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Abstract
In modern machine learning systems, distributed
algorithms are deployed across applications to
ensure data privacy and optimal utilization of
computational resources. This work offers a
fresh perspective to model, analyze, and design
distributed optimization algorithms through the
lens of stochastic multi-rate feedback control.
We show that a substantial class of distributed
algorithms—including popular Gradient Track-
ing for decentralized learning, and FedPD and
Scaffold for federated learning—can be modeled
as a certain discrete-time stochastic feedback-
control system, possibly with multiple sampling
rates. This key observation allows us to develop
a generic framework to analyze the convergence
of the entire algorithm class. It also enables one
to easily add desirable features such as differen-
tial privacy guarantees, or to deal with practical
settings such as partial agent participation, com-
munication compression, and imperfect commu-
nication in algorithm design and analysis.

1. Introduction
Distributed optimization has played an important role in
several traditional system-theoretic domains such as con-
trol and signal processing, and more recently, in machine
learning (ML). Some contemporary applications where
distributed optimization finds useful include large-scale
decentralized neural network training, federated learning
(FL), and multi-agent reinforcement learning. In a typical
distributed optimization setting, the agents in the network
jointly solve a system-level optimization problem, with the
constraint that they only utilize local data, local computa-

1Department of Electric and Computer Engineering, Min-
nesota University, MN, United States. Correspondence
to: Xinwei Zhang <zhan6234@umn.edu>, Mingyi Hong
<mhong@umn.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

tion, and local communication resources.

1.1. Design Considerations and Challenges

A few key design considerations for contemporary dis-
tributed algorithms are listed below:
Efficient Computation. Since local agents may contend
with computational-resource and power limitations, it is
desirable that they perform computation in a cost-effective
manner. In practice, state-of-the-art distributed algorithms
in ML applications typically utilize stochastic gradient de-
scent (SGD) based algorithm as their local computation en-
gine (Chang et al., 2020). So a key design consideration is
to reduce the total number of data sample access, or equiv-
alently, to improve sample efficiency.
Efficient Communication. Frequent inter-agent message
exchanges can present several bottlenecks to system per-
formance in addition to consuming power. In applications
such as decentralized training (DT) and federated learn-
ing (FL), communication links may not have high enough
bandwidth (Bonawitz et al., 2019; Li et al., 2020). There-
fore, it is desirable that the local communication between
the agents happen only when necessary, and when it hap-
pens, as little information is exchanged as possible.
Flexibility based on Practical System Considerations.
Since distributed algorithms are often implemented in dif-
ferent environments, and they are used in applications
across different domains, it is desirable that they are flex-
ible and can take into consideration practical require-
ments (e.g., preserving user privacy), accommodate desired
communication patterns, and allow for the possibility of
agents participating occasionally (McMahan et al., 2018;
Koloskova et al., 2020; Yuan et al., 2021).
Guaranteed Performance. The performance of dis-
tributed algorithms can be very different compared with
their centralized counterpart, and if not designed carefully,
distributed algorithms can diverge easily (Lian et al., 2017;
Zhang et al., 2020). So, it is important that algorithms offer
convergence guarantees at a minimum. Further, it is de-
sirable if such guarantees can characterize the efficiency in
computation and communication.

There has been remarkably high interest in distributed al-
gorithms in recent years across applications. These algo-
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rithms are typically developed in an application-specific
manner. They are designed, for example, to: improve
communication efficiency by utilizing model compression
schemes (Basu et al., 2019; Koloskova et al., 2019a); per-
form occasional communication (Chen et al., 2018; Sun
et al., 2020); improve computational efficiency by utiliz-
ing SGD based schemes (Lian et al., 2017; Lu et al., 2019);
understand the best possible communication and computa-
tion complexity (Scaman et al., 2017; Lu & De Sa, 2021);
incorporate differential privacy (DP) guarantee into the sys-
tem (Yuan et al., 2021); or to deal with the practical situ-
ation where even the (stochastic) gradients may not be ac-
cessible (Yuan et al., 2015; Hajinezhad et al., 2019).

Despite extensive research in distributed algorithms, sev-
eral challenges persist in their synthesis and application.
First, the proliferation of the algorithms indeed gives prac-
titioners many alternatives to choose from. However, the
downside is that there are simply too many algorithms
available, so it becomes difficult to appreciate all under-
lying technical details and common themes linking them.
Second, the current practice is that we need to design a
new algorithm and develop the corresponding analysis for
each particular application scenario (e.g., FL) with a spe-
cific set of requirements (e.g., communication efficiency
+ privacy). Given the combinatorial number of different
applications and requirements, this general process readily
becomes very tedious.

