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Abstract
Natural language understanding and generation
models follow one of the two dominant archi-
tectural paradigms: language models (LMs) that
process concatenated sequences in a single stack
of layers, and encoder-decoder models (EncDec)
that utilize separate layer stacks for input and out-
put processing. In machine translation, EncDec
has long been the favoured approach, but with
few studies investigating the performance of LMs.
In this work, we thoroughly examine the role of
several architectural design choices on the perfor-
mance of LMs on bilingual, (massively) multilin-
gual and zero-shot translation tasks, under sys-
tematic variations of data conditions and model
sizes. Our results show that: (i) Different LMs
have different scaling properties, where architec-
tural differences often have a significant impact on
model performance at small scales, but the perfor-
mance gap narrows as the number of parameters
increases, (ii) Several design choices, including
causal masking and language-modeling objectives
for the source sequence, have detrimental effects
on translation quality, and (iii) When paired with
full-visible masking for source sequences, LMs
could perform on par with EncDec on supervised
bilingual and multilingual translation tasks, and
improve greatly on zero-shot directions by facili-
tating the reduction of off-target translations.

1. Introduction
The popularity of large, general-purpose text generation
models has skyrocketed in recent years due to their outstand-
ing performance across a wide range of natural language

∗Work done while interning at Google Research. 1School of
Informatics, University of Edinburgh 2Google Research. Cor-
respondence to: Biao Zhang <b.zhang@ed.ac.uk>, Orhan Firat
<orhanf@google.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

processing (NLP) tasks (Brown et al., 2020; Raffel et al.,
2020; Xue et al., 2021). These generative models come
in two flavors: encoder-decoder (EncDec) models (Raffel
et al., 2020) with two independent modules for encoding
and decoding, and encoder-only (Devlin et al., 2019) or
decoder-only models (Brown et al., 2020) that use a single
module for both encoding and decoding functions (LMs).
Often, these two types of architectures deliver comparable
downstream performance under large-scale pretraining.

However, in neural machine translation (NMT), EncDec
has been the dominant paradigm across all translation tasks
(e.g. high/low-resource, multilingual and zero-shot trans-
lations) (Barrault et al., 2020; Ansari et al., 2020) with
very few studies investigating the application of LMs (He
et al., 2018; Wang et al., 2021). Compared to EncDec,
LM offers a more compact architecture by sharing the pa-
rameters across encoding and decoding procedures. Con-
sidering these procedures are over distinct source/target
languages for machine translation, sharing of the parame-
ters across them implicitly affects the transfer dynamics:
may result in improved representations by positive knowl-
edge transfer across languages (Arivazhagan et al., 2019b),
or may hurt the end-quality by amplifying capacity dilu-
tion problem (Lample & Conneau, 2019). With concurrent
streams of research in understanding the scaling properties
of LM (Kaplan et al., 2020) and EncDec (Ghorbani et al.,
2021) paradigms, we see value in revisiting the NMT ar-
chitecture inductive biases on a diverse set of translation
tasks.

In this paper, we explore various configurations of LM ar-
chitectures for translation as illustrated in Figure 1. We com-
pare them with the customary EncDec architecture along
two axes, parameter scaling and cross-lingual transfer. We
conduct a systematic study under a variety of data con-
ditions, tasks (bilingual, multilingual and zero-shot) and
examine recent architectural design choices associated with
LMs, including causal masking (CausalLM) vs. full-visible
masking (PrefixLM) for source sequences,1 layer-wise co-

1Also known as unidirectional vs bidirectional language mod-
elling, where in the unidirectional case a token representation takes
into account only the preceding tokens and their representations,
but the bidirectional case takes into account both preceding and
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Figure 1: Illustration for translation-oriented language models. X and Y denote source and target input, respectively. To enable
translation, we adapt the LM self-attention mask to either the PrefixLM mask or CausalLM mask (top right), where filled black circles
indicate disallowed attention. We also explore top-only encoding (Top Encoding) for PrefixLM which feeds the final-layer source
encodings to generation similar to EncDec, rather than layer-wise coordinated encodings (He et al., 2018). Masks of EncDec are shown
in the bottom right for comparison.

ordination (He et al., 2018) vs. final-layer source encodings
(TopOnly) for target sequence generation, increasing LM
depth vs. width, and also the effect of adding source lan-
guage modeling loss for CausalLM.

