece-
wise linear decision boundary w.r.t. the inputs (Moosavi{
Dezfooli et al., 2019; |Alfarra et al., [2020), and thus, its
second-order derivative (Hessian) V g5/a1 is close to zero.
In Sec.[5.2]and Appendix[D] we will empirically show that
the Hessian-free assumption is reasonable for both ReLU
and non-ReLU neural networks. Thus, the Hessian matrix
is approximated as:

Vs59(0,67(0)) = Vsslanc + \I=0+ AL (1D

With (T1), we can simplify closed-form of IG as below:
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Corollary 1 With the Hessian-free assumption, namely
Vsslark = 0, the IG (implicit gradient) of (7)) is

ds*(8)"

de

where He:=[1,, _sr gy €11y, <53 < a| R and the func-
tion 1y, <s+<q, € {0,1} denotes the indicator over the
constraint of {3; |p; < 6F < ¢;}, which returns 1 if the
constraint is satisfied, 0} denotes the ith entry of 6*(0),
p; = max{—e, —x;} and ¢; = min{e, 1 — x;} characterize
the boundary of the linear constraint (9) for the variable
§;, and e; € RY denotes the basis vector with the ith entry
being 1 and others being 0.

= —(1/)\)V95€atk(9,5*)Hc, (12)

FAST-BAT algorithm and implementation. Similar to
FAST-AT or AT, the FAST-BAT algorithm also follows the
principle of alternating optimization. Specifically, it consists
of the IG-based upper-level gradient descent (@), interlaced
with the lower-level optimal attack (§). We summarize the
FAST-BAT algorithm below.

e Lower-level solution: Obtain 6*(6,) from (8);
6"(0) = Pc (z — (1/X)Vis—zlatk(0,0)) .

e Upper-level model training: Integrating the 1G into
(@), call SGD to update the model parameters as:

0ir1 =0, _alveftr(eh d") =
_QQ(_X)vetSéack(et,5*)HcV5fn-(0t,5*), a3

where a1, g > 0 are learning rates associated with the
model gradient and the IG-augmented descent direction.

It is clear from (T3)) that to train a robust model, FAST-BAT
can be decomposed into the regular FAST-AT update (i.e.,
the term multiplied by «;) and the additional update that
involves IG, (i.e., the term multiplied by ). To implement
FAST-BAT, we highlight some key hyper-parameter setups
that are different from FAST-AT (Wong et al., [2020) and
FAST-AT-GA (Andriushchenko & Flammarion, [2020).

Remark on implementation details Next, we discuss
the practical setups used in Fast-BAT (more details in Ap-
pendix. First, 1/ serves as the attack step size as shown
in (). We refer readers to Table [7for a sensitivity analysis
of A. In Fast-BAT, the hyperparameter «s is newly intro-
duced, and is set differently from o so as to control the
descent error associated with the coupled second-order/first-
order stochastic derivatives, i.e., the ay-term in @]) In
Sec.[7] we show that a proper o helps mitigate catastrophic
overfitting. In practice, we set as/A = 0.1a;. To specify
the linearization point z in (7), we investigate two types of
linearization schemes: (1) the random constant linearization
(random uniform and random corner linearization) and (2)
the 1-step perturbation warm-up-based linearization (1-step
sign-based and 1-step w/o sign PGD). These linearization

schemes have computational complexities up to the one-
step attack generation. Empirically, we find that FAST-BAT
using “1-step PGD w/o sign" leads to the best defensive
performance (see Table[9). We follow this experiment setup
in the sequel.

Remark on convergence analysis In Appendix[El we
prove that under some assumptions on the gradient bias,
Fast-BAT converges to a first-order stationary point or its
small neighborhood in the rate of O(1/+/T), where T is
the iteration number of model updates. The main analysis
difficulty lies in the last term of the model updating rule
(13), which involves two coupled derivatives built upon the
same mini-batch.

5. Experiments
5.1. Experiment Setup

Datasets and model architectures. We will evaluate the
effectiveness of our proposal under CIFAR-10 (Krizhevsky
& Hintonl 2009), CIFAR-100 (Krizhevsky & Hintonl 2009),
Tiny-ImageNet (Deng et al., [2009), and ImageNet (Deng
et al.,[2009)). Unless specified otherwise, we will train DNN
models PreActResNet (PARN)-18 (He et al., 2016b) for all
datasets except ImageNet, and ResNet (RN)-50 (He et al.,
2016a) for ImageNet. As a part of the ablation study, we
also train larger models PARN-50 and WideResNet (WRN)-
16-8 (Zagoruyko & Komodakis| 2016) on CIFAR-10. Some
preliminary ImageNet results are reported in Appendix

Baselines. We focus on three baselines, namely, FAST-
AT (Wong et al., 2020), FAST-AT-GA (Andriushchenko &
Flammarion, 2020), and PGD-2-AT (Madry et al., [2018)),
and refer readers to comparisons with more baselines (PGD-
7-AT (Madry et al., [2018), BACKSMOOTH (Chen et al.|
2020al), FREE-AT (Shafahi et al., [2019), ATTA (Zheng
et al.,[2020), YOPO (Zhang et al.,|2019a)) in Appendix@}
Here PGD-2-AT and PGD-7-AT stand for the 2-step and
7-step PGD attack-based AT, respectively. The primal crite-
rion of baseline selection is computational complexity. All
the methods except PGD-7-AT consume the training time
of the same order, while PGD-7-AT serves as a reference
to the performance of the non-accelerated robust training
method. We stress that FAST-AT-GA is the strongest base-
line to the best of our knowledge in terms of improving
robustness and mitigating robust catastrophic overfitting
(Andriushchenko & Flammarionl, [2020).

