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Abstract
Visual object tracking is basically formulated as
target classification and bounding box estima-
tion. Recent anchor-free Siamese trackers rely
on predicting the distances to four sides for ef-
ficient regression but fail to estimate accurate
bounding box in complex scenes. We argue that
these approaches lack a clear probabilistic expla-
nation, so it is desirable to model the uncertainty
and ambiguity representation of target estima-
tion. To address this issue, this paper presents an
Uncertainty-Aware Siamese Tracker (UAST) by
developing a novel distribution-based regression
formulation with localization uncertainty. We ex-
ploit regression vectors to directly represent the
discretized probability distribution for four offsets
of boxes, which is general, flexible and informa-
tive. Based on the resulting distributed representa-
tion, our method is able to provide a probabilistic
value of uncertainty. Furthermore, considering the
high correlation between the uncertainty and re-
gression accuracy, we propose to learn a joint rep-
resentation head of classification and localization
quality for reliable tracking, which also avoids the
inconsistency of classification and quality estima-
tion between training and inference. Extensive ex-
periments on several challenging tracking bench-
marks demonstrate the effectiveness of UAST and
its superiority over other Siamese trackers.

1. Introduction
Visual tracking is a fundamental yet challenging research
topic in computer vision. It has a wide range of applications,
such as surveillance system, UAV-based monitoring, human-
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Figure 1. (a) Comparison of different regression methods in visual
tracking: anchor-based (such as SiamRPN, SiamRPN++), anchor-
free (such as SiamFC++, Ocean), and our distribution-based UAST.
(b) A representative example of the proposed uncertainty-aware
tracking. Due to occlusion and similar objects, the ground-truth
(green) may be not explainable enough, and many trackers are lim-
ited by such issues. Instead, distribution-based regression (yellow)
can reflect the uncertainty information of localization prediction,
where a flatten distribution depicts an uncertain and ambiguous
boundary, and vice versa. Notably, UAST further provides the
estimated certainty with respect to 4-directions (L C, T C, R C
and B C), and the whole certainty value of the predicted box, while
jcr score denotes our joint confidence representation score.

computer interaction, and so on. Given only an arbitrary
target annotation in the initial frame, object trackers aim
at predicting its location and scale in subsequent frames of
the video sequence. In the most general form, there is no
prior knowledge of the object category and its surrounding
environment (Huang et al., 2019). Although much progress
has been achieved in recent years, accurate tracking is still
a challenging task due to occlusion, motion blur, geometric
deformation, scale and appearance variations.

In general, visual tracking can be formulated as a combina-
tion of classification and localization sub-tasks. The former
aims to robustly predict the coarse location of the target,
while the latter is designed to estimate precise bounding
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boxes. To enable accurate tracking, regression branch is of
great importance as it is responsible for target box estima-
tion. Based on this aspect, previous anchor-based Siamese
trackers (Li et al., 2018; 2019) introduce region proposal
networks (Ren et al., 2016) to perform bounding box regres-
sion. Recent anchor-free Siamese trackers (Xu et al., 2020;
Zhang et al., 2020) that become more popular owning to
its concise, elegant design and no anchor prior knowledge,
directly regress distances to four sides of the box using fully
convolutional networks. From a distributional perspective
of view, these aforementioned regression methods can be
regarded as a simple Dirac delta distribution since the goal
of regression is to fit a single value for each output of the
target box. Despite significant progress has been achieved,
existing trackers do not consider to estimate the uncertainty
of box coordinates. In other words, a single prediction of
target boundary has no clear probabilistic interpretation due
to lacking of extra localization representation information.
Therefore, the resulting boxes are prone to inaccuracy or
failures in some complex scenes. It is essential to model and
estimate the uncertainty of bounding box representation.

Our main motivation is to explore the uncertainty of tracking.
Although recent work (Danelljan et al., 2020) tries to exploit
Gaussian distribution to model probabilistic representation
of bounding boxes, it is not capable to completely and flexi-
bly reflect the underlying distribution of object bounds. In
fact, the real distribution is not necessarily symmetric like
Gaussian, and even can be more arbitrary (Jiang et al., 2018).
So can we model general distribution of bounding boxes to
estimate the uncertainty for accurate object tracking?

Following the above analysis, we propose a novel general
distribution-based regression formulation to learn localiza-
tion uncertainty representation of bounding boxes for ac-
curate tracking, inspired by the success of GFL (Li et al.,
2020) in object detection. To be consistent with the exist-
ing anchor-free Siamese trackers (Xu et al., 2020; Zhang
et al., 2020; Guo et al., 2021), the goal of our regression
branch is also to predict the relative offsets of the spatial
position to the four sides of bounding boxes. Differently,
the proposed tracking framework can additionally model
the uncertainty and ambiguity representation via learning
discretized probability distribution along each of four direc-
tions over its continuous domain, without any extra prior
knowledge. As shown in Figure 1, the learned distributions
obviously reflect the underlying information by its shape.
Impressively, the predicted distributions are usually sharp
when boundaries are clear and certain, and is flatten when
the right border is ambiguous. More than that, our tracker
enables to inform which direction of the box boundary is
uncertain using a quantitative value. Benefiting from this
elegant solution for localization uncertainty reasoning, more
accurate bounding boxes can be obtained owing to aware of
the potential distributions of target boundaries.