Our main findings are listed below:

• LMs show different scaling properties compared to
EncDec. The architectural differences become less im-
portant as models scale, measured by reduced quality
gap against EncDec, regardless of the language similar-
ities, training data conditions and evaluation settings.

• PrefixLM variants often outperform their CausalLM
counterparts; increasing LM depth benefits the transla-
tion task more than increasing the width; and adding a
source-side language modeling objective to CausalLM
does not yield significant translation quality gain.

• Cross-lingual transfer also benefits from model scaling,
where EncDec almost always dominates the quality
Pareto frontier on supervised directions while zero-
shot translation favors PrefixLM. We also observed
PrefixLM significantly reduces off-target translations.

2. Related Work
Using language models in the task of translation has a long
history, particularly in the era of statistical machine trans-
lation (SMT) where LM was used as a separate yet cru-
cial component ensuring the fluency of generation (Stolcke,
2002; Heafield, 2011; Koehn, 2010). With neural networks,
NMT unified those isolated SMT components including
LM under the encoder-decoder formulation (Kalchbrenner

following tokens in a sequence.

& Blunsom, 2013; Cho et al., 2014; Sutskever et al., 2014;
Bahdanau et al., 2015), which makes use of separate mod-
ules to process input and output. Further studies exploring
architectural modifications by using LM alone as a transla-
tion model, nevertheless, got much less attention. He et al.
(2018) proposed layer-wise coordination between encoder
and decoder with tied weights, where each decoder layer
attends to its corresponding encoder layer at the same depth
as opposed to the conventional method of attending the top-
most encoder representations. Later, Fonollosa et al. (2019)
extended it with locality constraint. Dong et al. (2019)
explored LMs for sequence generation under large-scale
pretraining. Despite reporting promising results, these prior
studies either focus only on bilingual tasks or do not con-
sider the scaling properties of the models, leaving the picture
incomplete: how the findings will change as we scale the
models and how the languages benefit from/interfere each
other as the architectural priors (inductive biases) change.

Neural models follow some scaling laws. Kaplan et al.
(2020) reported the test cross-entropy loss of LMs can be for-
mulated as a power-law scaling function of either model size
(excluding embedding parameters) or dataset size. Later on,
researchers examined and confirmed such findings across
different domains, including vision modeling (Zhai et al.,
2021), knowledge transfer from pretraining (Hernandez
et al., 2021), autoregressive generative modeling (Henighan
et al., 2020), and neural machine translation (Gordon et al.,
2021; Ghorbani et al., 2021), to name a few. We find it
essential to study the scaling behavior of new architectures
and approaches given the recent evidence on the emergent
properties of the models at scale (Brown et al., 2020).

Another critical component in machine translation is the
number of languages being considered with the models,
which is the very focus of multilingual NMT (Firat et al.,
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Table 1: Comparison of different model variants studied in this paper. X/Y : source/target input. Layer-Wise: layer-wise coordination
(He et al., 2018); TopOnly: use topmost-layer source encodings; Src-Src Mask: the intra-source masking schema, either fully visible (Full)
or causal (Causal); Parameter Sharing: whether the parameters are shared during the processing of source and target sequences.

