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Abstract

In this paper, we revisit Stochastic Continuous
Submodular Maximization in both offline and on-
line settings, which can benefit wide applications
in machine learning and operations research ar-
eas. We present a boosting framework covering
gradient ascent and online gradient ascent. The
fundamental ingredient of our methods is a novel
non-oblivious function F derived from a factor-
revealing optimization problem, whose any sta-
tionary point provides a (1− e−γ)-approximation
to the global maximum of the γ-weakly DR-
submodular objective function f ∈ C1,1

L (X ). Un-
der the offline scenario, we propose a boosting
gradient ascent method achieving (1− e−γ − ϵ2)-
approximation after O(1/ϵ2) iterations, which
improves the ( γ2

1+γ2 ) approximation ratio of the
classical gradient ascent algorithm. In the online
setting, for the first time we consider the adversar-
ial delays for stochastic gradient feedback, under
which we propose a boosting online gradient al-
gorithm with the same non-oblivious function F .
Meanwhile, we verify that this boosting online
algorithm achieves a regret of O(

√
D) against a

(1− e−γ)-approximation to the best feasible so-
lution in hindsight, where D is the sum of delays
of gradient feedback. To the best of our knowl-
edge, this is the first result to obtain O(

√
T ) regret

against a (1−e−γ)-approximation with O(1) gra-
dient inquiry at each time step, when no delay
exists, i.e., D = T . Finally, numerical experi-
ments demonstrate the effectiveness of our boost-
ing methods.
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1. Introduction
Due to the relatively low computational complexity, first-
order optimization methods are widely used in machine
learning, operations research, and statistics communities.
Especially for convex objectives, there is an enormous liter-
ature (Bertsekas, 2015; Nesterov, 2013) deriving the conver-
gence rate of first-order methods. Recent studies have shown
that first-order optimization methods could also achieve the
global minimum for some special non-convex problems (Ne-
trapalli et al., 2014; Arora et al., 2016; Ge et al., 2016; Du
et al., 2019; Liu et al., 2020), although it is in general NP-
hard to find the global minima of a non-convex objective
function (Murty & Kabadi, 1987). Motivated by this, some
recent work focused on the structures and conditions un-
der which non-convex optimization is tractable (Bian et al.,
2017; Hazan et al., 2016a). In this paper, we investigate
the stochastic γ-weakly continuous submodular maximiza-
tion problem where an unbiased gradient oracle is available
under both offline and online scenarios.

Continuous DR-Submodular Maximization has drawn much
attention recently due to that it admits efficient approxi-
mate maximization routines. For instance, under the offline
deterministic setting, Bian et al. (2020; 2017) proposed
the vanilla Frank-Wolfe method and its variant achieving
1/2 and (1− 1/e) approximations, respectively. When the
stochastic estimates of the gradient is available, Mokhtari
et al. (2018) and Hassani et al. (2020) proposed some im-
proved variants of the Frank-Wolfe algorithm, equipped
with variance reduction techniques. In (Hassani et al., 2020),
assuming the Lipschitz continuity of stochastic Hessian, a
[(1 − 1/e)OPT − ε] solution is achieved using O(1/ε2)
stochastic gradient. Such a result provides the tightest ap-
proximation as well as the optimal stochastic first-order
oracle complexity.

However, when generalizing Frank-Wolfe methods to the
online setting, some other tricks should be involved, which
makes the algorithm design more complicated. For example,
Chen et al. (2018b) and Zhang et al. (2019) took the idea of
meta actions (Streeter & Golovin, 2008) and blocking proce-
dure to propose online Frank-Wolfe algorithms. Moreover,
in these aforementioned studies, the environment/adversary
reveals the reward and stochastic first-order information im-
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mediately after the action is chosen by the learner/algorithm.
In practice, the assumption of immediate feedback might be
too restrictive. The feedback delays widely exist in many
real-world applications, e.g., online advertising (Mehta et al.,
2007), influence maximization problem (Chen et al., 2012;
Yang et al., 2016).

To tackle these issues, instead of Frank-Wolfe, we adopt
Gradient Ascent and aim to propose a uniform algorithmic
framework for both offline and online Stochastic Continu-
ous Submodular Maximization. To make the online setting
more realistic, we also consider adversarial feedback de-
lays (Quanrud & Khashabi, 2015). Note that our online
setting degenerates to the standard online setting if no delay
exists. One big challenge in front of us is that the sta-
tionary points of a γ-weakly submodular function f only
provide a limited ( γ2

1+γ2 )-approximation to the global maxi-
mum (Hassani et al., 2017). As a result, we need to boost
stochastic gradient ascent and its online counterpart (Has-
sani et al., 2017) as they only attain a ( γ2

1+γ2 )-approximation.
To tackle this challenge, we hope to devise an auxiliary func-
tion whose stationary points provide a better approximation
guarantee than those of f itself. Motivated by (Filmus &
Ward, 2012; 2014; Feldman et al., 2011; Feldman, 2021;
Harshaw et al., 2019; Mitra et al., 2021), we first consider
a family of auxiliary functions whose gradient at point x
allocates different weight to the gradient ∇f(z ∗ x) where
z ∈ [0, 1]. By solving a factor-revealing optimization prob-
lem, we select the optimal auxiliary function F whose sta-
tionary points provide a tight (1− e−γ)-approximation to
the global maximum of f . Then, based on this optimal auxil-
iary function F , we propose a simple first-order framework
that makes it possible to boost the performance of classical
gradient ascent algorithm converging to stationary points.

Based on this boosting framework, we present a boosting
gradient ascent and a boosting online gradient ascent to
improve the approximation guarantees of vanilla gradient
ascent and its online counterpart. To be specific, we make
the following contributions:

1. We develop a uniform boosting framework, includ-
ing gradient ascent and online gradient ascent meth-
ods. The essential element behind our framework is
an optimal auxiliary function F derived from a factor-
revealing optimization problem for each γ-weakly DR-
submodular function f . The stationary points of F
provide a (1 − e−γ)-approximation guarantee to the
global maximum of f . This approximation is better
than the ( γ2

1+γ2 )-approximation provided by stationary
points of f itself.

2. With this non-oblivious function F , under the of-
fline setting, we propose the boosting gradient ascent
method achieving a (1 − e−γ − ϵ2)-approximation

Table 1. Comparison of convergence guarantees for continuous
DR-submodular function maximization, where the functions are
monotone. Except for (Bian et al., 2017) which needs the constraint
set to be convex and down-closed, other methods here need the
constraint set C to be convex. Note that ’det.’ and ’sto.’ represent
the deterministic and stochastic setting, respectively. ’Hess Lip’
means whether the Hessian of functions needs to be Lipschitz
continuous, ’OPT’ is the function value at the global optimum,
’Complexity’ is the gradient oracle complexity. For simplicity, we
set γ = 1 for our results which reduces to the standard monotone
DR-submodular setting.

Method Setting Hess Lip Utility Complexity

Submodular FW (Bian et al., 2017) det. No (1− 1/e)OPT− ϵ O(1/ϵ)

SGA (Hassani et al., 2017) sto. No (1/2)OPT− ϵ O(1/ϵ2)

Classical FW (Bian et al., 2020) det. No (1/2)OPT− ϵ O(1/ϵ2)

SCG (Mokhtari et al., 2018) sto. No (1− 1/e)OPT− ϵ O(1/ϵ3)

SCG++ (Hassani et al., 2020) sto. Yes (1− 1/e)OPT− ϵ O(1/ϵ2)

Non-Oblivious FW (Mitra et al., 2021) det. No (1− 1/e− ϵ)OPT− ϵ O(1/ϵ3)

Boosting GA (This paper) sto. No (1− 1/e− ϵ2)OPT− ϵ O(1/ϵ2)

after O(1/ϵ2) iterations, which improves the ( γ2

1+γ2 )-
approximation of the classical projected gradient as-
cent algorithm and weakens the assumption of high
order smoothness on the objective functions (Hassani
et al., 2020).

3. Next, we consider an online submodular maximization
setting with adversarial feedback delays. When an un-
biased stochastic gradients estimation is available, we
propose an online boosting gradient ascent algorithm
that theoretically achieves the optimal (1−e−γ)-regret
of O(

√
D) with one gradient evaluation for each ft,

where D =
∑T

t=1 dt and dt is a positive integer delay
for round t. To the best of our knowledge, our work
is the first to investigate the adversarial delays in on-
line submodular maximization problems. Moreover,
when D = T for the standard no-delay setting, our
proposed online boosting gradient ascent algorithm,
requiring only O(1) stochastic gradient estimate at
each round, yields the first result to achieve (1− e−γ)-
approximation with O(

√
T ) regret.