Another limitation of most existing tracking methods is
the misalignment between classification and regression.
Namely, the position with high classification score may
not correspond high regression accuracy, and vice versa,
leading to a poor tracking performance. Recent anchor-free
trackers (Xu et al., 2020) apply a quality estimation branch
to assist the classification branch for final predictions. Nev-
ertheless, the independent optimization of them also brings
inconsistency between training and test. To this end, we
present a simple yet effective joint representation head of
classification and localization quality, which can be trained
end-to-end and used directly during tracking. Furthermore,
considering the strong correlation between the estimated
uncertainty and regression accuracy, we exploit the learned
distributions to design a task alignment sub-network for
facilitating the learning of our joint representation head.
In this way, it eliminates the misalignment and unsolved
training-test inconsistency. Notice that our method almost
does not degrade the training/inference time of basic track-
ers due to negligible additional computation cost.

We integrate our general distribution and joint represen-
tation into the recent state-of-the-art anchor-free trackers,
termed as Uncertainty-Aware Siamese Tracking, UAST. In
summary, our main contributions are as follows:

• We propose a novel distributional regression paradigm
by learning general representation of bounding boxes
for single object tracking, which is capable of flexibly
capturing more informative target boundaries for accu-
rate localization, and explicitly estimating the certainty
value of each direction in a probabilistic way.

• Based on the learned distributions of bounding box,
we propose a simple yet effective joint representation
head of classification and localization quality by lever-
aging the estimated uncertainty and a lightweight task
alignment sub-network, which bridges the gap between
training and inference. Notably, it is almost cost-free.

• The proposed UAST achieves state-of-the-art perfor-
mance on five public tracking benchmarks, including
GOT-10k, LaSOT, OTB-100, VOT-2019 and UAV-123,
demonstrating its effectiveness and tracking efficiency.

2. Related Work
In this section, we briefly review recent single object track-
ers from the aspect of target state estimation, and introduce
uncertainty estimation in computer vision, as well as discuss
localization quality estimation of anchor-free methods.

2.1. Visual Object Tracking

Comparing with early popular correlation filters based track-
ers (Bolme et al., 2010; Henriques et al., 2014), Siamese
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network based methods have achieved great progress in
tracking community since its good balance of performance
and speed. As a pioneering work, SiamFC (Bertinetto et al.,
2016) applied multi-scale testing to obtain the target box,
which is inefficient and inaccurate. This strategy is severely
limited since no specific scale estimation is designed.

For the another popular category, ATOM (Danelljan et al.,
2019) presents a customized IoU prediction network (Jiang
et al., 2018) for target estimation. Nevertheless, it aggravates
the computation burden and many hyper-parameters since
multiple initial boxes need to be iteratively refined.

More recent advanced Siamese trackers consider perform-
ing classification and regression simultaneously, leading to
superior tracking performance. SiamRPN tracker family (Li
et al., 2018; 2019) introduce region proposal networks to
regress the shift of position and scale between pre-defined
anchor boxes and ground truth. Inspired by FCOS (Tian
et al., 2019) in object detection, numerous anchor-free track-
ers (Guo et al., 2020; Chen et al., 2020; Zhang et al., 2020;
Peng et al., 2021) have emerged to avoid relying on the prior
of candidate boxes, and become more popular due to its
simplicity in design. To be specific, SiamFC++ (Xu et al.,
2020), SiamCAR (Guo et al., 2020) and SiamBAN (Chen
et al., 2020) directly regress the offsets to box borders in a
per-pixel-prediction manner. To alleviate the misalignment
of classification and regression, Ocean (Zhang et al., 2020)
uses a feature alignment module to obtain object-aware pre-
dictions for penalizing the classification branch. However,
the two branches are trained separately but combined dur-
ing tracking. Furthermore, SiamRCR (Peng et al., 2021)
presents reciprocal links for making training and inference
more consistent. Different from them, we devise a joint
confidence representation head to tackle this issue.

2.2. Uncertainty Estimation in Computer Vision

Existing object detectors (Ren et al., 2016; Tian et al., 2019)
and trackers (Li et al., 2019; Xu et al., 2020) apply Dirac
delta distribution to govern the bounding box representation,
learning a single prediction for each side of target boxes.
Recently, in the object detection field, to model the local-
ization uncertainty, Gaussian YOLOv3 (Choi et al., 2019)
and KL-Loss (He et al., 2019) adopt Gaussian assumption
to predict the variance of four edges. When the variance is
larger, the distribution is flatter, indicating that the predic-
tion is uncertain; the smaller the variance, the sharper the
distribution, indicating that the predicted box is confident
at the mean position. Nevertheless, these representations
are either too simplified or too rigid, which can not reflect
the underlying distribution in practice. Furthermore, GFL
(Li et al., 2020) relaxes the assumption and directly learns a
more flexible general distribution of boxes.

Naturally, the uncertainty estimation of targets also can be

applied to visual tracking. PrDiMP (Danelljan et al., 2020)
learns to predict the conditional probability density using
a probabilistic regression model, which is trained by mini-
mizing the KL divergence between the prediction and label
distribution. (Zhong et al., 2021) uses KL to learn policy
from teacher for distraction-robust active object tracking.
UATracker (Zhou et al., 2021) estimates the uncertainty of
IoU prediction, and exploits it to filter out unreliable sam-
ples for online learning based discriminative classifier in
DiMP (Bhat et al., 2019). In contrast to them, we consider
learning the discrete probability distribution of each side
of bounding boxes for localization uncertainty estimation,
which is more flexible and informative. Meanwhile, our
approach still benefits from the advanced IoU-based loss
due to compatible with anchor-free trackers. In addition, the
certainty can be depicted by an explicit probability value.