Model Objective Structure Src-Src Parameter

− logP (X) − logP (Y |X) Layer-Wise TopOnly Mask Sharing

EncDec 3 3 Full 7

PrefixLM 3 3 Full 3
+ TopOnly 3 3 Full 3

CausalLM 3 3 3 Causal 3
+ TgtOnly 3 3 Causal 3

2016). Cross-lingual transfer in multilingual NMT often re-
sults from parameter sharing across languages, which bene-
fits low-resource languages and also enables zero-shot trans-
lation (Johnson et al., 2017), although the quality on zero-
shot directions is largely hindered by the off-target transla-
tion problem (Arivazhagan et al., 2019a; Zhang et al., 2020).
The structure of LMs further encourages parameter sharing,
offering a chance to improve the transfer while magnifying
the problem of interference (negative-transfer) (Wang et al.,
2020; Zhang et al., 2021). Very recently, Wang et al. (2021)
analyzed the cross-lingual transfer behavior of CausalLM,
and reported encouraging zero-shot performance. However,
we did not observe the same results likely because of data
sampling, model architecture and optimization differences
which zero-shot transfer is sensitive to. Compared to (Wang
et al., 2021), our study is more general since we investigated
various architectural, objective, and model size configura-
tions for LMs in MT while Wang et al. (2021) only focused
on CausalLM of one model size. We explored model scaling
for LMs and EncDec and analyzed the difference in their
scaling properties to avoid reaching biased conclusions.

3. Language Model Architectures for MT
In this section, we first briefly review EncDec and then
present LM architectures for translation based on Trans-
former (Vaswani et al., 2017). Table 1 compares different
models. Given a source sequence X of length |X| and its
target translation Y of length |Y |, EncDec performs trans-
lation via the following structure:

Xl =FFN ◦ SAtt
(
Xl−1) ,

Yl =FFN ◦ CAtt ◦ SAtt
(
Yl−1,XL

)
,

(1)

where l denotes the layer index and ◦ indicates consecutive
sublayers. Xl ∈ R|X|×d and Yl ∈ R|Y |×d are the layer rep-
resentations of the source and target sequence respectively,
with a model dimension of d. The first input layer (X0,Y0)
is the summation of token embeddings and their positional
encodings. We drop all the layer normalization and residual
connections in our formulations for brevity.

The encoder is a stack of L layers, each of which includes
a multi-head self-attention sublayer (SAtt) followed by a
feed-forward sublayer (FFN). SAtt in the encoder is bidirec-
tional with full-visible masking that has full visibility to all
source tokens, preceding and following. Its final-layer repre-
sentations XL are fed to the decoder, which shares a similar
structure to the encoder but with an additional (multi-head)
cross-attention sublayer (CAtt). Unlike encoder, SAtt in
the decoder is unidirectional with causal masking, where
attention to following tokens is disabled (masked). CAtt
can always access all source inputs, though. Note we set
the encoder and decoder depth equally to L, and use dff to
denote the intermediate dimension of FFN. EncDec is often
optimized with the target translation objective based on YL:

LEncDec(X,Y ) = LTGT = − logP (Y |X,YL). (2)

Instead of separately modeling source and target sequences,
LM handles both with a single module:[

Xl,Yl
]
= FFN ◦ SAtt

([
Xl−1,Yl−1] ,M)

, (3)

where M ∈ {0, 1}(|X|+|Y |)×(|X|+|Y |) is the attention mask
that controls the information flow within the concatenated
sequences ([·, ·]).2 Two LM variants explored by changing
the structure of mask M, PrefixLM and CausalLM.

PrefixLM merges different modules of EncDec, trained
with LTGT. Its attention mask

MPrefixLM(i, j) = 1, if i ≥ j or j ≤ |X|; otherwise 0,
(4)

combines the encoder/decoder self-attention mask and the
cross-attention mask of EncDec. 1 ≤ i, j ≤ |X|+ |Y |, and
masks of value 0 mark the attention as unavailable.

CausalLM, by contrast, is a strict LM that applies causal
masking to both sequences:

MCausalLM(i, j) = 1, if i ≥ j; otherwise 0. (5)

2Note that, in our implementation we still use separate source
and target positions as shown in Figure 1.
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Table 2: Statistics of different datasets. M/B: million/billion; SO/TO: source-original/target-original test sets; Web: in-house web-crawled
datasets; BIL/MUL: the data is used for bilingual/multilingual experiments.