Training details. We choose the training perturbation
strength ¢ € {8,16}/255 for CIFAR-10, CIFAR-100, and
Tiny-ImageNet; and ¢ = 2/255 for ImageNet following
(Wong et al.|2020; |Andriushchenko & Flammarionl 2020).
Throughout the experiments, we utilize an SGD optimizer
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Table 2. SA, RA-PGD, and RA-AA of different robust training
methods in the setup (CIFAR-10, PARN-18 training with ¢ =
8/255) and (CIFAR-10, PARN-18 training with ¢ = 16/255),
respectively. All the results are averaged over 10 independent trials

Table 3. Performance of different robust training methods under
different model types. All the models are both trained and evalu-
ated with the same perturbation strength e.

with different random seeds. SA(%) ~ RA-PGD(%)  SA(%)  RA-PGD(%)
Model Method (e=8/255) (e =8/255) (e =16/255) (e = 16/255)
— = FAST-AT | 73154610 41034209 43864431  22.0840.27
CIFAR-10, PARN-18 trained with ¢ = 8/255 PARN.So | FAST-AT-GA | 77.40£0.81  46.160.98 42284669  2287+1.25
§ AA PGD-2-AT | 83.53£0.17  46.17£0.59  68.88+0.39 22374041
] RA-PGD (%) RA-AA (%)
Method SA (%) _ _ _ _16 FAST-BAT | 78914068 49.18£0.35  69.01+£0.19  24.5540.06
e=38 ‘ e=16 e=38 ‘ e=16
FAST-AT | 82394044 | 45494041  9.56 £0.26 | 41.87+0.15  7.91 +0.06 FAST-AT | 84395046 45.80+£0.57  49.3942.17  21.99+0.41
FAST-AT-GA | 79.7140.44 | 47.27 £042  11.57+0.32 | 4324 £027  9.48 +0.15 WRN-16-8 | TAST-AT-GA | 81.51£0.38  48.294£0.20  45.954£13.65  23.10£3.90
PGD-2-AT | 8197041 | 44.6240.30 9.39+032 | 41732020  7.540.25 PGD-2-AT | 85.5220.14  454720.14  72.11£0.33  23.612016
FAST-BAT | 79.97 £0.12 48.83+0.17 14.00 021 | 45.19 +0.12 11.5140.20 FAST-BAT | 81.66+054 49.93+036 68124047  25.63:+0.44
CIFAR-10, PARN-18 trained with € = 16/255
FAST-AT 44.1547.27 37.17 £0.74  21.83 £1.32 | 31.66 +0.27 12.49 +0.33
FAST-AT-GA | 58.29 +£1.32 | 43.86 +£0.67 26.01 £0.16 | 38.69 +0.56 17.97 £0.33
PGD-2-AT | 68.04 £0.30 | 48.79 £0.31 24.30 £0.46 | 41.59 £0.22  15.40 £0.29 5.2. Resul
FAST-BAT | 68.16 £0.25 49.05+0.12 27.69 +0.16 | 43.64 £0.26 18.79 +0.24 -2. Results

with a momentum of 0.9 and weight decay of 5 x 10~
For CIFAR-10, CIFAR-100 and Tiny-ImageNet, we train
each model for 20 epochs in total, where we use the cyclic
scheduler to adjust the learning rate. The learning rate lin-
early ascends from 0 to 0.2 within the first 10 epochs and
then reduces to 0 within the last 10 epochs. Our batch
size is set to 128 for all settings. In the implementation of
FAST-BAT, we follow the dataset-agnostic hyperparameter
scheme for A, such that A = 255/5000 for e = 8/255 and
A = 255/2500 for € = 16/255 for CIFAR-10, CIFAR-100
and Tiny-ImageNet. For ImageNet, we strictly follow the
setup given by (Wong et al.;|2020) and we choose the train-
time attack budget as ¢ = 2/255. For each method, we
use the early stopping method to pick the model with the
best robust accuracy, following (Rice et al.,[2020). All the
experiments are conducted on a single GeForce RTX 3090
GPU.All the baselines are trained with the recommended
configurations in their official GitHub repos. We refer read-
ers to Appendix[C|for more details on the training setup.

Evaluation details. For adversarial evaluation, we report
robust test accuracy (RA) of a learned model against PGD
attacks (Madry et al.|[2018)) (RA-PGD). Unless otherwise
specified, we set the test-time perturbation strength (¢) the
same as the train-time value, and take 50-step PGD with
10 restarts all the datasets. Since AutoAttack (Croce &
Hein, |2020) is known as the strongest robust benchmark
evaluation metric (given as an ensemble attack), we also
measure robust accuracy against AutoAttack, termed RA-
AA. Further, we measure the standard accuracy (SA) against
natural examples. Results are averaged over 10 independent
trials. We would like to highlight that all the methods share
the same batch size, epoch number, and training hardware.
Thus, the time consumption per epoch reported in Table[l]
and Table[5| will serve as a fair indicator of the algorithm
complexity of different methods.

Overall performance of FAST-BAT. In Table[T] Table[2}
and Table[6] we compare the overall performance of our
proposed FAST-BAT with baselines.

