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Abstract
Learning from repeated play in a fixed two-player
zero-sum game is a classic problem in game the-
ory and online learning. We consider a variant
of this problem where the game payoff matrix
changes over time, possibly in an adversarial man-
ner. We first present three performance measures
to guide the algorithmic design for this problem:
1) the well-studied individual regret, 2) an ex-
tension of duality gap, and 3) a new measure
called dynamic Nash Equilibrium regret, which
quantifies the cumulative difference between the
player’s payoff and the minimax game value.
Next, we develop a single parameter-free algo-
rithm that simultaneously enjoys favorable guar-
antees under all these three performance measures.
These guarantees are adaptive to different non-
stationarity measures of the payoff matrices and,
importantly, recover the best known results when
the payoff matrix is fixed. Our algorithm is based
on a two-layer structure with a meta-algorithm
learning over a group of black-box base-learners
satisfying a certain property, along with several
novel ingredients specifically designed for the
time-varying game setting. Empirical results fur-
ther validate the effectiveness of our algorithm.

1. Introduction
Repeated play in a fixed two-player zero-sum game, a fun-
damental problem in the interaction between game theory
and online learning, has been extensively studied in recent
decades. In particular, many efforts have been devoted to
designing online algorithms such that both players achieve
small individual regret (that is, difference between one’s
cumulative payoff and that of the best fixed action) while at
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the same time the dynamics of the players’ strategy leads to
a Nash equilibrium, a pair of strategies that neither player
has incentive to deviate from; see for example (Freund &
Schapire, 1999; Rakhlin & Sridharan, 2013; Daskalakis
et al., 2015; Syrgkanis et al., 2015; Chen & Peng, 2020; Wei
et al., 2021; Hsieh et al., 2021; Daskalakis et al., 2021).

In contrast to this large body of studies for learning over
a fixed zero-sum game, repeated play over a sequence of
time-varying games, the focus of this paper and a ubiquitous
scenario in practice, is much less explored. While minimiz-
ing individual regret still makes perfect sense in this case, it
is not immediately clear what other desirable game-theoretic
guarantees are that generalize the concept of approaching a
Nash equilibrium when the game is fixed. As far as we know,
Cardoso et al. (2019) are the first to explicitly consider this
problem. They proposed the notion of Nash-Equilibrium
regret (NE-regret) as the performance measure, which quan-
tifies the difference between the learners’ cumulative payoff
and the minimax value of the cumulative payoff matrix.
The authors proposed an algorithm with Õ(

√
T ) NE-regret

after T rounds of play and, importantly, proved that no algo-
rithm can simultaneously achieve sublinear NE-regret and
sublinear individual regret for both players.

Our work starts by questioning whether the NE-regret
of Cardoso et al. (2019) is indeed a good performance mea-
sure for the problem of learning in time-varying games,
especially given its incompatibility with the arguably most
standard goal of having small individual regret. We then
discover that measuring performance with NE-regret can in
fact be highly unreasonable: we show an example (in Sec-
tion 3) where even the two players perform perfectly (in the
sense that they play the corresponding Nash equilibrium in
every round), the resulting NE-regret is still linear in T !

Motivated by this observation, we revisit the basic problem
of how to measure the algorithm’s performance in such a
time-varying game setting. Concretely, we consider three
performance measures that we believe are appropriate and
natural: 1) the standard individual regret; 2) the direct gen-
eralization of cumulative duality gap from a fixed game to
a varying game; and 3) a new measure called dynamic NE-
regret, which quantifies the difference between the learner’s
cumulative payoff and the cumulative minimax game value
(instead of the minimax value of the cumulative payoff ma-
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Table 1. Summary of our results. The first column indicates the three performance measures considered in this work. The second column
presents our main results for a sequence of time-varying payoff matrices {At}Tt=1, and notably all results are simultaneously achieved by
one single parameter-free algorithm. These guarantees are expressed in terms of three different (unknown) non-stationarity measures
of the payoff matrices: PT , VT , and WT , all of which are Θ(T ) in the worst-case and zero in the stationary case (when At = A for
all t ∈ [T ]); see Section 3 for definitions. Additionally, for duality gap we use notation QT as a shorthand for VT + min{PT ,WT }.
Substituting all non-stationarity measures with zero leads to our corollaries for the stationary case shown in the third column, which match
the state-of-the-art for all three performance measures (up to logarithmic factors) as shown in the last column.

Measure Time-Varying Game ({At}Tt=1, general) Stationary Game (At = A, fixed)

Individual Regret
Õ
(√

1 + VT +min{PT ,WT }
)

Õ(1) O(1)

[Theorem 4] [Corollary 5] (Hsieh et al., 2021)

Dynamic NE-Regret
Õ
(
min{

√
(1 + VT )(1 + PT ) + PT , 1 +WT }

)
Õ(1) O(1)

[Theorem 6] [Corollary 7] (Hsieh et al., 2021)1

Duality Gap
Õ
(
min{T 3

4 (1 +QT )
1
4 , T

1
2 (1 +Q

3
2

T + PTQT )
1
2 }
)

Õ(
√
T ) O(

√
T )

[Theorem 8] [Corollary 9] (Wei et al., 2021)

trix, as in NE-regret). We argue that dynamic NE-regret is a
better measure compared to NE-regret: first, in the earlier
example where both players play perfectly in each round
using the corresponding Nash equilibrium, their dynamic
NE-regret is exactly zero (while their NE-regret can be lin-
ear in T ); second, having small dynamic NE-regret does not
prevent one from enjoying small individual regret or duality
gap (as will become clear soon).

With these performance measures in mind, our main con-
tribution is to develop one single parameter-free algorithm
that simultaneously enjoys favorable guarantees under all
measures. These guarantees are adaptive to some unknown
non-stationarity measures of the payoff matrices — natu-
rally, the bounds worsen as the non-stationarity becomes
larger. More specifically, the individual regret is always
at most Õ(

√
T ), the well-known worst-case bound, but

could be much smaller if the non-stationarity measures are
sublinear; on the other hand, the duality gap and dynamic
NE-regret are sublinear as long as the non-stationarity mea-
sures are sublinear. In the special case of a fixed payoff
matrix, all non-stationarity measures become zero and our
results immediately recover the state-of-the-art results (up
to logarithmic factors); see Table 1 for details. Notice that
the best known results for a fixed game are not necessarily
achieved by the same algorithm, while again, our results are
all achieved by one adaptive algorithm. We also conduct
empirical studies to further support our theoretical findings.

Techniques. For a fixed game, Syrgkanis et al. (2015) pro-
posed the “Regret bounded by Variation in Utilities” (RVU)
property as the key condition for an algorithm to achieve
good performance. On the other hand, one of the key tools
for achieving our results is to ensure a small gap between
each player’s cumulative payoff and that of a sequence of
changing comparators, known as dynamic regret in the lit-
erature (Zinkevich, 2003). Therefore, our first step is to

generalize the RVU property to “Dynamic Regret bounded
by Variation in Utilities” (DRVU) property, and to show
that many existing algorithms indeed satisfy DRVU.

Furthermore, to achieve strong guarantees for all perfor-
mance measures without any prior knowledge, we also
need to deploy a two-layer structure, with a meta-algorithm
learning over and combining decisions of a group of base-
learners, each of which satisfies the DRVU property but
uses a different step size. Although such a framework has
been used in many prior works in online learning (see for
example the latest advances (Chen et al., 2021; Zhao et al.,
2021) and references therein), several new ingredients are
required to achieve our results. First, when updating the
meta-algorithm, a correction term related to the stability of
each base-algorithm is injected into the loss for the corre-
sponding base-algorithm, which plays a key role in the anal-
ysis. More specifically, we show (in Lemma 10) an explicit
bound for the stability of the meta-algorithm’s decisions,
whose proof requires a careful analysis using the correction
terms above and the unique game structure. Second, we
also introduce a set of additional “dummy” base-algorithms
that always play some fixed action. This plays a key role in
controlling the dynamics of the base-learners’ outputs and
turns out to be critical when bounding the duality gap.

Related Work. Two-player zero-sum game is one of the
most fundamental problems in game theory, whose studies
date back to the seminal work of von Neumann (1928). Fre-
und & Schapire (1999) discovered the profound connections
between zero-sum games and no-regret online learning, and
since then there have been extensive studies on designing
no-regret algorithms to solve games in the stationary set-

1This is implicitly implied by the results of Hsieh et al. (2021),
as our Lemma 17 shows that in the stationary case dynamic NE-
regret is bounded by the individual regret.
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ting (Rakhlin & Sridharan, 2013; Daskalakis et al., 2015;
Syrgkanis et al., 2015; Chen & Peng, 2020; Wei et al., 2021;
Daskalakis et al., 2021). We refer the reader to (Daskalakis
et al., 2021) for a more thorough discussion on the litera-
ture. Several recent works start considering the problem of
learning over a sequence of non-stationary payoffs under
different structures, including zero-sum matrix games (Mai
et al., 2018; Cardoso et al., 2019; Fiez et al., 2021), convex-
concave games (Roy et al., 2019) and strongly monotone
games (Duvocelle et al., 2021). For zero-sum games, Fiez
et al. (2021); Mai et al. (2018) focus on the periodic case
and proves divergence results for a class of learning algo-
rithms; (Cardoso et al., 2019) is the closest to our work, but
as mentioned, we argue that their proposed measure (NE-
regret) is not always appropriate (see Section 3.1). Learning
in time-varying games is also related to bandits with knap-
sack (Badanidiyuru et al., 2018; Immorlica et al., 2019).

Organization. We formulate the problem set in Section 2,
then present the performance measures in Section 3 and
our algorithm in Section 4. Next, we provide theoretical
guarantees in Section 5. We finally report the empirical
results in Section 6 and conclude the paper in Section 7.

2. Problem Setup and Notations
We consider the following problem of two players (called x-
player and y-player) repeatedly playing a zero-sum game for
T rounds, with m fixed actions for x-player and n fixed ac-
tions for y-player. At each round t ∈ [T ] ≜ {1, . . . , T}, the
environment first chooses a payoff matrixAt ∈ [−1, 1]m×n,
whose (i, j) entry denotes the loss/reward for x-player/y-
player when they play action i and action j respectively.
Without knowing At, x-player (y-player) decides her own
mixed strategy (that is, a distribution over actions) xt ∈ ∆m

(yt ∈ ∆n), where ∆k denotes the probability simplex
∆k = {u ∈ Rk≥0 |

∑k
i=1 ui = 1}. At the end of this

round, x-player suffers expected loss x⊤t Atyt and observes
the loss vector Atyt, while y-player receives the expected
reward x⊤t Atyt and observes the reward vector x⊤t At. Note
that neither player observes the matrix At itself.

When At is fixed for all t, this exactly recovers the stan-
dard stationary setting considered in for example (Syrgkanis
et al., 2015). Having a time-varying At allows us to capture
various possible sources of non-stationarity. In fact, At can
even be decided by an adaptive adversary who makes the
decision knowing the players’ algorithm and their decisions
in earlier rounds. Our setting is almost the same as (Cardoso
et al., 2019), except that the feedback they consider is either
the entire matrix At (stronger than ours) or just one entry of
At sampled according to (xt, yt) (weaker than ours).

For each game matrix At, define the set of minimax strate-
gies for x-player as X ∗

t = argminx∈∆m
maxy∈∆n x

⊤Aty

and similarly the set of maximin strategies for y-player as
Y∗
t = argmaxy∈∆n

minx∈∆m x⊤Aty. It is well-known
that any pair (x∗t , y

∗
t ) ∈ X ∗

t × Y∗
t forms a Nash equi-

librium of At with the following saddle-point property:
x∗⊤t Aty ≤ x∗⊤t Aty

∗
t ≤ x⊤Aty

∗
t holds for any x ∈ ∆m

and y ∈ ∆n. Throughout the paper, (x∗t , y
∗
t ) denotes an

arbitrary Nash equilibrium of At.

Notations. For a real-valued matrixA ∈ Rm×n, its infinity
norm is defined as ∥A∥∞ ≜ maxi,j |Aij |. We use 1N and
0N to denote the all-one and all-zero vectors of length N .
For conciseness, we often hide polynomial dependence on
the size of the game (that is, m and n) in the O(·)-notation.
The Õ(·)-notation further omits logarithmic dependence on
T . We sometimes write minx∈∆m

(miny∈∆n
) simply as

minx (miny) when there is no confusion.

3. How to Measure the Performance?
With the learning protocol specified, the next pressing ques-
tion is to determine what the goal is when designing algo-
rithms for the two players. When At is fixed, most studies
consider minimizing individual regret for each player and
some form of convergence to a Nash equilibrium of the fixed
game as the two primary goals. While minimizing individ-
ual regret is still naturally defined when At is changing over
time, it is less clear what other desirable game-theoretic
guarantees are in this case. In Section 3.1, we formally
discuss three performance measures that we think are rea-
sonable for this problem. Then in Section 3.2, we further
discuss how to measure the non-stationarity of the sequence
{At}1:T that will play a role in how well the players can do
under some of the performance measures.

3.1. Performance Measures

1 Individual Regret. The first measure we consider is the
standard individual regret. For x-player, this is defined as

RegxT ≜
T∑
t=1

x⊤t Atyt − min
x∈∆m

T∑
t=1

x⊤Atyt, (1)

that is, the difference between her total loss and that of the
best fixed strategy (assuming the same behavior from the
opponent). Similarly, the regret for y-player is defined as
RegyT ≜ maxy∈∆n

∑T
t=1 x

⊤
t Aty−

∑T
t=1 x

⊤
t Atyt. Achiev-

ing sublinear (in T ) individual regret implies that on average
each player performs almost as well as their best fixed strat-
egy, and this is arguably the most standard and basic goal
for online learning problems.

2 Duality Gap. For a game matrix At, the du-
ality gap of a pair of strategy (xt, yt) is defined as
maxy∈∆n

x⊤t Aty−minx∈∆m
x⊤Atyt. It is always nonneg-

ative since maxy∈∆n x
⊤
t Aty ≥ x⊤t Aty

∗
t ≥ x∗⊤t Aty

∗
t ≥

x∗⊤t Atyt ≥ minx∈∆m x⊤Atyt, and it is zero if and only



No-Regret Learning in Time-Varying Zero-Sum Games

if (xt, yt) is a Nash equilibrium of At. Thus, the duality
gap measures how close (xt, yt) is to the equilibria in some
sense. We thus naturally use the cumulative duality gap:

Dual-GapT ≜
T∑
t=1

(
max
y∈∆n

x⊤t Aty − min
x∈∆m

x⊤Atyt

)
, (2)

as another performance measure. When At is fixed, this
measure is considered in (Wei et al., 2021) for example.

3 Dynamic Nash Equilibrium (NE)-Regret. Before
introducing this last measure, we first review what Cardoso
et al. (2019) proposed as the goal for this problem, that is,
ensuring small Nash Equilibrium (NE)-regret, defined as

NE-RegT ≜

∣∣∣∣∣
T∑
t=1

x⊤t Atyt− min
x∈∆m

max
y∈∆n

T∑
t=1

x⊤Aty

∣∣∣∣∣. (3)

In words, this is the difference between the cumulative loss
of x-player (or equivalently the cumulative reward of y-
player) and the minimax value of the cumulative payoff ma-
trix (

∑T
t=1At). While this might appear to be a reasonable

generalization of individual regret for a central controller
who decides xt and yt jointly, we argue below that this
measure is in fact often inappropriate for two reasons.

The first reason is in fact already hinted in (Cardoso et al.,
2019): they proved that no algorithm can always ensure
sublinear NE-regret and simultaneously sublinear individual
regret for both players. Given that minimizing individual
regret selfishly is a natural impulse and the standard goal
for each player, NE-regret can only make sense when both
players are controlled by a centralized algorithm.

The second reason is perhaps more profound. Consider
the following two-phase example: when t ≤ T/2, At =(

1 −1
−1 1

)
; when t > T/2, At =

(
1 −1
1 −1

)
.2 It is straight-

forward to verify that: when t ≤ T/2, the equilibrium for
At is the uniform distribution for both players, leading to
game value 0; when t > T/2, the equilibrium is such that
y-player always picks the first column, leading to game
value 1; and the equilibrium for the cumulative game matrix∑T

t=1At =
(
T −T
0 0

)
is x-player picking the second row

while y-player picking the first column, leading to game
value 0. To sum up, even if both players play perfectly in
each round using the equilibrium, their NE-regret is still
|T/2− 0| = T/2, which is a vacuous bound linear in T !

Motivated by the observations above, we propose a vari-
ant of NE-regret as the third performance measure, called
dynamic NE-regret:3

DynNE-RegT ≜

∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty

∣∣∣∣∣.
2The same example is in fact also used by Cardoso et al. (2019)

to prove the incompatibility of individual regret and NE-regret.

Compared to NE-regret, here we move the minimax op-
eration inside the summation, making it the cumulative
difference between x-player’s loss and the minimax game
value in each round. In other words, similarly to duality gap,
dynamic NE-regret provides yet another way to measure
in each round, how close (xt, yt) is to the equilibria of At
from the game value perspective.