Dataset #Samples (Sources) Experiments

Train Dev Test BIL MUL

WMT14 En-De 4.5M 3000 (WMT13) 3003 (WMT14) 3
WMT14 En-Fr 41M 3000 (WMT13) 3003 (WMT14) 3 3

WMT19 En-Zh 26M 3981 (WMT18) 1997 (WMT19, SO)
2000 (WMT19 TO) 3 3

Web En-De 2B 7927 (Web) 4927/1997 (Web/WMT19, SO)
6000/2000 (Web/WMT19, TO) 3

Apart from LTGT, CausalLM also includes the source-side
language modeling loss for training:

LCausalLM(X,Y ) = LSRC + LTGT (6)

= − logP (X|XL)− logP (Y |X,YL).

To improve our understanding of LMs for translation, we
further incorporate two extensions:

PrefixLM + TopOnly The model defined in Equation 3 per-
forms attention over the source and target sequence
within the same layer. In contrast, EncDec always uses
the topmost-layer source encodings for translation. We
mimic this with the TopOnly extension by feeding top-
layer encodings, i.e. XL, to each attention sublayer. It
behaves the same as EncDec but with the parameters
of encoder and decoder tied (Peitz et al., 2019).

CausalLM + TgtOnly The inclusion of the source-side ob-
jective enriches CausalLM’s learning signal and en-
courages the model to absorb source language char-
acteristics. However, it requires and occupies part of
modeling capacity, which might negatively affect trans-
lation. To offset this impact, we add the TgtOnly ex-
tension that optimizes CausalLM with the target trans-
lation objective LTGT

C alone, which also aligns better
with EncDec and PrefixLM.

4. Setup
Model Setting We use Transformer for experiments. By
default, we adopt the base setting, with d = 512, dff = 2048
and 8 attention heads. We also work with the Transformer
big setting where each hyper-parameter above is doubled.
Training and inference details are in Appendix A.

Datasets and Evaluation We use WMT14 English-
French (En-Fr), WMT14 English-German (En-De),
WMT19 English-Chinese (En-Zh) and an in-house web-
crawled (Web) En-De dataset for experiments, whose statis-
tics are summarized in Table 2. We also report results on
OPUS-100 (Zhang et al., 2020), a massively multilingual

corpus containing 100 languages. All datasets are pre-
processed with byte pair encoding (Sennrich et al., 2016,
BPE) implemented by SentencePiece (Kudo & Richardson,
2018). We set the BPE vocabulary size to 32K by default.
We report test log-perplexity score (PPL) for scaling study
particularly and also show SacreBLEU (Post, 2018)3.

5. Experiments for Model Scaling
Kaplan et al. (2020) reported that the model performance
can be described with a power-law, with respect to its pa-
rameters, as below:

L(N) = α

(
N0

N

)p

+ L∞, (7)

where L(N) fits test PPL, and N denotes the number of
parameters. N0 is a constant used for numerical stability
which is obtained from 1-layer EncDec model. α, p,L∞
are fitted parameters, and we mainly analyze the estimated
scaling exponent p and the irreducible loss L∞.

The way of increasing model parameters varies for the same
model and also across different models. We perform scaling
firstly for EncDec by changing its depth L (from 1 to 26
layers, equally for its encoder and decoder) while keeping
the other hyper-parameters intact following Ghorbani et al.
(2021). We then align the scaling settings of LM with its
EncDec counterpart in term of model parameters through
increasing either its depth or width:

LM + Deep adds parameters by stacking more Trans-
former layers, which was also used in previous stud-
ies (He et al., 2018; Wang et al., 2021).

LM + Wide instead, grows the model width. We choose
to enlarge the feed-forward dimension from dff to 3dff.
Note other strategies for width scaling are possible and
many, but exploring them is resource-consuming and
beyond the scope of our paper.

We distinguish data-limited regime from model size-limited
regime for model scaling (Bahri et al., 2021), where the

3Signature: BLEU+c.mixed+lang*+#r.1+s.exp+t.13a+v.1.5.1
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Figure 2: Fitted scaling curves (2a,2b) and BLEU scores (2c,2d) for different models on WMT14 En-Fr (left) and WMT19 En-Zh (right)
tasks. Top: dashed and solid fitted curves are for LM + Deep and LM + Wide, respectively. We represent the EncDec scaling with bold
solid curve. Bottom: dashed curve denotes the BLEU scores of EncDec as a function of model parameters for reference. Markers in
circles are for CausalLM variants. Models are trained in Transformer base setting. Best seen in color.
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former has relatively fewer training samples than model
parameters thus likely suffers from overfitting (e.g. with
WMT14 En-Fr and WMT19 En-Zh), while the latter has
enough samples for model fitting (e.g. with Web En-De).