2.3. Localization Quality Estimation

SiamFC++ estimates the localization quality based on cen-
terness proposed in FCOS (Tian et al., 2019). However,
centerness can not fully account for localization quality.
Intersection-over-Union (IoU) between predicted boxes and
ground-truth is also explored and proved to be effective in
IoUNet (Jiang et al., 2018). After that, Ocean introduces an
object-aware branch with predicted boxes, while SiamRCR
(Peng et al., 2021) assigns dynamic weights in classification
loss based on predicted IoU score. Differently, we exploit
distance-IoU score (Zheng et al., 2020) as the label of our
joint head, which is more comprehensive and suitable for ob-
ject tracking. Recent advance (Li et al., 2021) suggests that
the bounding box distribution with a sharp peak usually cor-
responds to accurate localization, and vice versa. Benefiting
from the proposed distributed regression, we further utilize
the estimated uncertainty representation of localization to
weight the classification branch for high-quality examples.

3. Uncertainty-Aware Siamese Tracking
In this section, we describe the proposed UAST in detail.
As shown in Figure 2, UAST has a similar structure with
existing anchor-free trackers. Nevertheless, our approach
is not only capable of learning a discrete probability dis-
tribution of four directions for describing the uncertainty
of bounding boxes, but also models a joint representation
head of classification and localization quality by leveraging
the estimated uncertainty in box distributions. To our best
knowledge, UAST is the first attempt to explore the power
of uncertainty estimation for anchor-free tracking.

3.1. Anchor-Free Tracking

Different from RPN-based trackers, Anchor-free tracking
methods directly classify and regress the target bounding
box at per-pixel spatial location. Following the paradigm
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Figure 2. The main structure of the proposed Uncertainty-Aware Siamese Tracking framework. It consists of a backbone network for
feature extraction, a feature matching module, an anchor-free head with distributional regression and joint representation, and a task
alignment sub-network. Note that ? and × mean depth-wise cross-correlation and element-wise multiplication operations, respectively.

of FCN (Long et al., 2015), for each position (i, j) in the
feature map, we can map it to the search region for ob-
taining corresponding coordinates (s/2 + is, s/2 + js) (s
denotes the total stride of the network) in the original image.
Specifically, the output of classification head represents the
foreground and background scores of the corresponding lo-
cations in the input, while regression head with a 4D vector
T = (l, t, r, b) predicts the distances from corresponding
locations to four sides of the ground-truth box. Let (x0, y0)
and (x1, y1) denote the left-top and right-bottom corner of
the ground truth, so the regression targets (left, top, right,
bottom) of the location (i, j) can be calculated as:

l∗ = i− x0, t∗ = j − y0
r∗ = x1 − i, b∗ = y1 − j

(1)

Consequently, it allows to predict distances from the loca-
tion (i, j) to four sides of the box. However, it has no a
clear probabilistic explanation of bounding boxes due to
lacking the uncertainty representation of target coordinates.
It has insufficient information for accurate tracking, and is
inflexible to deal with object variations in complex scenes.

3.2. Distributional Regression Representation

From a distribution perspective of view, the existing anchor-
based and anchor-free trackers can be considered as a simple
Dirac delta distribution δ(x− ξ) since the regression target
is to fit a single label value ξ for each output of the box.
It satisfies

∫ +∞
−∞ δ(x − ξ)dx = 1, and the integral form to

resume ξ can be presented as the following equation:

ξ =

∫ +∞

−∞
δ(x− ξ)x dx (2)

To address the limitation of Dirac delta, we propose to
directly model a general distribution P (x) without other
priors. Given a range of label ξ (ξ0 ≤ ξ ≤ ξn, n ∈ N+)

with minimum ξ0 and maximum ξn, we can obtain the
prediction ξ̄ of each side via calculating its integral:

ξ̄ =

∫ +∞

−∞
P (x)x dx =

∫ ξn

ξ0

P (x)x dx (3)

For this general distribution, a problem that needs to be
solved is that it is difficult to model an arbitrary and contin-
uous probability distribution with a small number of param-
eters in neural networks. To this end, we consider a discrete
representation to fit this distribution. Specifically, the range
[ξ0, ξn] can be divided into a set [ξ0, ξ1, ξ2, ..., ξn−1, ξn]
with even interval. Hence, our regression branch has n+ 1
predicted values for each edge of bounding boxes, which
can represent probabilities through a softmax layer. Based
on the discrete distribution property

∑n
i=0 P (ξi) = 1, the

estimated regression value ξ̄ can be calculated as ξ̄ =∑n
i=0 P (ξi) ξi. Therefore, the proposed distributional re-

gression formulation can also use previous loss objectives
like IoU Loss in anchor-free trackers to train ξ̄.

Although the regression target can be obtained according to
Equation 3, we expect that the learned distributions are as
certain or compact as possible for interpretability since the
same integral result may correspond to different arbitrary
distributions. In order to explicitly focus on the values (ξi
and ξi+1) that are close to the label ξ, we further consider to
optimize the shape of distributions using Distribution Focal
Loss, DFL proposed in (Li et al., 2020):

Ldfl = − ((ξi+1 − ξ) log (Pi) + (ξ − ξi) log (Pi+1))
(4)

where Pi and Pi+1 denote P (ξi) and P (ξi+1) respectively.
Intuitively, DFL enlarges the probabilities of ξi and ξi+1.

3.3. Joint Confidence Representation

Recent research suggests that localization quality also needs
to be considered with the classification score for final predic-
tions during online tracking, but existing trackers (Guo et al.,
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Figure 3. An illustration of our joint confidence representation.
Instead of the fore/background label (a), we merge the target con-
fidence and localization quality as the supervision of our jcr (b).
(c) Comparisons of different localization quality targets including
centerness, IoU and Distance-IoU scores applied in UAST.