The connection between NE-regret and Dynamic NE-regret
is on the surface analogous to that between standard regret
and dynamic regret (Zinkevich, 2003) (see Appendix B.1 for
definitions and more related discussions). However, while
dynamic regret is always no less than standard regret, Dy-
namic NE-regret could be smaller than NE-regret — simply
consider our earlier two-phase example: the perfect players
(who always play an equilibrium) clearly have 0 dynamic
NE-regret, but their NE-regret is T/2 as discussed. This
example also shows that dynamic NE-regret is more reason-
able compared to NE-regret. Moreover, as will become clear
soon, dynamic NE-regret is compatible with individual re-
gret (and also duality gap), in the sense there are algorithms
that provably perform well under all these measures.

We conclude this section with the following two remarks.

Remark 1 (Comparisons of the three measures). Both indi-
vidual regret and dynamic NE-regret are bounded by duality
gap (see proofs in Appendix B.2), but the latter could be
much larger. On the other hand, individual regret and dy-
namic NE-regret are generally incomparable.

Remark 2 (Other possibilities). The three measures we con-
sider are by no mean the only possibilities. Another reason-
able one is the tracking error

∑T
t=1(∥xt−x∗t ∥1+∥yt−y∗t ∥1)

that directly measures the distance between (xt, yt) and
the equilibrium (x∗t , y

∗
t ) (assuming unique equilibrium for

simplicity). This is considered in (Roy et al., 2019; Bal-
asubramanian & Ghadimi, 2021) (for different problems).
However, tracking error bounds are in fact not well studied
even when At is fixed — the best known results still depend
on some problem-dependent constant that can be arbitrarily
large (Daskalakis & Panageas, 2019; Wei et al., 2021). De-
riving tracking error bounds in our setting is thus beyond the
scope of this paper. Note that in many optimization studies,
one often only cares about finding a point that is close to the
optimal solution in terms of their function value instead of
their absolute distance. Our dynamic NE-regret and duality
gap are both in this same sprite by looking at the game value
instead of the actual distance as in tracking error.

3In fact, a preprint by Roy et al. (2019) also considers a simi-
lar measure for general convex-concave problem, but we believe
that their results are incorrect. Specifically, they claim (in their
Theorem 4.3) that an Õ(

√
T ) bound is always achievable for dy-

namic NE-regret, but this is clearly impossible because when At

always has identical columns (so y-player does not play any role),
dynamic NE-regret becomes the dynamic regret (Zinkevich, 2003)
for x-player, which is well-known to be Ω(T ) in the worst case.
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3.2. Non-stationarity Measures

For duality gap and dynamic NE-regret, it is not difficult to
see that if At changes drastically over time, then no mean-
ingful guarantees are possible. This is similar to dynamic
regret in standard online learning problems, where guaran-
tees are always expressed in terms of some non-stationarity
measure of the environment and are meaningful only when
the non-stationarity is reasonably small. In our setting, we
consider the following three different ways to measure non-
stationarity of the sequence {At}Tt=1.

Variation of Nash Equilibria. Recall the notation X ∗
t ×Y∗

t ,
the set of Nash equilibria for matrixAt. Define the variation
of Nash equilibria as:

PT ≜ min
∀t,(x∗

t ,y
∗
t )∈X∗

t ×Y∗
t

T∑
t=2

(
∥x∗t − x∗t−1∥1 + ∥y∗t − y∗t−1∥1

)
,

which quantifies the drift of the Nash equilibria of the game
matrices in ℓ1-norm.

Variation/Variance of Game Matrices. The path-length
variation and the variance of {At}Tt=1 are respectively de-
fined as

VT ≜
T∑
t=2

∥At −At−1∥2∞, WT ≜
T∑
t=1

∥At − Ā∥∞,

where Ā = 1
T

∑T
t=1At is the averaged game matrix.

Clearly, PT , VT , and WT are all Θ(T ) in the worst case,
and 0 when At is fixed over time. For dynamic regret and
duality gap, the natural goal is to enjoy sublinear bounds
whenever (some of) these non-stationarity measures are
sublinear (which we indeed achieve).

We conclude by pointing out some connections between
these non-stationarity measures. First, VT ≤ 8WT holds but
the former could be much smaller. Second, PT is generally
not comparable with VT and WT , and there are examples
where PT = 0 and VT =WT = Θ(T ), or PT = Θ(T ) and
VT =WT = O(1). We defer all details to Appendix B.

4. Proposed Algorithm
In this section, we present our proposed algorithm for time-
varying games, which provably achieves favorable guaran-
tees under all three performance measures. To illustrate
the ideas behind our algorithm design, we first review how
(Syrgkanis et al., 2015) achieves fast convergence results for
a fixed game, followed by a detailed discussion on how to
generalize their idea and overcome the difficulties brought
by time-varying games. For conciseness, throughout the
section we focus on the x-player; how the y-player should
behave is completely symmetric.

For a fixed game At = A, Syrgkanis et al. (2015) proposed
that each player should deploy an online learning algorithm
that satisfies a specific property called “Regret bounded by
Variation in Utilities” (RVU). More specifically, an online
learning algorithm proposes xt ∈ ∆m at the beginning
of round t, and then receives a loss vector gt ∈ Rm and
suffers loss ⟨xt, gt⟩. Its regret against a comparator u ∈
∆m after T rounds is naturally

∑T
t=1 ⟨xt − u, gt⟩, and the

RVU property states that this should be bounded by α +
β
∑T
t=2 ∥gt − gt−1∥2∞ − γ

∑T
t=2 ∥xt − xt−1∥21 for some

parameters α, β, γ > 0.4 To see why RVU property is
useful, consider x-player deploying such an algorithm with
gt set to Atyt = Ayt. Then her regret is further bounded as
α + β

∑T
t=2∥Ayt − Ayt−1∥2∞ − γ

∑T
t=2∥xt − xt−1∥21 ≤

α+β
∑T
t=2∥yt−yt−1∥21−γ

∑T
t=2∥xt−xt−1∥21. Therefore,

as long as y-player also deploys the same algorithm, by
symmetry, the sum of their regret is at most α + (β −
γ)(
∑T
t=2∥xt − xt−1∥21 +

∑T
t=2∥yt − yt−1∥21), which can

be simply bounded by (a constant) α as long as β ≤ γ.
Many useful guarantees can then be obtained as a corollary
of the fact that the sum of regret is small.

In our setting where At is changing over time, our first
observation is that instead of the sum of the two players’
regret, what we need to control is the sum of their dynamic
regret (Zinkevich, 2003), which plays an important role
when deriving guarantees for all the three measures (includ-
ing individual regret). Specifically, for an online learning
algorithm producing xt and receiving gt, its dynamic regret
against a sequence of comparators u1, . . . , uT ∈ ∆m is
defined as

∑T
t=1 ⟨xt − ut, gt⟩. Generalizing RVU, we natu-

rally introduce the following “Dynamic Regret bounded by
Variation in Utilities” (DRVU) property.

Definition 3 (DRVU Property). Denote by A(η) an online
learning algorithm with a parameter η > 0. We say that it
satisfies the Dynamic Regret bounded by Variation in Util-
ities property (abbreviated as DRVU(η)) with parameters
α, β, γ > 0, if its dynamic regret

∑T
t=1 ⟨xt − ut, gt⟩ on

any loss sequence g1, . . . , gT with respect to any compara-
tor sequence u1, . . . , uT is bounded by

α

η
(1+PuT )+ηβ

T∑
t=1

∥gt− gt−1∥2∞− γ

η

T∑
t=2

∥xt−xt−1∥21,

where PuT ≜
∑T
t=2∥ut − ut−1∥1 is the path-length of the

comparator sequence.

Compared to RVU, DRVU naturally replaces the first con-
stant term in the regret bound with a term depending on
the path-length of the comparator sequence. We also add
another step size parameter η (whose role will become clear

4Without loss of generality, we here focus on (∥ · ∥1, ∥ · ∥∞)
norm, and it is straightforward to generalize the argument to gen-
eral primal-dual norm as in (Syrgkanis et al., 2015).
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soon). Recent studies in dynamic regret (Zhao et al., 2020;
2021) show that variants of optimistic Online Mirror De-
scent (such as Optimistic Gradient Descent and Optimistic
Hedge) indeed satisfy DRVU with α, β, γ = Θ̃(1); see
Appendix D for formal statements and proofs.

Now, if x-player deploys an algorithm satisfying DRVU and
feeds it with loss vector gt = Atyt (and similarly y-player
does the same), we can indeed prove a desired guarantee
for each of the three performance measures. However, the
tuning of η will require the knowledge of the unknown pa-
rameters PT , VT ,WT and, perhaps more importantly, be
different for each different measures. To obtain an adap-
tive algorithm that performs well under all three measures
without any prior knowledge, we further propose a two-
layer structure with a meta-algorithm learning over and
combining decisions of a set of base-learners, each of which
satisfies DRVU(η) but with a different step size η. While
this idea of “learning over learning algorithms” is not new in
online learning, we will discuss below what extra difficulties
show up in our case and how we address them.

4.1. Base-learners

Define N = ⌊ 1
2 log2 T ⌋ + 1. Our algorithm maintains

N +m base-learners: ∀i ∈ [N ], the i-th base-learner is any
algorithm that satisfies DRVU(ηxi ), where ηxi = 2i−1

L
√
T

and

L = max
{
4,
√
16cβ,

√
8cβ/γ

}
(4)

(β and γ are the parameters from DRVU and c = Õ(1) is a
constant whose exact value can be found in the proof); the
last m base-learners are dummy learners, with the (j +N)-
th one always outputting the basis vector ej ∈ ∆m (that is,
always choosing the j-th action). We note that the dummy
base-learners are important in controlling the duality gap
(but not the other two measures). We let Sx ≜ S1,x ∪ S2,x

with S1,x = [N ] and S2,x = {N + 1, . . . , N +m} denote
the set of indices of base-learners.

At round t, each base-learner i submits her decision xt,i ∈
∆m to the meta-algorithm, who decides the final decision
xt. Upon receiving the feedback Atyt, the meta-algorithm
sends the same (as the loss vector gt) to each base-learner
i ∈ S1,x (no updates needed for the dummy base-learners).

4.2. Meta-algorithm

With all the decisions {xt,i}i∈Sx
collected from the base-

learners, the meta-algorithm outputs the final decision xt =∑
i∈Sx

pt,ixt,i,5 where pt ∈ ∆|Sx| is a distribution over the
base-learners updated according to a version of Optimistic
Online Gradient Descent (OOGD) (Rakhlin & Sridharan,

5Note the slight abuse of notations here: while pt,i represents
the i-th entry of vector pt, xt,i is not the i-th entry of xt.

Algorithm 1 Algorithm for the x-player
Input: a base-algorithm A(η) satisfying DRVU(η).
Initialize: a set of base-learners Sx as described in Sec-
tion 4.1, p̂1 = 1

|Sx|1|Sx|, learning rate εx1 = 1
L (c.f. Eq. (4)).

for t = 1, . . . , T do
Receive xt,i ∈ ∆m from each base-learner i ∈ Sx.
Compute mx

t based on Eq. (7) and pt based on Eq. (5).
Play the final decision xt =

∑
i∈Sx

pt,ixt,i.
Suffer loss x⊤t Atyt and observe the loss vector Atyt.
Compute ℓxt based on Eq. (6) and p̂t+1 based on Eq. (5).
Update εxt+1 = 1/

√
L2+

∑t
s=2 ∥Atyt−At−1yt−1∥2

∞.
Send Atyt as the feedback to each base-learner.

end

2013; Syrgkanis et al., 2015):

pt = argmin
p∈∆|Sx|

{
εxt ⟨p,mx

t ⟩+ ∥p− p̂t∥22
}
,

p̂t+1 = argmin
p∈∆|Sx|

{
εxt ⟨p, ℓxt ⟩+ ∥p− p̂t∥22

}
.

(5)

Here, εxt > 0 is a time-varying learning rate, {p̂t}t=1,2,...

is an auxiliary sequence (starting with p̂1 as the uniform
distribution) updated via projected gradient descent using
some loss vector sequence ℓx1 , ℓ

x
2 , . . . ∈ R|Sx|, and pt is

updated via projected gradient descent from the distribution
p̂t and using a loss predictor mx

t ∈ R|Sx|. It remains to
specify what ℓxt and mx

t are (the tuning of the learning rate
will be specified in the final algorithm).

Since base-learner i predicts xt,i and receives loss vector
Atyt, it is natural to set its loss ℓxt,i as x⊤t,iAtyt from the
meta-algorithm’s perspective. In light of standard OOGD,
mx
t should then be set to x⊤t,iAt−1yt−1, meaning that the last

loss vector At−1yt−1 is used to predict the current one (that
is unknown yet when computing pt). However, this setup
leads to the following issue. When applying DRVU(ηxi )
to this base-learner, we see that a negative term related to
∥xt,i−xt−1,i∥21 and a positive term related to ∥yt− yt−1∥21
arise (the latter is from ∥Atyt − At−1yt−1∥2∞ ≤ 2∥At −
At−1∥2∞ + 2∥yt − yt−1∥21, with the first term only related
to the non-stationarity of game matrices). By symmetry,
y-player contributes a positive term ∥xt − xt−1∥21, which
now cannot be canceled by ∥xt,i−xt−1,i∥21, unlike the case
with only one learner for each player discussed earlier.

To address this issue, we propose to add a stability correction
term to both ℓxt and mx

t . Concretely, they are defined as
ℓx1,i = x⊤1,iA1y1 and mx

1,i = 0,∀i, and for all t ≥ 2:

ℓxt,i = x⊤t,iAtyt + λ∥xt,i − xt−1,i∥21, (6)

mx
t,i = x⊤t,iAt−1yt−1 + λ∥xt,i − xt−1,i∥21, (7)

where λ = γL
2 (γ is the parameter from DRVU). From a

technical perspective, this introduces to the regret a nega-
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tive term
∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21, and a positive term
∥xt,i − xt−1,i∥21 which can be canceled by the aforemen-
tioned negative term from DRVU(ηxi ). To see why the extra
negative term is useful, notice that the troublesome term
∥xt − xt−1∥21 from DRVU(ηxi ) can be bounded as

∥xt − xt−1∥21 =

∥∥∥∥∥∑
i∈Sx

pt,ixt,i −
∑
i∈Sx

pt−1,ixt−1,i

∥∥∥∥∥
2

1

≤ 2
∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + 2∥pt − pt−1∥21,

where the first term can exactly be canceled by the extra
negative term introduced by the correction term, and the
second term can in fact also be canceled in a standard way
since the meta-algorithm itself can be shown to satisfy RVU.
This explains the design of our correction terms from a
technical level. Intuitively, injecting this correction term
guides the meta-algorithm to bias toward the more stable
base-learners, hence also stabilizing the final decision xt.

We note that a similar technique was used in analyzing
gradient-variation dynamic regret for online convex opti-
mization (Zhao et al., 2021). Our approach is different from
theirs in the sense that there is only one player in their set-
ting and the correction term is used to cancel the additional
gradient variation introduced by the variation of her own
decision. In contrast, in our setting the correction term is
used to cancel the opponent’s gradient variation.

To summarize, our final algorithm (for the x-player) is pre-
sented in Algorithm 1. We also include the symmetric
version for the y-player in Algorithm 2 (Appendix A) for
completeness. We emphasize again that this is a parameter-
free algorithm that does not require any prior knowledge of
the environment.

5. Theoretical Guarantees and Analysis
In this section, we first provide the guarantees of our algo-
rithm under each of the three performance measures, and
then highlight several key ideas in the analysis, with the full
proofs deferred to Appendix E. Recall that our guarantees
are all expressed in terms of the non-stationarity measures
PT , VT , and WT , defined in Section 3.2. Also, to avoid
showing the cumbersome dependence on the DRVU param-
eters (α, β, γ) in all our bounds, we will simply assume that
they are all Θ̃(1), which, as mentioned earlier and shown in
Appendix D, is indeed the case for standard algorithms.

5.1. Performance Guarantees

We state our results for each performance measure sepa-
rately below, but emphasize again that they hold simultane-
ously. First, we show the individual regret bound.
Theorem 4 (Individual Regret). When the x-player uses Al-

gorithm 1, irrespective of y-player’s strategies, we have

RegxT =

T∑
t=1

x⊤t Atyt −min
x

T∑
t=1

x⊤Atyt = Õ(
√
T ).

Furthermore, if x-player follows Algorithm 1 and y-player
follows Algorithm 2, then individual regret satisfies:

max {RegxT ,RegyT } = Õ
(√

1 + VT +min{PT ,WT }
)
.

The first statement of Theorem 4 provides a robustness guar-
antee for our algorithm — no matter how non-stationary
the game matrices are and no matter how the opponent
behaves, following our algorithm always ensures Õ(

√
T )

individual regret, the standard worst-case regret bound.
On the other hand, when both players follow our algo-
rithm, their individual regret could be even smaller de-
pending on the non-stationarity. In particular, as long as
VT + min{PT ,WT } = o(T ) (that is, not the worst case
scenario), our bound becomes o(

√
T ). Also note that PT

and WT are generally incomparable (see Appendix B), but
our bound achieves the minimum of them, thus achieving
the best of both worlds.

When the game matrix is fixed, we have PT = VT =WT =
0, immediately leading to the following corollary.

Corollary 5. When x-player follows Algorithm 1 and y-
player follows Algorithm 2, if At = A for all t ∈ [T ], then
max {RegxT ,RegyT } = Õ(1).