Therefore, we ask: Is it possible to have a generic “model”
of distributed algorithms, which can abstract their impor-
tant features (e.g., DP preserving mechanism, compressed
communication, occasional communication) into tractable
modules? If the answer is affirmative, can we design a
framework that utilizes these abstract modules, unifies the
analysis of (possibly a large subclass of) distributed algo-
rithms, and subsequently facilitates the design of new ones?

A limited number of existing works have attempted to ad-
dress these two questions, but the scope is still very re-
stricted. Reference (Sundararajan et al., 2019) focuses only
on the DT algorithms with linear operators on the gradients
and fails to cover the FL or stochastic settings. (Koloskova
et al., 2020) only considers stochastic gradient descent in
FL setting, which cannot generalize to any other algo-
rithms. Other works related to continuous-time analysis
of distributed algorithms, as well as using control theory
to facilitate the design and analysis, are provided in Ap-
pendix A.1

1.2. Contributions of this work

In this work, we propose to use techniques from stochas-
tic multi-rate feedback control to “model” a class of dis-
tributed algorithms. Specifically, we design a new feed-
back control system to model the distributed algorithms;

propose the idea of using the multi-rate sampling technique
to model different frequencies at which communication and
computation are carried out; and use stochasticity in each
feedback controller to model desirable features (such as
gradient compression, DP noise, and partial agent partici-
pation). Moreover, we provide a generic convergence anal-
ysis for the entire control system, and we show how the
modeling procedure can facilitate algorithm analysis and
design via an example based on the popular distributed gra-
dient tracking algorithm. To our knowledge, this is the
first work that attempts to develop a generic model to ana-
lyze and design stochastic distributed algorithms. Our new
modeling procedure and analytical results offer the follow-
ing contributions:
1) Unified Perspective. The proposed stochastic control
system abstracts a number of key features of distributed
algorithms into generic properties of the controllers. For
example, it connects various practical system requirements
and considerations (such as DP requirements, partial agent
participation) with different forms of stochasticity in the
controllers (e.g., additive noise, multiplicative noise). It
connects major paradigms of distributed algorithms such
as DT and FL, via the so-called “multi-rate” sampling tech-
nique, in which different feedback loops are sampled using
different intervals. These abstractions together provide a
unified view of a substantial subclass of distributed algo-
rithms.
2) Streamlined Analysis. To analyze the basic conver-
gence property of a stochastic algorithm, one only needs to
examine a set of basic properties of the control system (e.g.,
certain descent property of the deterministic controller, the
stochasticity arises from each controller); this can greatly
reduce the effort for analysis.
3) Facilitating Algorithm Design. With the models and
analysis framework ready, one can design a new algorithm
and generate the corresponding theoretical performance
guarantees, by first identifying the basic algorithmic com-
ponents (e.g., what consensus algorithm to use, what lo-
cal optimizer to use, and what features to add), translating
them to the control system representation, and then apply-
ing results obtained in item 2) above.

2. Preliminaries
In this section, we introduce assumptions and notations
leveraged in the remainder. First, we formally define the
distributed optimization problem as minimizing a sum of
smooth and possibly non-convex local loss functions on N
agents (Wang & Elia, 2011):

min
x∈RNdx

f(x) :=
1

N

N∑
i=1

fi(xi),

s.t. xi = xj , ∀ (i, j) ∈ E,

(1)
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where x ∈ RNdx stacks N local variables x :=
[x1; . . . ;xN ], xi ∈ Rdx , ∀ i ∈ [N ], where we denote the
set [N ] := {1, . . . , N}, and the agents are connected by a
communication graph G = (V,E), which consists of a set
V of agents indexed by i ∈ [N ], and a undirected edge set
E ⊂ V ×V. The incidence matrix A ∈ {−1, 0, 1}|E|×|V|

of graph G is defined as follows: if edge (i, j) ∈ E con-
nects agent i, j with i > j, then A(i,j),i = 1, A(i,j),j = −1
and A(i,j),k = 0, ∀k ̸= i, j. The Laplacian matrix
of the graph can be expressed as L = −ATA. We de-
note the length-n all-one vector by 1n, averaging matrix
R :=

1N1
T
N

N , and identity matrix of dimension N × N
by I . For simplicity of notation, we ignore the possible
Kronecker products and vectorization when dealing with
stacked vectors and matrices; for instance, we write the
average of x as x̄ :=

1
T
N

N x, the stacked local gradient
as ∇f(x) = [∇f1(x1); . . . ;∇fN (xN )], and the averaged
gradient as ∇f(x̄) = 1

N

∑N
i=1 ∇fi(x̄).