2020; Zhang et al., 2020) exist an inconsistent problem be-
tween training and inference phases. To this end, we present
a simple yet effective joint confidence representation head
by leveraging the information from both classification and
regression branches. To be specific, given the classification
vector Vcls and localization quality vector Vlq, our joint
confidence representation Vjcr can be formulated as:

Vjcr = Vcls ×Vlq (5)

which can be trained end-to-end and directly utilized dur-
ing tracking, because we explicitly optimize the final joint
formulation (i.e., Vjcr). In contrast to a standard binary
classification label in Siamese tracking, we redefine the su-
pervision for our joint representation head. To be specific,
negative samples are still supervised by 0, while the super-
vision of positives is determined by the localization quality
label. As shown in Figure 3, the on-hot label is replaced by
our soft label for joint confidence representation. Namely,
Vjcr where its value at the center range of ground-truth box
directly learns its corresponding localization quality.

3.3.1. LOCALIZATION QUALITY LABEL

Current trackers utilize centerness (Xu et al., 2020) or stan-
dard IoU score (Zhang et al., 2020) to supervise localization
quality. Unfortunately, centerness mainly emphasize the
center of target box, while IoU may lead to slow conver-
gence and inaccuracy. Differently, Distance-IoU (Zheng
et al., 2020) between the predicted bounding boxes and its
ground-truth is applied as the label of positive samples in
our joint head, which is a dynamic value being [0, 1].

D-IoU = IoU − ρ2 (b, bgt)

c2
(6)

where ρ (b, bgt) denotes the Euclidean distance between the
central points of predicted box and target box, and c is the
diagonal length of the smallest enclosing box covering the
two boxes. Notice that DIoU incorporates both normalized

center distance and IoU score, which is more suitable for
visual tracking task (see examples in Figure 3). Because
most evaluation metrics are actually the center distance error
(precision) and the average overlap rate (AUC score).

3.3.2. TASK ALIGNMENT SUB-NETWORK

Benefiting from distributional regression, instead of convo-
lutional features, we can exploit the uncertainty information
in box distributions to perform task alignment, facilitating
the learning of our joint confidence representation. Specifi-
cally, considering that the learned distributions are highly
related to the quality of regressed boxes, we construct a
lightweight task alignment sub-network from the regression
branch to generate high-quality estimation. As shown in
Figure 2, we firstly select two nearneighbor values of pre-
diction in each distribution P (x), and concatenate them as
the initial localization quality features F ∈ R4×2:

F = Concat ({Neighbor (P (x)) | x ∈ {l, r, t, b}}) (7)

where Neighbor(·) feature can basically reflect the flatness
of each distribution, and is robust to object scales.

Based on F from the regression branch, the localization
quality vector Vlq can be obtained by the task alignment
sub-network with two Fully-Connected (FC) layers, which
are followed by ReLU and Sigmoid, respectively.

Vlq = Sigmoid (W2(ReLU (W1F))) (8)

where W1 ∈ R32×8 and W2 ∈ R1×32 represent two FC
layers, respectively. It is worth noting that our TASN is very
lightweight, and also has little computation overhead.

3.4. Training Objective

We optimize the overall training objective as follows:

L = Ljcr + λ1Lreg + λ2Ldfl (9)

where Ljcr is the binary cross entropy loss to train the joint
representation head. We only consider positive samples for
regression objective. Lreg is the IoU Loss for bounding box
regression, while Ldfl forces the model to focus on learning
the probabilities of values neighbored with the target box,
leading to a reasonable distribution. In our experiments, λ1
(2 as default) and λ2 (1/4, averaged over four directions) are
the hyper-parameters for balancing these three losses.

4. Experiments
4.1. Implementation Details

4.1.1. FRAMEWORK

Like Ocean (Zhang et al., 2020), we employ a modified
ResNet-50 (He et al., 2016) that only contains the first four
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Algorithm 1 Uncertainty-Aware Siamese Tracking
1: Input: Frames {Ik}K1 , initial target box B1

2: Output: Target box {Bk}K2 , certainty value {Ck}K2
3: for k = 2 to K do
4: Perform feature extraction and matching;
5: Model distributed representation {Dl

k, D
t
k, D

r
k, D

b
k};

6: Obtain 4 offsets {Lk, Tk, Rk, Bk} by Eq. 3;
7: Extract feature Vlq according to Eq. 7 and Eq. 8;
8: Calculate the joint confidence score Vjcr;
9: Select the highest jcr and corresponding box Bk;

10: Compute {Clk, Ctk, Crk , Cbk} for 4 sides of box Bk;
11: Average them and achieve the whole certainty Ck.
12: if Ck < 0.5 then
13: Warning: Uncertain Tracking Result!
14: end if
15: end for

stages as our backbone. To be a fair comparison, the depth-
wise correlation is utilized to generate the fused features
for subsequent anchor-free head. Differently, we remove
the separate quality assessment branch owing to our joint
confidence representation of classification and quality. The
last layer of our regression head for each side has n + 1
outputs instead of 1, incurring negligible computing cost.

4.1.2. TRAINING PHASE

The backbone is pre-trained on ImageNet (Russakovsky
et al., 2015). The training image pairs are sampled by Im-
ageNet VID and DET (Russakovsky et al., 2015), COCO
(Lin et al., 2014), Youtube-BB (Real et al., 2017), GOT-10K
and LaSOT (Fan et al., 2019). Template image is 127×127
pixels, while search region is 255×255 pixels. We totally
train the network using synchronized stochastic gradient
descent (SGD) with a batch size of 128 on 4 GPUs for 20
epochs, and employ warm-up in the first 5 epochs, and a
learning rate exponentially decayed from 5e-3 to 1e-6 in
the last 15 epochs. We freeze the backbone in the first 10
epochs, and fine-tune it in the remaining epochs. The weight
decay and momentum are set as 1e-5 and 0.9, respectively.