The best known individual regret bound for learning in a
fixed two-player zero-sum game is O(1) (Hsieh et al., 2021).
Our result matches theirs up to logarithmic factors.

The next theorem presents the dynamic NE-regret bound.

Theorem 6 (Dynamic NE-Regret). When x-player fol-
lows Algorithm 1 and y-player follows Algorithm 2, we
have the following dynamic NE-regret bound:

DynNE-RegT =

∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty

∣∣∣∣∣
= Õ

(
min{

√
(1 + VT )(1 + PT ) + PT , 1 +WT }

)
.

Similarly, our dynamic NE-regret bound is o(T ) as long
as PT or WT is o(T ). When the game matrix is fixed,
we again obtain the following direct corollary by noticing
PT = VT =WT = 0 in this case.

Corollary 7. When x-player follows Algorithm 1 and y-
player follows Algorithm 2, if At = A for all t ∈ [T ], then
DynNE-RegT = Õ(1).

In fact, when the game is fixed, dynamic NE-regret
degenerates to NE-regret of Cardoso et al. (2019)
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as
∑T
t=1 minxmaxy x

⊤Ay = minxmaxy
∑T
t=1 x

⊤Ay.
Their algorithm would achieve Õ(

√
T ) (dynamic) NE-

regret in this case. A better O(1) result is implicitly implied
by the aforementioned work of Hsieh et al. (2021), as we
show (in Lemma 17) that (dynamic) NE-regret is bounded
by the individual regret in this stationary case. Our result
again matches theirs up to logarithmic factors.

The last theorem provides an upper bound for duality gap.

Theorem 8 (Duality Gap). When x-player follows Algo-
rithm 1 and y-player follows Algorithm 2, we have

Dual-GapT =

T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

min
x∈∆m

x⊤Atyt

= Õ
(
min{T 3

4

(
1 +QT

) 1
4 , T

1
2 (1 +Q

3
2

T + PTQT )
1
2 }
)
,

where QT ≜ VT +min{PT ,WT }.

Once again the bound is o(T ) whenever QT = o(T ), and it
implies the following corollary.

Corollary 9. When x-player follows Algorithm 1 and y-
player follows Algorithm 2, if At = A for all t ∈ [T ], then
Dual-GapT = Õ(

√
T ).

Notably, the best known result of duality gap for a fixed
game is O(

√
T ) (Wei et al., 2021), and our result again

matches theirs up to logarithmic factors.

5.2. Key Ideas for Analysis

We now highlight some key components and novelty of our
analysis. As mentioned in Section 4, to bound all the three
metrics, the key is to bound the sum of the two players’ dy-
namic regret, which further requires controlling the stability
of the strategies between consecutive rounds. The following
key lemma shows how such stability is controlled by the
non-stationarity measures of {At}Tt=1.

Lemma 10. When x-player follows Algorithm 1 and y-
player follows Algorithm 2, we have both

∑T
t=2∥xt −

xt−1∥21 and
∑T
t=2∥yt − yt−1∥21 bounded by

Õ
(
min

{√
(1 + VT )(1 + PT ) + PT , 1 +WT

})
.

This lemma implies an Õ(1) stability bound when the game
is fixed, which is first proven in (Hsieh et al., 2021) where
both players run the Optimistic Hedge algorithm with an
adaptive learning rate. Our result generalizes theirs but re-
quires a novel analysis due to both the time-varying matrices
and the two-layer structure of our algorithm. As another
note, this lemma also highlights another difference of our
method compared to (Zhao et al., 2021) — as mentioned in
Section 4 our algorithm shares some similarity with theirs,

but no explicit stability bound is proven or required in their
problem, while stability is crucial for our whole analysis.
We next present the proof sketch for Lemma 10. More
details can be found in Appendix F.

Proof Sketch. We show in Lemma 15 that the sum of the two
players’ dynamic regret (against a sequence u1, . . . , uT ∈
∆m for x-player and a sequence v1, . . . , vT ∈ ∆n for y-
player) can be bounded by
T∑
t=1

(
x⊤t Atvt − u⊤t Atyt

)
= Õ

(
1 + PT
η

+ η(1 + VT )

)

− Ω

(
T∑
t=1

(∥xt − xt−1∥21 + ∥yt − yt−1∥21)

)
,

for any step size 0 < η ≤ Õ(1). Here, PT ≜ PuT + P vT ,
PuT ≜

∑T
t=2 ∥ut − ut−1∥1 and P vT ≜

∑T
t=2 ∥vt − vt−1∥1

are the path-length of comparators. Then, Lemma 10
can be proven by taking different choices of η and the
comparator sequence. For example, consider picking
(ut, vt) = (x∗t , y

∗
t ). Since the saddle point property ensures

x⊤t Aty
∗
t − x∗⊤t Atyt ≥ 0, rearranging and picking the opti-

mal η thus gives the first bound Õ(
√
(1 + VT )(1 + PT ) +

PT ) on the stability. To prove the second bound, pick
(ut, vt) = (ū∗, v̄∗) where (ū∗, v̄∗) is a Nash equilibrium
of the averaged game matrix. Then, we have PuT = P vT = 0

and
∑T
t=1 x

⊤
t Atvt −

∑T
t=1 u

⊤
t Atyt ≥ −O(WT ). Rear-

ranging, picking the optimal η, and using VT ≤ O(WT )

then proves the Õ(1 +WT ) bound.

We finally briefly mention two more new ideas when bound-
ing the duality gap. First, we apply a reduction from general
dynamic regret that competes with any comparator sequence
to its worst-case variant, which in some place helps bound
the duality gap by the aforementioned stability. Second, we
show how the extra set of “dummy” base-learners enables
the meta-algorithm to have a direct control on the duality
gap. We refer the reader to Appendix E.3 for more details.

6. Experiment
In this section, we provide empirical studies on the perfor-
mance of our proposed algorithm in time-varying games.

We construct an environment such that PT = Θ(
√
T ),

WT = Θ(T
3
4 ), and VT = Θ(

√
T ). Under this environment,

our theoretical results indicate that max{RegxT ,RegyT } ≤
Õ(T

1
4 ), NE-RegT ≤ Õ(

√
T ) and Dual-GapT ≤ Õ(T

7
8 ).

Our empirical results validate the effectiveness of our al-
gorithm in this environment, and in fact its performance is
even better than the theoretical upper bounds, which also
encourage us to investigate better guarantees in the future.

The environment setup is as follows. We set the size of
game matrix to be m× n with m = 2 and n = 2. The total
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Figure 1. Empirical results of our algorithm (red line) compared with the base-learners with different step size choices. “Best tuning
(measure)” denotes the curve of the base-learner with the step size choice that performs the best with respect to this “measure”. The three
figures show that our algorithm’s performance on all three measures is comparable to (or even better than) the base-learner with the best
step size tuning, while the base-learners specifically tuned for a single measure cannot perform well on all other measures simultaneously.

time horizon is set as T = 2× 106. Define

A0 =

(
1
2

1
2

− 1
2 − 1

2

)
, A1 =

(
−1 −1

1 1

)
, E =

(
1
3 − 1

2
1
3 − 1

2

)
.

Set T0 = 2⌊T 1/2⌋. The scheduling of the game matrices is
separated into K = 4 epochs and during each epoch k,

At =


A0 + (−1)t · E, t ∈

[
(k−1)T

K
+ 1, (k−1)T

K
+ T0

]
,(

1
2
− (−1)t · T− 1

4

)
A1, t ∈

[
(k−1)T

K
+ T0 + 1, kT

K

]
.

Specifically, during the first phase of each epoch, when t is
even, At = A0 + E, in which x-player’s Nash equilibrium
is x∗t = (0, 1) and y∗t = (1, 0); when t is odd,At = A0−E,
where x∗t = (0, 1) but y∗t = (0, 1). Hence, the variation of
Nash equilibrium of the first phase is Θ(1) per consecutive
rounds. Also, the variation of the game matrix is Θ(1)
per consecutive rounds. During the second phase of each
epoch, the Nash equilibrium of At keeps the same but the
variation of the game matrix is Θ(T− 1

2 ) per consecutive
rounds. Thus, over the T rounds, PT = Θ(T0) = Θ(

√
T ),

VT = Θ(
√
T ). Direct calculation shows WT = Θ(T

3
4 ).

To show the necessity of the two-layer structure, we com-
pare the performance of our two-layer algorithm with one
single base-learner with a fixed step size chosen specifically
to minimize each measure. Concretely, we choose the base-
learner as optimistic Hedge with a fixed-share update, which
satisfies DRVU(η) property as we prove in Appendix D.1.
As mentioned in Section 4, this base-learner with a spe-
cific choice of the step size can indeed achieve a favorable
bound for a specific measure. In our environment setup, to
achieve the best individual regret bound, the step size needs
to be chosen as Θ(1/

√
1 + PT + VT ) = Θ(T− 1

4 ), while
to achieve the best dynamic NE-regret bound, the step size
should be chosen as Θ(

√
PT /(1 + PT + VT )) = Θ(1),

which means that the base-learner cannot guarantee the de-
sired bounds for all the three measures simultaneously.

We implement Algorithm 1 for x-player and Algorithm 2 for
y-player with L = 4 and step size pool ηi = 2i−1

4
√
T

for both
players. The number of base-learners (i.e., the size of step
size pool) is N = ⌊ 1

2 log2 T ⌋ + 1 = 11. We also run our
base-learner with each single ηi separately and pick the base-
learner with best step size for each measure respectively to
see their performance in all the three measures.

Figure 1 plots the results with respect to all the three mea-
sures (individual regret, dynamic NE-regret, and duality
gap). We can observe that our algorithm’s performance on
all three measures is comparable to (or even better than)
the base-learner with the best step size tuning, while the
base-learners specifically tuned for a single measure cannot
perform well on all other measures simultaneously, which
supports our theoretical results and also validate the neces-
sity of a two-layer structure of our proposed algorithm.

7. Discussions and Future Directions
Our work is among the first few to study learning in time-
varying games, and we believe that our proposed perfor-
mance measures and algorithm are important first steps in
this direction. Our results can also be directly extended
to general convex-concave games over a bounded convex
domain (details omitted). We also conduct experiments with
synthetic data to show the effectiveness of our algorithm.

One missing part in our work is the tightness of each bound
— even though they match the best known results for a fixed
game, it is unclear whether they can be further improved in
the general case. We leave this as a future direction. Another
interesting direction would be to consider extending the
results to time-varying multi-player general-sum games.
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A. Algorithm for y-player
For completeness, in this section, we show the algorithm run by y-player as follows. Our algorithm for y-player maintains
N + n base-learners: for i ∈ [N ], the i-th base-learner is any algorithm that satisfies DRVU(ηyi ) where ηyi = 2i−1

L
√
T

and
L is defined in Eq. (4); the last n base-learners are dummy learners, in which the (j +N)-th one always outputting the
basis vector ej ∈ ∆n. Let Sy ≜ S1,y ∪ S2,y with S1,y = [N ] and S2,y = {N + 1, . . . , N + n} denote the set of indices of
base-learners.

At round t, each base-learner j submits her decision yt,j ∈ ∆n to the meta-algorithm, who decides the final decision yt.
After receiving the feedback A⊤

t xt, the meta-algorithm sends this feedback to each base-learner j ∈ S1,y .

The meta-algorithm of y-player performs the following update:

qt = argmin
q∈∆|Sy|

{
εyt ⟨q,m

y
t ⟩+ ∥q − q̂t∥22

}
,

q̂t+1 = argmin
q∈∆|Sy|

{
εyt ⟨q, ℓ

y
t ⟩+ ∥q − q̂t∥22

}
,

(8)

where εyt is the dynamic learning rate for the y-player. The loss vector ℓyt ∈ ∆|Sy| and loss predictor vector my
t ∈ ∆|Sy| is

defined as follows: for any j ∈ Sy ,

ℓyt,j = −y⊤t,jA⊤
t xt + λ∥yt,j − yt−1,j∥21, (9)

my
t,j = −y⊤t,jA⊤

t−1xt−1 + λ∥yt,j − yt−1,j∥21. (10)

The full pseudo code of the algorithm run by y-player is shown in Algorithm 2.

Algorithm 2 Algorithm for the y-player
Input: a base-algorithm A(η) satisfying DRVU(η).
Initialize: a set of base-learners Sy as described in Appendix A, p̂1 = 1

|Sy|1|Sy|, learning rate εy1 = 1
L (c.f. Eq. (4)).

for t = 1, . . . , T do
Receive yt,j ∈ ∆n from each base-learner j ∈ Sy .
Compute my

t based on Eq. (10) and qt based on Eq. (8).
Play the final decision yt =

∑
j∈Sy

qt,jyt,j .
Suffer loss −x⊤t Atyt and observe the loss vector −A⊤

t xt.
Compute ℓyt based on Eq. (9) and q̂t+1 based on Eq. (8).

Update εyt+1 = 1/
√
L2 +

∑t
s=2 ∥A⊤

t xt −A⊤
t−1xt−1∥2∞.

Send −A⊤
t xt as the feedback to each base-learner.

end

B. Discussions on Performance Measure
In this section, we include more discussions on the performance measures presented in Section 3.1.

B.1. Relationship between Dynamic NE-Regret and NE-Regret

Before discussing the relationship between dynamic NE-regret and NE-regret for the game setting, we first review the notion
of dynamic regret and static regret for the online convex optimization (OCO) setting. Then we show that in contrast to the
case in OCO that the worst-case dynamic regret is always larger than static regret, in the online game setting, dynamic
NE-regret is not necessarily larger than the standard NE-regret due to the different structure of the minimax operation.

Dynamic Regret for OCO. OCO can be regarded as an iterative game between the player and the environment. At each
round t ∈ [T ], the player makes the decision xt from a convex feasible domain X ⊆ Rd and simultaneously the environment
chooses the loss function ft : X 7→ R, then the player suffers an instantaneous loss ft(xt) and observe the full information
about the loss function. The standard regret measure is defined as the difference between the cumulative loss of the player
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and that of the best action in hindsight:

RegT =

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (11)

Note that the measure only competes with a single fixed decision over the time. A stronger measure proposed for OCO
problems is called general dynamic regret (Zinkevich, 2003; Zhang et al., 2018; Zhao et al., 2020; 2021), defined as

D-RegT (u1, . . . , uT ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut), (12)

which benchmarks the player’s performance against an arbitrary sequence of comparators u1, . . . , uT ∈ X . The measure is
also studied in the prediction with expert advice setting (Cesa-Bianchi et al., 2012; Luo & Schapire, 2015; Wei et al., 2016).
We emphasize that one of the key tools to achieve our results for time-varying games is to derive a favorable bound for the
above general dynamic regret for each player. See Lemma 15 for the details of our derived bound.

In addition, there is a variant of the above general dynamic regret called the worst-case dynamic regret, defined as

D-Reg∗
T = D-RegT (x

∗
1, . . . , x

∗
T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗
t ), (13)

where x∗t ∈ argminx∈X ft(x) is the minimizer of the online loss function ft. The worst-case dynamic regret is extensively
studied in the literature (Besbes et al., 2015; Yang et al., 2016; Zhang et al., 2020; Zhao & Zhang, 2021). It is worth noting
that both standard regret in Eq. (11) and the worst-case dynamic regret in Eq. (13) are special cases of the general dynamic
regret in Eq. (12). In fact, by choosing the comparators as u1 = . . . = uT ∈ argminx∈X

∑T
t=1 ft(x), the general dynamic

regret recovers the standard static regret; and by choosing the comparators as ut = x∗t ∈ argminx∈X ft(x) for t ∈ [T ], the
general dynamic regret recovers the worst-case dynamic regret.

Notice that the worst-case dynamic regret in Eq. (13) is strictly larger than the static regret in Eq. (11), whereas the general
dynamic regret in Eq. (12) is not necessarily larger than the static regret due to the flexibility of the comparator sequence.

Dynamic NE-Regret of Online Two-Player Zero-Sum Game. In this part, we aim to show that, different from the
relationships between the (worst-case) dynamic regret and static regret in OCO setting, dynamic NE-regret is not necessarily
larger than the NE-regret in the game setting. For a better readability, we here restate the definitions of NE-regret and
dynamic NE-regret. Specifically, NE-regret is defined as the absolute value of the difference between the learners’ cumulative
payoff and the minimax value of the time-averaged payoff matrix, namely,

NE-RegT ≜

∣∣∣∣∣
T∑
t=1

x⊤t Atyt − min
x∈∆m

max
y∈∆n

T∑
t=1

x⊤Aty

∣∣∣∣∣ . (14)

The dynamic NE-regret proposed by this paper is defined as absolute value of the difference between the cumulative payoff
of the two players against the sum of the minimax game value at each round, namely,

DynNE-RegT ≜

∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty

∣∣∣∣∣ . (15)

Comparing to the original NE-regret in Eq. (14), we here move the minimax operation inside the summation of the
benchmark. The operation is similar to that of the worst-case dynamic regret in Eq. (13), which moves the minimization
operation inside the summation of the benchmark compared to the standard static regret in Eq. (11). However, the important
point to note here is: worst-case dynamic regret is always no smaller than the static regret in online convex optimization
setting, whereas the dynamic NE-regret is not necessarily larger than the NE-regret. Recall the example of two-phase online
games in Section 3.1: the online matrix is set as At =

(
1 −1
−1 1

)
when t ≤ T/2, and set as At =

(
1 −1
1 1

)
when t > T/2.