We make the following blanket assumptions on (1):
A 1 (Graph connectivity) The union of the communica-
tion graphs over time t ∈ [0,∞) is connected, i.e., 0 is
a simple eigenvalue its Laplacian matrix, with correspond-
ing eigenvector 1N√

N
.

A 2 (Lipschitz gradient) The fi’s have Lipschitz gradient
with constant Lf :

∥∇fi(x)−∇fi(y)∥ ≤ Lf ∥x− y∥ , ∀ x, y ∈ Rdx ,∀ i ∈ [N ].

A 3 (Lower bounded functions) The loss functions are
lower bounded:

fi(x) ≥f
i
> −∞, ∀x ∈ Rdx , ∀i ∈ [N ],

f(x) ≥f⋆ ≥
N∑
i=1

f
i
, ∀x ∈ RNdx ,

where f⋆ is the infimum of f(x).

Let us briefly comment on these assumptions. First, A1 is
necessary for the problem (1) to be solved with distributed
iterative methods, while allowing directed and/or not
strongly connected time-varying communication graphs
G(t). Subsequently, in Section 3, we will show that time-
varying graphs can be related to many practical algorithm
implementations. Second, A2 is a commonly used assump-
tion for analyzing non-convex optimizations. We are inter-
ested in finding the (ϵ-accurate) first-order stationary points
(FOSP) of the problem, which is defined as follows:

Definition 1 (FOSP, ϵ-stationary point) The FOSP and
ϵ-stationary point are defined respectively as:

∇f(x̄) = 0, (I −R) · x = 0, (2a)

∥∇f(x̄)∥2 + ∥(I −R) · x∥2 ≤ ϵ. (2b)
In addition, we refer to the left-hand-side (LHS) of (2b) as
the stationarity gap of (1), ∥∇f(x̄)∥2 as the convergence
error, and ∥(I −R) · x∥2 as the consensus error.

Figure 1: The multi-agent multi-rate double-loop feedback
control system for solving (1).
To analyze stochastic systems, we define the expectation
conditioning on all the information until time t as Et[(·)] :=
E[(·)|information until t], the variance as Vart(·), and co-
variance as Covt(·, ·). Further, (̃·) denotes the stochastic
version of the variables and functions.

3. System Description
In this section, we present the stochastic multi-rate
feedback-control system that we propose to “model” dis-
tributed algorithms. We first develop a deterministic ver-
sion of the system, discuss its properties, as well as how
the system can model certain classes of (deterministic) al-
gorithms under different sampling strategies. Then, we es-
tablish the link between different kinds of system stochas-
ticity to desirable features of distributed algorithms.

3.1. Deterministic System

To find the FOSP of problem (1), we first develop a de-
terministic control system, in such a way that the system
enters its stationary points if and only if one set of the
state variables of the system correspond to a stationary so-
lution of (1). First, let us define x as the main state vari-
able of the system; introduce the global consensus feed-
back loop (GCFL) and local computation feedback loop
(LCFL), where the former incorporates the dynamics from
multi-agent interactions and pushes x to consensus, while
the latter steers the system to find the stationary solution.
See Figure 1 as an illustration of the system. In what fol-
lows, we introduce the different subsystems involved; note
that ηg(t) and ηl(t) are the controller gains for the global
and local controllers.
• (GCFL). Define a set of auxiliary state variables v :=
[v1; . . . ; vN ] ∈ RNdv , with vi ∈ Rdv , ∀ i; further define
y := [x;v] ∈ RN(dx+dv); the time-invariant feedback con-
troller Gg(·;A) : RN(dx+dv) → RN(dx+dv) operates on y
to ensure the agents remain coordinated, and the states y
remain close to consensus. Finally, we denote the output
at time t as ug(t) := Gg(y(t);A), which can be split as
ug(t) = [ug,x(t);ug,v(t)];