4.1.3. TRACKING PHASE

The intuitive outputs of UAST are a set of distance proba-
bilities and jcr score. We can easily predict the bounding
boxes by calculating the integral of each distribution. Fol-
lowing (Li et al., 2018), the score map is also penalized by
cosine window and scale change for motion smoothness.
The corresponding box of the location with best jcr score is
selected and updates the target state by linear interpolation.
Meanwhile, UAST takes the summation of two adjacent
probability in each border as the certainty values for four
directions, and the mean of them as the overall reliably of
tracking. Algorithm 1 shows the procedure in details.

Figure 4. The histogram of regression targets in anchor-free track-
ing over 120000 training samples on GOT-10k train set, and the
scatter diagram represents the correlation between IoU and the
joint confidence scores for some randomly sampled instances.

Table 1. Ablation experiments of different variants of UAST on
GOT-10K test set, baseline is Ocean without object-aware branch.

COMPONENTS AO SR0.5 SR0.75

O OCEAN 0.592 0.695 0.465

I BASELINE 0.572 0.674 0.435
II + GENERAL DIST. 0.584 0.687 0.446
III + DIST. FL 0.596 0.705 0.462
IV + JOINT REP. 0.614 0.723 0.485
V + TASK ALIGN. 0.635 0.741 0.514

UAST with a speed of 65 fps is implemented by PyTorch
1.1. Our experiments are conducted on a server with Intel
Xeon (R) Gold 5118 CPU, and a Tesla V-100 16 GB GPU.

4.2. Ablation Study

4.2.1. COMPONENT-WISE ANALYSIS.

To verify the influence of the proposed approach, we per-
form a component-wise study on GOT-10k, as presented in
Table 1. The offline version of Ocean (O) achieves 0.592
AO score. The baseline (I) denotes Ocean (Zhang et al.,
2020) with a classification head (without localization qual-
ity branch) and an anchor-free regression head, so that only
obtaining an AO score of 0.572. We replace the regression
module with our general distributions, which yields an AO
gain of 1.2 point, confirming that the proposed distribution
based method (II) performs better than single prediction of
simple Dirac delta distribution. In Line 3 (III), DFL also
brings an improvement of 1.2% in terms of AO due to focus
on nearby values of the ground-truth, which is helpful to
accurate target estimation. Furthermore, adding the joint
representation head of classification and localization quality
(IV) can improves the AO of 1.8% and the SR0.75 of 2.3%,
since it benefits from our distance-IoU guided predictions.
Finally, the uncertainty-aware quality feature generated by
the proposed task alignment sub-network (V) brings a sig-
nificant improvement of 2.1 point, showing the effectiveness
of our uncertainty representation. Therefore, those different
components all contribute to accurate tracking.
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Table 2. Comparisons of different localization quality estimation.

LQE NONE CENTER IOU D-IOU JCR-DIOU

AO 0.572 0.587 0.591 0.596 0.605

Table 3. Performances of various popular anchor-free Siamese
trackers integrated by the proposed UAST on LaSOT test set.

TRACKER DIS. REP. JCR SUCCESS FPS

SIAMCAR × × 0.507 52
SIAMCAR + UAST

√ √
0.543 52

SIAMBAN × × 0.514 40
SIAMBAN + UAST

√ √
0.548 40

SIAMGAT × × 0.539 70
SIAMGAT + UAST

√ √
0.567 70

OCEAN × × 0.526 68
OCEAN + UAST

√ √
0.571 68

4.2.2. DISCUSSION ON DISTRIBUTED REGRESSION

To determine a reasonable range of n, we illustrate the
distribution of bounding box regression targets in Figure
4. According to the statistical histogram over large training
samples, the recommended value is preferably greater than
or equal 14, and we set it to 16. In Table 1, we find that
the general distribution can achieve better results, and DFL
further boosts its performance. A representative case with its
distributions and uncertainty over four directions is depicted
in Figure 1, showing that the proposed distributed regression
method can effectively represent the prediction confidence
with respect to four sides of the target bounding box by its
shape and the estimated certainty value. Notably, the right
distance of zebra is ambiguous due to partly occlusion.

4.2.3. DISCUSSION ON JOINT REPRESENTATION

In addition to classification, the measurement of localiza-
tion quality is also important but ignored in the filed of
tracking. Centerness is a pre-defined label that indicates
the distances between locations and target center, while IoU
scores reflect localization accuracy. We find that both of
them can improve the AO more or less in Table 2. Neverthe-
less, DIoU performs better than them with an AO of 0.596
due to comprehensiveness. Figure 3 also shows that DIoU
can depict the localization quality more accurately. To this
end, we apply DIoU as the label of our joint head, and yields
an obvious gain of 3.3%, demonstrating its effectiveness.
More importantly, it can be trained end-to-end and directly
utilized during tracking. Furthermore, we plot the scatter
diagram between IoU scores and the predicted joint scores
in Figure 4, leading to a more consistent correlation.

4.2.4. COMPATIBILITY FOR ANCHOR-FREE TRACKERS

We integrate the distributed regression and joint confidence
representation in UAST to a series of recent anchor-free

Table 4. State-of-the-art comparison on the GOT-10k test set in
terms of average overlap (AO) and success rate (SR).

Trackers AO SR0.5 SR0.75

MDNet 0.299 0.303 0.099
ECO 0.316 0.309 0.111
SiamFC 0.374 0.404 0.144
SiamRPN++ 0.517 0.616 0.325
ATOM 0.556 0.634 0.402
SiamCAR 0.569 0.670 0.415
SiamFC++ 0.595 0.695 0.479
Ocean 0.592 0.695 0.473
D3S 0.597 0.676 0.462
DiMP50 0.611 0.717 0.492
LightTrack 0.623 0.726 -
RPT 0.624 0.730 0.504
SiamGAT 0.627 0.743 0.488
PrDiMP 0.634 0.738 0.543
UAST 0.635 0.741 0.514

trackers, and make the minimal and necessary modifications
to perform uncertainty-aware tracking. Based on the results
in Table 3, UAST can consistently improve the success by 3
points or more on LaSOT, without loss of inference speed.