5.1. Scaling in Data-Limited Regime

Architectural difference matters most when the model
is at a small scale. Figure 2 summarizes the scaling re-
sults on WMT14 En-Fr and WMT19 En-Zh. When there
are fewer parameters, the model with inductive biases fa-
voring translation achieves better quality. Such inductive
bias includes 1) allowing the full visibility to the source
input as in PrefixLM4 rather than causal masking; 2) using
topmost-layer source encodings for translation (TopOnly)
rather than layer-wise coordinated encodings; 3) deeper
LMs (Deep) rather than wider models; and 4) training LMs
without source-side language modeling loss (TgtOnly). The
fact that LM + Deep outperforms LM + Wide demonstrates
that not only the number of parameters matters, but also the
way parameters are added. This aligns with the previous
findings: deeper models apply more non-linear operations
and induce more abstract representations, which often im-

4By default, we use PrefixLM (CausalLM) to refer to all
PrefixLM variants (CausalLM variants). We adopt the italic form
to denote a specific variant.

proves translation quality (Wang et al., 2019). This also
applies to TopOnly. Most of these findings are consistent
across different languages and evaluation metrics.

We argue that factors making the TopOnly variant favorable
to translation tasks could be plenty. Based on the litera-
ture (Tenney et al., 2019), representations in Transformer
often evolve from the bottom up, where lower-layer encod-
ings align better with syntactic-related information while the
higher-layer representations correlate more with semantic-
related information (Kudugunta et al., 2019). Given that the
task of language translation is requires source-side semantic
knowledge to provide clues for accurate source-target align-
ment, we speculate that the top-most source encodings could
be preferred while generating the target sequence. Which
has plausibility to explain the narrowed performance gap
between Deep and TopOnly-Deep, since deeper layers could
offer more abstract and semantic-intensive representations
to the decoder to ensure the translation accuracy.

Different models show different scaling properties, but
the gap narrows at scale. The impact of added parame-
ters on translation quality differs across different models.
The LMs that perform poorly at small scales often gain more
from the increased capacity via adding parameters. For in-
stance, the difference between LM + Deep and LM + Wide
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Figure 4: Fitted scaling curves for different models on Web En-De
(En→De). src/tgt: source/target; Web: in-domain evaluation set.
Models are trained in the Transformer big setting.

almost disappears at the end, resonating with the optimal
depth-vs.-width theory (Levine et al., 2020). We observe
that PrefixLM and EncDec converge to a similar quality
bands followed by CausalLM + TgtOnly while CausalLM
still retains a clear gap against the others. This performance
gap is smaller in WMT19 En-Zh, mainly because of model
overfitting. BLEU scores in Figure 2c and 2d also show
similar trends, although the relationship between BLEU and
PPL is non-trivial (Ghorbani et al., 2021). These tell us that
the success of architectural modifications on small-scale
models may not transfer to large-scale settings, and that
comparing different models under one model configuration
in terms of the scale risks the results to be inconclusive.
Note we also observe reduced gap when considering the
number of layers (see Figure 9 in the Appendix).

Sequence lengths and the originality of the test set does
not affect scaling properties We further test how the scal-
ing changes across different evaluation settings, and show
the results on WMT14 En-Fr in Figure 3. The scaling ex-
ponent changes marginally over different settings (often
less than 0.05), suggesting that the scaling curves are quite
similar in these settings (see Figure 8, 10, 11 in Appendix),
although sentences of different originalities differ largely
in style and naturalness (Graham et al., 2020; Freitag et al.,
2020). The estimated irreducible loss shows that target-
original parallel sentences are harder to model than the
source-original ones, and that translating medium-length
sequences is much easier. The loss ranking of different mod-
els changes little over these settings, supporting PrefixLM

and EncDec generally more than CausalLM.