4. Finally, we empirically evaluate our proposed boosting
methods using the special example of (Hassani et al.,
2017) and the simulated non-convex/non-concave
quadratic programming. Our algorithms have supe-
rior performance in the experiments.

1.1. Related Work

Submodular Set Functions: Submodular set func-
tions originate from combinatorial optimization problems
(Nemhauser et al., 1978; Fisher et al., 1978; Fujishige,
2005), which could be either exactly minimized via Lovász
extension (Lovász, 1983) or approximately maximized via
multilinear extension (Chekuri et al., 2014). Submodu-
lar set functions find numerous applications in machine
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Table 2. Comparison of regrets for stochastic online continuous
DR-submodular function maximization with full-information feed-
back, where the functions are monotone and constraint set C is
convex. Note that ’# Grad. Evaluations ’ means the number of
stochastic gradient evaluations at each round, ’Ratio’ means ap-
proximation ratio, and ’Delay’ indicates whether the adversarial de-
layed feedback is considered. For simplicity, we set γ = 1 for our
results which reduces to the standard monotone DR-submodular
setting, and D = T which means no delay exists.

Method # Grad. Evaluations Ratio Regret Delay

OGA (Chen et al., 2018b) O(1) 1/2 O(
√
T ) No

Meta-FW-VR (Chen et al., 2018a) T 3/2 1− 1/e O(
√
T ) No

Mono-FW (Zhang et al., 2019) O(1) 1− 1/e O(T 4/5) No

Boosting OGA (This paper) O(1) 1− 1/e O(
√
T ) Yes

learning and other related areas, including viral market-
ing (Kempe et al., 2003), document summarization (Lin &
Bilmes, 2011), network monitoring (Leskovec et al., 2007),
and variable selection (Das & Kempe, 2011; Elenberg et al.,
2018).

Continuous Submodular Maximization: Submodular-
ity can be naturally extended to continuous domains.
In deterministic setting, Bian et al. (2017) first pro-
posed a variant of Frank-Wolfe (Submodular FW) for
continuous DR-submodular maximization problem with
(1 − 1/e)-approximation guarantee after O(1/ϵ) itera-
tions. As for the stochastic setting, Hassani et al. (2017)
proved that the stochastic gradient ascent (SGA) guaran-
tees a (1/2)-approximation after O(1/ϵ2) iterations. Then,
Mokhtari et al. (2018) proposed the stochastic continu-
ous greedy algorithm (SCG), which achieves a (1− 1/e)-
approximation after O(1/ϵ3) iterations. Moreover, by as-
suming the Hessian of objective is Lipschitz continuous,
Hassani et al. (2020) proposed the stochastic continuous
greedy++ algorithm (SCG++), which guarantees a (1−1/e)-
approximation after O(1/ϵ2) iterations.

Online Continuous Submodular Maximization: Chen
et al. (2018b) first investigated the online (stochastic) gra-
dient ascent (OGA) with a (1/2)-regret of O(

√
T ). Then,

inspired by the meta actions (Streeter & Golovin, 2008),
Chen et al. (2018b) also proposed the Meta-Frank-Wolfe al-
gorithm with a (1− 1/e)-regret bound of O(

√
T ) under the

deterministic setting. Assuming that an unbiased estimation
of the gradient is available, Chen et al. (2018a) proposed a
variant of the Meta-Frank-Wolfe algorithm (Meta-FW-VR)
having a (1 − 1/e)-regret bound of O(T 1/2) and requir-
ing O(T 3/2) stochastic gradient queries for each function.
Then, in order to reduce the number of gradients evalua-
tion, Zhang et al. (2019) presented the Mono-Frank-Wolfe
taking the blocking procedure, which achieves a (1− 1/e)-
regret bound of O(T 4/5) with only one stochastic gradient
evaluation in each round.

Non-Oblivious Search: In many cases, classical local
search, e.g., the greedy method, may return a solution with a
poor approximation ratio to the global maximum. To avoid
this issue, Khanna et al. (1998) and Alimonti (1994) first
proposed a technique named Non-Oblivious Search that
leverages an auxiliary function to guide the search. After
carefully choosing the auxiliary function, the new solution
generated by the non-oblivious search, may have a better
performance than the previous solution found by the clas-
sical local search. Inspired by this idea, for the maximum
coverage problem over a matroid, Filmus & Ward (2012)
proposed a (1 − 1/e)-approximation algorithm via a non-
oblivious set function allocating extra weights to the solu-
tions that cover some element more than once, which effi-
ciently improves the traditional (1/2)-approximation greedy
method. After that, Filmus & Ward (2014) extended this
idea to improve the (1/2)-approximation greedy method
for the general submodular set maximization problem over
a matroid. Recently, for the continuous submodular max-
imization problem with concave regularization, a variant
of Frank-Wolfe algorithm (Non-Oblivious FW) based on
a special auxiliary function was proposed for boosting the
approximation ratio of the submodular part from 1/2 to
(1− 1/e) in (Mitra et al., 2021). Compared to the proposed
algorithm in this paper, i) The Non-Oblivious Frank-Wolfe
method needs O(1/ϵ) gradient evaluations at each round
under the deterministic setting, while our method only needs
O(1) evaluations per iteration under the stochastic setting;
ii) The Non-Oblivious Frank-Wolfe method is designed only
for the deterministic setting, while we present a uniform
boosting framework covering the stochastic gradient ascent
in both offline and online settings.

We present comparisons between this work and previous
studies in Table 1 and Table 2 for offline and online settings,
respectively.

2. Preliminaries
In this section, we define some concepts and notations that
we will use throughout the paper.

2.1. Continuous Submodularity

Continuous Submodular Functions: A function f : X →
R+ is a continuous submodular function if for any x,y ∈
X ,

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y).

Here, x ∧ y = min(x,y) and x ∨ y = max(x,y) are
component-wise minimum and component-wise maximum,
respectively. X =

∏n
i=1 Xi where each Xi is a compact

interval in R+. Without loss of generality, we assume
Xi = [0, ai]. If f is twice differentiable, the continuous
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submodularity is equivalent to

∀i ̸= j,∀x ∈ X ,
∂2f(x)

∂xi∂xj
≤ 0.

Moreover, f is monotone if f(x) ≥ f(y) when x ≥ y.

DR-Submodularity: A continuous submodular function f
is DR-submodular if

f(x+ zei)− f(x) ≤ f(y + zei)− f(y),

where ei is the i-th basic vector, x ≥ y and z ∈ R+ such
that x + zei,y + zei ∈ X . When the DR-submodular
function f is differentiable, we have ∇f(x) ≤ ∇f(y) if
x ≥ y (Bian et al., 2020). When f is twice differentiable,
the DR-submodularity is also equivalent to

∀i, j ∈ [n],∀x ∈ X ,
∂2f(x)

∂xi∂xj
≤ 0.

Furthermore, we call a function f weakly DR-submodular
with parameter γ, if

γ = inf
x≤y

inf
i∈[n]

[∇f(x)]i
[∇f(y)]i

.

Note that γ = 1 indicates a differentiable and monotone
DR-submodular function.

2.2. Notations and Concepts

Norm: ∥·∥ is the ℓ2 norm in Euclidean space.

Radius and Diameter: For any bounded domain C ∈
X , the radius r(C) = maxx∈C ∥x∥ and the diameter
diam(C) = maxx,y∈C ∥x− y∥.

Projection: We define the projection to the domain C as
PC(x) = argminz∈C ∥x− z∥.

Smoothness: A differentiable function f is called L-
smooth if for any x,y ∈ X ,

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ .

α-Regret: Finally, we recall the α-regret in (Chen et al.,
2018b). For a T -round game, after the algorithm A choose
an action xt ∈ X in each round, the adversary reveals the
utility function ft. The objective of the algorithm A is to
minimize the gap between the accumulative reward and that
of the best fixed policy in hindsight with scale parameter α,
i.e.,

Rα(A, T ) = αmax
x∈X

T∑
t=1

ft(x)−
T∑

t=1

ft(xt).

3. Derivation of the Non-oblivious Function
In this section, we present in detail how to derive our non-
oblivious function, which plays an important role in our
boosting framework. To begin, we recall the definition of
stationary points.

Definition 1. A point x ∈ C is called a stationary point for
function f : X → R+ over the domain C ⊆ X if

max
y∈C

⟨∇f(x),y − x⟩ ≤ 0.

We make the following assumption throughout this paper.

Assumption 1.

(i) The f : X → R+ is a monotone, differentiable, weakly
DR-submodular function with parameter γ. So is each
ft in the online settings.

(ii) We also assume the knowledge of parameter γ.

(iii) Without loss of generality, f(0) = 0. Also, in online
settings, ft(0) = 0 for t = 1, 2, . . . , T .

With this assumption, we have the following result.