In this case, when both players are indeed using the Nash equilibrium strategy at each round, they will suffer 0 dynamic
NE-regret, while still incur a linear NE-regret as NE-RegT = |T/2− 0| = T/2.
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B.2. Relationships among Individual Regret, Duality Gap, and Dynamic NE-Regret

In this subsection, we discuss the relationship among the three performance measures considered in this work: individual
regret, duality gap, and dynamic NE-regret. As mentioned in Section 3.1, both the individual regret and the dynamic
NE-regret are bounded by duality gap. In the following, we present a formal statement and provide the proof.

Proposition 11. Consider any strategy sequence {xt}Tt=1 and {yt}Tt=1, where xt ∈ ∆m, yt ∈ ∆n, t ∈ [T ]. We have

RegxT ≤ Dual-GapT , RegyT ≤ Dual-GapT , and DynNE-RegT ≤ Dual-GapT , (16)

where all these measures are defined in Section 3.1.

Proof. First, we show that RegxT ≤ Dual-GapT as follows.

RegxT =

T∑
t=1

x⊤t Atyt − min
x∈∆m

T∑
t=1

x⊤Atyt

≤
T∑
t=1

max
y∈∆n

x⊤t Aty − min
x∈∆m

T∑
t=1

x⊤Atyt

≤
T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

min
x∈∆m

x⊤Atyt = Dual-GapT .

The inequality of RegyT ≤ Dual-GapT can be obtained in the same way as shown above.

For the relationship between DynNE-RegT and Dual-GapT , actually we have

T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty ≤
T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty

=

T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

x∗⊤t Aty
∗
t ((x∗t , y

∗
t ) ∈ X ∗

t × Y∗
t )

≤
T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

x∗⊤t Atyt

≤
T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

min
x∈∆m

x⊤Atyt. (17)

In addition,

T∑
t=1

min
x∈∆m

max
y∈∆n

x⊤Aty −
T∑
t=1

x⊤t Atyt ≤
T∑
t=1

x∗⊤t Aty
∗
t −

T∑
t=1

min
x∈∆m

x⊤Atyt

≤
T∑
t=1

x⊤t Aty
∗
t −

T∑
t=1

min
x∈∆m

x⊤Atyt

≤
T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

min
x∈∆m

x⊤Atyt. (18)

Combining Eq. (17) and Eq. (18) shows that DynNE-RegT ≤ Dual-GapT .

C. Discussions on Non-Stationarity Measure
In the following, we present more discussions on the relationships among all three non-stationarity measures (PT , VT , and
WT ) proposed in Section 3.2.
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Comparison between Nash non-stationarity PT and game matrix non-stationarity WT , VT . Here we present two
specific cases to show that the non-stationarity on Nash equilibrium is not comparable to the one on game matrix.

• Case 1. Let At =
(

1 −1
−1 1

)
. Consider the time-varying games with At = 1

T A when t is odd and At = T−1
T A when t

is even. Notice that all At’s have the same (unique) Nash equilibrium x∗t = y∗t = ( 12 ,
1
2 ) in this case, which implies

that the path-length of Nash equilibria is PT = 0. By contrast, the other two non-stationarity measures related to game
payoff matrices are large, concretely, WT = T ( 12 − 1

T ) = Θ(T ) and VT = T · (T−2)2

T 2 = Θ(T ).

• Case 2. Let A′ =
(
1 1
1 1

)
and E =

(
ε ε
−ε −ε

)
for some ε > 0. Consider At = A′ + (−1)tE. In this case, we have

x∗t = (1, 0) when t is odd and x∗t = (0, 1) when t is even; y∗t = ( 12 ,
1
2 ) for all rounds. Then the path-length of Nash

equilibria is large, PT = Θ(T ). By contrast, the other two measures can be small, specifically, WT = Θ(Tε) = O(1)
and VT = Θ(Tε2) = O(1/T ) when choosing ε = O(1/T ).

Comparison between two game matrix non-stationarity measures VT and WT . Here we show the relationship
between two non-stationarity measures regarding game matrix. First, we have VT ≤ O(WT ) as

∑T
t=2 ∥At −At−1∥2∞ ≤

2
∑T
t=2(∥At − Ā∥2∞ + ∥At−1 − Ā∥2∞) ≤ O(WT ). Indeed, VT can be much smaller than WT in some cases, for instance

when At = t
T A with A′ =

(
1 −1
−1 1

)
, VT = T · 1

T 2 = Θ( 1
T ) whereas WT =

∑T
t=1 |

t
T − T+1

2T | = Θ(T ).

D. Verifying DRVU Property
In this section, we present two instantiations of Optimistic Online Mirror Descent (Optimistic OMD) (Rakhlin & Sridharan,
2013) and prove that both of them satisfy the DRVU property in Definition 3 with α, β, γ = Θ̃(1).

Consider the general protocol of online linear optimization over the linear function sequence {f1, . . . , fT } with ft(x) =
⟨x, gt⟩ over a convex feasible set X ⊆ Rd. Optimistic OMD is a generic algorithmic framework parametrized by a sequence
of optimistic vectors M1, . . . ,MT ∈ Rd and a regularizer ψ that is 1-strongly convex with respect to a certain norm ∥ · ∥.
Optimistic OMD starts from an initial point x1 ∈ X and then makes the following two-step update at each round:

xt = argmin
x∈X

ηt⟨Mt, x⟩+Dψ(x, x̂t),

x̂t+1 = argmin
x∈X

ηt⟨gt, x⟩+Dψ(x, x̂t).
(19)

In above, ηt > 0 is the step size at round t, and Dψ(·, ·) is the Bregman divergence induced by the regularizer ψ. Zhao
et al. (2021) prove the following general result for the dynamic regret of Optimistic OMD, and we present the proof in
Appendix D.3 for completeness.
Theorem 12 (Theorem 1 of Zhao et al. (2021)). The dynamic regret of Optimistic OMD whose update rule is specified
in Eq. (19) is bounded by

T∑
t=1

⟨xt, gt⟩ −
T∑
t=1

⟨ut, gt⟩ ≤
T∑
t=1

ηt∥gt −Mt∥2∗ +
T∑
t=1

1

ηt

(
Dψ(ut, x̂t)−Dψ(ut, x̂t+1)

)
−

T∑
t=1

1

ηt

(
Dψ(x̂t+1, xt) +Dψ(xt, x̂t)

)
,

which holds for any comparator sequence u1, . . . , uT ∈ X .

Note that the theorem is very general due to the flexibility in choosing the comparator sequence u1, . . . , uT and the
regularizer ψ. In the following, we present two instantiations of Optimistic OMD: Optimistic Hedge with a fixed-share
update (Herbster & Warmuth, 1998; Cesa-bianchi et al., 2012) and Optimistic Online Gradient Descent (Chiang et al., 2012),
and then we use the above general theorem to prove that the two algorithms indeed satisfy the DRVU property defined
in Definition 3.

D.1. Optimistic Hedge with a Fixed-share Update

In this subsection, we show that Optimistic Hedge with a fixed-shared update indeed satisfies the DRVU property.
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Consider the following online convex optimization with linear loss functions: for t = 1, . . . , T , an online learning algorithm
proposes xt ∈ ∆m at the beginning of round t, and then receives a loss vector gt ∈ Rm and suffer loss ⟨gt, xt⟩.

We first present the algorithmic procedure. Optimistic Hedge with a fixed-share update starts from an initial distribution
x̃1 ∈ ∆m and updates according to

xt = argmin
x∈∆m

η⟨x, ht⟩+Dψ(x, x̃t),

x̂t+1 = argmin
x∈∆m

η⟨x, gt⟩+Dψ(x, x̃t),

x̃t+1 = (1− ξ)x̂t+1 +
ξ

m
1m,

(20)

where η > 0 is a fixed step size, ψ(x) =
∑m
i=1 xi log xi is the negative-entropy regularizer, Dψ(·, ·) is the induced Bregman

divergence, and 0 ≤ ξ ≤ 1 is the fixed-share coefficient. The first step updates by the optimistic vector ht ∈ Rm that
serving as a guess of the next-round loss, the second step updates by the received loss gt ∈ Rm, and the final step admits a
fixed-share update. We have the following result on the dynamic regret of Optimistic Hedge with a fixed-share update.

Lemma 13. Set the fixed-share coefficient as ξ = 1/T . The dynamic regret of Optimistic Hedge with a fixed-share update is
at most

T∑
t=1

⟨gt, xt⟩ −
T∑
t=1

⟨gt, ut⟩ ≤
(3 + log(mT ))(1 + PuT )

η
+ η

T∑
t=1

∥gt − ht∥2∞ − 1

4η
∥xt − xt−1∥21, , (21)

where u1, . . . , uT ∈ ∆m is any comparator sequence and PT =
∑T
t=2∥ut−ut−1∥1 denotes the path-length of comparators.

Therefore, when choosing the optimism as ht = gt−1, the algorithm satisfies the DRVU(η) property with parameters
α = 3 + log(mT ), β = 1, and γ = 1

4 .

Proof. First we note that the chosen regularizer, ψ(x) =
∑m
i=1 xi log xi, is 1-strongly convex in ∥ · ∥1, because for any

x, x′ ∈ ∆m it holds that

ψ(x)− ψ(x′)− ⟨ψ(x′), x− x′⟩ =
m∑
i=1

xi log
xi
x′i

≥ 1

2
∥x− x′∥21,

where the last inequality is by Pinsker’s inequality. Therefore, we can apply the general result of Theorem 12 with
ft(x) = ⟨gt, x⟩ and Mt = ht and achieve the following result,

T∑
t=1

⟨gt, xt⟩ −
T∑
t=1

⟨gt, ut⟩ ≤ η

T∑
t=1

∥gt − ht∥2∞ +
1

η

T∑
t=1

(Dψ(ut, x̃t)−Dψ(ut, x̂t+1))

− 1

η

T∑
t=1

(Dψ(x̂t+1, xt) +Dψ(xt, x̃t)) . (22)

We now evaluate the right-hand side. For the second term
∑T
t=1(Dψ(ut, x̃t)−Dψ(ut, x̂t+1)), we have

Dψ(ut, x̃t)−Dψ(ut, x̂t+1)

=

m∑
i=1

ut,i log
ut,i
x̃t,i

−
m∑
i=1

ut,i log
ut,i
x̂t+1,i

=

m∑
i=1

ut,i log
x̂t+1,i

x̃t,i

=

(
m∑
i=1

ut,i log
1

x̃t,i
−

m∑
i=1

ut−1,i log
1

x̂t,i

)
+

(
m∑
i=1

ut−1,i log
1

x̂t,i
−

m∑
i=1

ut,i log
1

x̂t+1,i

)
. (23)

Notice that the first term above can be further upper bounded by

m∑
i=1

ut,i log
1

x̃t,i
−

m∑
i=1

ut−1,i log
1

x̂t,i
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=

m∑
i=1

(ut,i − ut−1,i) log
1

x̃t,i
+

m∑
i=1

ut−1,i log
x̂t,i
x̃t,i

≤ log
m

ξ
· ∥ut − ut−1∥1 + log

1

1− ξ
,

where the inequality comes from the fixed-share update procedure, where we have log 1
x̃t,i

≤ log m
ξ and log

x̂t,i

x̃t,i
≤ log 1

1−ξ
for any i ∈ [m] and t ∈ [T ]. Then, taking summation of Eq. (23) over t = 2 to T and combining the fact that
(Dψ(u1, x̃1)−Dψ(u1, x̂2)) =

∑m
i=1 u1,i log

x̂2,i

x̃1,i
and x̃1,i ≥ ξ

m for any i ∈ [m], we get

1

η

T∑
t=1

(Dψ(ut, x̃t)−Dψ(ut, x̂t+1))

≤ 1

η

(
log

m

ξ

T∑
t=2

∥ut − ut−1∥1 + (T − 1) log
1

1− ξ
+

m∑
i=1

u1,i log
1

x̂2,i
+

m∑
i=1

u1,i log
x̂2,i
x̃1,i

)

≤ 1

η

(
log

m

ξ

(
1 +

T∑
t=2

∥ut − ut−1∥1
)
+ (T − 1) log

1

1− ξ

)
. (24)

Next, we proceed to analyze the negative term , i.e., the third term of the right-hand side in Eq. (22). Indeed,
T∑
t=2

(Dψ(x̂t, xt−1) +Dψ(xt, x̃t))

≥ 1

2

T∑
t=2

(
∥x̂t − xt−1∥21 + ∥xt − x̃t∥21

)
(Pinsker’s inequality)

≥ 1

4

T∑
t=2

(
∥xt − xt−1 + x̂t − x̃t∥21

)
(∥x∥21 + ∥y∥21 ≥ 1

2∥x+ y∥21)

=
1

4

T∑
t=2

∥xt − xt−1 + ξ
(
x̂t −

1

m
1m
)
∥21 (due to the fixed-share update)

≥ 1

4

T∑
t=2

∥xt − xt−1∥21 −
T∑
t=2

ξ

2
∥xt − xt−1∥1

∥∥∥∥x̂t − 1

m
1m

∥∥∥∥
1

(∥a− b∥21 ≥ ∥a∥21 − 2∥a∥1 · ∥b∥1)

≥ 1

4

T∑
t=2

∥xt − xt−1∥21 − 2ξ(T − 1). (25)

Substituting Eq. (24) and Eq. (25) into the general dynamic regret upper bound in Eq. (22), we achieve
T∑
t=1

⟨gt, xt − ut⟩ ≤ η

T∑
t=1

∥gt − ht∥2∞ +
1

η
log

m

ξ
· (1 + PuT ) +

1

η
(T − 1) log

1

1− ξ
+

2ξ

η
(T − 1)− 1

4η

T∑
t=2

∥xt − xt−1∥21

≤ η

T∑
t=1

∥gt − ht∥2∞ +
1

η
(3 + log(mT )(1 + PuT ))−

1

4η

T∑
t=2

∥xt − xt−1∥21,

where the last step holds because we set ξ = 1
T and

1

η
(T − 1) log

1

1− ξ
+

2ξ

η
(T − 1) =

1

η
(T − 1) log

(
1 +

ξ

1− ξ

)
+

2ξ

η
(T − 1) ≤ 1

η
(T − 1)

ξ

1− ξ
+

2ξ

η
(T − 1) ≤ 3

η
.

When choosing the optimism as ht = gt−1, we then have

T∑
t=1

⟨gt, xt − ut⟩ ≤ η

T∑
t=1

∥gt − gt−1∥2∞ +
3 + log(mT )

η
(1 + PuT )−

1

4η

T∑
t=2

∥xt − xt−1∥21,

which verifies the DRVU property of Definition 3, with α = 3 + log(mT ), β = 1, and γ = 1
4 . This ends the proof.
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D.2. Optimistic Online Gradient Descent

In this subsection, we show that Optimistic Online Gradient Descent (Optimistic OGD) with a fixed-shared update indeed
satisfies the DRVU property.

Consider the following online convex optimization with linear loss functions: for t = 1, . . . , T , an online learning algorithm
proposes xt ∈ ∆m at the beginning of round t, and then receives a loss vector gt ∈ Rm and suffer loss ⟨gt, xt⟩.

We first present the algorithmic procedure. Optimistic OGD starts from an initial distribution x̂1 ∈ ∆m and updates
according to

xt = argmin
x∈∆m

η⟨x, ht⟩+Dψ(x, x̂t),

x̂t+1 = argmin
x∈∆m

η⟨x, gt⟩+Dψ(x, x̂t),
(26)

where η > 0 is a fixed step size and ψ(x) = 1
2∥x∥

2
2 is the Euclidean regularizer and Dψ(·, ·) is the induced Bregman

divergence. Compared to Eq. (20). The first step updates by the optimistic vector ht ∈ Rm that serving as a guess of the
next-round loss, the second step updates by the received loss gt ∈ Rm. We note that Optimistic OGD does not require a
fixed-share mixing operation to achieve dynamic regret.

Then, we have the following result on the dynamic regret of Optimistic OGD.

Lemma 14. The dynamic regret of Optimistic OGD is at most

T∑
t=1

⟨gt, xt⟩ −
T∑
t=1

⟨gt, ut⟩ ≤
(m+ 2)PuT

η
+
ηm

2

T∑
t=2

∥gt − ht∥2∞ − 1

4ηm

T∑
t=2

∥xt − xt−1∥21 +O(1), (27)

where u1, . . . , uT ∈ ∆m is any comparator sequence and PT =
∑T
t=2∥ut−ut−1∥1 denotes the path-length of comparators.

Therefore, when choosing the optimism as ht = gt−1, the algorithm satisfies the DRVU(η) property with parameters
α = m+ 2, β = m

2 , and γ = 1
4m .

Proof. From the general result of Theorem 12, we have the following dynamic regret bound for Optimistic OGD:

T∑
t=1

⟨gt, xt − ut⟩ ≤
η

2

T∑
t=1

∥gt − ht∥22 +
1

2η

T∑
t=1

(
∥x̂t − ut∥22 − ∥x̂t+1 − ut∥22

)
− 1

2η

T∑
t=1

(
∥x̂t+1 − xt∥22 + ∥xt − x̂t∥22

)
.