Computational efficiency favors EncDec over all LMs
variants Our calculation of FLOPs for different archi-
tectures show that EncDec models demand generally less
computation compared to LM, but the gap narrows at scale.
Note LM does not save any computations because of the
quadratic attention over the concatenated source and target
sequences. By contrast, to perform similarly to EncDec,
LM often needs to be made wider or deeper, which further
deteriorates the computational efficiency both during train-
ing and inference time. Besides, EncDec allows arbitrary
decoders, e.g. shallow and simplified decoders for faster
inference (Chen et al., 2018; Zhang et al., 2018; Kim et al.,
2019; Zhang et al., 2019; Kasai et al., 2021), which is non-
feasible for LMs. We also observed adding the source-side
loss hurts CausalLM’s efficiency. We share the details of
computational efficiency in Appendix, Figure 7.

5.2. Scaling in Model Size-Limited Regime

Figure 4 shows the in-domain scaling performance on Web
En-De. Overall, we observe similar scaling patterns as
reported above, and such pattern transfers to out-of-domain
evaluation, FLOPs and BLEU scores. More results are
available in the Appendix (Figure 12, 13 and 14).

6. Experiments for Cross-Lingual Transfer
Based on previous studies (Wang et al., 2020; Zhang et al.,
2021), sharing capacity across languages could encourage
knowledge transfer but might also gain the risk of negative
interference. In this section, we further compare different
models but on multilingual many-to-many translation. To
enable multilingual NMT, we append a target language tag
to each source sentence following Johnson et al. (2017). We
perform over-sampling to balance the training data with a
temperature of T = 5 (Arivazhagan et al., 2019b).

PrefixLM benefits zero-shot transfer. We start with mul-
tilingual translation for WMT En-De/Fr/Zh, and regard En-
De as a relatively low-resource language pair. We test how
LMs perform on zero-shot translation. We use the new-
stest2019 De-Fr test set as the in-domain zero-shot eval set,
and an internal sports-domain N-way test set for De-Fr-Zh
(2000 samples) as the out-of-domain eval set. Figure 5
shows the results. Scaling improves knowledge transfer for
almost all models, while PrefixLM performs surprisingly
well on zero-shot directions. In most settings, PrefixLM
surpasses EncDec significantly with respect to BLEU, and
such superiority is more obvious on out-of-domain evalua-
tion and for distant language pairs.

Nevertheless, we find that PrefixLM usually underperforms
EncDec in terms of PPL. In other words, EncDec still pos-
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Figure 5: Zero-shot transfer results of different models for multilingual many-to-many modeling on four languages (En-De-Fr-Zh) under
different model sizes. Top: average BLEU scores; Middle: average PPL scores; Bottom: average translation language accuracy scores.
In-domain: WMT test set; Out-of-domain: in-house sport-domain test sets.

sesses the best fitting ability on zero-shot language pairs.
Results on translation language accuracy explains this mis-
match: compared to EncDec, PrefixLM drastically reduces
off-target translation – a bottleneck of zero-shot transla-
tion (Zhang et al., 2020). This also suggests that EncDec
suffers from more serious searching errors during infer-
ence (Stahlberg & Byrne, 2019), which the inductive biases
of PrefixLM help.

In addition, we observe no benefits from CausalLM on
zero-shot translation, with or without the source-side lan-
guage modeling objective. This finding disagrees with that
of Wang et al. (2021), which we ascribe to various differ-
ences in model, data and optimization. Note that Wang
et al. (2021) adopted more aggressive data oversampling,
didn’t consider distant languages, proposed dedicated opti-
mization with the source-side loss, used a different way to
count model parameters, and designed different language
tags for multilingual translation that could greatly affect
zero-shot results (Wu et al., 2021). We leave the study of

these differences to the future.