Lemma 1 (Proof in Appendix A.1). Under Assumption 1,
for any stationary point x ∈ C of f , we have

f(x) ≥ γ2

γ2 + 1
max
y∈C

f(y). (1)

Remark 1. Lemma 1 implies any stationary point of a
γ-weakly DR-submodular function f provides a ( γ2

1+γ2 )-
approximation to the global maximum. As we know, pro-
jected gradient ascent method (Hassani et al., 2017) with
small step size usually converges to a stationary point of f ,
resulting in a ( γ2

1+γ2 ) approximation guarantee.

In order to boost these classical algorithms, a natural idea is
to design some auxiliary functions whose stationary points
achieve better approximation to the global maximum of the
problem maxx∈C f(x). That is, we want to find F : X →
R+ based on f such that ⟨y − x,∇F (x)⟩ ≥ β1f(y) −
β2f(x), where β1/β2 ≥ γ2

1+γ2 .

Motivated by (Feldman et al., 2011; Filmus & Ward, 2012;
2014; Harshaw et al., 2019; Feldman, 2021; Mitra et al.,
2021), we consider the function F (x) : X → R+ whose
gradient at point x allocates different weights to the gradient
∇f(z ∗x), i.e., ∇F (x) =

∫ 1

0
w(z)∇f(z ∗x)dz, assuming

that ∇f(z ∗ x) is Lebesgue integrable w.r.t. z ∈ [0, 1], the
weight function w(z) ∈ C1[0, 1], and w(z) ≥ 0. Then, we
investigate a property of ⟨y − x,∇F (x)⟩ in the following
lemma.

Lemma 2 (Proof in Appendix A.2). For all x,y ∈ X , we
have

⟨y − x,∇F (x)⟩ ≥
(
γ

∫ 1

0

w(z)dz

)
(f(y)− θ(w)f(x)) ,

where θ(w) = maxf,x θ(w, f,x), θ(w, f,x) =
w(1)+

∫ 1
0
(γw(z)−w′(z))

f(z∗x)
f(x)

dz

γ
∫ 1
0
w(z)dz

and f(x) > 0.

To improve the approximation ratio, we consider the follow-
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ing factor-revealing optimization problem:

min
w

θ(w) = min
w

max
f,x

w(1) +
∫ 1

0
(γw(z)− w′(z)) f(z∗x)f(x) dz

γ
∫ 1

0
w(z)dz

s.t. w(z) ≥ 0,

w(z) ∈ C1[0, 1],

f(x) > 0,

∇f(x1) ≥ γ∇f(y1) ≥ 0,∀x1 ≤ y1 ∈ X .
(2)

At first glance, problem (2) looks challenging to solve. For-
tunately, we could directly find the optimal solution, which
is provided in the following theorem.

Theorem 1 (Proof in the Appendix A.3). For prob-
lem (2), we have ŵ(z) = eγ(z−1) ∈ argminw θ(w) and
minw maxf,x θ(w, f,x) = 1

1−e−γ .

In the following sections, we consider this optimal aux-
iliary function F with ∇F (x) =

∫ 1

0
ŵ(z)∇f(z ∗ x)dz,

and ŵ(z) = eγ(z−1). According to the definition of
θ(w, f,x) in Lemma 2, we could derive that θ(ŵ, f,x) =
ŵ(1)/(γ

∫ 1

0
ŵ(z)dz) = 1/(1 − e−γ) such that θ(ŵ) =

1/(1 − e−γ). Thus, we have ⟨y − x,∇F (x)⟩ ≥ (1 −
e−γ)f(y) − f(x) which implies that any stationary point
of F provides a better (1− e−γ)-approximation solution to
the problem maxx∈C f(x), in contrast with the stationary
points of f itself.

Next, we investigate some properties of this optimal aux-
iliary function F (x). Following the same terminology in
(Filmus & Ward, 2012; 2014; Mitra et al., 2021), we also
call this F the non-oblivious function.

3.1. Properties about the Non-Oblivious Function

Without loss of generality, in this subsection, we as-
sume f is L-smooth with respect to the norm ∥x∥, i.e.,
∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥. Then, we establish
some key properties about the boundness and smoothness of
the non-oblivious function F (x) in the following theorem.

Theorem 2 (Proof in Appendix A.4). If f is L-smooth, and
Assumption 1 holds, we have

(i) f(x) ≥ (1− e−γ)maxy∈C f(y), where x is a station-
ary point for non-oblivious function F over the domain
C.

(ii) F (x) =
∫ 1

0
eγ(z−1)

z f(z ∗ x)dz and F (x) ≤ (1 +
ln(τ))(f(x) + c) for any positive c ≤ Lr2(X ), where
τ = max( 1γ ,

Lr2(X )
c ).

(iii) F is Lγ-smooth where Lγ = Lγ+e−γ−1
γ2 .

Remark 2. Theorem 2.(i) demonstrates that any stationary
point of the non-oblivious function F can attain (1− e−γ)-
approximation of the global maximum of f , which is better

Algorithm 1 Meta Boosting Protocol
1: Initialize: any x1 ∈ X , γ.
2: for t ∈ [T ] do
3: Sample zt from Z where P(Z ≤ z) =∫ z

0
γeγ(u−1)

1−e−γ I(u ∈ [0, 1])du.

4: Compute ∇̃F (xt) =
1−e−γ

γ ∇̃f(zt ∗ xt)

5: Update xt+1 = A(∇̃F (xt),xt) ▷ A to be designed.
6: end for
7: Option I (Offline setting): Return xl chosen from

{xt}t∈[T ] with a probability.
8: Option II (Online setting): Return xt at each round

t ∈ [T ].

than the ( γ2

1+γ2 )-approximation ratio of the stationary points
of f itself provided in Lemma 1. Moreover, this result
sheds light on the possibility of utilizing F to obtain a better
approximation than classical gradient ascent method, which
motivates our boosting methods in the following section.

We also investigate how to estimate ∇F (x) with an unbi-
ased stochastic oracle ∇̃f(x), i.e., E(∇̃f(x)|x) = ∇f(x).
We first introduce a new random variable Z where Pr(Z ≤
z) =

∫ z

0
γeγ(u−1)

1−e−γ I(u ∈ [0, 1])du where I is the indicator
function. When the number z is sampled from r.v. Z, we
consider 1−e−γ

γ ∇̃f(z ∗ x) as an estimator of ∇F (x) with
statistical properties given in the following proposition.
Proposition 1 (Proof in Appendix A.5).

(i) If z is sampled from r.v. Z and E(∇̃f(x)|x) = ∇f(x),
we have

E
(
1− e−γ

γ
∇̃f(z ∗ x)

∣∣∣∣x) = ∇F (x).

(ii) If z is sampled from r.v. Z, E(∇̃f(x)|x) = ∇f(x),
and E(∥∇̃f(x)−∇f(x)∥2|x) ≤ σ2, we have

E

(∥∥∥∥1− e−γ

γ
∇̃f(z ∗ x)−∇F (x)

∥∥∥∥2∣∣∣∣x
)

≤ σ2
γ ,

where σ2
γ = 2 (1−e−γ)2σ2

γ2 + 2L2r2(X )(1−e−2γ)
3γ .

Remark 3. Proposition 1 indicates that 1−e−γ

γ ∇̃f(z ∗x) is
an unbiased estimator of ∇F (x) with a bounded variance.

4. Boosting Framework
Up to this point, we present a boosting framework that cov-
ers both gradient ascent and online gradient ascent methods.
We first present a Meta boosting protocol in Algorithm 1,
highlighting the key features of the proposed algorithms.
We then present several variants of the Meta protocol by
employing different basic algorithms A.

As shown in Algorithm 1, the core idea is to leverage the
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Algorithm 2 Boosting Gradient Ascent
Input: T , ηt, c > 0, γ, L, r(C)
Output: xl

1: Set △t = 1 when t < T and △T = 1 + ln(τ) where
τ = max( 1γ ,

r2(C)L
c ).

2: Set △ =
∑T

t=1 △t

3: Initialize any x1 ∈ X .
4: for t ∈ [T ] do
5: Compute ∇̃F (xt) according to Algorithm 1
6: Set yt+1 = xt + ηt∇̃F (xt)
7: xt+1 = argminz∈C

∥∥z − yt+1

∥∥
8: end for
9: Choose a number l ∈ [T ] with the distribution P(l =

t)=△t

△

stochastic gradient ∇̃F (xt) of the non-oblivious function
F , instead of the stochastic gradient ∇̃f(xt) of the original
weakly DR-submodular function f . Note that ∇̃F (xt) is
generated by the sampling method in Proposition 1 (line 3-4
of Algorithm 1).