4.3. Comparison with State-of-the-art Methods

We evaluate UAST with state-of-the-art methods on five
tracking benchmarks including GOT-10k (Huang et al.,
2019), VOT-2019 (Kristan et al., 2019), OTB-100 (Wu et al.,
2015), UAV-123 (Mueller et al., 2016) and LaSOT (Fan
et al., 2019). Without bells and whistles, UAST achieves
the state-of-the-art performance, and experimental results
are presented in detail in the following subsections.

4.3.1. GOT-10K BENCHMARK

GOT-10k (Huang et al., 2019) is a large-scale generic object
tracking benchmark with 10000 video sequences, which
includes 180 videos for testing. Note that it is zero-class-
overlap between the train subset and test subset. Following
the official protocol, we train UAST only with its training
set, and evaluate it with 14 state-of-the-art tracking methods
on the test set. As shown in Table 4, our UAST achieves
0.635 of AO, which is superior to other anchor-free trackers
SiamGAT (Guo et al., 2021), RPT (Ma et al., 2020), Ocean
(Zhang et al., 2020) and D3S (Lukezic et al., 2020). These
results show the effectiveness of our localization uncertainty
estimation. Moreover, UAST slightly performs better than
the recent online learning based trackers PrDiMP (Danelljan
et al., 2020), which further proves the generalization ability
of the proposed tracker on some unseen target classes.

4.3.2. LASOT BENCHMARK

LaSOT (Fan et al., 2019) is a high-quality large-scale track-
ing benchmark with 280 long-term testing videos. We eval-
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Figure 5. Precision and success plots of OPE on LaSOT test set.

Table 5. Comparison of tracking results on VOT-2019 Benchmark.

Trackers EAO ↑ Accuracy ↑ Robustness ↓
SiamFCOS 0.223 0.561 0.788
SPM-Tracker 0.275 0.577 0.507
SiamMask 0.287 0.594 0.461
SiamRPN++ 0.292 0.580 0.446
SiamDW 0.299 0.600 0.467
PACNet 0.300 0.573 0.401
ATOM 0.301 0.603 0.411
DiMP50 0.321 0.582 0.371
SiamBAN 0.327 0.602 0.396
Ocean 0.327 0.590 0.376
UAST 0.334 0.608 0.386

uate our tracker with DiMP-50 (Bhat et al., 2019), Ocean
(Zhang et al., 2020), PACNet (Zhang et al., 2021), DROL-
RPN (Zhou et al., 2020) and other 12 methods. Figure 5
shows that the proposed UAST achieves state-of-the-art per-
formance with an AUC score of 0.571 and a precision of
0.587, performing better than other SOTA Siamese trackers.
Impressively, our method obtains the best metrics among
all trackers in comparison, and surpasses Ocean-online and
DiMP-50 by a visible margin. It proves that UAST is also
effective to reliably and accurately track long-term targets.

4.3.3. VOT-2019 BENCHMARK

We evaluate UAST on the Visual Object Tracking real-time
challenge 2019 (Kristan et al., 2019). As shown in Table
5, our UAST achieves the performance on EAO criteria of
0.334, Robustness of 0.386 and Accuracy of 0.608, which
is better than recent state-of-the-art trackers, such as Ocean,
SiamBAN and DiMP. Note that UAST has an obvious ad-
vantage in terms of accuracy in all comparisons. It suggests
that our tracker can accurately estimate the target box owing
to the proposed distributional regression formulation. We
further report the experimental results of EAO in Figure 6.

4.3.4. OTB-100 BENCHMARK

OTB-100 (Wu et al., 2015) is a classical benchmark in visual
tracking, containing 100 short-term videos. We report the
results on OTB-100 with SiamRPN++ (Li et al., 2019),

Figure 6. Expected averaged overlap result on VOT-2019.

Figure 7. Precision and success plots of OPE on OTB100.

DiMP50 (Bhat et al., 2019), Ocean (Zhang et al., 2020),
ATOM (Danelljan et al., 2019), SiamFC++ (Xu et al., 2020),
etc. Figure 7 shows that UAST achieves a comparable
performance with AUC of 0.689 and precision of 0.911, and
obtains 2.3% and 0.9% improvements than Ocean.

4.3.5. UAV-123 BENCHMARK

UAV123 (Mueller et al., 2016) consists of 123 sequences
captured by low-altitude UAVs. It can be used to evaluate
whether the tracker is suitable for deployment in aerial sce-
narios. To this end, we compare the proposed method with
9 state-of-art trackers. Figure 8 shows the results in detail.
UAST outperforms most previous Siamese trackers, and ob-
tains a close auc score with SiamGAT (Guo et al., 2021). For
precision, our tracker obtains the top rank of 0.860, which
is superior than SiamGAT, DiMP50 and ATOM. It demon-
strates the effectiveness of our uncertainty-aware tracker.

4.4. Discussion

Both GFL (Li et al., 2020) and our method directly learn
the joint representation. However, UAST is designed espe-
cially for visual tracking since only one object should be
tracked. On the other hand, GFL mainly develops Focal
loss (Lin et al., 2017) for data imbalance problem in object
detection, while UAST aims at exploring uncertainty for
tracking. In addition to the shape of distributions, UAST
further estimates the uncertainty by a quantitative value,
which is instructive and potentially influential in the field of
tracking (see more related discussions in the appendix). It
is expected that the estimated uncertainty can be utilized as
crucial information for safety-critical vision systems.
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Figure 8. Precision and success plots of OPE on UAV-123.