@® We find that FAST-BAT consistently outperforms the
other baselines across the datasets and attack types. In
Table [T} FAST-BAT improves the RA-PGD performance
consistently by over 1.5% and RA-AA by around 1% across
all the datasets on both attack strengths. For stronger at-
tacks with a larger perturbation budget, the advantage of
FAST-BAT is even clearer, e.g. a gain of over 2% in Tiny-
ImageNet with ¢ = 16/255. On ImageNet, FAST-BAT
outperforms FAST-AT by 1.23% with e = 2/255.

@ FAST-BAT leads to a much better SA-RA trade-off com-
pared with the baselines. For example, in Table [1| the
improvement in RA is not at cost of a huge drop in SA.
Instead, when models are trained with e = 16/255, FAST-
BAT even enjoys a significant boost over FAST-AT-GA in
SA by 9.9%, 6.7%, and 4.6% for CIFAR-10, CIFAR-100,
and Tiny-ImageNet respectively.

Performance under different model architectures. Be-
sides PARN-18 reported above, Table [3|presents results on
both deeper (PARN-50) and wider (WRN-18-6) models. As
we can see, FAST-BAT consistently yields RA improvement
over other methods. We also note that PGD-2-AT could be
a competitive baseline in terms of SA. In contrast to FAST-
AT and FAST-AT-GA, FAST-BAT is the only approach that
yields an evident RA improvement over PGD-2-AT.

Mitigation of robust catastrophic overfitting. As shown
in (Andriushchenko & Flammarion, 2020), FAST-AT suffers
robust catastrophic overfitting when the train-time and test-
time attack strength e grows. Following (Andriushchenko &
Flammarion| [2020), Figure[I] presents two RA-PGD trajec-
tories, i.e., training without early stopping and training with
early stopping, versus the train/test-time €. As we can see,
FAST-AT encounters a sharp RA drop when ¢ > 8 when
early stopping is not used, consistent with the FAST-AT-GA
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Figure 1. RA-PGD of different robust training methods for CIFAR-
10 with the same training and evaluation attack strengths.
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Figure 2. The training curve of GA score over different training
methods on CIFAR-10.

paper (Andriushchenko & Flammarion, 2020). With early
stopping, the overfitting of RA can be alleviated to some ex-
tent for FAST-AT, but its performance still remains the worst.
Moreover, different from (Andriushchenko & Flammarion,
2020), we find that PGD-2-AT yields resilient performance
against catastrophic overfitting. Our implementation gives a
more positive baseline for PGD-2-AT, since the implemen-
tation in (Andriushchenko & Flammarion, [2020) did not use
random initialization to generate train-time attacks. Further-
more, Figure[l| shows that FAST-BAT mitigates the issue
of catastrophic overfitting and yields improved RA over
other methods. We highlight that such an achievement is
free of any robustness stability regularization, like gradient
alignment used in FAST-AT-GA.

Gradient alignment for ‘free’. As shown by (An]
driushchenko & Flammarion, [2020), catastrophic overfitting
occurs with the local non-linearity of deep networks, which
can be measured by the gradient alignment (GA) score:

E (x,p) oD mett (= e, [€0S(Vclin (%, 43 0), Viclix (x + 1, 43 6))],
where U denotes the randomly uniform distribution. GA
is a key performance indicator to measure the appearance
of robustness catastrophic overfitting, as catastrophic over-
fitting is always accompanied by a sharp GA drop in the
training trajectory of the robustly trained model. In our
paper, we calculate the GA for each method on the test set
at the end of each epoch throughout the training process.

Table 4. Robustness against adaptive attacks (RA-PGD) and trans-
fer attacks (RA-Transfer Attack). Naturally trained PARN-18,
PARN-50, and WRN-16-8 serve as source victim models for attack
generation with PGD-20 (e = 8/255) and PARN-18 robustified by
different methods as target model for transfer attack evaluation.

Method

RA-PGD(%) ‘

RA-Transfer Attack(%)

PARN-18 PARN-50  WRN-16-8

FAST-AT 45.44+40.06 | 76.35+£0.12 76.94+0.14 77.234+0.21
PGD-2-AT 44.714£0.04 | 77.56+0.14 78.64+0.12 78.84+0.17
FAST-AT-GA 47.314+0.05 77.344+0.13 78.34+0.13  78.53+0.12
FAST-BAT(Ours)  48.67+0.05  78.03+0.15 79.93+0.12 79.21+0.15

Table 5. Performance of Hessian-free and Hessian-aware FAST-
BAT on CIFAR-10. We train and evaluate with the same attack
budgets e = 8/255 and ¢ = 16/255 to show the influence brought
by Hessian matrix.

Method SA(%) RA-PGD(%) SA(%) RA-PGD(%) Time

(e =8/255) (e=8/255) (e=16/255) (e=16/255) (slepoch)
Hessian-free | 79.97 +0.12  48.83 +0.17 68.16 +0.25 27.69 +0.16 61.4
Hessian-aware | 79.62 £0.17  49.13 £0.14 ~ 67.82 £0.23  27.82 +0.19 82.6

Figure[l] suggested that FAST-BAT can mitigate overfitting
without explicit GA regularization, and Figure 2] presents
the GA score versus the training epoch number. As can be
seen, FAST-BAT automatically enforces GA and remains
very close to FAST-AT-GA, which maximizes GA with an
explicit regularization. Therefore, a high GA score may
just be a necessary but not a sufficient condition for avoid-
ing catastrophic overfitting. As additional evidence, Fig.[3]
shows that similar to FAST-AT-GA, FAST-BAT has a flatter
loss landscape than FAST-AT as well. Therefore, a direct
penalization on the input gradient norm may not achieve the
state-of-the-art model robustness.