4.1. Boosting Gradient Ascent

In this subsection, we propose a boosting gradient ascent
method under the offline scenario for the stochastic submod-
ular maximization problem. In particular, we employ the
classical stochastic projected gradient ascent method in the
Meta boosting protocol and describe the boosting gradient
ascent method in Algorithm 2.

As demonstrated in Algorithm 2, in each iteration, after
calculating ∇̃F (x), we make the standard projected gra-
dient step to update x. Finally, we return xl chosen from
{xt}t∈[T ] with the given distribution.

With the previous outcomes, we establish the convergence
result for Algorithm 2.

Theorem 3 (Proof in Appendix B). Assume C ∈ X is a
bounded convex set and f is L-smooth, and the gradient or-
acle ∇̃f(x) is unbiased with E(∥∇̃f(x)−∇f(x)∥2|x) ≤
σ2. Let ηt = 1

σγ
√

t

diam(C)
+Lγ

and c = O(1) in Algorithm 2,

then we have

E(f(xl)) ≥
(
1− e−γ −O

( 1

T

))
OPT −O

( 1√
T

)
,

where OPT = maxx∈C f(x).

Remark 4. Theorem 3 shows that after O(1/ϵ2) iter-
ations, the boosting stochastic gradient ascent achieves
(1−1/e−ϵ2)OPT−ϵ, which efficiently improves the (1/2)-
approximation guarantee of classical stochastic gradient as-
cent (Hassani et al., 2017) for continuous DR-submodular
maximization. Moreover, we highlight that the overall gradi-

Algorithm 3 Online Boosting Delayed Gradient Ascent
Input: T , η, γ
Output: x1, . . . ,xT

1: Initialize: any x1 ∈ C.
2: for t ∈ [T ] do
3: Play xt, then observe reward ft(xt)
4: Sample zt according to Algorithm 1 and Query

∇̃Ft(xt) =
1−e−γ

γ ∇̃ft(zt ∗ xt)

5: Receive feedback ∇̃Fs(xs), where s ∈ Ft

6: yt+1 = xt + η
∑

s∈Ft
∇̃Fs(xs)

7: xt+1 = argminz∈C
∥∥z − yt+1

∥∥
8: end for

ent complexity is O(1/ϵ2) which is optimal (Hassani et al.,
2020) under the stochastic setting.

4.2. Online Boosting Delayed Gradient Ascent

In this section, we consider the online setting with delayed
feedback. To begin, recall the process of classical online
optimization. In round t, after picking an action xt ∈ C, the
environment (adversary) gives a utility ft(xt) and permits
the access to the stochastic gradient of ft. The objective is to
minimize the α-regret for T planned rounds. Then, we turn
to the (adversarial) feedback delays phenomenon (Quanrud
& Khashabi, 2015) in our online stochastic submodular max-
imization problem. That is, instead of the prompt feedback,
the information about the stochastic gradient of ft could be
delivered at the end of round (t+ dt − 1), where dt ∈ Z+

is a positive integer delay for round t. For instance, the
standard online setting sets all dt = 1 (Hazan et al., 2016b).

Next, we introduce some useful notations. We denote the
feedback given at the end of round t as Ft = {u ∈ [T ] :

u + du − 1 = t} and D =
∑T

t=1 dt. Hence, at the end of
round t, we only have access to the stochastic gradients of
past fs where s ∈ Ft.

To improve the state-of-the-art 1/2 approximation ratio of
online gradient ascent and tackle the adversarial delays si-
multaneously, we employ the online delayed gradient algo-
rithm (Quanrud & Khashabi, 2015) in the Meta boosting
protocol, in which we utilize the stochastic gradient of the
non-oblivious function F . As shown in Algorithm 3, at each
round t, after querying the stochastic gradient ∇̃Ft(xt), we
apply the received stochastic gradients feedback ∇̃Fs(xs)
(s ∈ Ft) in a standard projection gradient step to update xt.

We provide the regret bound of Algorithm 3.

Theorem 4 (Proof in Appendix C). Assume C ⊆ X is
a bounded convex set and each ft is monotone, differen-
tiable, and weakly DR-submodular with γ. Meanwhile, the
gradient oracle is unbiased E(∇̃ft(x)|x) = ∇ft(x) and
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maxt∈[T ](∥∇̃Ft(xt)∥) = 1−e−γ

γ maxt∈[T ](∥∇̃ft(xt)∥) .

Let η = diam(C)
maxt∈[T ](∥∇̃Ft(xt)∥)

√
D

in Algorithm 3, then we

have

(1− e−γ)max
x∈C

T∑
t=1

ft(x)− E(
T∑

t=1

ft(xt)) = O(
√
D),

where D =
∑T

i=1 dt and dt ∈ Z+ is a positive delay for
the information about ft.

Remark 5. When no delay exists, i.e., dt = 1 for all t,
Theorem 4 says that the online boosting gradient ascent
achieves a (1− e−γ)-regret of O(

√
T ). To the best of our

knowledge, this is the first result achieving a (1 − e−γ)-
regret of O(

√
T ) with O(1) stochastic gradient queries for

each submodular function ft.

Remark 6. Under the delays of stochastic gradients, Theo-
rem 4 gives the first regret analysis for the online stochastic
submodular maximization problem. It is worth mentioning
that the (1−e−γ)-regret of O(

√
D) result not only achieves

the optimal (1−e−γ) approximation ratio, but also matches
the O(

√
D) regret of online convex optimization with ad-

versarial delays (Quanrud & Khashabi, 2015).

5. Numerical Experiments
In this section, we empirically evaluate our proposed boost-
ing algorithms in both offline and online settings by adopting
continuous DR-submodular objective functions (γ = 1).

5.1. Offline Settings

We first consider offline DR-submodular maximization prob-
lems and compare the following algorithms:
Boosting Gradient Ascent (BGA(B)): In the frame work
of Algorithm 2, we use the average of B independent
stochastic gradients to estimate ∇F (x) in every iteration.
Gradient Ascent (GA): We consider Algorithm 1 in Has-
sani et al. (2017) with step size ηt = 1/

√
t.

Continuous Greedy (CG): Algorithm 1 in (Bian et al.,
2017).
Stochastic Continuous Greedy (SCG): Algorithm 1 in
Mokhtari et al. (2018) with ρt = 1/(t+ 3)2/3.
Stochastic Continuous Greedy++ (SCG++): We consider
Algorithm 4.1 in Hassani et al. (2020) where we set the
minibatch size |M0| = T 2 and |M| = T for T -round
iterations.

5.1.1. SPECIAL CASE

Hassani et al. (2017) introduced a special continuous DR-
submodular function fk coming from the multilinear ex-
tension of a set cover function. Here, fk(x) = k + 1 −
(1− x2k+1)

∏k
i=1(1− xi)− (1− x2k+1)(k−

∑k
i=1 xi) +∑2k

i=k+1 xi, where x = (x1, x2, . . . , x2k+1). Under the

domain C = {x ∈ [0, 1]2k+1 :
∑2k+1

i=1 xi = k}, Hassani

et al. (2017) also verified that xloc = (

k︷ ︸︸ ︷
1, 1, . . . , 1, 0, . . . , 0)

is a local maximum with (1/2 + 1/(2k))-approximation
to the global maximum. Thus, if start at xloc, theoreti-
cally Gradient Ascent (Hassani et al., 2017) will get stuck
at this local maximum point. In our experiment, we set
k = 15 and consider a standard Gaussian noise, i.e.,
∇̃f(x) = ∇f(x) +N (0, 1).

First, we set the initial point of GA, BGA(1) and BGA(10)
to be xloc. From Figure 1(a), we observe that GA stays at
xloc as expected. Instead, BGA(1) and BGA(10) escape
the local maximum xloc and achieve near-optimal objective
values. Then, we run all algorithms from the origin and
present the results in Figure 1(b). It shows that GA, starting
from the origin, performs much better than from a local
maximum. Compared with GA, BGA(1) and BGA(10)

converge to the optimal point x∗ = (0, . . . , 0,

k+1︷ ︸︸ ︷
1, 1, . . . , 1)

more rapidly. Both Figure 1(a) and Figure 1(b) show that
BGA(1) and BGA(10) also perform better than Frank-Wolfe-
type algorithms with respect to the convergence rate and the
objective value.

5.1.2. NON-CONVEX/NON-CONCAVE QUADRATIC
PROGRAMMING

We consider the quadratic objective f(x) = 1
2x

THx +

hTx and constraints P = {x ∈ Rn
+|Ax ≤ b,0 ≤

x ≤ u,A ∈ Rm×n
+ , b ∈ Rm

+}. Following (Bian et al.,
2017), we choose the matrix H ∈ Rn×n to be a ran-
domly generated symmetric matrix with entries uniformly
distributed in [−1, 0], and the matrix A to be a random
matrix with entries uniformly distributed in [0, 1]. It can
be verified that f is a continuous DR-submodular func-
tion. We also set b = u = 1, m = 12, and n = 25.
To ensure the monotonicity, we set h = −HTu. Thus,
the objective becomes f(x) = ( 12x − u)THx. Simi-
larly, we also consider the Gaussian noise for gradient, i.e.,
∇̃f(x) = ∇f(x) + δN (0, 1). We consider δ = 5 and start
all algorithms from the origin.