LMs variants do not offer better transfer characteris-
tics for low-resource languages compared to EncDec.
One reason behind the popularity of multilingual NMT is
its transfer capability to low-resource languages. We ana-
lyze this transfer behavior for LMs and explore transfer (to
De) from similar (Fr) and distant (Zh) languages separately.
Figure 6 shows the results. PrefixLM produces comparable
results to EncDec, while CausalLM lags far behind, and the
incorporation of source-side objective actually hurts transla-
tion. Overall, we observe that EncDec almost dominates the
transfer performance under different model sizes, regardless
of language similarity. Similar results are also observed for
low-resource to high-resource transfer (see Figure 15 in the
Appendix).

Comparison of LMs and EncDec variants on massively
multilingual translation We further examine the scal-
ability of LMs with respect to the number of languages,
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Figure 6: Cross-lingual transfer results (average BLEU scores) for different models from high-resource languages to the low-resource one
(En-De) under different model sizes on WMT datasets. Average is performed over En→De and De→En evaluation. Left: multilingual
En-De-Fr system; Right: multilingual En-De-Zh system. Both systems are many-to-many models. Models are trained in the base setting.

Table 3: Translation quality of different models for En→XX, XX→En and zero-shot language pairs on OPUS-100. Models are trained in
the Transformer big setting, aligned with 14-layer EncDec, containing about 412M parameters (excluding embedding and softmax layers).
During training, we perform oversampling with a temperature of 5. We list average BLEU for High, Med, Low and All language groups.
We also show average BLEU and translation language accuracy (ACC) for zero-shot test sets.

Model En→XX XX→En Zero-Shot

High Med Low All High Med Low All BLEU ACC

EncDec 25.8 32.4 31.9 29.2 31.4 34.3 35.0 33.1 4.80 24.21

Deep

PrefixLM -0.34 -0.21 -0.82 -0.41 -0.27 -0.74 -1.59 -0.70 7.95 41.46
+ TopOnly -0.01 -0.14 -1.79 -0.44 -0.07 -0.71 -1.43 -0.57 6.59 39.06

CausalLM -4.51 -8.18 -12.9 -7.47 -5.18 -10.1 -13.0 -8.38 4.10 25.60
+ TgtOnly -0.83 -0.78 -1.40 -0.93 -1.27 -1.81 -2.43 -1.69 7.34 39.62

Wide

PrefixLM -0.71 -0.75 -2.02 -1.01 -0.77 -0.88 -0.68 -0.78 7.44 38.60
+ TopOnly -0.40 -0.37 -0.66 -0.45 -0.47 -0.50 -1.41 -0.69 6.92 37.69

CausalLM -4.25 -7.58 -12.2 -7.03 -5.05 -9.88 -13.3 -8.32 4.49 28.08
+ TgtOnly -1.29 -1.27 -0.82 -1.18 -1.88 -1.96 -2.04 -1.94 5.53 29.75

and experiment on massively multilingual translation using
OPUS-100. We enlarge the BPE size to 64K to handle mul-
tilingual lexicons. Following Zhang et al. (2020), we divide
the test language pairs into high-resource (High, >0.9M),
low-resource (Low, <0.1M), and medium-resource (Med,
others) groups, and report average scores for each group.
Table 3 summarizes the results. EncDec outperforms LMs
on supervised directions, with larger gap on low-resource
languages and for XX→En translation. By contrast, LMs,
particularly PrefixLM, perform better on zero-shot direc-
tions, with improved translation language accuracy. Overall,
PrefixLM outperforms CausalLM, and also performs com-
parably to EncDec on supervised directions (often < −1
BLEU on average), echoing with our above findings.

7. Conclusion and Discussion
In this paper, we revisited language model architectures for
machine translation from the perspective of model scaling
and cross-lingual transfer. Extensive experiments show that
LMs often have different scaling properties where the im-
pact of architectural differences gradually reduce as models
are scaled up, and that LMs (PrefixLM in particular) often

deliver better zero-shot transfer than its EncDec counterpart
with improved off-target translation. While promising in
zero-shot transfer, LMs lag behind the EncDec models in
cross-lingual transfer for supervised directions. PrefixLM
with full visibility to the source input consistently outper-
forms CausalLM, and performs similarly well to EncDec
across different settings. We expect that these findings could
offer insights for researchers and practitioners focusing on
developing new architectures, loss functions, regularizers or
optimization methods for NMT. Also, these findings show
that while current product offerings for major language pairs
or small on-device models should continue using EncDec,
LMs can be an effective architecture for giant multilingual
models with zero-shot transfer as a primary focus.