Sanity check for obfuscated gradients As pointed out by
(Athalye et al.,|2018a), model robustness could be overesti-
mated due to obfuscated gradients. The model with obfus-
cated gradients could have ‘obfuscated’ stronger resilience
to white-box (adaptive) attacks than black-box (transfer)
attacks. To justify the validity of FAST-BAT, Table[] sum-
marizes the comparison between our proposal and the other
baselines when facing adaptive and transfer attacks. Firstly,
for all the methods, RA increases if the transfer attack is
applied, implying that the transfer attack is weaker than the
adaptive attack. This is desired in the absence of obfuscated
gradients. Moreover, FAST-BAT consistently outperforms
the other baselines against both adaptive and transfer attacks.
The absence of obfuscated gradients can also be justified by
the flatness of the adversarial loss landscape in Figure.[3]

The validity of the Hessian-free assumption on ReLU-
based neural networks. In Corollary[l] the Hessian-free
assumption, i.e.Vgslatx = 0, was made to simplify the
computation of implicit gradient. To justify this assumption
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we conduct experiments to compare the Hessian-free FAST-
BAT with the Hessian-aware version. In Hessian-aware
FAST-BAT, the implicit gradient is calculated based on (23).
In Table[5] the results do not indicate much difference when
Hessian is used. However, the extra computations required
to evaluate the Hessian heavily slows down FAST-BAT as
around 30% more time is needed. Therefore, the Hessian-
free assumption is reasonable and also necessary in terms
of the efficiency of the algorithm. We also justify this as-
sumption on some non-ReL.U neural networks and for more
results please refer to Appendix[D]

6. Conclusion

In this paper, we introduce a novel bi-level optimization-
based fast adversarial training framework, termed FAST-
BAT. The rationale behind designing FAST-BAT lies in two
aspects. First, from the perspective of implicit gradients, we
show that the existing FAST-AT framework is equivalent
to the lower-level linearized BLO along the sign direction
of the input gradient. Second, we show that FAST-BAT is
able to achieve improved stability of performance, mitigated
catastrophic overfitting, and enhanced accuracy-robustness
trade-off. To the best of our knowledge, we for the first
time establish the theory and the algorithmic foundation of
BLO for adversarial training. Extensive experiments are
provided to demonstrate the superiority of our method to
state-of-the-art accelerated AT baselines.
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A. Proof of Proposition[I|and Corollary[l|
Proof: Upon defining g(0,8) = (8§ — 2) " Vi—zlaw(0,8) + (1/2)||6 — z||3, we repeat (7)) as
mini@mize E(x,y)ep[lic(0,0%(0))]

subject to  §*(6) = argmin g(, ), (14)
Bs<b

where we have used the expression of linear constraints in (9).

Our goal is to derive the IG % shown in (@) To this end, we first build implicit functions by leveraging KKT conditions
of the lower-level problem of (14). We say *(6) and A* () (Lagrangian multipliers) satisfy the KKT conditions:
Stationarity: Vs9(0,6%(0)) + B"A*(0) =0,
Complementary slackness : A*(0)- (Bé*(6)—b)=0 (15)
Dual feasibility: A*(0) >0

where - denotes the elementwise product.

Active constraints & definition of Bg: Let By denote the sub-matrix of B and by the sub-vector of b, which consists of
only the active constraints at §*(0), i.e., those satisfied with the equality Bod*(0) = by (corresponding to nonzero dual
variables). The determination of active constraints is done given 6 at each iteration.

With the aid of (Bg, bg), KKT becomes
Vs9(6,6%(8)) + By A*(8) =0, and Byd*(8) — by =0, (16)

where the nonzero A*(6) only corresponds to the active constraints. We take derivatives w.r.t. 8 of (16)), and thus obtain the
following

dVsg(0,6(0))"

* T _
o +VeA"(8) "By =0

* da*(e)T * * T
—Vas0(0.8°(0) + TG 1000.5°(0) + Vor"(8) By 0. (1)
1G
dé* ()"
and %Bg o, (18)
1G

where Vgs € RI?1*I3] denotes second-order partial derivatives (recall that |@| = n and |§| = d). According to , we have

ds*(6)" . conT «(gy)=1
a0 —[Vesg(6,67(0)) + Vo™ (0) Bo|Vss9(60,67(0)) . (19)
Substituting the above into @, we obtain
Ves9(0,8"(0))Vs59(6,0%(8))"'By + VoA (8) ' BoVs59(0.6"(6)) 'Bg =0, (20)
which yields:
VeX'(8)" = ~Ves9(6,5"(0))Vss59(8,6"(8)) By [BoVssg(6,87(6)) "By | ™", 2D
and thus,
VoX"(0) "By = —Vos9(0,8"(8))Vss9(0,07(8)) " By [BoVss9(6,8"(6)) "' By ]~'Bo. (22)

Substituting (22) into (I9), we obtain the IG

M——v 0,6"(0 0,6*(0))" —VeA*(0) B 0,6%(0))"!
70 = 959( R ( ))V&;g( y ( )) Vo ( ) 0v55.g( ) ( ))

= —Vos59(0,6(0))Vs59(0,5%(0)) "
n v059(07 6*(0))V5,sg(0, 6*(0))—1B(—)|— [B0v559(07 6*(0))_1B(—)r}_1B0V669(07 5*(9))_1 (23)
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The above completes the proof of Proposition[] |

To further compute , the Hessian matrix V g5, is needed. Recall from the definition of the lower-level objective that
the Hessian matrix is given by

V59(0,0%(0)) = Vslagx + AL =0+ AL (24)

Here we used the assumption that V 55,11 = 0. The rationale behind that is neural networks commonly leads to a piece-wise
linear decision boundary w.r.t. the inputs (Moosavi-Dezfooli et al., [2019; |Alfarra et al.,|2020), and thus, its second-order
derivative (Hessian) V s5/a¢x 1s close to zero.