As shown in Figure 1(c), BGA(1) and BGA(10) converge
faster than GA and achieve nearly the same objective val-
ues as GA after 100 iterations. Similar to the previous ex-
periment, BGA(1) and BGA(10) exceed Frank-Wolfe-type
algorithms with respect to the convergence rate.

5.2. Online Settings

We also consider Online DR-submodular Maximization
with/without adversarial delays. Here, we present a list
of algorithms to be compared in these settings:
Meta-Frank-Wolfe (Meta-FW(K)): We consider Algo-
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(b) Special Case (origin)
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(d) Online QP with feedback delays
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(e) Online QP without feedback delays

Figure 1. In Figure 1(a), we test the performance of the six algorithms for the special submodular function in (Hassani et al., 2017)
where the GA, BGA and BGA(10) start from xloc. Simultaneously, we present the results for all algorithm starting from the origin in
Figure 1(b). Figure 1(c) show the performance of the algorithms versus the number of iterations in a simulated Non-convex/Non-concave
submodular QP. Finally, Figure 1(d) and Figure 1(e) show the (1− 1/e)-regret of the seven algorithms, including OGA(10), OGA(50),
OBGA(10), OBGA(50), Meta-FW(500), Meta-FW-VR(50), and Meta-FW-VR(500), for the simulated online submodular QP in both
delayed setting and standard online setting.

rithm 1 in (Chen et al., 2018b) and initialize K online gradi-
ent descent oracles (Zinkevich, 2003; Hazan et al., 2016b)
with step size 1/

√
T .

Stochastic Meta-Frank-Wolfe (Meta-FW-VR(K)): We
consider Algorithm 1 in (Chen et al., 2018a) with the
ρt = 1/(t + 3)2/3 and K online gradient descent oracles
with step size 1/

√
T .

Online Gradient Ascent (OGA(B)): The delayed gradient
ascent algorithm in (Quanrud & Khashabi, 2015) with step
size 1/

√
T . We use B independent samples to estimate

∇ft(xt) at each round.
Online Boosting Gradient Ascent (OBGA(B)): We con-
sider Algorithm 3 with the step size ηt = 1/

√
T and use the

average of B independent samples to estimate the gradient
at each round.

The same as Section 5.1.2, we first generate T = 100
quadratic objective functions f1, f2, . . . , fT . The symmet-
ric random matrix Ht, corresponding to ft, is uniformly
generated from [−1, 0]n×n for t = 1, . . . , T , and the matrix
A in constraint is randomly generated from the uniform dis-
tribution in [0, 1]m×n. We also add the Gaussian noise for
the gradient of each ft, i.e., ∇̃ft(x) = ∇ft(x) + δN (0, 1)
with δ = 5. To simulate the feedback delays, we gener-
ate a uniform random number dt from {1, 2, 3, 4, 5} for the
stochastic gradient information of ft.

We present the (1 − 1/e)-regret of algorithms for the de-
layed setting and the standard online setting (Hazan et al.,
2016b) in Figure 1(d) and Figure 1(e), respectively. Un-
der both scenarios, our proposed OBGA with sample size
B = 50 exhibits the lowest regret among all algorithms.
With the same sample size B = 10 and 50, OBGA consis-
tently achieves lower regrets than OGA, which confirms the
effectiveness of our boosting framework.

6. Conclusion
In this paper, based on a novel non-oblivious function, we
present a boosting framework, covering boosting gradient
ascent and online boosting delayed gradient ascent, for the
stochastic continuous submodular maximization problem,
under both offline and online settings. In the offline sce-
nario, our boosting gradient ascent provides (1− e−γ − ϵ2)-
approximation guarantees after O(1/ϵ2) iterations. Under
the online setting, we are the first to consider delayed feed-
back for online submodular maximization problems. More-
over, when no delay exists, our online boosting delayed
gradient ascent is the first result to guarantee (1 − e−γ)-
approximation with O(

√
T ) regret, where at each round we

only estimate stochastic gradient O(1) times. Numerical
experiments demonstrate the superior performance of our
algorithms.
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A. Proofs in Section 3
A.1. Proof of Lemma 1

First, we review some basic inequalities for γ-weakly continuous DR-submodular function f .

Lemma 3. For a monotone, differentiable, and γ-weakly continuous DR-submodular function f , we have

1. For any x ≤ y, we have ⟨y − x,∇f(x)⟩ ≥ γ(f(y)− f(x)) and ⟨y − x,∇f(y)⟩ ≤ 1
γ (f(y)− f(x)).

2. For any x,y ∈ X , we also could derive ⟨y − x,∇f(x)⟩ ≥ γf(x ∨ y) + 1
γ f(x ∧ y)− (γ + 1

γ )f(x).

Proof. First, according to the definition of DR-submodular function and monotone property in Section 2, we have ∇f(x) ≥
γ∇f(y), if x ≤ y. Thus, for any x ≤ y, we have

f(y)− f(x) =

∫ 1

0

⟨y − x,∇f(x+ z(y − x))⟩dz ≤ 1

γ
⟨y − x,∇f(x))⟩,

f(y)− f(x) =

∫ 1

0

⟨y − x,∇f(x+ z(y − x))⟩dz ≥ γ⟨y − x,∇f(y)⟩,
(3)

where these two inequalities follow from y ≥ x+ z(y − x) ≥ x such that 1
γ∇f(x) ≥ ∇f(x+ z(y − x)) ≥ γ∇f(y) for

any z ∈ [0, 1]. We finish the proof of the first inequality in Lemma 3.

Then, from (3), we could derive that

⟨y ∨ x− x,∇f(x)⟩ ≥ γf(y ∨ x)− γf(x),

⟨x ∧ y − x,∇f(x)⟩ ≥ 1

γ
(f(x ∧ y)− f(x)),

(4)

where y ∨ x ≥ x and x ∧ y ≤ x.

Merging the two equations in (4), we have, for any x and y ∈ X ,

⟨y − x,∇f(x)⟩ = ⟨y ∨ x− x,∇f(x)⟩+ ⟨x ∧ y − x,∇f(x)⟩

≥ γf(x ∨ y) +
1

γ
f(x ∧ y)− (γ +

1

γ
)f(x),

(5)

where x ∧ y + x ∨ y = x+ y. Thus, we prove the second inequality in Lemma 3.

Next, with the Lemma 3, we prove the Lemma 1.

Proof. From Equation (5), if x is a stationary point of f in domain C, we have (γ + 1
γ )f(x) ≥ γf(x∨ y) + 1

γ f(x∧ y) for

any y ∈ C. Due to the monotone and non-negative property, f(x) ≥ γ2

γ2+1 maxy∈C f(y).

A.2. Proof of Lemma 2

Proof. First, we obtain an inequality about ⟨x,∇F (x)⟩, i.e.,

⟨x,∇F (x)⟩ =
∫ 1

0

w(z)⟨x,∇f(z ∗ x)⟩dz

=

∫ 1

0

w(z)df(z ∗ x)

= w(z)f(z ∗ x)|z=1
z=0 −

∫ 1

0

f(z ∗ x)w′(z)dz

≤ w(1)f(x)−
∫ 1

0

f(z ∗ x)w′(z)dz.

(6)
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Then, we also prove some properties about ⟨y,∇F (x)⟩, namely,

⟨y,∇F (x)⟩ =
∫ 1

0

w(z)⟨y,∇f(z ∗ x)⟩dz

≥
∫ 1

0

w(z)⟨y ∨ (z ∗ x)− z ∗ x,∇f(z ∗ x)⟩dz

≥ γ

∫ 1

0

w(z)(f(y ∨ (z ∗ x))− f(z ∗ x))dz

≥ (γ

∫ 1

0

w(z)dz)f(y)−
∫ 1

0

γw(z)f(z ∗ x)dz,

(7)

where the first inequality follows from y ≥ y ∨ (z ∗ x)− z ∗ x ≥ 0 and ∇f(z ∗ x) ≥ 0; the second one comes from the
Lemma 1; and the final inequality follows from f(y ∨ (z ∗ x)) ≥ f(y).