5. Conclusion
In the paper, we propose to learn a distribution based regres-
sion formulation for accurate visual tracking, which models
localization uncertainty representation. It is an entirely new
perspective in tracking community, since our method has
an explicit probabilistic interpretation with highly flexible
discretized distributions. Furthermore, we address the task
misalignment of anchor-free trackers by learning a joint
representation of classification and quality estimation. Ex-
periments show that UAST outperforms previous state-of-
the-arts on several tracking benchmarks. We hope our work
could inspire the research of uncertainty in object tracking.
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A. More Discussions about Distributed Regression.
Figure 9 shows some examples of noisy, incorrect or ambiguous ground truth bounding box annotations from GOT-10K
(Huang et al., 2019). However, the previous bounding box regression methods (i.e., SiamRPN (Li et al., 2018), SiamFC++
(Xu et al., 2020)) do not take such the ambiguities of the ground truth bounding boxes into account. As a result, the learning
is unstable, and the loss is relatively large in these cases. To address this issue, we propose a novel bounding box regression
formulation with general distribution. The learned probability distribution is interpretable, since it can reflect the level of
uncertainty of bounding box predictions.

Figure 9. In visual object tracking, the ground-truth bounding boxes have inherent ambiguities in some cases. The first row shows that the
object boundary is unclear and ambiguous due to shadow or itself factor; the ambiguities of the second row are introduced by similar
objects or background noises; and the last row are examples of occlusion. These aspects are modeled by our distributed representation.

As shown in Figure 10, it illustrates the representations of Dirac delta, and the proposed general distributions, where the
assumption goes from rigid (Dirac delta) to flexible (General). A very significant advantage of our work is that the learned
probability distributions ca reflect the uncertainty of bounding box predictions. We also list several key comparisons about
these distributions in Table 6. The proposed distribution decouples the representation and loss objective of bounding box
regression, making it compatible for existing anchor-free tracking methods, including both edge level for learning its
probability representation and box level for learning bounding box regression.

Dirac delta distribution General distribution (ours)

rigid flexible

Figure 10. Illustrations of distributions of bounding box regression, from rigid (Dirac delta) to flexible (General). Existing trackers roots
at a fixed point using Dirac delta, have limitations in modeling real data distribution. In contrast, our distribution is more flexible as its
shape can reflect the uncertainty information of bounding box predictions.
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Type Dirac delta distribution Ours distribution

Probability Density δ(x− ξ) P (x)
Inference Target x

∫
P (x)x dx

Loss Objective (x−ξ)2
2

LIoU
(
∫
P (x)xdx−ξ)2

2
LIoU

Optimization Level edge box edge box

Table 6. Comparisons of different representation of distributions for bounding box regression. Edge level denotes optimization over four
directions, while the box level means IoU-based Losses that consider bounding boxes as a whole objective.

B. Analysis of Different Localization Quality Label.
Centerness (Xu et al., 2020) mainly consider the center location of the target box, while IoU score (Zhang et al., 2020) may
cause inaccurate quality label due to lacking of modeling center distance. To this end, our localization quality label applies
Distance-IoU score (Zheng et al., 2020) between the predicted bounding box and its ground-truth, which incorporates both
the normalized center distance and IoU score, which is more suitable and effective in visual tracking. As shown in Fig. 3,
in the left case, the red point is a bit far from the target center, so the centerness is small. We discover the major problem
of centerness is that its definition leads to unexpected small label value, which causes unstable training. In practice, its
receptive field corresponds the head of the cat, so the predicted box is not bad, has a 0.63 IoU score. In contrast, the Distance
IoU provides a suitable and reliable label vale. Another case in the right figure also shows that DIoU performs better than
IoU and centerness with same IoU score but different spatial locations.

C. Discussion of Difference with Anchor-free Siamese Trackers.
• Existing trackers do not consider to estimate the uncertainty of box coordinates, so that it has no clear probabilistic

interpretation. In contrast, we propose a novel formulation to learn general distribution of bounding box representation
with uncertainty for visual object tracking, termed as distribution-based regression method.

• There is an usage inconsistent problem between the classification and quality estimation since the classification and
localization quality are trained separately but combined during online tracking. Different from them, we devise a joint
representation head to tackle this issue.

• Most existing tracking methods have a limitation of the task misalignment between classification and regression.
Namely, the position with high classification score may not achieve high regression accuracy, and vice versa. Differently,
benefiting from the proposed distributed regression framework, we propose to utilize the uncertainty information from
box distributions to guide the learning of our joint representation head.

D. Discussion of Difference with GFL in Object Detection.
Both GFL (Li et al., 2020) and our method directly learn the joint representation of classification and localization quality.
However, GFL is much more fit for object detection, while in visual tracking one and only one object should be tracked.
Nevertheless, our work differs from GFL in four fundamental ways.

1). In GLF, the training samples of the classification and regression heads are identical. Both are sampled from the positions
within the ground-truth boxes. The ambiguous matching between anchors and object severely hinders the robustness
of tracker. Differently, our method is asymmetric which is tailored for visual tracking task. To be specific, the joint
representation head only considers the pixels closing to the target center as positive samples, while the regression head
considers all the pixels in the ground-truth box as training samples. This fine-grained sampling strategy guarantees the joint
head can learn a robust similarity metric for localization, which is important for tracking.