Based on the simplification (24)), we have

d6*(6)7

T (1/X)Vasg(6,6%(8)) (I - By [BeBy ] 'Bo)

:=H¢
— (1/A)Veslak(0,6"(6))He, (25)

where we have used the fact that Vgsg = Vgg§latk-

What is He in (23)? Since B = we can obtain that BoBJ = I and B] By is a sparse diagonal matrix with diagonal

1
—Il
entries being 0 or 1. Thus, H¢ can be first simplified to

H: =1- B} B,. (26)

Clearly, H¢ is also a diagonal matrix with either 0 or 1 diagonal entries. The 1-valued diagonal entry of H¢ corresponds to
the inactive constraints in B6*(0) < b, i.e., those satisfied with strict inequalities in {||6]|cc < €,0 < § < 1}. This can be
expressed as

He = [1,<sr<qi@15 -5 1p, <65 <q.€d] 27)

where 1), <5 <4, € {0, 1} denotes the indicator function over the constraint {p; < 6} < ¢;} and returns 1 if the constraint is
satisfied, J;7 denotes the ith entry of §*(0), p; = max{—¢, —x;} and ¢; = min{e, 1 — z;}, and e; € R? denotes the basis
vector with the ith entry being 1 and others being 0s.

Based on the definition of g, (25) and (Z7), we can eventually achieve the desired IG formula (TZ)). The proof of Corollary[T]
is now complete. O
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B. Discussion on case /. = —/4,

We provide an in-depth explanation on the fact that even if we set {yuc = —{y, the optimization routine given by (@) to solve
problem (3) does not reduce to the ordinary IG-absent gradient descent to solve problem (I)) because of the presence of
lower-level constraints.

« In the absence of the constraint § € C, if we set £, = —/{y, then solving problem (3) via IG-involved descent method
will reduce to the ordinary IG-absent method that solves problem (TJ).

This is a known BLO result (e.g. (Ghadimi & Wang, |[2018))) and can be readily proven using the stationary condition.
To be specific, based on the stationary condition of unconstrained lower-level optimization, we have V 5£,x (6, 8*) = 0.
Since lyy = — 4y, we have V50;(6,6*) = 0. As a result, the second term in (4) becomes 0 and solving problem
becomes identical to solving the min-max problem (TJ).

* In the presence of the constraint § € C, the stationary condition cannot be applied since the stationary point may not
be a feasible point in the constraint. In other words, V 5, (6, %) = 0 does not hold in the case of {,g = —¥;;. As a
matter of fact, one has to resort to KKT conditions instead of the stationary condition for a constrained lower-level
problem. Similar to our proof in Proposition[I] the implicit gradient (and thus the second term of (#)) cannot be omitted
in general. This makes the optimization routine to solve problem (3) different from solving problem (TJ.
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C. Detailed Experiment settings
C.1. Training Set-up

For CIFAR-10, we summarize the training setup for each method. 1) FAST-AT: We use FGSM with an attack step size of
1.25¢ to generate perturbations; 2) PGD-2-AT: 2-step PGD attack{] with an attack step size of 0.5¢ is implemented; 3)
FAST-AT-GA: The gradient alignment regularization parameter is set to the recommended value for each €; 4) FAST-BAT:
We select A from 255/5000 to 255/2000 for different €. At the same time, we adjust ay accordingly, so that the coefficient
of the second term in , namely ay /) always equals to 0.1a;.

For ImageNet, we set € to 2/255 , and we strictly follow the training setting adopted by (Wong et al.| 2020). In FAST-BAT,
we fix A at 255/3000 and adopt the same o selection strategy as CIFAR-10.

Parameter for FAST-AT-GA Regarding FAST-AT-GA with different model types, we adopt the same regularization
parameter recommended in its official rep intended for PreActResNet-18 (namely 0.2 for ¢ = 8/255 and 2.0 for
e = 16/255).

C.2. The choice of initialization point z

To specify z in (7), we investigate two classes of linearization schemes. The first class is random constant linearization,
including: “uniformly random linearization”, i.e., z = & similar to FAST-AT, and “random corner linearization" under
the e-radius o.-ball, i.e., z € {—¢, ¢}?. The second class is 1-step perturbation warm-up-based linearization, including the
other two specifications: “1-step sign-based PGD" , and “1-step PGD w/o sign" . We consider this linearization schemes as
their computation complexities are less than or close to the complexity of one-step attack generation. As a result, FAST-BAT
takes comparable computation cost to the baselines FAST-AT, PGD-2-AT and FAST-AT-GA. Empirically, we find that
FAST-BAT using “1-step PGD w/o sign" leads to the best defensive performance; see justification in Table[9] We follow this
experiment setup in the sequel.