Finally, putting above the inequality (6) and inequality (7) together, we have

⟨y − x,∇F (x)⟩ ≥ (γ

∫ 1

0

w(z)dz)f(y)− w(1)f(x) +

∫ 1

0

(w′(z)− γw(z))f(z ∗ x)dz

= (γ

∫ 1

0

w(z)dz)(f(y)−
w(1) +

∫ 1

0
(γw(z)− w′(z)) f(z∗x)f(x) dz

γ
∫ 1

0
w(z)dz

f(x))

= (γ

∫ 1

0

w(z)dz)(f(y)− θ(w, f,x)f(x))

≥ (γ

∫ 1

0

w(z)dz)(f(y)− θ(w)f(x)),

(8)

where the final inequality follows from θ(w) = maxf,x θ(w, f,x).

A.3. Proof of Theorem 1

Proof. In this proof, we investigate the optimal value and solution about the following optimization problem:

min
w

θ(w) = min
w

max
f,x

w(1) +
∫ 1

0
(γw(z)− w′(z)) f(z∗x)f(x) dz

γ
∫ 1

0
w(z)dz

s.t. w(z) ≥ 0,

w(z) ∈ C1[0, 1],

f(x) > 0,

∇f(x1) ≥ γ∇f(y1) ≥ 0,∀x1 ≤ y1.

(9)

(1) Before going into the detail, we first consider a new optimization problem as follows:

min
w

max
R

θ(w,R)

s.t. w(z) ≥ 0,

w(z) ∈ C1[0, 1],

γ

∫ 1

0

w(z)dz = 1,

R(z) ≥ 0,

R(1) = 1,

R′(z1) ≥ γR′(z2) ≥ 0 (∀z1 ≤ z2, z1, z2 ∈ [0, 1]),

(10)

where θ(w,R) = w(1) +
∫ 1

0
(γw(z)− w′(z))R(z)dz.

Next, we prove the equivalence between problem (9) and problem (10). For any fixed point x ∈ C, we consider the function
m(z) = f(z∗x)

f(x) (we assume f(x) > 0), which is satisfied with the constraints of problem (10), i.e., m(z) ≥ 0, m(1) = 1,
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and m′(z1) =
⟨x,∇f(z1∗x)⟩

f(x) ≥ γ⟨x,∇f(z2∗x)⟩
f(x) = γm′(z2) ≥ 0 (∀z1 ≤ z2, z1, z2 ∈ [0, 1]). Therefore, the optimal objective

value of problem (10) is larger than that of problem (9). Moreover, for any R(z) satisfying the constrains in problem (10),
we can design a function f1(x) = R(x1/a1), where x1 (we assume x1 ∈ [0, a1] in the Section 2) is the first coordinate of
point x. Also, f1(x) ≥ 0 and when x ≤ y, we have ∇f1(x) ≥ γ∇f1(y). Hence, f1 is also satisfied with the constraints of
problem (9). If we set x1 = (a1, 0, . . . , 0) ∈ X , f1(z∗x1)

f1(x1)
= R(z) such that the optimal objective value of problem (9) is

larger than that of problem (10). As a result, the optimization problem (10) is equivalent to the problem (9).

(2) Then, we prove the minw maxf,x θ(w, f,x) ≥ 1
1−e−γ . Setting R̂(z) = 1−e−γz

1−e−γ , we could verify that, if γ
∫ 1

0
w(z)dz =

1,

θ(w, R̂) = w(1) +

∫ 1

0

(γw(z)− w′(z))R̂(z)dz

= w(1) +

∫ 1

0
(γw(z)− w′(z))dz +

∫ 1

0
e−γz(w′(z)− γw(z))dz

1− e−γ

= w(1) +
1− w(1) + w(0) + e−γzw(z)|z=1

z=0

1− e−γ

= w(1) +
1− w(1) + w(0) + e−γw(1)− w(0)

1− e−γ

=
1

1− e−γ
.

(11)

Also, R̂ is satisfied with the constraints of optimization problem (10), i.e., for any z ∈ [0, 1], R̂(z) ≥ 0, R̂(1) = 1 and
R̂′(x) = γe−γx

1−e−γ ≥ γ2e−γy

1−e−γ = γR̂′(y) where x ≤ y and 0 ≤ γ ≤ 1. Therefore, maxR θ(w,R) ≥ θ(w, R̂) = 1
1−e−γ and

minw maxf,x θ(w, f,x) = minw maxR θ(w,R) ≥ 1
1−e−γ .

(3) We consider ŵ(z) = eγ(z−1) and observe that ŵ′(z) = γŵ(z) such that θ(ŵ, f,x) =
ŵ(1)+

∫ 1
0
(γŵ(z)−ŵ′(z))

f(z∗x)
f(x)

dz

γ
∫ 1
0
ŵ(z)dz

=

ŵ(1)

γ
∫ 1
0
ŵ(z)dz

= 1
1−e−γ for any function f . Also, ŵ(z) is satisfied with the constraints in optimization problem (9), namely,

ŵ(z) ≥ 0 and ŵ ∈ C1[0, 1]. Therefore, 1
1−e−γ = minw maxf,x θ(w, f,x) and eγ(z−1) ∈ argminw θ(w).

A.4. Proof of Theorem 2

Proof. From the definition of F , we have ⟨y − x,∇F (x)⟩ ≥ (1− e−γ)f(y)− f(x) for any point x,y ∈ C. Hence, when
x ∈ C is a stationary point for F in the domain C, 0 ≥ ⟨y−x,∇F (x)⟩ ≥ (1− e−γ)f(y)− f(x) for any point y ∈ C such
that f(x) ≥ (1− e−γ)maxy∈C f(y).

Then, for the second one, we first verify that the value
∫ 1

0
eγ(z−1)

z f(z ∗ x)dz is controlled via f(x) for any x ∈ X . For any
δ ∈ (0, 1), we first have ∫ 1

0

eγ(z−1)

z
f(z ∗ x)dz

= (

∫ δ

0

+

∫ 1

δ

)
eγ(z−1)

z
f(z ∗ x)dz

≤
∫ δ

0

f(z ∗ x)
z

dz + (

∫ 1

δ

1

z
dz)f(x)

=

∫ δ

0

f(z ∗ x)
z

dz + ln(
1

δ
)f(x)

=

∫ δ

0

∫ z

0
⟨x,∇f(u ∗ x)⟩du

z
dz + ln(

1

δ
)f(x),

(12)

where the first inequality follows from f(z ∗ x) ≤ f(x) and δ ∈ [0, 1], and the final equality from
∫ z

0
⟨x,∇f(u ∗ x)⟩du =

f(z ∗ x)− f(0) = f(z ∗ x).
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Next, ∫ δ

0

∫ z

0
⟨x,∇f(u ∗ x)⟩du

z
dz =

∫ δ

0

⟨x,∇f(u ∗ x)⟩
∫ δ

u

1

z
dzdu

=

∫ δ

0

⟨x,∇f(u ∗ x)⟩ ln( δ
u
)du

=

∫ δ

0

(⟨x,∇f(u ∗ x)−∇f(x)⟩+ ⟨x,∇f(x)⟩) ln( δ
u
)du

≤
∫ δ

0

ln(
δ

u
)du(Lr2(X ) +

f(x)

γ
)

= (u− u ln(
u

δ
))|δu=0(Lr

2(X ) +
f(x)

γ
)

= δ(Lr2(X ) +
f(x)

γ
),

(13)

where the first equality follows from the Fubini’s theorem; in the first inequality, we use ⟨x,∇f(u∗x)−∇f(x)⟩ ≤ L ∥x∥2,
which is derived from the L-smooth property, and ⟨x,∇f(x)⟩ ≤ f(x)

γ , following from the Lemma 1 and f(0) = 0; the
final equality follows from limu→0+ u ln(u) = 0.

From Equation (12) and Equation (13), for any δ ∈ (0, 1), we have

F (x) ≤ ln(
1

δ
)f(x) + δ(L∗r

2(X ) +
f(x)

γ
)

≤ ln(
1

δ
)(f(x) + c) + δ(L∗r

2(X ) +
f(x)

γ
),

(14)

where the second inequality comes from c > 0.

If we set δ = f(x)+c
f(x)
γ +Lr2(X )

∈ [0, 1] (0 ≤ γ ≤ 1 and 0 < c ≤ L∗r
2(X )), we have

F (x) ≤ ln(
1

δ
)(f(x) + c) + δ(L∗r

2(X ) +
f(x)

γ
)

= (1 + ln(
1

δ
))(f(x) + c)

≤ (1 + ln(τ)(f(x) + c),

where the final inequality is derived from 1
δ ≤ τ and τ = max( 1γ ,

L∗r
2(X )
c ).

As a result, the value
∫ 1

0
eγ(z−1)

z f(z ∗ x)dz is well-defined. We also could verify that ∇
∫ 1

0
eγ(z−1)

z f(z ∗ x)dz =∫ 1

0
eγ(z−1)∇f(z ∗ x)dz so that we could set F (x) =

∫ 1

0
eγ(z−1)

z f(z ∗ x)dz.