Besides, we have

T∑
t=1

(
∥x̂t − ut∥22 − ∥x̂t+1 − ut∥22

)
≤

T∑
t=2

∥x̂t − ut∥22 −
T∑
t=2

∥x̂t − ut−1∥22 +D2

=

T∑
t=2

(∥ut − ut−1∥2 · ∥x̂t + x̂t − ut − ut−1∥2) +D2

≤
T∑
t=2

(∥ut − ut−1∥2 · ∥x̂t + x̂t − ut − ut−1∥1) +D2

≤ D2 + 4

T∑
t=2

∥ut − ut−1∥2

≤ D2 + 4

T∑
t=2

∥ut − ut−1∥1,
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where we introduce the notation D = supx,y∈∆m
∥x− y∥2, and it can be verified that D ≤

√
2m. Further we have

T∑
t=1

(
∥x̂t+1 − xt∥22 + ∥xt − x̂t∥22

)
≥

T∑
t=2

(
∥x̂t − xt−1∥22 + ∥xt − x̂t∥22

)
≥ 1

2

T∑
t=2

∥xt − xt−1∥22 ≥ 1

2m

T∑
t=2

∥xt − xt−1∥21.

Combining the above three inequalities, we achieve that

T∑
t=1

⟨gt, xt − ut⟩ ≤
η

2

T∑
t=1

∥gt − ht∥22 +
1

η
(m+ 2PuT )−

1

4ηm

T∑
t=2

∥xt − xt−1∥21

≤ ηm

2

T∑
t=1

∥gt − ht∥2∞ +
m+ 2

η
(1 + PuT )−

1

4ηm

T∑
t=2

∥xt − xt−1∥21.

Therefore, choosing the optimism as ht = gt−1, we then verify the DRVU property of Definition 3 for Optimistic OGD,
with α = m+ 2, β = m

2 , and γ = 1
4m . This ends the proof.

D.3. Proof of Theorem 12

Proof. We decompose the instantaneous dynamic regret into three terms and bound each one respectively. Specifically,

ft(xt)− ft(ut) ≤ ⟨∇ft(xt), xt − ut⟩ = ⟨∇ft(xt)−Mt, xt − x̂t+1⟩+ ⟨Mt, xt − x̂t+1⟩+ ⟨∇ft(xt), x̂t+1 − ut⟩ .

The first term can be controlled by Lemma 22, which guarantees that the OMD update satisfies ∥xt− x̂t+1∥ ≤ ηt∥∇ft(xt)−
Mt∥∗ and thus,

⟨∇ft(xt)−Mt, xt − x̂t+1⟩ ≤ ∥∇ft(xt)−Mt∥∗ · ∥xt − x̂t+1∥ ≤ ηt∥∇ft(xt)−Mt∥2∗.

We now analyze the remaining two terms on the right-hand side. By the Bregman proximal inequality in Lemma 21 and the
OMD update step xt = argminx∈X ηt⟨Mt, x⟩+Dψ(x, x̂t), we have

⟨Mt, xt − x̂t+1⟩ ≤
1

ηt

(
Dψ(x̂t+1, x̂t)−Dψ(x̂t+1, xt)−Dψ(xt, x̂t)

)
.

Similarly, the OMD update step x̂t+1 = argminx∈X ηt⟨∇ft(xt), x⟩+Dψ(x, x̂t) implies

⟨∇ft(xt), x̂t+1 − ut⟩ ≤
1

ηt

(
Dψ(ut, x̂t)−Dψ(ut, x̂t+1)−Dψ(x̂t+1, x̂t)

)
.

Combining the above three inequalities yields an upper bound for the instantaneous dynamic regret:

ft(xt)− ft(ut) ≤ ηt∥∇ft(xt)−Mt∥2∗ +
1

ηt

(
Dψ(ut, x̂t)−Dψ(ut, x̂t+1)−Dψ(x̂t+1, xt)−Dψ(xt, x̂t)

)
. (28)

Taking the summation over all iterations completes the proof.

E. Proofs for Section 5
In this section, we provide the proofs for the main results presented in Section 5, including individual regret of Theorem 4,
dynamic NE-regret of Theorem 6, and duality gap of Theorem 8.

E.1. Proof of Theorem 4 (Individual Regret)

Proof. In the following, we focus on the individual regret of x-player, and the result for y-player can be proven in a similar
way. The proof is split into three parts.

(1) First, we prove the Õ(
√
T ) individual regret bound for x-player no matter whether the y-player follows the strategy

suggested by Algorithm 2.
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(2) Second, we prove the Õ(
√
1 + VT + PT ) bound, which depends on VT (the variation of the payoff matrices) and PT

(the path-length of the Nash equilibrium sequence).
(3) Finally, we prove the Õ(

√
1 + VT +WT ) bound, which depends on VT and WT , the variation and variance of the

payoff matrices.

Our analysis is mainly based on the general dynamic regret bound proven in Lemma 15. Specifically, using Eq. (35), setting
a fixed comparator, i.e., u1 = . . . = uT ∈ argminx∈∆m

∑T
t=1 x

⊤Atyt (then the path-length PuT = 0), and also dropping
the last three negative terms in the regret upper bound, for any i ∈ S1,x we have

T∑
t=1

x⊤t Atyt −min
x

T∑
t=1

x⊤Atyt ≤ Õ

(
1

ηxi
+ ηxi

T∑
t=2

∥At −At−1∥2∞ + ηxi

T∑
t=2

∥yt − yt−1∥21

)
.

In the following, we further bound the right-hand side in three different ways to achieve different individual regret bounds.

The Õ(
√
T ) robustness bound. First of all, we prove that for x-player, her individual regret against y-player’s actions

is at most Õ(
√
T ), which holds even when y-player does not follow strategies suggested by Algorithm 2. Note that∑T

t=2∥At −At−1∥2∞ +
∑T
t=2∥yt − yt−1∥21 ≤ O(T ). Therefore, we have

T∑
t=1

x⊤t Atyt −min
x

T∑
t=1

x⊤Atyt ≤ Õ
(

1

ηxi
+ ηxi T

)
≤ Õ(

√
T ),

where the last inequality is achieved by taking i = i† such that ηi† = Θ(1/
√
T ). Note that the choice is viable due to the

configuration of the step size pool. Similarly, we can also attain an Õ(
√
T ) robustness bound for y-player.

Next, we demonstrate two adaptive bounds of the individual regret when both players follow our prescribed strategy (namely,
x-player is using Algorithm 1 and y-player is using Algorithm 2). They are both in the worst case Õ(

√
T ) but can be much

smaller if the sequence of online payoff matrices is less non-stationary.

The Õ(
√
1 + VT + PT ) bound. We first consider the individual regret bound that scales with the variation of Nash

equilibria denoted by PT ≜ min∀t,(x∗
t ,y

∗
t )∈X∗

t ×Y∗
t

∑T
t=2

(
∥x∗t − x∗t−1∥1 + ∥y∗t − y∗t−1∥1

)
and VT =

∑T
t=2∥At−At−1∥2∞.

According to Lemma 16, which proves the stability of the dynamics with respect to PT and VT when both players are
following the suggested strategy, we have

∑T
t=2 ∥yt − yt−1∥21 ≤ Õ(

√
(1 + VT )(1 + PT ) + PT ). Therefore, we achieve

T∑
t=1

x⊤t Atyt − min
x∈∆m

x⊤Atyt ≤ Õ
(

1

ηxi
+ ηxi VT + ηxi

(√
(1 + VT )(1 + PT ) + PT

))
≤ Õ

(
1

ηxi
+ ηxi (1 + VT + PT )

)
(by AM-GM inequality)

≤ Õ
(√

1 + VT + PT

)
,

where in the last inequality, we choose i = i‡ such that ηxi‡ ∈ [ 12η
x
∗ , 2η

x
∗ ] where ηx∗ = min{ 1√

1+VT+PT
, 1
L}. The choice of

ηxi‡ is also viable due to the configuration of the step size pool.

The Õ(
√
1 + VT +WT ) bound. We then consider the individual regret bound that scales with VT and the variance of

the game matrices denoted by WT =
∑T
t=1∥At − Ā∥∞ with Ā = 1

T

∑T
t=1At being the averaged game matrix. Then

according to Lemma 18, which proves the stability of the dynamics with respect to WT when both players are following the
suggested strategy, we have

∑T
t=2 ∥yt − yt−1∥21 ≤ Õ(1 +WT ). Therefore, we achieve

T∑
t=1

x⊤t Atyt − min
x∈∆m

x⊤Atyt ≤ Õ
(

1

ηxi
+ ηxi (VT + 1 +WT )

)
≤ Õ

(√
1 + VT +WT

)
,

where in the last inequality, we choose i = i∗ such that ηxi∗ ∈ [ 12η
x
∗ , 2η

x
∗ ] where ηx∗ = min{ 1√

1+VT+WT
, 1
L}. The choice of

ηxi∗ is also viable due to the configuration of the step size pool.

Combining above three upper bounds finishes the proof of Theorem 4.
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E.2. Proof of Theorem 6 (Dynamic NE-Regret)

Proof. The proof for the dynamic NE-regret measure consists of two parts. We first prove the Õ(
√
(1 + VT )(1 + PT )+PT )

bound and then prove the Õ(1 +WT ) bound.

The Õ(
√
(1 + VT )(1 + PT ) + PT ) bound. Let (x∗t , y

∗
t ) be the Nash equilibrium of the online game matrix At. We

consider the upper bound in terms of the non-stationarity measure PT ≜
∑T
t=2

(
∥x∗t − x∗t−1∥1 + ∥y∗t − y∗t−1∥1

)
.6 As

(x∗t , y
∗
t ) is the Nash equilibrium of At, the inequality x∗⊤t Aty ≤ x∗⊤t Aty

∗
t ≤ x⊤Aty

∗
t holds for any x ∈ ∆m and y ∈ ∆n.

We notice that

min
x

max
y

x⊤Aty = x∗⊤t Aty
∗
t ≥ x∗⊤t Atyt ≥ min

x
x⊤Atyt,

min
x

max
y

x⊤Aty = x∗⊤t Aty
∗
t ≤ x⊤t Aty

∗
t ≤ max

y
x⊤t Aty.

Therefore, we have

T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty ≤
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Atyt,

−
T∑
t=1

x⊤t Atyt +

T∑
t=1

min
x

max
y

x⊤Aty ≤ −
T∑
t=1

x⊤t Atyt +

T∑
t=1

x⊤t Aty
∗
t ,

which means that the dynamic NE-regret is upper bounded by the maximum of the following two dynamic regret bounds:∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ ≤ max

{
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Atyt,−
T∑
t=1

x⊤t Atyt +

T∑
t=1

x⊤t Aty
∗
t

}
.

Moreover, according to the general dynamic regret analysis in Lemma 15 with the choice of {(ut, vt)}Tt=1 = {(x∗t , y∗t )}Tt=1

and dropping the three negative terms, we have

T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Atyt ≤ Õ

(
1 + P xT
ηxi

+ ηxi VT + ηxi

T∑
t=2

∥yt − yt−1∥21

)
.

where P xT =
∑T
t=2∥x∗t − x∗t−1∥1 denotes the path-length of the Nash equilibria of the x-player. According to Lemma 16,

we have
∑T
t=2 ∥yt − yt−1∥21 ≤ Õ(

√
(1 + VT )(1 + PT ) + PT ), so using AM-GM inequality achieves

T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Atyt ≤ Õ
(
1 + P xT
ηxi

+ ηxi VT + ηxi (
√
(1 + VT )(1 + PT ) + PT )

)
≤ Õ

(
1 + PT
ηxi

+ ηxi (1 + VT + PT )

)
≤ Õ

(√
(1 + PT )(1 + VT + PT ) + PT

)
≤ Õ

(√
(1 + PT )(1 + VT ) + PT

)
.

where the last inequality is by choosing i = i∗ such that ηxi∗ ∈ [ 12η
x
∗ , 2η

x
∗ ] where ηx∗ = min

{√
1+PT

1+VT+PT
, 1
L

}
.

6Strictly speaking, the path-length non-stationarity measure is PT ≜ min∀t,(x∗
t ,y

∗
t )∈X∗

t ×Y∗
t

∑T
t=2 (∥x

∗
t − x∗

t−1∥1 + ∥y∗
t − y∗

t−1∥1)
as the Nash equilibrium of each round may not unique. Fortunately, our analysis holds for any Nash equilibrium, so we can in particular
take the sequence of Nash equilibria making

∑T
t=2 (∥x

∗
t − x∗

t−1∥1 + ∥y∗
t − y∗

t−1∥1) smallest possible. The quantity PT is only used in
the analysis, and our algorithm does not require any prior knowledge about it.
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The Õ(1 +WT ) bound. According to Lemma 17, we have the NE-regret is bounded by the maximum of two individual
regret upper bounds plus the variance of the game matrices.∣∣∣∣∣

T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ ≤ max

{
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤Atyt,

T∑
t=1

x⊤t Aty
∗ −

T∑
t=1

x⊤t Atyt

}
+ 2WT .

Using the Õ(
√
1 + VT +WT ) individual regret bound proven in Theorem 4 and the fact that VT ≤ O(WT ), we have∣∣∣∣∣

T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ ≤ Õ
(√

1 + VT +WT +WT

)
≤ Õ (1 +WT ) .

To summarize, combining the above two upper bounds for dynamic NE-regret, we finally achieve the following guarantee:∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ ≤ Õ
(
min

{√
(1 + VT )(1 + PT ) + PT , 1 +WT

})
,

which completes the proof of Theorem 6.

E.3. Proof of Theorem 8 (Duality Gap)

Proof. In Theorem 8, there are indeed two different upper bounds for duality gap of our approach, as restated below.

T∑
t=1

x⊤t Atȳ
∗
t −

T∑
t=1

x̄∗⊤t Atyt ≤ Õ
(
min{T 3

4

(
1 +QT

) 1
4 , T

1
2 (1 +Q

3
2

T + PTQT )
1
2 }
)
,

where QT ≜ VT +min{PT ,WT } is introduced to simplify the notation. Now we will prove the two bounds respectively.

The Õ(T
3
4

(
1 + VT +min{PT ,WT }

) 1
4 ) bound. For convenience of the following proof, we introduce the notation of

ft(x) ≜ x⊤Atyt, and then the best response is essentially the minimizer of the function, namely, x̄∗t = argminx∈∆m
ft(x).

We now investigate the following worst-case dynamic regret of the x-player,

T∑
t=1

x⊤t Atyt −
T∑
t=1

x̄∗⊤t Atyt =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x̄
∗
t ),

which benchmarks the cumulative loss of x-player’s actions with the best response at each round. We decompose the
quantity into the following two terms:

T∑
t=1

ft(xt)−
T∑
t=1

ft(x̄
∗
t ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)︸ ︷︷ ︸
term (i)

+

T∑
t=1

ft(ut)−
T∑
t=1

ft(x̄
∗
t )︸ ︷︷ ︸

term (ii)

,

where we insert a term
∑T
t=1 ft(ut) as an anchor quantity. Notably, this comparator sequence {ut}Tt=1 can be arbitrarily

set without affecting the above equation. In particular, we choose it as a piecewise-stationary comparator sequence such
that I1, I2, . . . , IK is an even partition of the total horizon [T ] with |Ik| = ∆ for k = 1, . . . ,K (for simplicity, suppose the
time horizon T is divisible by epoch length ∆), and for any t ∈ Ik, ut ≜ argminx∈∆m

∑
t∈Ik

ft(x). Then, following the
general dynamic regret bound proven in Lemma 15, for this particular comparator sequence and for any i ∈ S1,x, we have
the following upper bound for term (i):

T∑
t=1

ft(xt)−
T∑
t=1

ft(ut)

≤ O
(
α(1 + PuT )

ηxi

)
+ ηxi cβ

T∑
t=2

∥At −At−1∥2∞ + ηxi cβ

T∑
t=2

∥yt − yt−1∥21 +
(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21
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− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22)− λ

T∑
t=1

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + Õ(1)

≤ Õ

(
1 + PuT
ηxi

+ ηxi

T∑
t=2

∥At −At−1∥2∞

)
+ ηxi cβ

T∑
t=2

∥yt − yt−1∥21

− L

2

T∑
t=2

∥pt − pt−1∥21 − λ

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥21 (λ− γ
ηxi

= γL
2 − γ

ηxi
≤ 0)

≤ Õ

(
1 + PuT
ηxi

+ ηxi

T∑
t=2

∥At −At−1∥2∞

)
+ 2ηxi cβ

T∑
t=2

∥qt − qt−1∥21 + 2ηxi cβ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21

− L

2

T∑
t=2

∥pt − pt−1∥21 − λ

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥21 (by Eq. (43))

≤ Õ

(
T/∆

ηxi
+ ηxi

T∑
t=2

∥At −At−1∥2∞

)
+ 2ηxi cβ

T∑
t=2

∥qt − qt−1∥21 + 2ηxi cβ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21

− L

2

T∑
t=2

∥pt − pt−1∥21 − λ

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥21,

where the last step holds because PuT =
∑T
t=2∥ut − ut−1∥1 = O(K) = O(T/∆) by the specific construction of the

comparator sequence.