"'We use random initialization to generate perturbations for PGD, while in the paper of FAST-AT-GA (Andriushchenko & Flammarion,
2020), 2-step PGD is initialized at zero point, which we believe will underestimate the effect of PGD-2-AT
“FAST-AT-GA: https://github.com/tml-epfl/understanding-fast-adv-training/blob/master/sh


https://github.com/tml-epfl/understanding-fast-adv-training/blob/master/sh
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D. Additional Experimental Results

FAST-AT

ol

FAST-AT-GA

FAST-BAT

250125 0,09 5 4 72.501.250_001_25 250125 0,00 1 50 72.501.250_001.25 250125 0,00 1 56 72.501.250_001.25
Figure 3. Visualization of adversarial loss landscapes of FAST-AT, FAST-AT-GA and FAST-BAT trained using the ResNet-18 model
on the CIFAR-10 dataset. The losses at are calculated w.r.t. the same image example ID #001456, and the landscape is obtained
by tracking the loss changes w.r.t. input variations following (Engstrom et al., |2018). That is, the loss landscape is generated by
z =loss(I + x - r1 +y - r2), where I denotes an image, and the z-axis and the y-axis correspond to linear coefficients associated with

the sign-based attack direction ry = sign(Vloss(I)) % and a random direction r2 ~ Rademacher(0.5), respectively.

Results on ImageNet We train DNN models ResNet (RN)-50 (He et al.| Table 6. SA and RA on ImageNet.
2016al)) for ImageNet and we choose the training perturbation strength € = 2/255

strictly following (Wong et al., [2020; |/Andriushchenko & Flammarion, [2020). Method | SA (%) | RA-PGD (%)
We remark that when evaluating on ImageNet, we only compare ours with FAST-AT | 60.90 4343
FAST-AT since as shown in Table 6 of (Andriushchenko & Flammarion), 2020), FAST-BAT ‘ 60.18 ‘ 44.64

the other baseline methods did not show any improvement over Fast-AT at the
attack budget e = 2/255. RA-PGD stands for the robustness against PGD-50-10 (50-step PGD attack with 10 restarts)
with e = 2/255. Table@ shows the performance comparison between FAST-AT and FAST-BAT. We can see FAST-BAT
outperforms FAST-AT by 1.23% when facing attacks with e = 2/255. Since robust training on ImageNet usually takes
small € (like 2/255), the benefit of robust catastrophic overfitting alleviation becomes less evident.

Sensitivity to regularization parameter A In Table [/, we Table 7. Performance of FAST-BAT with different parameter

show the sensitivity of FAST-BAT to the regularization parameter
A. All the parameters remain the same as the default setting,
except that for different \. We always adjust as so that as /A =
0.1a; holds. Note 1/ also serves as the attack step in (8). As
A decreases, the improvement in robust accuracy is evidently
strengthened, and there is an obvious trade-off between robust
accuracy (SA) and standard accuracy (RA). At a certain level of
A, namely when A < 255/3500, RA starts to converge and stop
surging.

Sensitivity to different o, choices We consider the case of
robust training with the large e choice (16/255). As we can
see from Table[§] if ay is set too small (e = 0.008c1), then
both SA and RA will drop significantly. Here o is set as the
cyclic learning rate and thus not a constant parameter. However,
in the aw interval [0.0125¢1,0.025¢1], we observed a tradeoff
between standard accuracy (SA) and robust accuracy (RA): That
is, the improvement in RA corresponds to a loss in SA. In our
experiments, we choose as when the tradeoff yields the best RA
without suffering a significant drop of SA (which still outperforms
the baseline approaches).

A. We train and evaluate with the same attack budget e =
16,/255 on CIFAR-10 to show the influence brought by .

CIFAR-10, PreActResNet-18, ¢ = 16/255

1/X (/255) ‘ 500 1000 1500 2500 3500
SA (%) 83.20 75.06 6931 68.16 6437
RA-PGD (%) | 19.02 2142 2334 27.69 25.32

Table 8. Performance of FAST-BATwith different oo
choices on CIFAR-10. Models are trained and evaluated
with the same attack budget (¢ = 16/255). Here o is set
as the cyclic learning rate and is not a constant value. s is
always set proportionate to a1 for simplicity.

o (CIFAR-10,

PreActResNet18, 0.0250; 0.0167a; 0.01250; 0.008c;
€ = 16/255)
SA (%) 7506 6931 68.16  57.92

RA-PGD (%) 21.42 23.34 27.69 20.53

Sensitivity of linearization schemes Fast-BAT needs a good linearization point z in (7). In experiments, we adopt the
perturbation generated by 1-step PGD without sign as our default linearization scheme. In Table[9] we show the performance
of the other possible linearization options. We find that 1-step PGD without sign achieves the best robust accuracy among
all the choices. This is not spurring since this linearization point choice is consistent with the first-Taylor expansion that we
used along the direction of the input gradient without the sign operation involved. By contrast, FAST-BAT linearized with
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uniformly random noise suffers from catastrophic overfitting and reaches a rather low standard accuracy (SA). FAST-BAT
with other linearizations also yields a worse SA-RA trade-off than our proposal.