For the final one,

∥∇F (x)−∇F (y)∥ =

∥∥∥∥∫ 1

0

eγ(z−1)(∇f(z ∗ x)−∇f(z ∗ y))dz
∥∥∥∥

≤
∫ 1

0

eγ(z−1) ∥∇f(z ∗ x)−∇f(z ∗ y)∥ dz

≤ L(

∫ 1

0

eγ(z−1)zdz) ∥x− y∥

=
γ + e−γ − 1

γ2
L ∥x− y∥ .

(15)
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A.5. Proof of Proposition 1

Proof. For the first one, fixed z, E
(
∇̃f(z ∗ x)

∣∣∣x, z) = ∇f(z ∗ x) such that E
(
∇̃f(z ∗ x)

∣∣∣x) =

Ez∼Z

(
E
(
∇̃f(z ∗ x)

∣∣∣x, z)) = Ez∼Z (∇f(z ∗ x)|x) =
∫ 1

z=0
γeγ(z−1)

1−e−γ ∇f(z ∗ x)dz = γ
1−e−γ F (x). For the second

one,

E

(∥∥∥∥1− e−γ

γ
∇̃f(z ∗ x)−∇F (x)

∥∥∥∥2
∣∣∣∣∣x
)

=E

(∥∥∥∥1− e−γ

γ
(∇̃f(z ∗ x)−∇f(z ∗ x)) + 1− e−γ

γ
∇f(z ∗ x)−∇F (x)

∥∥∥∥2
∣∣∣∣∣x
)

≤2Ez∼Z

(
E

(∥∥∥∥1− e−γ

γ
(∇̃f(z ∗ x)−∇f(z ∗ x))

∥∥∥∥2
∣∣∣∣∣x, z

)
+

∥∥∥∥1− e−γ

γ
∇f(z ∗ x)−∇F (x)

∥∥∥∥2
)

≤2
(1− e−γ)2σ2

γ2
+ 2Ez∼Z

(∥∥∥∥1− e−γ

γ
∇f(z ∗ x)−∇F (x)

∥∥∥∥2
∣∣∣∣∣x
)

≤2
(1− e−γ)2σ2

γ2
+ 2Ez∼Z

(∥∥∥∥∫ 1

0

eγ(u−1)(∇f(z ∗ x)−∇f(u ∗ x))du
∥∥∥∥2
∣∣∣∣∣x
)

≤2
(1− e−γ)2σ2

γ2
+ 2Ez∼Z

((∫ 1

0

eγ(u−1)|z − u|L ∥x∥ du
)2
∣∣∣∣∣x
)

≤2
(1− e−γ)2σ2

γ2
+ 2Ez∼Z

(∫ 1

0

eγ(u−1)du

∫ 1

u=0

eγ(u−1)(z − u)2L2 ∥x∥2 du
∣∣∣∣x)

=2
(1− e−γ)2σ2

γ2
+ 2

∫ 1

z=0

∫ 1

u=0

eγ(u+z−2)(z − u)2L2 ∥x∥2 dudz

≤2
(1− e−γ)2σ2

γ2
+

2L2r2(X )(1− e−2γ)

3γ
,

where the first and fifth inequalities come from Cauchy–Schwarz inequality.

B. Proof of Theorem 3
First, we recall the projection theorem from (Bertsekas, 2015) in the following lemma.

Lemma 4. For the projection PC(x) = argminz∈C ∥z − x∥, we have

⟨PC(x))− x, z − PC(x)⟩ ≥ 0,∀z ∈ C. (16)

Before verifying the Theorem 3, we first provide following lemma.

Lemma 5. In the t-round update in Algorithm 2, if we set the ∇̃F (xt) =
1−e−γ

γ ∇̃f(zt ∗ xt), for any y ∈ C and µt > 0,
we have

E
(
F (xt+1)− F (xt) + f(xt)− (1− e−γ)f(y)

)
≥E

(
1

2ηt
(∥y − xt+1∥2 − ∥y − xt∥2)−

1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 + (

1

2ηt
− µt + Lγ

2
) ∥xt+1 − xt)∥2

)
.

Proof. From the Theorem 2, when f is L-smooth, the non-oblivious function F is Lγ-smooth. Hence

F (xt+1)− F (xt) =

∫ z=1

z=0

⟨xt+1 − xt,∇F (xt + z(xt+1 − xt))⟩dz

≥ ⟨xt+1 − xt,∇F (xt)⟩ −
Lγ

2
∥xt+1 − xt∥2 .

(17)
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Then,
⟨xt+1 − xt,∇F (xt)⟩

=⟨xt+1 − xt, ∇̃F (xt)⟩+ ⟨xt+1 − xt,∇F (xt)− ∇̃F (xt)⟩

≥⟨xt+1 − xt, ∇̃F (xt)⟩ −
1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 − µt

2
∥xt+1 − xt∥2 ,

(18)

where the first inequality from the Young’s inequality.

It is well known ∇̃F (xt) =
1
ηt
(yt+1 − xt) such that

⟨xt+1 − xt, ∇̃F (xt)⟩

=⟨xt+1 − y, ∇̃F (xt)⟩+ ⟨y − xt, ∇̃F (xt)⟩

=
1

ηt
⟨xt+1 − y,yt+1 − xt⟩+ ⟨y − xt, ∇̃F (xt)⟩

=
1

ηt
⟨xt+1 − y,yt+1 − xt+1⟩+

1

ηt
⟨xt+1 − y,xt+1 − xt⟩+ ⟨y − xt, ∇̃F (xt)⟩

≥ 1

ηt
⟨xt+1 − y,xt+1 − xt⟩+ ⟨y − xt, ∇̃F (xt)⟩

=
1

2ηt
(∥y − xt+1∥2 + ∥xt+1 − xt∥2 − ∥y − xt∥2) + ⟨y − xt, ∇̃F (xt)⟩,

(19)

where the first inequality follows from the Lemma 4.

From the Equation (17)-(19), we have

F (xt+1)− F (xt)

≥ 1

2ηt
(∥y − xt+1∥2 + ∥xt+1 − xt∥2 − ∥y − xt∥2) + ⟨y − xt, ∇̃F (xt)⟩

− 1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 − µt + Lγ

2
∥xt+1 − xt∥2

≥ 1

2ηt
(∥y − xt+1∥2 − ∥y − xt∥2) + ⟨y − xt, ∇̃F (xt)⟩

− 1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 + (

1

2ηt
− µt + Lγ

2
) ∥xt+1 − xt∥2 .

(20)

From the Proposition 1, E(∇̃F (xt)|xt) = ∇F (xt) and we also have

E (F (xt+1)− F (xt))

≥E(
1

2ηt
(∥y − xt+1∥2 − ∥y − xt∥2) + E(⟨y − xt, ∇̃F (xt)⟩|xt)

− 1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 + (

1

2ηt
− µt + Lγ

2
) ∥xt+1 − xt∥2)

=E(
1

2ηt
(∥y − xt+1∥2 − ∥y − xt∥2) + ⟨y − xt,∇F (xt)⟩

− 1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 + (

1

2ηt
− µt + Lγ

2
) ∥xt+1 − xt∥2)

≥E(
1

2ηt
(∥y − xt+1∥2 − ∥y − xt∥2) + (1− e−γ)f(y)− f(xt)

− 1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2 + (

1

2ηt
− µt + Lγ

2
) ∥xt+1 − xt∥2),

(21)

where the final inequality from the definition of F .

Next, we prove the Theorem 3.
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Proof. From the Lemma 5, if we set y = x∗ = argmaxx∈C f(x), we have
T−1∑
t=1

E(F (xt+1)− F (xt) + f(xt)− (1− e−γ)f(x∗))

≥
T−1∑
t=1

E(
1

2ηt
(∥x∗ − xt+1∥2 − ∥x∗ − xt∥2)−

T−1∑
t=1

1

2µt

∥∥∥∇F (xt)− ∇̃F (xt)
∥∥∥2)

≥− σ2
γ

T∑
t=1

1

2µt
+

T−1∑
t=2

E(∥x∗ − xt∥2)(
1

2ηt−1
− 1

2ηt
) + E(

∥x∗ − xT ∥2

2ηT−1
− ∥x∗ − x1∥2

2η1
)

≥− diam2(C)
2ηT−1

− σ2
γ

T∑
t=1

1

µt

≥− (diam2(C)Lγ/2 + 3σγdiam(C)
√
T/2)

(22)

where the first inequality follows from ηt =
1

µt+Lr
if we set µt =

σγ

√
t

diam(C) in Lemma 5; the second inequality from the
Proposition 1 and the Abel’s inequality; the third inequality from the definition of diam(C).