Moreover, in Lemma 20 we present a general result to relate the function-value difference between the sequence of piecewise
minimizers and the sequence of each-round minimizers, so term (ii) can be well upper bounded as follows.

T∑
t=1

ft(ut)−
T∑
t=1

ft(x̄
∗
t ) ≤ 2∆

T∑
t=2

∥Atyt −At−1yt−1∥∞.

Combining the above two inequalities, we get the worst-case dynamic regret for the x-player: for any i ∈ S1,x, we have
T∑
t=1

x⊤t Atyt −
T∑
t=1

x̄∗⊤t Atyt

≤ Õ
(
T/∆

ηxi
+ ηxi VT

)
+ 2ηxi cβ

T∑
t=2

∥qt − qt−1∥21 + 2ηxi cβ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21

+ 2∆

T∑
t=2

∥Atyt −At−1yt−1∥∞ − L

2

T∑
t=2

∥pt − pt−1∥21 − λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21.

Similarly, we can also obtain the worst-case dynamic regret for the y-player: for any j ∈ S1,y , we have
T∑
t=1

x⊤t Atȳ
∗
t −

T∑
t=1

x⊤t Atyt

≤ Õ

(
T/∆

ηyj
+ ηyj VT

)
+ 2ηyj cβ

T∑
t=2

∥pt − pt−1∥21 + 2ηyj cβ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21

+ 2∆

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥∞ − L

2

T∑
t=2

∥qt − qt−1∥21 − λ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21.

Combining the two dynamic regret bounds yields: for any i ∈ S1,x and any j ∈ S1,y ,
T∑
t=1

x⊤t Atȳ
∗
t −

T∑
t=1

x̄∗⊤t Atyt
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≤ Õ

(
T/∆

ηxi
+
T/∆

ηyj
+ ηxi VT + ηyj VT

)

+ 2∆

T∑
t=2

∥Atyt −At−1yt−1∥∞ + 2∆

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥∞

+

(
2ηyj cβ − L

2

) T∑
t=2

∥qt − qt−1∥21 +
(
2ηxi cβ − L

2

) T∑
t=2

∥pt − pt−1∥21

+ (2ηyj cβ − λ)

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 + (2ηxi cβ − λ)

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21

≤ Õ

(
T/∆

ηxi
+
T/∆

ηyj
+ ηxi VT + ηyj VT

)
+ 2∆

T∑
t=2

∥Atyt −At−1yt−1∥∞ + 2∆

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥∞, (29)

where the last inequality is because 2ηyj cβ − L
2 ≤ 0, 2ηxi cβ − L

2 ≤ 0, 2ηxi cβ − γ ≤ 0, 2ηxi cβ − γ ≤ 0 based on the fact

that ηyj ≤ 1
L , ηxi ≤ 1

L and L = max{4,
√
16cβ,

√
8cβ
γ } and λ = γL

2 .

Next, we bound the last two terms in the right-hand side of Eq. (29). Indeed,

T∑
t=2

∥Atyt −At−1yt−1∥∞ +

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥∞

≤
√
T

(
T∑
t=2

∥Atyt −At−1yt−1∥2∞ +

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥2∞

) 1
2

≤ Õ
(√

T (1 + VT +min{PT ,WT })
)
,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality uses the gradient-variation bound
in Lemma 19. Plugging this into Eq. (29) and choosing ηxi , η

y
j ∈ [ 12η∗, 2η∗] with η∗ = min

{
1
L ,
√

T
∆(1+VT )

}
, we have

T∑
t=1

x⊤t Atȳ
∗
t −

T∑
t=1

x̄∗⊤t Atyt ≤ Õ

(√
T (1 + VT )

∆
+
T

∆
+∆

√
T (1 + VT +min{PT ,WT })

)

≤ Õ
(
T

∆
+∆

√
T (1 + VT +min{PT ,WT })

)
= Õ

(
T

3
4

(
1 + VT +min{PT ,WT }

) 1
4

)
.

where the last inequality is by setting the epoch length ∆ optimally. We remark that the above choice of ηxi , η
y
j is viable due

to the construction of step size pool and the fact
√
T/(∆(1 + VT )) ≥ Θ(1/T ); besides, the setting of epoch length ∆ is

also feasible, and notably the epoch length is only used in the analysis and our algorithm does not require its information.

The Õ(T
1
2 (1 +Q

3
2

T + PTQT )
1
2 ) bound. From the update rule of the meta-algorithm and Eq. (28) proven in Theorem 12

with ψ(x) = 1
2∥x∥

2
2, we have the following instantaneous regret bound for any p ∈ ∆|Sx| and q ∈ ∆|Sy|.

⟨pt − p, ℓxt ⟩ ≤ εxt ∥ℓxt −mx
t ∥22 +

1

εxt

(
∥p̂t − p∥22 − ∥p̂t+1 − p∥22 − ∥pt − p̂t+1∥22 − ∥pt − p̂t∥22

)
,

⟨qt − q, ℓyt ⟩ ≤ εyt ∥ℓ
y
t −my

t ∥22 +
1

εyt

(
∥q̂t − q∥22 − ∥q̂t+1 − q∥22 − ∥qt − q̂t+1∥22 − ∥qt − q̂t∥22

)
.

(30)

Recall that the feedback loss and optimism are set as follows. For x-player, we have ℓxt = X⊤
t Atyt + λXδ

t and mx
t =

X⊤
t At−1yt−1 + λXδ

t , where Xt = [xt,1;xt,2; . . . , xt,|Sx|] and Xδ
t = [∥xt,1 − xt−1,1∥21; ∥xt,2 − xt−1,2∥21; . . . ; ∥xt,|Sx| −

xt−1,|Sx|∥21]. For y-player, we have ℓyt = −Y ⊤
t A

⊤
t xt + λY δt , my

t = −Y ⊤
t A

⊤
t−1xt−1 + λY δt , Yt = [yt,1; yt,2; . . . ; yt,|Sy|]
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and Y δt = [∥yt,1 − yt−1,1∥21; ∥yt,2 − yt−1,2∥21; . . . ; ∥yt,|Sy| − yt−1,|Sy|∥21]. Note that Sx ≜ S1,x ∪ S2,x with S1,x = [N ]

and S2,x = {N + 1, . . . , N + m}; besides, Sy ≜ S1,y ∪ S2,y with S1,y = [N ] and S2,y = {N + 1, . . . , N + n}.
N = ⌊ 1

2 log2 T ⌋+ 1.

Then using Cauchy-Schwarz inequality and noticing that the dimensions of Xt, Yt are Θ̃(1), we have

∥ℓxt −mx
t ∥22 = ∥X⊤

t Atyt −X⊤
t At−1yt−1∥22 ≤ c′

(
∥At −At−1∥2∞ + ∥yt − yt−1∥22

)
,

∥ℓyt −my
t ∥22 = ∥ − Y ⊤

t A
⊤
t xt +−Y ⊤

t A
⊤
t−1xt−1∥22 ≤ c′

(
∥At −At−1∥2∞ + ∥xt − xt−1∥22

)
,

(31)

where c′ > 0 is a universal constant independent with the time horizon and the non-stationarity measures (ignoring the
dependence on poly-logarithmic factors in T ).

In the following, we will specify the choice of the compared weight vectors. Concretely, let (x∗t , y
∗
t ) be any Nash equilibrium

of the payoff matrix At. We pick the compared weight distribution p = p∗t ∈ ∆|Sx| and q = q∗t ∈ ∆|Sy| such that both p∗t
and q∗t have supports only on the additional dummy base-learners and the supports finally result in a Nash equilibrium of At,
namely, p∗t,i = q∗t,j = 0 for i = 1, . . . , |S1,x| and j = 1, . . . , |S1,y|, p∗t,i+|S1,x| = x∗t,i for i = 1, . . . ,m and q∗t,j+|S1,y| = y∗t,j
for j = 1, . . . , n. By definition, we have〈

pt − p∗t , X
⊤
t Atyt

〉
+
〈
qt − q∗t ,−Y ⊤

t Atxt
〉
= −x∗⊤t Atyt + x⊤t Aty

∗
t ≥ 0. (32)

Moreover, combining Eq. (30) and Eq. (31) yields the following results:〈
pt − p∗t , X

⊤
t Atyt

〉
≤ 1

εxt

(
∥p̂t − p∗t ∥22 − ∥p̂t+1 − p∗t ∥22 − ∥pt − p̂t+1∥22 − ∥pt − p̂t∥22

)
+ c′ · εxt

(
∥At −At−1∥2∞ + ∥yt − yt−1∥22

)
+ λ

〈
p∗t − pt, X

δ
t

〉
.

Notice that in fact we have
〈
p∗t , X

δ
t

〉
= 0 due to the choice of p∗t . More specifically, p∗t has support only on the

additional dummy base-learners and for those dummy learners their stability quantity is zero (namely, Xδ
t,i = 0 for

i = |S1,x|+ 1, . . . , |S1,x|+m). In addition, it is clear that
〈
pt, X

δ
t

〉
≥ 0, so we have〈

pt − p∗t , X
⊤
t Atyt

〉
≤ 1

εxt

(
∥p̂t − p∗t ∥22 − ∥p̂t+1 − p∗t ∥22 − ∥pt − p̂t+1∥22 − ∥pt − p̂t∥22

)
+ c′ · εxt

(
∥At −At−1∥2∞ + ∥yt − yt−1∥22

)
.

Similarly, we get〈
qt − q∗t ,−Y ⊤

t Atxt
〉

≤ 1

εyt

(
∥q̂t − q∗t ∥22 − ∥q̂t+1 − q∗t ∥22 − ∥qt − q̂t+1∥22 − ∥qt − q̂t∥22

)
+ c′ · εyt

(
∥At −At−1∥2∞ + ∥xt − xt−1∥22

)
.

Adding the above two inequalities and rearranging the terms, based on Eq. (32), we have

1

εxt

(
∥pt − p̂t+1∥22 + ∥pt − p̂t∥22

)
+

1

εyt

(
∥qt − q̂t+1∥22 + ∥qt − q̂t∥22

)
≤ 1

εxt

(
∥p̂t − p∗t ∥22 − ∥p̂t+1 − p∗t ∥22

)
+ c′ · εxt (∥At −At−1∥2∞ + ∥yt − yt−1∥22)

+
1

εyt

(
∥q̂t − q∗t ∥22 − ∥q̂t+1 − q∗t ∥22

)
+ c′ · εyt (∥At −At−1∥2∞ + ∥xt − xt−1∥22) + λD(∥Xδ

t ∥2 + ∥Y δt ∥2)

≤ 1

εxt

(
∥p̂t − p∗t ∥22 − ∥p̂t+1 − p∗t+1∥22

)
+ c′ · εxt (∥At −At−1∥2∞ + ∥yt − yt−1∥22)

+
1

εyt

(
∥q̂t − q∗t ∥22 − ∥q̂t+1 − q∗t+1∥22

)
+ c′ · εyt (∥At −At−1∥2∞ + ∥xt − xt−1∥22)

+ 2D

(
1

εxt
+

1

εyt

)
· (∥p∗t − p∗t+1∥1 + ∥q∗t − q∗t+1∥1). (33)
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In above, D =
√
2(N +max{m,n}) = Θ̃(1) is another universal constant (ignoring the dependence on logarithmic

factors in T ) serving as the upper bound of ∥p− p′∥2 and ∥q − q′∥2 for any p, p′ ∈ ∆|Sx| and for any q, q′ ∈ ∆|Sy|.

Next, we show that the desired duality gap upper bound can be related to the terms on the left-hand side of above inequality,
namely, 1

εxt

(
∥pt − p̂t+1∥22 + ∥pt − p̂t∥22

)
+ 1

εyt

(
∥qt − q̂t+1∥22 + ∥qt − q̂t∥22

)
. To see this, we first have the following

inequalities from the update rule of the meta-algorithm as well as the first-order optimality condition: for any p′ ∈ ∆|Sx|
and q′ ∈ ∆|Sy|,

(p̂t+1 − p̂t + εxtX
⊤
t Atyt + εxt λX

δ
t )

⊤(p′ − p̂t+1) ≥ 0,

(q̂t+1 − q̂t − εyt Y
⊤
t A

⊤
t xt + εyt λY

δ
t )

⊤(q′ − q̂t+1) ≥ 0.

Rearranging the terms and introducing the notations x̃t ≜
∑
i∈Sx

p̂t+1,ixt,i and ỹt ≜
∑
j∈Sy

q̂t+1,jyt,j , we then have for
any p′ ∈ ∆|Sx| and q′ ∈ ∆|Sy|,

(p̂t+1 − p̂t)
⊤(p′ − p̂t+1)

≥ εxt (p̂t+1 − p′)⊤(X⊤
t Atyt + λXδ

t )

= εxt (p̂t+1 − p′)⊤(X⊤
t Atỹt +X⊤

t At(yt − ỹt) + λXδ
t )

≥ εxt (p̂t+1 − p′)⊤X⊤
t Atỹt − c′′ · εxt ∥p̂t+1 − p′∥2 · ∥qt − q̂t+1∥2 + λεxt

〈
p̂t+1 − p′, Xδ

t

〉
,

and also

(q̂t+1 − q̂t)
⊤(q′ − q̂t+1)

≥ εt,y(q̂t+1 − q′)⊤(−Y ⊤
t Atxt + λY δt )

= εyt (q̂t+1 − q′)⊤(−Y ⊤
t Atx̃t − Y ⊤

t At(xt − x̃t) + λY δt )

≥ εyt (q̂t+1 − q′)⊤(−Y ⊤
t Atx̃t)− c′′ · εyt ∥q̂t+1 − q′∥2 · ∥pt − p̂t+1∥2 + λεyt

〈
q̂t+1 − q′, Y δt

〉
,

where c′′ > 0 is also a universal constant independent with the time horizon and the non-stationarity measures (ignoring the
dependence on poly-logarithmic factors in T ). Rearranging the terms arrives that

(p̂t+1 − p′)⊤X⊤
t Atỹt ≤ ∥p′ − p̂t+1∥2 · Õ

(
1

εxt
∥p̂t+1 − p̂t∥2 + ∥qt − q̂t+1∥2

)
+ λ

〈
p′ − p̂t+1, X

δ
t

〉
,

(q̂t+1 − q′)⊤(−Y ⊤
t Atx̃t) ≤ ∥q′ − q̂t+1∥2 · Õ

(
1

εyt
∥q̂t+1 − q̂t∥2 + ∥pt − p̂t+1∥2

)
+ λ

〈
q′ − q̂t+1, Y

δ
t

〉
.

Let (x̄∗t , ȳ
∗
t ) be the corresponding best response for the strategy (x̃t, ỹt) with respect to the payoff At, i.e., x̄∗t =

argminx∈∆m
x⊤Atỹt and ȳ∗t = argmaxy∈∆n

x̃⊤t Aty. Denote the duality gap bound of (x̃t, ỹt) as αt(x̃t, ỹt) ≜
maxy x̃

⊤
t Aty − minx x

⊤Atỹt. Now we pick the comparator vectors p′ ∈ ∆|Sx| and q′ ∈ ∆|Sy| such that both p′

and q′ have supports only on the additional dummy base-learners and the supports finally form the best response of x̃t, ỹt,
namely, p′i = q′j = 0 for i = 1, . . . , |S1,x|, j = 1, . . . , |S1,y| and p′i+|S1,x| = x̄∗t,i for i = 1, . . . ,m and q′j+|S1,y| = ȳ∗t,j for
j = 1, . . . , n. Due to the construction, we confirm that

〈
p′, Xδ

t

〉
= 0 and

〈
q′, Y δt

〉
= 0.

As a result, combining the two inequalities on the above gives the following upper bound for duality gap:

αt(x̃t, ỹt) = (p̂t+1 − p′)⊤X⊤
t Atỹt + (q̂t+1 − q′)⊤(−Y ⊤

t Atx̃t)

≤ Õ
(

1

εxt
∥p̂t+1 − p̂t∥2 + ∥qt − q̂t+1∥2 +

1

εyt
∥q̂t+1 − q̂t∥2 + ∥pt − p̂t+1∥2

)
≤ Õ

(
1

εxt
(∥p̂t+1 − p̂t∥2 + ∥pt+1 − p̂t+1∥2) +

1

εyt
(∥q̂t+1 − q̂t∥2 + ∥qt − q̂t+1∥2)

)
.