2). GFL uses IoU score and Quality Focal Loss (QFL) to supervise the joint head. However, the IoU score may be not
credible in some cases (see the figure 3), and QFL is also not suitable for single object tracking that belongs a binary
classification problem. To this end, our supervision applies Distance-IoU (Zheng et al., 2020) between the predicted box and
its ground-truth, which incorporates both normalized center distance and IoU score. This measurement is more suitable and
effective in visual tracking. After that, we compare our loss function with others in Table 7 .

3). GFL qualitatively interprets the uncertainty according to the shape of distributions (e.g., sharp or flatten). However, more
than that, our UAST can estimate the uncertainty using a quantitative values in [0, 1]. Specifically, as shown in Figure 1,
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UAST provides the estimated certainty with respect to 4-directions (L C, T C, R C and B C), and the whole certainty value
of the predicted box. For examples, UAST estimates lower right-directional certainty value (e.g., R C: 61%) of the target
due to the ambiguity caused by partly occlusion, confirming its effectiveness.

4). GFLV2 utilizes the statistics of bounding box distributions to perform localization quality estimation. To be specific,
GFLV2 chooses the Top-k values along with the mean value of each distribution vector as the basic statistical feature, which
is not representative and unstable in some bad cases. Differently, we select two nearneighbor values of prediction in each
distribution as our initial localization quality features, providing a more simple, efficient yet effective method.

Loss type y > 0, P y = 0, N

FL −α|y − p|γ log(p) −(1− α)pγ log(1− p)
QFL |y − p|γ · LBCE −pγ log(1− p)
QFLv2 f(km) · |y − p|γ · LBCE −pγ log(1− p)
VFL y · LBCE −αpγ log(1− p)
wBCE w+ · LBCE w− · LBCE
Ours w+ · f(nn) · LBCE w− · f(nn) · LBCE

Table 7. Comparison of different loss functions used in the classification or joint representation branch. y is target IoU between the
predicted box and ground-truth. p denotes the predicted classification score, α is a weighting factor, and LBCE means binary cross-entropy
loss. f(·) denotes the different functions of localization quality estimation.

E. More Experimental Results on LaSOT.
In addition to the success and precision plots shown in the body part, we here provide the normalized precision plot over
the LaSOT test set (Fan et al., 2019) containing 280 video sequences. The normalized precision score is computed as the
percentage of frames where the normalized distance (relative to the target size) between the predicted and ground-truth
target center location is less than a threshold D. It is plotted over a range of thresholds D ∈ [0, 0.5]. The trackers are ranked
using the area under this curve, which is shown in the legend of the Figure 11. We compare with state-of-the-art trackers
Ocean (Zhang et al., 2020), DiMP (Bhat et al., 2019), DROL (Zhou et al., 2020), SiamFC++ (Xu et al., 2020), SiamGAT
(Guo et al., 2021), and etc. Our UAST outperforms previous state-of-the-art Siamese trackers. Compared to the ResNet-50
based Ocean-online, DiMP50 and SiamGAT, our approach achieves gains of 0.7%, 1.2% and 2.5% respectively.

Figure 11. Normalized precision plot on the LaSOT test set. The average normalized precision is shown in the legend.
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F. More Examples of Distributed Regression Representation.
We demonstrate more examples with our distributed bounding boxes predicted by UAST. As demonstrated in Figure 12,
we show several cases with boundary ambiguities. In some cases, our model can produce more reasonable coordinates of
bounding boxes. The predicted distributions are informative since its shape reflects the level of the certainty of the bounding
boxes. The first three rows exist unclear boundaries, where distributions are flatten. The last row with clear boundaries and
sharp distributions are shown, where is very confident to generate accurate bounding boxes.

jcr score: 91%
certainty: 85% 

L_C: 87% T_C: 68% R_C: 91% B_C: 92% 

L_C: 61% T_C: 93% R_C: 89% B_C: 86% jcr score: 88%
certainty: 83% 

L_C: 65% T_C: 84% R_C: 91% B_C: 88% 

jcr score: 94%
certainty: 82% 

L_C: 90% T_C: 88% R_C: 91% B_C: 94% 

jcr score: 95%
certainty: 91% 

Figure 12. Examples of distributed bounding box representation. The first three rows exist some boundary ambiguities and uncertainties,
where the learned distributions may tend to be flatten. In some cases, we even observe a distribution with two peaks. Interestingly, they do
correspond to ambiguous boundaries in the input image. For example, the top boundary of the airplane, the left boundary of the cat, and
the left boundary of the deer. The last row has extremely clear boundaries, so that the learned distributions are relatively sharp and result
in more reliable and accurate bounding box estimations. Predictions are marked yellow in images, while ground-truth boxes are green.

G. Quantitative Results
The representative quantitative results of our proposed UAST on the test set of GOT-10k dataset are shown in Figure 13.
We also present the quantitative results of two representative state-of-the-art trackers: online learning based DiMP-50 and
anchor-free SiamFC++ for a comparison. To be specific, Figure 2 demonstrates that DiMP50 and SiamFC++ may fail to
track the targets in cases of partial occlusions, fast motion, scale variation and occlusion. In the third row sequence, DiMP50
and SiamFC++ drift from the moving animal in frame 38. Our UAST can locate the target accurately with more reasonable
localization confidence thanks to our joint representation which integrate the classification and localization quality. In the
firth sequences, UAST can quickly adapt to the great scale variations of the flying people.
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SiamFC++UAST DiMP-50

Figure 13. Quantitative result comparison of our UAST (red) with representative trackers DiMP-50 (green) and SiamFC++ (blue).
Observed from the visualization results, UAST can estimate more precise bounding boxes when encountering circumstances of partial
occlusions, deformation, scale changes and fast movement. This comparison demonstrates that the proposed distributed regression
formulation is more effective because our method provides a clear interpretation of the boxes.