Finally, we have:

E(
T−1∑
t=1

f(xt) + F (xT )) ≥ (1− e−γ)(T − 1)f(x∗)− (diam2(C)Lγ/2 + 3σγdiam(C)
√
T/2) (23)

According to Theorem 2,

E(
T−1∑
t=1

f(xt) + (1 + log(τ))(f(xT ) + c) ≥ (1− e−γ)(T − 1)f(x∗)− (diam2(C)Lγ/2 + 3σγdiam(C)
√
T/2) (24)

where τ = max( 1γ ,
r2(X )L

c ).

In Algorithm 2, we set

△t =

{
1 t ̸= T

1 + log(τ) t = T
(25)

and △ =
∑T

t=1 △t = T + log(τ).

E(
T∑

t=1

△t

△
f(xt)) ≥ (1− e−γ − 1 + ln(τ)

T + ln(τ)
)f(x∗)− (diam2(C)Lγ/2 + 3σγdiam(C)

√
T )/2 + (1 + log(τ))c

T + ln(τ)
(26)

Therefore, when c = O(1), we have

E(
T∑

t=1

△t

△
f(xt)) ≥ (1− e−γ −O(

1

T
))f(x∗)−O(

1√
T
)

C. Proof of Theorem 4
Proof. We denote ∇̃Ft(xt) =

1−e−γ

γ ∇̃f(zt ∗ xt) and x∗ = argmaxx∈C
∑T

t=1 ft(x). From the projection, we know that

∥xt+1 − x∗∥ ≤
∥∥yt+1 − x∗∥∥ =

∥∥∥∥∥xt + η
∑
s∈Ft

∇̃Fs(xs)− x∗

∥∥∥∥∥ , (27)

where the first inequality from the projection; and the first equality from yt+1 = xt + η
∑

s∈Ft

1−e−γ

γ ∇̃fs(zs ∗ xs) in
Algorithm 3.

We order the set Ft = {s1, . . . , s|Ft|}, where s1 < s2 < · · · < s|Ft| and |Ft| = #{u ∈ [T ] : u+ du − 1 = t}. Moreover,
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we also denote Ft,m = {u ∈ Ft and u < m}, xt+1,m = xt + η
∑

s∈Ft,m
∇̃Fs(xs) and s|Ft|+1 = t+ 1. Therefore,∥∥xt+1,sk+1

− x∗∥∥2 =
∥∥∥xt+1,sk + η∇̃Fsk(xsk)− x∗

∥∥∥2
= ∥xt+1,sk − x∗∥2 + 2η⟨xt+1,sk − x∗, ∇̃Fsk(xsk)⟩+ η2

∥∥∥∇̃Fsk(xsk)
∥∥∥2 (28)

According to Equation (28), we have

∥∥yt+1 − x∗∥∥2 − ∥xt − x∗∥2

=

|Ft|∑
k=1

(
∥∥xt+1,sk+1

− x∗∥∥2 − ∥xt+1,sk − x∗∥2)

=2η
∑
s∈Ft

⟨xt+1,s − x∗, ∇̃Fs(xs)⟩+ η2
∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2

=2η
∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩+ 2η
∑
s∈Ft

⟨xs − x∗, ∇̃Fs(xs)⟩+ η2
∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2

(29)

where the first equality follows from setting xt+1,|Ft|+1 = yt+1; the second from Equation (28).

Therefore,

E(
∥∥yt+1 − x∗∥∥2 − ∥xt − x∗∥2)

=2ηE

(∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩+
∑
s∈Ft

⟨xs − x∗,E(∇̃Fs(xs)|xs)⟩

)
+ η2E(

∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2)

=2ηE

(∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩+
∑
s∈Ft

⟨xs − x∗,∇Fs(xs)⟩

)
+ η2E(

∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2)

≤2ηE

(∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩+
∑
s∈Ft

(
fs(xs)− (1− e−γ)fs(x

∗)
))

+ η2E(
∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2)

(30)

where the first inequality from the definition of non-oblivious function F .

Therefore, we have:

2ηE

(
(1− e−γ)

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt)

)

=2ηE

(
T∑

t=1

∑
s∈Ft

(
(1− e−γ)fs(x

∗)− fs(xs)
))

≤
T∑

t=1

(
E(∥xt − x∗∥2 −

∥∥yt+1 − x∗∥∥2) + 2ηE(
∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩) + η2E(
∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2))

≤
T∑

t=1

(
E(∥xt − x∗∥2 − ∥xt+1 − x∗∥2) + 2ηE(

∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩) + η2E(
∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2))

≤diam2(C) +
T∑

t=1

(
2ηE(

∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩) + η2E(
∑
s∈Ft

∥∥∥∇̃Fs(xs)
∥∥∥2))

≤diam2(C) + η2 max
t∈[T ]

(
∥∥∥∇̃Ft(xt)

∥∥∥2) T∑
t=1

|Ft|+ 2η

T∑
t=1

(
E

(∑
s∈Ft

⟨xt+1,s − xs, ∇̃Fs(xs)⟩

))

(31)
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For the final part in Equation (31),

⟨xt+1,s − xs, ∇̃Fs(xs)⟩

≤
∥∥∥∇̃Fs(xs)

∥∥∥ ∥xt+1,s − xs∥

≤
∥∥∥∇̃Fs(xs)

∥∥∥ (∥xt+1,s − xt∥+ ∥xt − xs∥)

≤
∥∥∥∇̃Fs(xs)

∥∥∥ (∥xt+1,s − xt∥+
t−1∑
m=s

∥∥ym+1 − xm

∥∥)
≤max

t∈[T ]
(
∥∥∥∇̃Ft(xt)

∥∥∥2)η(|Ft,s|+
t−1∑
m=s

|Fm|)

(32)

where the third inequality follows from ∥xt − xs∥ ≤ ∥yt − xs∥ ≤ ∥yt − xt−1∥ + ∥xt−1 − xs∥ ≤ · · · ≤∑t−1
m=s

∥∥ym+1 − xm

∥∥.

Finally, we have

E

(
(1− e−γ)

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt)

)

≤diam2(C)
2η

+max
t∈[T ]

(
∥∥∥∇̃Ft(xt)

∥∥∥2)(η
2

T∑
t=1

|Ft|+ η

T∑
t=1

∑
s∈Ft

(|Ft,s|+
t−1∑
m=s

|Fm|))

(33)

Firstly,
∑T

t=1 |Ft| ≤ T . Next, we investigate the |Ft,s|+
∑t−1

m=s |Fm| when s ∈ Ft.

When s ∈ Ft, i.e., s+ ds − 1 = t, for any q ∈ (Ft,s

⋃
(∪t−1

m=sFm)), if s+ 1 ≤ q ≤ t− 1, the feedback of round q must
be delivered before the round t, namely, q + dq − 1 ≤ t − 1. Moreover, if q ≤ s − 1, the feedback of round q could be
delivered between round s and round t. Therefore,

|Ft,s|+
t−1∑
m=s

|Fm| =|{i|s+ 1 ≤ i ≤ t− 1, and i+ di − 1 ≤ t− 1}|

+ |{i|1 ≤ i ≤ s− 1, and s ≤ i+ di − 1 ≤ t}|.

(34)

When s ∈ Ft, we can derive that |{i|s + 1 ≤ i ≤ t − 1, and i + di − 1 ≤ t − 1}| ≤ t − s − 1 ≤ ds. Thus,∑T
t=1

∑
s∈Ft

|{i|s+ 1 ≤ i ≤ t− 1, and i+ di − 1 ≤ t− 1}| ≤
∑T

i=1 di = D.

Next, for each b ∈ {i|1 ≤ i ≤ s − 1, and s ≤ i + di − 1 ≤ t}, we have b ≤ s ≤ b + db − 1 ≤ s + ds − 1 so that∑T
t=1

∑
s∈Ft

|{i|1 ≤ i ≤ s− 1, and s ≤ i+ di − 1 ≤ t}| ≤
∑T

i=1 |{s| i < s ≤ i+ di − 1 ≤ s+ ds − 1}| ≤
∑T

i=1 di.

Hence,

E((1− e−γ)

T∑
t=1

ft(x
∗)−

T∑
t=1

ft(xt))

≤diam2(C)
2η

+max
t∈[T ]

(
∥∥∥∇̃Ft(xt)

∥∥∥2)(η
2
T + 2ηD)

≤diam2(C)
2η

+max
t∈[T ]

(
∥∥∥∇̃Ft(xt)

∥∥∥2)3ηD
≤O(

√
D)

(35)

where the final equality from η = diam(C)
maxt∈[T ](∥∇̃Ft(xt)∥)

√
D

.