The first inequality holds because ∥p′ − p̂t+1∥2 ≤ D = Θ̃(1) and ∥q′ − q̂t+1∥2 ≤ D = Θ̃(1) hold for any t ∈ [T ]. The
second inequality is obtained by scaling two terms with a factor of 1

εxt
and 1

εyt
respectively, where we notice that 1 ≤ 1

Lεxt

and 1 ≤ 1
Lεyt

are true as εxt ≤ 1
L and εyt ≤ 1

L holds for all t ∈ [T ].
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Then, by Cauchy-Schwarz inequality, we obtain the following upper bound for the square of duality gap bound of (x̃t, ỹt):

α2
t (x̃t, ỹt)

≤ Õ
(( 1

εxt
(∥p̂t+1 − p̂t∥2 + ∥pt+1 − p̂t+1∥2) +

1

εyt
(∥q̂t+1 − q̂t∥2 + ∥qt − q̂t+1∥2)

)2)
≤ Õ

(( 1

εxt
+

1

εyt

)( 1

εxt
(∥p̂t+1 − p̂t∥22 + ∥pt+1 − p̂t+1∥22) +

1

εyt
(∥q̂t+1 − q̂t∥22 + ∥qt − q̂t+1∥22)

))
≤ Õ

(( 1

εxt
+

1

εyt

)( 1

εxt

(
∥p̂t − p∗t ∥22 − ∥p̂t+1 − p∗t+1∥22

)
+ εxt

(
∥At −At−1∥2∞ + ∥yt − yt−1∥22

)))
+ Õ

(( 1

εxt
+

1

εyt

)( 1

εyt

(
∥q̂t − q∗t ∥22 − ∥q̂t+1 − q∗t+1∥22

)
+ εyt

(
∥At −At−1∥2∞ + ∥xt − xt−1∥22

)))
+ Õ

(( 1

εxt
+

1

εyt

)2
· (∥p∗t − p∗t+1∥1 + ∥q∗t − q∗t+1∥1)

)
.

Notably, the last step makes use of the inequality in Eq. (33) and λ = γL
2 = Θ̃(1). For simplicity, we introduce the notation

1
εt

≜ 1
εxt

+ 1
εyt

. Taking a summation on the squared duality gap over all rounds and using the fact that εxt , ε
y
t ≤ Õ(1) and

εxt , ε
y
t are non-increasing in t, we have (omitting all dimension and poly(log T ) factors)

T∑
t=1

α2
t (x̃t, ỹt)

≤
T∑
t=1

Õ
((

1

εxt+1 · εt+1
− 1

εxt · εt

)
∥p̂t+1 − p∗t+1∥22

)
+

T∑
t=1

Õ
((

1

εyt+1 · εt+1
− 1

εyt · εt

)
∥q̂t+1 − q∗t+1∥22

)

+
1

ε2T
Õ (PT ) +

1

εT

T∑
t=2

Õ
(
∥At −At−1∥2∞ + ∥yt − yt−1∥22 + ∥xt − xt−1∥22

)
≤ Õ

(
1 + PT
ε2T+1

)
+

1

εT+1

T∑
t=2

Õ
(
∥At −At−1∥2∞ + ∥xt − xt−1∥22 + ∥yt − yt−1∥22

)
,

where the last inequality uses ∥p̂t+1 − p∗t+1∥2 ≤ Õ(1), ∥q̂t+1 − q∗t+1∥2 ≤ Õ(1). According to Lemma 16 and Lemma 18,

T∑
t=2

∥xt − xt−1∥22 +
T∑
t=2

∥yt − yt−1∥22 ≤ Õ
(
min

{√
(1 + VT )(1 + PT ) + PT , 1 +WT

})
.

In addition, according to the definition of εxt and εyt , we have

1

εxT+1

=

√√√√L2 +

T∑
t=2

∥Atyt −At−1yt−1∥2∞ ≤ Õ
(√

1 + VT +min{PT ,WT }
)
,

1

εyT+1

=

√√√√L2 +

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥2∞ ≤ Õ
(√

1 + VT +min{PT ,WT }
)
,

where the last inequality is due to the gradient-variation bound in Lemma 19. Therefore, combining all above inequalities
can achieve the following result on the squared duality gap:

T∑
t=1

α2
t (x̃t, ỹt) ≤ Õ

(
(1 + PT )(1 + VT +min{PT ,WT })

)
+ Õ

(
(1 + VT +min{WT , PT })

3
2

)
= Õ

(
(1 + VT +min{PT ,WT })

(√
1 + VT +min{PT ,WT }+ PT

))
.
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We further introduce the notation QT ≜ Vt + min{PT ,WT } to simplify the presentation. Then, by Cauchy-Schwarz
inequality we have

T∑
t=1

αt(x̃t, ỹt) ≤ Õ
(√

T (1 +QT )(
√

1 +QT + PT )

)
= Õ

(
T

1
2 (1 +Q

3
2

T + PTQT )
1
2

)
. (34)

We finally transform the above bound back to αt(xt, yt) by noticing that
T∑
t=1

αt(xt, yt)

=

T∑
t=1

(
max
y∈∆n

x⊤t Aty − min
x∈∆m

x⊤Atyt

)

=

T∑
t=1

(
max
y∈∆n

x̃⊤t Aty − min
x∈∆m

x⊤Atỹt

)
+

T∑
t=1

(
max
y∈∆n

x⊤t Aty − max
y∈∆n

x̃⊤t Aty

)
+

T∑
t=1

(
min
x∈∆m

x⊤Atỹt − min
x∈∆m

x⊤Atyt

)

≤
T∑
t=1

αt(x̃t, ỹt) +

T∑
t=1

Õ (∥pt − p̂t+1∥2 + ∥qt − q̂t+1∥2)

≤
T∑
t=1

αt(x̃t, ỹt) + Õ


√√√√T

T∑
t=1

(∥pt − p̂t+1∥22 + ∥qt − q̂t+1∥22)

 (by Cauchy-Schwarz inequality)

≤
T∑
t=1

αt(x̃t, ỹt) + Õ
(√

T min{
√

(1 + VT )(1 + PT ) + PT , 1 +WT }
)
. (by Lemma 16 and Lemma 18)

≤ Õ
(
T

1
2

(
1 +Q

3
2

T + PTQT

) 1
2

)
+ Õ

(√
T (1 +QT )

)
(by Eq. (34) and Cauchy-Schwarz inequality)

≤ Õ
(
T

1
2

(
1 +Q

3
2

T + PTQT

) 1
2

)
.

To summarize, combining the both types of upper bounds for duality gap, we finally achieve the following guarantee:
T∑
t=1

max
y∈∆n

x⊤t Aty −
T∑
t=1

min
x∈∆m

x⊤Atyt ≤ Õ
(
min{T 3

4

(
1 +QT

) 1
4 , T

1
2 (1 +Q

3
2

T + PTQT )
1
2 }
)
,

which completes the proof of Theorem 8.

F. Key Lemmas
This section presents several key lemmas used in proving our theoretical results.

We first provide an analysis for the general dynamic regret of the meta-base two-layer approach, which serves as one of the
key technical tools for proving upper bounds for the three performance measures. The result is shown in Lemma 15, and we
emphasize that the regret bounds hold for any comparator sequence, which is crucial and useful in the subsequent analysis.
Lemma 15 (General dynamic regret). Algorithm 1 guarantees that x-player’s dynamic regret with respect to any comparator
sequence u1, . . . , uT ∈ ∆m is bounded by

T∑
t=1

x⊤t Atyt −
T∑
t=1

u⊤t Atyt

≤ O
(
α(1 + PuT )

ηxi

)
+ ηxi cβ

T∑
t=2

∥At −At−1∥2∞ + ηxi cβ

T∑
t=2

∥yt − yt−1∥21 +
(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21

− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22)− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + Õ(1),

(35)
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for a specific c = Θ̃(1) and any compared base-learner’s index i ∈ S1,x.

Similarly, Algorithm 2 guarantees that y-player’s dynamic regret with respect to any comparator sequence v1, . . . , vT ∈ ∆n

is at most

−
T∑
t=1

x⊤t Atyt +

T∑
t=1

x⊤t Atvt

≤ O

(
α(1 + P vT )

ηyj

)
+ ηyj cβ

T∑
t=2

∥At −At−1∥2∞ + ηyj cβ

T∑
t=2

∥xt − xt−1∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,i − yt−1,i∥21

− L

T∑
t=1

(∥qt − q̂t+1∥22 + ∥qt − q̂t∥22)− λ

T∑
t=2

∑
i∈Sx

qt,i∥yt,i − yt−1,i∥21 + Õ(1),

(36)

which also holds for any compared base-learner’s index j ∈ S1,y .

Proof. We consider the dynamic regret for x-player and similar results hold for y-player. First, we decompose the dynamic
regret for x-player into the sum of the meta-regret and base-regret. Specifically, for any i ∈ S1,x, we have

T∑
t=1

x⊤t Atyt −
T∑
t=1

utAtyt =

T∑
t=1

x⊤t Atyt −
T∑
t=1

x⊤t,iAtyt︸ ︷︷ ︸
meta-regret

+

T∑
t=1

x⊤t,iAtyt −
T∑
t=1

u⊤t Atyt︸ ︷︷ ︸
base-regret

.

We now give upper bounds for the meta-regret and base-regret respectively.

First, we consider the meta-regret, which is essentially the static regret with respect to any base-learner with an index i ∈ S1,x.
Recall several notations introduced in the algorithm. For x-player, ℓxt = X⊤

t Atyt + λXδ
t and mx

t = X⊤
t At−1yt−1 + λXδ

t ,
where Xt = [xt,1;xt,2; . . . , xt,|Sx|] and Xδ

t = [∥xt,1 − xt−1,1∥21; ∥xt,2 − xt−1,2∥21; . . . ; ∥xt,|Sx| − xt−1,|Sx|∥21]. Note that
Sx ≜ S1,x ∪ S2,x with S1,x = [N ] and S2,x = {N + 1, . . . , N + m}, where N = ⌊ 1

2 log2 T ⌋ + 1. The notations for
y-player are similarly defined and we do not restate here for conciseness. According to the general result of Theorem 12 with
ft(pt) =

〈
pt, X

⊤
t Atyt + λXδ

t

〉
, Mt = X⊤

t At−1yt−1 + λXδ
t , and ut = ei ∈ ∆|Sx| for all t ∈ [T ], we have the following

regret bound for the meta-algorithm,

T∑
t=1

〈
pt − ei, X

⊤
t Atyt + λXδ

t

〉
≤

T∑
t=2

εxt ∥X⊤
t Atyt −X⊤

t At−1yt−1∥22

+

T∑
t=1

1

εxt

(
∥p̂t − ei∥22 − ∥p̂t+1 − ei∥22

)
−

T∑
t=1

1

εxt

(
∥pt − p̂t+1∥22 + ∥pt − p̂t∥22

)
+ Õ(1)

≤ c1

T∑
t=2

εxt ∥Atyt −At−1yt−1∥2∞

+
1

εxT

T∑
t=1

(
∥p̂t − ei∥22 − ∥p̂t+1 − ei∥22

)
−

T∑
t=1

1

εxt

(
∥pt − p̂t+1∥22 + ∥pt − p̂t∥22

)
+ Õ(1)

≤ c1

T∑
t=2

∥Atyt −At−1yt−1∥2∞√
L2 +

∑t−1
s=2∥Asys −As−1ys−1∥2∞

+
Õ(1)

εxT
− L

T∑
t=1

(
∥pt − p̂t+1∥22 + ∥pt − p̂t∥22

)
(by definition of εxt and maxp∈∆|Sx| ∥p− ei∥22 ≤ Õ(1))

≤ c2

√√√√L2 +

T∑
t=2

∥Atyt −At−1yt−1∥2∞ + Õ(1)− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22),
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where c1, c2 = Θ̃(1) and the last step holds by Lemma 23.

Next, we consider the base-regret. Since the base-algorithm Bi satisfies the DRVU property, the base-regret is upper
bounded as follows:

T∑
t=1

x⊤t,iAtyt −
T∑
t=1

u⊤t Atyt ≤
α(1 + PuT )

ηxi
+ ηxi β

T∑
t=2

∥Atyt −At−1yt−1∥2∞ − γ

ηxi

T∑
t=2

∥xt,i − xt−1,i∥21.

Summing up the above two inequalities, we achieve the following dynamic regret guarantee for the x-player:

T∑
t=1

x⊤t Atyt −
T∑
t=1

u⊤t Atyt

≤ c2

√√√√L2 +

T∑
t=2

∥Atyt −At−1yt−1∥2∞ + Õ(1)− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22)

+
α(1 + PuT )

ηxi
+ ηxi β

T∑
t=2

∥Atyt −At−1yt−1∥2∞ − γ

ηxi

T∑
t=2

∥xt,i − xt−1,i∥21

+ λ

T∑
t=2

∥xt,i − xt−1,i∥21 − λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + Õ(1)

≤ O
(
α(1 + PuT )

ηxi

)
+ ηxi (c

2
2 + β)

T∑
t=2

∥Atyt −At−1yt−1∥2∞ +

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21

− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22)− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + Õ(1)

≤ O
(
α(1 + PuT )

ηxi

)
+ ηxi cβ

T∑
t=2

∥At −At−1∥2∞ + ηxi cβ

T∑
t=2

∥yt − yt−1∥21 +
(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21

− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22)− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + Õ(1),

where c = Θ̃(1). This proves Eq. (35). Repeating the above analysis for y-player proves Eq. (36).

The following lemma presents the stability lemma in terms of the non-stationarity measure PT (that is, the NE variation).
We give the stability upper bounds from the aspects of meta-algorithm and final decisions. For simplicity, we assume that
the DRVU parameters (α, β, γ) are all Θ̃(1), which is indeed the case for standard algorithms as proven in Appendix D.
Lemma 16 (NE-variation stability). Suppose that x-player follows Algorithm 1 and y-player follows Algorithm 2. Then, the
following inequalities hold simultaneously. In the meta-algorithm aspect, we have

T∑
t=1

∥pt − p̂t+1∥22 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
, (37)

T∑
t=1

∥qt − q̂t+1∥22 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
; (38)

in the final decision aspect, we have

T∑
t=2

∥xt − xt−1∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
, (39)

T∑
t=2

∥yt − yt−1∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
. (40)
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Proof. Let (x∗t , y
∗
t ) denote the Nash equilibrium of the game matrix At at round t. Based on Lemma 15 with a choice of

{ut}Tt=1 = {x∗t }Tt=1 and {vt}Tt=1 = {y∗t }Tt=1, we have

T∑
t=1

x⊤t Aty
∗
t −

T∑
t=1

x∗⊤t Atyt

=

T∑
t=1

x⊤t Aty
∗
t −

T∑
t=1

x⊤t Atyt +

T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Atyt

≤ Õ

(
α(1 + P xT )

ηxi
+
α(1 + P yT )

ηyj
+ β(ηxi + ηyj )VT

)
+ ηxi cβ

T∑
t=2

∥yt − yt−1∥21 + ηyj cβ

T∑
t=2

∥xt − xt−1∥21

+

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,j − yt−1,j∥21

− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22 + ∥qt − q̂t+1∥22 + ∥qt − q̂t∥22)

− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 − λ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21

≤ Õ

(
α(1 + P xT )

ηxi
+
α(1 + P yT )

ηyj
+ β(ηxi + ηyj )VT

)
+ 2ηxi cβ

T∑
t=2

∥qt − qt−1∥21 + 2ηxi cβ

T∑
t=2

∑
j∈Sy

∥yt,j − yt−1,j∥21

+ 2ηyj cβ

T∑
t=2

∥pt − pt−1∥21 + 2ηyj cβ

T∑
t=2

∑
i∈Sx

∥xt,i − xt−1,i∥21

+

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,j − yt−1,j∥21

− L

2

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22 + ∥qt − q̂t+1∥22 + ∥qt − q̂t∥22)−
L

4

T∑
t=2

(∥pt − pt−1∥22 + ∥qt − qt−1∥22)

− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 − λ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21

≤ Õ

(
α(1 + P xT )

ηxi
+
α(1 + P yT )

ηyj
+ β(ηxi + ηyj )VT

)

+

(
2ηxi cβ − L

4

) T∑
t=2

∥qt − qt−1∥21 +
(
2ηyj cβ − L

4

) T∑
t=2

∥pt − pt−1∥21

+ (2ηxi cβ − λ)

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 +
(
2ηyj cβ − λ

) T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21

+

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,j − yt−1,j∥21

− L

2

T∑
t=1

(
∥pt − p̂t+1∥22 + ∥pt − p̂t∥22 + ∥qt − q̂t+1∥22 + ∥qt − q̂t∥22

)
.

According to the choice of L = max
{
4,
√
16cβ,

√
8cβ
γ

}
= Θ̃(1), λ = γL

2 , and ηxi , η
y
j ≤ 1

L , it can be verified that

2ηxi cβ − L

4
≤ 2cβ

L
− L

4
≤ −L

8
; 2ηyj cβ − L

4
≤ 2cβ

L
− L

4
≤ −L

8
;
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2ηxi cβ − λ =
2cβ

L
− γL

2
≤ −γL

4
; 2ηyj cβ − λ =

2cβ

L
− γL

2
≤ −γL

4
;

λ− γ

ηxi
=
γL

2
− γ

ηxi
≤ γ

2

(
L− 2

ηxi

)
≤ − γ

2ηxi
; λ− γ

ηyj
=
γL

2
− γ

ηyj
≤ γ

2

(
L− 2

ηyj

)
≤ − γ

2ηyj
. (41)

In addition, since (x∗t , y
∗
t ) is the Nash equilibrium of At, it follows that

x⊤t Aty
∗
t − x∗⊤t Atyt ≥ x∗⊤t Aty

∗
t − x∗⊤t Aty

∗
t = 0.