The validity of the Hessian-free assumption on non-ReL.U based
neural networks. The Hessian-free assumption is based on the fact
that the commonly used ReLU activation function is piece-wise linear
w.r.t. input. We further conduct expeI.“iments to verify tl}@ féasibility (PGD wlo Sign), we further generate linearization point
of such an assumption on models with non-ReLU activation func-  yith the following methods: uniformly random noise
tions. We choose two commonly used activation functions, Swish [—¢, €] (Uniformly Random); uniformly random cor-
(Ramachandran et al.| 2017)) and Softplus, as alternatives for the ner {—e, e}d (Random Corner); and perturbation from
non-smooth ReLU function. We compare the results both calculating 1-step PGD attack with 0.5¢ as attack step (PGD).

Hessian as well as the Hessian-free version to see if the Hessian-free

Table 9. Performance of FAST-BAT with different lin-
earization schemes. Besides 1-step PGD without sign

assumption still holds for the non-ReLLU neural network. The results CIFAR-10, PreActResNet-18, ¢ = 16/255

are shown in Table[T1I] As we can see, the use of Hessian does not Linearization | PGD  Uniformly ~Random .

affect performance much. A similar phenomenon can be observed Method | w/o Sign Random _ Corner

across different ¢ and different model activation functions (ReLU, SA (%) ‘ 68.16 43.42 62.19 7530
RA-PGD (%) | 27.69 21.25 165 1942

Softplus, and Swish). However, the introduction of Hessian leads to
an increase in time consumption by more than 30%. Therefore, we
can draw the conclusion that the Hessian-free assumption is reasonable across different activation function choices.

Ablation studies. In Appendix [D] we present additional empirical studies including 1) the sensitivity analysis of the
linearization hyperparameter A, 2) the choice of the linearization point, and 3) the sensitivity analysis of a.

Comparisons with more baselines. In Tab.[I0] we compare FAST-BAT with more baselines, PGD-7-AT, BACKSMOOTH,
ATTA, FREE-AT, and YOPO. The standard PDG-7 AT typically yields the best RA, but causes the highest computation
cost (see column ‘Time’ for time till best model). While in the fast robust training paradigm, FAST-BAT stands top for
different values of e. FAST-AT-GA is indeed a strong baseline to mitigate robust catastrophic overfitting as train-time e
increases (e.g., 16/255). Ours also outperforms FREE-AT and YOPO in robust catastrophic overfitting alleviation as e
grows. FAST-AT-GA paper also identified the incapability of FREE-AT.

Table 10. Performance comparison of FAST-BAT vs. baselines on (CIFAR10, PreActResNet-18). Each baseline follows its original
setting. FREE-AT (m=8) and YOPO-5-3 are adopted. ATTA refers to ATTA-1-TRADES. For fair comparison, all the methods are
trained with 20 epochs and cyclic learning rate. Minor performance degradation compared to the results reported in the original papers is
due to different training setting, that we train all the methods with only 90% of training data, choose the best model on the validation set
(10% training data), and evaluate on the test set. All the results are at the same level as the ones reported in the original papers (for those
adopting similar training settings). Evaluation settings are consistent with Table[T]in the main paper.

€ = 8/255 (Train/test-time attack) e = 16/255 (Train/test-time attack) Time
SA | RA-PGD | RA-AA SA | RA-PGD | RA-AA | (min)

AT (PGD-7) | 81.43+0.13 | 50.63£0.16 | 47.05+0.18 | 61.55+0.17 | 31.11£0.61 | 22.99+0.31 | 121.5

FAST-AT 82.39+0.14 | 45.49+0.21 | 41.87+0.15 | 44.15+£7.27 | 21.83+1.32 | 12.4940.33 7.7
BACKSMOOTH | 79.31+0.17 | 48.064+0.07 | 44.55+0.07 | 64.88+1.75 | 24.18+1.37 | 15.47+0.92 | 20.2
FREE-AT 79.59+0.14 | 42.84+0.86 | 39.39+0.20 | 35.00+£12.37 | 6.07+1.95 0.9140.42 24.5
FAST-AT-GA | 79.71+0.24 | 47.2740.22 | 43.24+0.27 | 58.29+1.32 | 26.014+0.16 | 17.97+0.33 | 25.1
ATTA 79.434+0.09 | 48.78+0.62 | 44.61+0.35 | 67.37+1.89 0.36+0.12 0.0040.00 38.8
YOPO-5-3 83.17+0.11 | 44.50+0.28 | 40.614+0.43 | 44.04+3.61 | 23.08+2.30 | 10.61+0.86 | 43.8
FAST-BAT 79.97+0.12 | 48.83+0.17 | 45.19+0.12 | 68.16+0.25 | 27.69+0.16 | 18.79+£0.24 | 20.5

Method
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Table 11. Performance of FAST-AT and FAST-BAT with different activation functions on CIFAR-10. ReLU, Swish and Softplus are taken
into consideration. For FAST-BAT, we compare the Hessian-free and Hessian-aware version to verify the influence of Hessian matrix.
The results are averaged over 3 independent trials.