The performance gap caused by architectural differences
gradually disappear as the model sizes increase, with fol-
lowing implications: 1) Comparing NMT architectures only
under one model setting (e.g. widely adopted 6-layer Trans-
former base) carries risks, because of the scaling properties
difference. We recommend the best practice should por-
tray the whole scaling picture for comparison. 2) Just like
NMT models optimized for high-resource translation trans-
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fer poorly to low-resource scenarios (Sennrich & Zhang,
2019), many models developed in the past with claims out-
performing Transformer might not transfer to large-scale
model settings and ideally should be revisited in the face
of model scaling. 3) The off-target issue is one of the main
bottlenecks for zero-shot translation, but why it happens and
how to handle it without accessing (authentic or pseudo)
training corpus on zero-shot directions still remains as an
open questions. PrefixLM delivers promising zero-shot
transfer, which deserves more attention.
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A. Model Training and Inference
We update model parameters via Adafactor (Shazeer &
Stern, 2018) with label smoothing of value 0.1, and sched-
uled learning rate of warmup steps 40K. We apply dropout
of 0.1 to residuals, feed-forward activations and attentions.
We employ the post-norm Transformer by default; for some
exceptional cases (often with deep models where training is
unstable) we use the pre-norm one instead. Batch size is set
to about 128K tokens. We train models for up to 1M steps
on different tasks, except Web En-De where 500K steps is
used. We average 10 checkpoints for evaluation. For bilin-
gual experiments, these checkpoints are selected according
to the dev set performance; for multilingual experiments,
we use the last 10 checkpoints. Beam search is used for
inference, with a beam size of 8 and length penalty of 0.5.

B. More Experimental Results
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Figure 7: Fitted scaling curves for different models on WMT14
En-Fr and WMT19 En-Zh in term of FLOPs.
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(b) En→Zh

Figure 8: Fitted scaling curves for different models on WMT14
En-Fr and WMT19 En-Zh on the longest sentence group. We
rank our test set according to source sentence length, and then
split it into 8 disjoint groups. This shows the results on the longest
group.
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Figure 9: Fitted scaling curves for different models on WMT14
En-Fr and WMT19 En-Zh with respect to the number of layers.
Note under the same number of layers, LM + Deep has much fewer
parameters than EncDec and LM + Wide. The performance gap
also narrows as model scales up.
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Figure 10: Fitted scaling curves for different models on WMT14 En-Fr and WMT19 En-Zh evaluated on source original and target
original test sets.
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Figure 11: BLEU scores for different models on WMT14 En-Fr and WMT19 En-Zh as a function of source sentence length. Left: models
aligned with 6-layer EncDec; Right: models aligned with 14-layer EncDec.
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Figure 12: Fitted scaling curves for different models on Web En-De (En→De). src/tgt: source/target; WMT: out-of-domain evaluation
set; Web: in-domain evaluation set. Models are trained in the Transformer big setting.
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Figure 13: Fitted scaling curves for different models on Web En-De (En→De) in terms of FLOPs. Models are trained in the Transformer
big setting.
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Figure 14: BLEU scores for different models on Web En-De (En→De) as a function of model parameters. Models are trained in the
Transformer big setting.
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Figure 15: Cross-lingual transfer results (average BLEU scores) for different models from the low-resource language (En-De) to
high-resource directions under different model sizes on WMT datasets. Average is performed over En↔Fr/Zh. Left: multilingual
En-De-Fr system; Right: multilingual En-De-Zh system.
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Figure 16: Absolute (top) and relative (bottom) transfer results of different models for En→Fr and En→Zh under different models
sizes on WMT datasets. Left: multilingual En-De-Fr system; Right: multilingual En-De-Zh system. Relative score is computed
by comparing multilingual model and its corresponding bilingual counterpart. Overall, there is no clear pattern supporting that LMs
encourage knowledge transfer better than EncDec.