Therefore, as α, β, γ = Θ̃(1), we have the following inequalities simultaneously.
T∑
t=2

∥pt − pt−1∥21 ≤ 8

L
· Õ

(
1 + P xT
ηxi

+
1 + P yT
ηyj

+ (ηxi + ηyj )VT

)
≤ Õ

(√
(1 + VT )(1 + PT ) + PT

)
,

where the last inequality is because we pick ηxi and ηyj to be the one such that ηxi ∈ [ 12η
x
∗ , 2η

x
∗ ], η

y
j ∈ [ 12η

y
∗ , 2η

y
∗ ] where

ηx∗ = min

{√
1+Px

T

1+VT
, 1
L

}
and ηy∗ = min

{√
1+Py

T

1+VT
, 1
L

}
. This is achievable based on the choice of our step size pool.

Similarly, we have
T∑
t=2

∥qt − qt−1∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
,

T∑
t=1

∥pt − p̂t+1∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
,

T∑
t=1

∥qt − q̂t+1∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
,

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
,

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
.

In addition, note that
T∑
t=2

∥xt − xt−1∥21

=

T∑
t=2

∥∥∥∥∥∑
i∈Sx

pt,ixt,i −
∑
i∈Sx

pt−1,ixt−1,i

∥∥∥∥∥
2

1

=

T∑
t=2

∥∥∥∥∥∑
i∈Sx

pt,i(xt,i − xt−1,i)−
∑
i∈Sx

(pt−1,i − pt,i)xt−1,i

∥∥∥∥∥
2

1

≤ 2

T∑
t=2

∥∥∥∥∥∑
i∈Sx

pt,i(xt,i − xt−1,i)

∥∥∥∥∥
2

1

+ 2

T∑
t=2

∥∥∥∥∥∑
i∈Sx

(pt,i − pt−1,i)xt−1,i

∥∥∥∥∥
2

1

≤ 2

T∑
t=2

(∑
i∈Sx

pt,i ∥xt,i − xt−1,i∥1

)2

+ 2

T∑
t=2

(∑
i∈Sx

|pt,i − pt−1,i| · ∥xt−1,i∥1

)2

≤ 2

T∑
t=2

(∑
i∈Sx

pt,i ∥xt,i − xt−1,i∥1

)2

+ 2

T∑
t=2

(∑
i∈Sx

|pt,i − pt−1,i| · ∥xt−1,i∥1

)2

≤ 2

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 + 2

T∑
t=2

∥pt − pt−1∥21,

(42)
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where the last inequality is by Cauchy-Schwarz inequality and ∥xt,i∥1 = 1 for all i ∈ Sx. Similarly, we have for y-player,

T∑
t=2

∥yt − yt−1∥21 ≤ 2

T∑
t=2

∑
j∈Sy

qt,j∥xt,j − xt−1,j∥21 + 2

T∑
t=2

∥qt − qt−1∥21. (43)

Based on the above results, we further have

T∑
t=2

∥xt − xt−1∥21 ≤2

T∑
t=2

∥pt − pt−1∥21 + 2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
,

T∑
t=2

∥yt − yt−1∥21 ≤2

T∑
t=2

∥qt − qt−1∥21 + 2

T∑
t=2

N∑
i=1

qt,i∥yt,i − yt−1,i∥21 ≤ Õ
(√

(1 + VT )(1 + PT ) + PT

)
,

which completes the proof.

The following lemma shows the relationship between dynamic NE-regret and the individual regret.

Lemma 17 (Dynamic-NE-regret-to-individual-regret conversation). For arbitrary sequences of {xt}Tt=1, {yt}Tt=1 and
{At}Tt=1, where xt ∈ ∆m, yt ∈ ∆n, and At ∈ Rm×n, ∀t ∈ [T ], we have∣∣∣∣∣

T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ ≤ max

{
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤Atyt,

T∑
t=1

x⊤t Aty
∗ −

T∑
t=1

x⊤t Atyt

}
+ 2WT , (44)

where WT =
∑T
t=1 ∥At − Ā∥∞ is the variance of the game matrices with Ā = 1

T

∑T
t=1At being the average game matrix

and (x∗, y∗) is a pair of Nash equilibrium of Ā. In the special case where At = A for all t ∈ [T ], we have dynamic
NE-regret bounded by the maximum of the two individual regrets as WT = 0.

Proof. Suppose that
∑T
t=1 x

⊤
t Atyt −

∑T
t=1 minxmaxy x

⊤Aty ≥ 0, then the dynamic NE-regret can be upper bounded as∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ (let (x∗t , y
∗
t ) be the Nash equilibrium of At)

=

T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Aty
∗
t (let (x∗, y∗) be the Nash equilibrium of Ā)

≤
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Aty
∗ (changing y∗t to y∗ decreases the game value w.r.t. At)

≤
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤t Āy∗ +WT (shifting the payoff matrix from At to Ā)

≤
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤Āy∗ +WT (changing x∗t to x∗ decreases the game value w.r.t. Ā)

≤
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤Āyt +WT (changing y∗ to yt decreases the game value w.r.t. Ā)

≤
T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤Atyt + 2WT . (shifting the payoff matrix from Ā to At)

Similarly, when
∑T
t=1 x

⊤
t Atyt −

∑T
t=1 minxmaxy x

⊤Aty ≤ 0, we can verify that∣∣∣∣∣
T∑
t=1

x⊤t Atyt −
T∑
t=1

min
x

max
y

x⊤Aty

∣∣∣∣∣ (let (x∗t , y
∗
t ) be the Nash equilibrium of At)



No-Regret Learning in Time-Varying Zero-Sum Games

=

T∑
t=1

x∗⊤t Aty
∗
t −

T∑
t=1

x⊤t Atyt (let (x∗, y∗) be the Nash equilibrium of Ā)

≤
T∑
t=1

x∗⊤Aty
∗
t −

T∑
t=1

x⊤t Atyt (changing x∗t to x∗ increases the game value w.r.t. At)

≤
T∑
t=1

x∗⊤Āy∗t −
T∑
t=1

x⊤t Atyt +WT (shifting the payoff matrix from At to Ā)

≤
T∑
t=1

x∗⊤Āy∗ −
T∑
t=1

x⊤t Atyt +WT (changing y∗t to y∗ increases the game value w.r.t. Ā)

≤
T∑
t=1

x⊤t Āy
∗ −

T∑
t=1

x⊤t Atyt +WT (changing x∗ to xt increases the game value w.r.t. Ā)

≤
T∑
t=1

x⊤t Aty
∗ −

T∑
t=1

x⊤t Atyt + 2WT . (shifting the payoff matrix from Ā to At)

Combining the two cases yields the desired result.

Next, we present the following stability lemma in terms of the non-stationarity measure WT (that is, the payoff variance).
We give the stability upper bounds from the aspects of meta-algorithm and final decisions. Again, we assume that the
DRVU parameters (α, β, γ) are all Θ̃(1).

Lemma 18 (Payoff-variance stability). Suppose that x-player follows Algorithm 1 and y-player follows Algorithm 2. Then,
the following inequalities hold simultaneously. In the meta-algorithm aspect, we have

T∑
t=1

∥pt − p̂t+1∥22 ≤ Õ (1 +WT ) ,

T∑
t=1

∥qt − q̂t+1∥22 ≤ Õ (1 +WT ) ; (45)

in the final decision aspect, we have

T∑
t=2

∥xt − xt−1∥21 ≤ Õ (1 +WT ) ,

T∑
t=2

∥yt − yt−1∥21 ≤ Õ (1 +WT ) . (46)

Proof. Let Ā = 1
T

∑T
t=1At denote the average game matrix, and let (x∗, y∗) be the Nash equilibrium of Ā. Then according

to the saddle point property of (x∗, y∗), we have for any xt ∈ ∆m and yt ∈ ∆n, x⊤t Āy
∗ − x∗⊤Āyt ≥ 0. Therefore, based

on Lemma 15 with ut = y∗ and vt = x∗ for all t ∈ [T ], we have

0 ≤
T∑
t=1

x⊤t Āy
∗ −

T∑
t=1

x∗⊤Āyt

≤
T∑
t=1

x⊤t Aty
∗ −

T∑
t=1

x⊤t Atyt +

T∑
t=1

x⊤t Atyt −
T∑
t=1

x∗⊤Atyt + 2WT

≤ Õ

(
α

ηxi
+

α

ηyj
+ β(ηxi + ηyj )VT

)
+ ηxi cβ

T∑
t=2

∥yt − yt−1∥21 + ηyj cβ

T∑
t=2

∥xt − xt−1∥21

+

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,j − yt−1,j∥21

− L

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22 + ∥qt − q̂t+1∥22 + ∥qt − q̂t∥22)
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− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 − λ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 + 2WT

≤ Õ

(
α

ηxi
+

α

ηyj
+ β(ηxi + ηyj )VT

)
+ 2ηxi cβ

T∑
t=2

∥qt − qt−1∥21 + 2ηxi cβ

T∑
t=2

∑
j∈Sy

∥yt,j − yt−1,j∥21

+ 2ηyj cβ

T∑
t=2

∥pt − pt−1∥21 + 2ηyj cβ

T∑
t=2

∑
i∈Sx

∥xt,i − xt−1,i∥21

+

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,j − yt−1,j∥21

− L

2

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22 + ∥qt − q̂t+1∥22 + ∥qt − q̂t∥22)−
L

4

T∑
t=2

(∥pt − pt−1∥22 + ∥qt − qt−1∥22)

− λ

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 − λ

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 + 2WT

≤ Õ

(
α

ηxi
+

α

ηyj
+ β(ηxi + ηyj )VT

)
+

(
2ηxi cβ − L

4

) T∑
t=2

∥qt − qt−1∥21 +
(
2ηyj cβ − L

4

) T∑
t=2

∥pt − pt−1∥21

+ (2ηxi cβ − λ)

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 +
(
2ηyj cβ − λ

) T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21

+

(
λ− γ

ηxi

) T∑
t=2

∥xt,i − xt−1,i∥21 +

(
λ− γ

ηyj

)
T∑
t=2

∥yt,j − yt−1,j∥21

− L

2

T∑
t=1

(∥pt − p̂t+1∥22 + ∥pt − p̂t∥22 + ∥qt − q̂t+1∥22 + ∥qt − q̂t∥22) + 2WT .

Based on the choice of L and λ, we can again verify the condition of Eq. (41), which leads to the following inequalities:

T∑
t=2

∥pt − pt−1∥21 ≤ 8

L
· Õ

(
1

ηxi
+

1

ηyj
+ (ηxi + ηyj )VT +WT

)
≤ Õ

(√
1 + VT +WT

)
≤ Õ (1 +WT ) ,

where the second last inequality is because we pick ηxi and ηyj to be the one such that ηxi ∈ [ 12η
x
∗ , 2η

x
∗ ], η

y
j ∈ [ 12η

y
∗ , 2η

y
∗ ]

where ηx∗ = min
{√

1
1+VT

, 1
L

}
and ηy∗ = min

{√
1

1+VT
, 1
L

}
. This is achievable based on the choice of our step size pool.

The last inequality holds because of AM-GM inequality and VT ≤ O(WT ). Similarly, we have

T∑
t=2

∥qt − qt−1∥21 ≤ Õ (1 +WT ) ,

T∑
t=1

∥pt − p̂t+1∥21 ≤ Õ (1 +WT ) ,

T∑
t=1

∥qt − q̂t+1∥21 ≤ Õ (1 +WT ) ,

T∑
t=2

∑
i∈Sx

pt,i∥xt,i − xt−1,i∥21 ≤ Õ (1 +WT ) ,

T∑
t=2

∑
j∈Sy

qt,j∥yt,j − yt−1,j∥21 ≤ Õ (1 +WT ) .
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Based on the above results, we further have

T∑
t=2

∥xt − xt−1∥21 ≤2

T∑
t=2

∥pt − pt−1∥21 + 2

T∑
t=2

N∑
i=1

pt,i∥xt,i − xt−1,i∥21 ≤ Õ (1 +WT ) ,

T∑
t=2

∥yt − yt−1∥21 ≤2

T∑
t=2

∥qt − qt−1∥21 + 2

T∑
t=2

N∑
i=1

qt,i∥yt,i − yt−1,i∥21 ≤ Õ (1 +WT ) ,

which completes the proof.

Building upon the stability of the decisions of both x-player and y-player proven in Lemma 16 and Lemma 18, we further
show the variation of the (gradient) feedback received by both x-player and y-player.

Lemma 19. Suppose x-player follows Algorithm 1 and y-player follows Algorithm 2. Then, the gradient variation can be
bounded as follows:

T∑
t=2

∥Atyt −At−1yt−1∥2∞ ≤ Õ
(
1 + VT +min{PT ,WT }

)
,

T∑
t=2

∥x⊤t At − x⊤t−1At−1∥2∞ ≤ Õ
(
1 + VT +min{PT ,WT }

)
.

(47)

Proof. The gradient variation of the x-player can be upper bounded as follows:

T∑
t=2

∥Atyt −At−1yt−1∥2∞ ≤ 2

T∑
t=2

∥Atyt −At−1yt∥2∞ + 2

T∑
t=2

∥At−1yt −At−1yt−1∥2∞

≤ 2

T∑
t=2

∥At −At−1∥2∞ +O

(
T∑
t=2

∥yt − yt−1∥21

)
≤ O(VT ) + Õ

(
min{

√
1 + VT + PT + PT , 1 +WT }

)
≤ Õ (min{1 + VT + PT , 1 + VT +WT })

where the second last step holds by Lemma 16 and Lemma 18, and the last step makes use of AM-GM inequality. A similar
argument can be applied to upper bound

∑T
t=2∥x⊤t At − x⊤t−1At−1∥2∞. This ends the proof.

The following lemma establishes a general result to relate the function-value difference between the sequence of piecewise
minimizers and the sequence of each-round minimizers.

Lemma 20. Let At ∈ Rm×n and yt ∈ ∆n for all t ∈ [T ] with maxt∈[T ] ∥At∥∞ ≤ 1. Let I1, I2, . . . , IK be an even
partition of the total horizon [T ] with |Ik| = ∆ for k = 1, . . . ,K (for simplicity, suppose the time horizon T is divisible by
epoch length ∆). Denote x̄∗t = argminx∈∆m

x⊤Atyt for any t ∈ [T ] and denote ut ≜ argminx∈∆m

∑
τ∈Ik

x⊤Aτyτ for
any t ∈ Ik. Then, we have

T∑
t=1

u⊤t Atyt −
T∑
t=1

x̄∗⊤t Atyt ≤ 2∆

T∑
t=2

∥Atyt −At−1yt−1∥∞. (48)

Proof. The proof follows the analysis of function-variation type worst-case dynamic regret (Zhang et al., 2020). For
convenience, we introduce the notation ft(x) ≜ x⊤Atyt to denote the each-round online function of x-player. Then,

T∑
i=1

ft(ut)−
T∑
i=1

ft(x̄
∗
t ) =

K∑
k=1

∑
t∈Ik

(ft(ut)− ft(x̄
∗
t ))

≤ 2∆ ·
K∑
k=1

∑
t∈Ik

∥Atyt −At−1yt−1∥∞ = 2∆

T∑
t=2

∥Atyt −At−1yt−1∥∞,
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where the inequality holds because of the setting of |Ik| = ∆ and the following fact about the instantaneous quantity:

ft(ut)− ft(x̄
∗
t ) ≤ ft(x̄

∗
t1)− ft(x̄

∗
t ) (denote by t1 the starting time stamp of Ik)

= ft(x̄
∗
t1)− ft1(x̄

∗
t1) + ft1(x̄

∗
t1)− ft(x̄

∗
t )

≤ ft(x̄
∗
t1)− ft1(x̄

∗
t1) + ft1(x̄

∗
t )− ft(x̄

∗
t ) (by optimality of x̄∗t1 )

≤ 2
∑
t∈Ik

sup
x
|ft(x)− ft−1(x)|

= 2
∑
t∈Ik

sup
x

∣∣x⊤(Atyt −At−1yt−1)
∣∣

≤ 2
∑
t∈Ik

∥Atyt −At−1yt−1∥∞.

Hence we finish the proof.

G. Technical Lemmas
Lemma 21 (Bregman proximal inequality (Chen & Teboulle, 1993, Lemma 3.2)). Let X be a convex set in a Banach
space. Let f : X 7→ R be a closed proper convex function on X . Given a convex regularizer ψ : X 7→ R, we denote its
induced Bregman divergence by Dψ(·, ·). Then, any update of the form xk = argminx∈X {f(x) +Dψ(x, xk−1)} satisfies
the following inequality for any u ∈ X ,

f(xk)− f(u) ≤ Dψ(u, xk−1)−Dψ(u, xk)−Dψ(xk, xk−1). (49)

Lemma 22 (stability lemma (Chiang et al., 2012, Proposition 7)). Let x∗ = argminx∈X ⟨a, x⟩ + Dψ(x, c) and x′∗ =
argminx∈X ⟨a′, x⟩+Dψ(x, c). When the regularizer ψ : X 7→ R is a 1-strongly convex function with respect to the norm
∥ · ∥, we have ∥x∗ − x′∗∥ ≤ ∥(∇ψ(c)− a)− (∇ψ(c)− a′)∥∗ = ∥a− a′∥∗.

Lemma 23 (variant of self-confident tuning (Pogodin & Lattimore, 2019, Lemma 4.8)). Let a1, a2, . . . , aT be non-negative
real numbers. Then

T∑
t=1

at√
1 +

∑t−1
s=1 as

≤ 4

√√√√1 +

T∑
t=1

at +max
t∈[T ]

at.