SA (%) RA-PGD (%) SA (%) RA-PGD (%) Time

Setting (e=8/255) (e=8/255) (e =16/255) (c=16/255) (slepoch)
Fast-AT-ReLU  82.39+0.14  45.49+021  44.1547.27  21.83+1.32 23.1
FastBATReLU 2907 1019 48834017  68.1640.25  27.69 40.16 61.4
Hessian-free
FastBATRELU g ) 1017 49.1340.14 67824023  27.82 40.19 82.6
Hessian-aware
Fast-AT-Softplus ~ 81.29 £0.16  47.26 £0.24 4539 £3.27  22.40 £0.75 23.3
FastBAT-Softplus 99 4o 1018 49.67 £0.21  68.57 £0.27 2559 £0.15 61.7
Hessian-free
FastBATSOftplus 29 59 1001 4974 4012 68634023  25.5440.19 82.8
Hessian-aware
Fast-AT-Swish  75.61 £0.15  44.43 +0.18  52.03 4429  23.08 £2.23 23.1
FastBAT-Swish 2309 1014 4500 £0.23 62594020  23.81 £0.17 61.7
Hessian-free
FastBATSWish 303 1016 45074019 62494027  23.99 +0.17 82.6

Hessian-aware

E. Convergence Analysis

Let us consider we have data samples {x;,y;}~ ;, where N denotes the number of the training data. Then the goal of
FAST-BAT algorithm is to solve:

N
* 1 *
min Lu(6,67(0)) = = > Lu(0;xi + 67 (6),v:)
i=1 (28)

N
* . * — i . . * .
5% () Gar‘%g}:lnLalk(B,é 0) =+ ;ka(e,xl +67(0),y:)

Let us denote the batch size as b. Then the problem can be reformulated as :

b,
. bt * _ l - . X * .
mgn L' (0,87(0)) = 53 ul0:xi + 87(0), )
2 (29)

* . * 1 *
8%(0) € argmin Lu(0,8"(0)) = — > Lusc(6;xi + 87 (), y:)
5,eC by —

L', (6,5,(0))

The way to computes the gradient (@) is equal to the case where b = N.

dL(6,6"(6))
d6

6*(9)T

= VoL (0,6%(0)) + 28

VsLi)(6,6%(9)) (30)

If we approximate the gradient Vg Li(g,s+(9)) Using a batch size of b, then we have the following assumptions:

* Bias assumption:
E[VoLy(6.0°(0))] = VoLu(6,67(6)) + 5(b), (31)

where ((b) is the bias and the expectation is taken w.r.t. batches. Note that 3(b) = 0 for b = N.
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* Variance assumption:
E[|VoLy(6,6"(8)) — VoLu(6,67(8)) — B(b)|* = o”[L + | Ve Lu(6,57(6))]],

Note that the variance equals 0 for b = N.
Now the FAST-BAT algorithm with batch size b can be stated as follows:

+ Initialization: 8 € R", step size {a;}/_,', batch size {ap }1—".
e fort=1to 7"

— Choose batsh size b, at each iteration ¢ € [T].
— L(6,87(8)) ~ Ly (0,6%(6)). Lux(6.67(8)) =~ Ly (6,67(6))
— Update:

0: =01 — o 1VeLy (01,8, 1(0:-1))

where

VoLy (0:-1,8;_1(0:-1)) = VoLy (8:—1,8"(0:-1)) + Vo (81-1) Vs Lyt (811,08 (8:-1)).

Note Vgd*(8;_1) is computed using by replacing:
« Lo (0,6%(0)) with L (0,6%(0))
% By with By computed with (29).

Assuming smoothness of Ly, g) w.r.t. 8, we get:

L
Ltx(0111) < Lir (0¢) +(Va(0:),0041 — 0:) + §H9t+1 — 0.3

bt Oé?L by 2
= Lu(60) = ar (VoLu(8:), VoLl (6)) + “L= VoL (1)1

Taking expectation w.zt. random samples, we get:

E[Ltx(0¢11)] < E[Lir(60:)] — auE[[| Vo Lix (04)]3] — e E[(Va(8:), B(be))] + i o’ LE[1 + || Vo Lix (61 |5]
+ 207 LE[|| Vo Lir(61)|3] + 20 LE[|| B(b) 2]

<E [Ln(et) - [7 - atUZ’L] Ve Ler(8:)|% + [% + QafL] 18|12 + afLUQ]

Using oy < T

1 .
Tzﬂ)’ we get

E[Lir(8141)] < E [Lur(8:) = Vo Lin (B3 + au|8(b) > + af Lo

Finally, after rearranging the terms, we get:

%E[IlveLtr(Bt)Hg] < E[(Lex(8r) — Lix(8141)) + | B(be)|* + @i Lo”]

Summing over ¢t = 1 to 7" and multiplying by 1/7", we get:

(32)

(33)

(34)

(35)

(36)

(37
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T
L (6 L (
2> R VoLu(00)3) < Lr0) e
t=1

T
T Zatnﬁ bt Z

H'l\?

(38)
Taking oy = « and by = b, we get:
- A[Lex(60) — Lux(6")]
Z [IVoLer(B)]3] < =722 4 4]B(0) | + dao” (39)
Recall if b = N, we have 02 = 0 and 3(b) = 0, we can further get
2 _ 4[Ltx(00) — Lir (6")]
T ; Vo Le:(8:)]3 < e : (40)
Case I: We can choose o = 8% and get:
! VoL (6:)]5 = O ! 41
FIVoLu(®)I3 = O(). @
Case II: We can choose o = %:
S A[Lus(80) — Lur(67)] | 40”
v Lr 9 < tr 0) — Lur + = +4 b 2
g (VoL (6:]3)] T T 1B8(0)]]
~— o(1)
o)
Now if [|3(b)[|? = O(%), then
T 1
fg [IVoLer(8:]13] < O( 7). (42)
otherwise we get in the worst case:
T
Z (Vo Lu(6: 3] < 0(7) o).

(43)
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