• (LCFL). Define another set of auxiliary state variables



Stochastic Multi-Rate System Perspective

Figure 2: The zeroth-order hold (ZOH) for discretizing a
continuous-time system.
z := [z1; . . . ; zN ] ∈ RNdz , with zi ∈ Rdz , ∀ i; de-
fine a set of time-invariant feedback controllers Gℓ(·; fi) :
Rdx+dv+dz → Rdx+dv+dz , one for each agent i. Fur-
ther define s := [x;v; z] ∈ RN(dx+dv+dz). Then each
agent will use LCFL to operate on its local state variables
si := [xi; vi; zi], to ensure that its local system converges to
a stationary solution. Finally, we denote the output at time
t as ui,ℓ(t) := Gℓ(si(t); fi), which can further be split as
ui,ℓ(t) = [ui,ℓ,x(t), ui,ℓ,v(t), ui,ℓ,z(t)].

Throughout the paper, we use ui,ℓ(t), ug(t) and
Gℓ(si(t); fi), Gg(y(t);A) interchangeably.

System Discretization: The double-loop continuous-time
system can be discretized by using a switch that sam-
ples the input with sample time τ , followed by a zeroth-
order hold (ZOH) that keeps the signal constant between
the consecutive sampling instances (Kuo, 1980); see Fig-
ure 2. More specifically, we place two ZOH units before
the signal enters the two loops. This architecture offers the
flexibility of choosing different sampling time for different
loops resulting in three kinds of discretized systems:
• Case I. τg = τℓ > 0, the GCFL and LCFL are discretized
with the same rate. In this case, the algorithm performs
one local update followed by one step of global commu-
nication. Such an update pattern belongs to the scheme of
decentralized training (DT) algorithms;
• Case II. τg > τℓ > 0, the local computation loop is up-
dated more frequently. Let τg = Q · τℓ, i.e., each agent
performs Q steps of local computation between every two
communication steps. This update strategy is related to
the class of (horizontal) FL algorithms (Bonawitz et al.,
2019). Further note that in the FL setting, the communi-
cation graph takes the fully connected graph as a special
case;
• Case III. τℓ > τg > 0, the global communication loop
is updated more frequently. We assume that τℓ = K · τg ,
i.e., the agents perform K steps of communication between
two local computation steps. This system is related to al-
gorithms that aims to achieve the optimal communication
complexity (Scaman et al., 2017; Sun & Hong, 2019; Ro-
gozin et al., 2021).

Let us define τ := min{τg, τℓ} as the minimum sampling
time interval, and assume t mod τ = 0 for the rest of the
paper. We summarize the above discretization cases in Ta-
ble 1 and provide some example algorithms that fit in the
three cases.

We use the distributed gradient tracking (DGT) algorithm

(Di Lorenzo & Scutari, 2016; Yuan et al., 2020) as an ex-
ample to illustrate how to place it within the structure of
the proposed system. The steps of DGT are:

x+ = Wx− αv, z+ = x,

v+ = Wv + (∇f(x)−∇f(z)),
(3)

where the states are initialized as v0 = ∇f(x0), z0 = x0,
α is the stepsize, and W is some mixing matrix. The
continuous-time system corresponding to the DGT is:

ẋ = −(I −W )x− αv, ż = x− z,

v̇ = −(I −W )v + (∇f(x)−∇f(z)),
(4)

with τℓ = τg = 1. Such a discretization pattern places the
above transcription in Case I. We can also extract the local
and consensus controllers of the system as:

ug(t) =

[
(I −W ) 0

0 (I −W )

] [
x(t)
v(t)

]
,

ui,ℓ(t) =

 αvi(t)
(∇fi(xi(t))−∇fi(zi(t)))

xi(t)− zi(t)

 ,

with ηg(t) = ηℓ(t) = 1. Note that using the discretization
patterns in Case II and Case III, instead of Case I, leads to
new variants of the DGT algorithm.

Next, let us specify a few abstract properties that the con-
trollers need to have. These properties will later help us
analyze the behavior of the entire system, and therefore, all
the algorithms that it can be used to model.
PD 1 (Linear Averaging GCFL) The controller Gg is a
linear averaging operator of y, i.e., Gg(y;A) = WAy for
some matrix WA ∈ RN(dx+dv) parameterized by A, and
satisfies the following properties:

Cg ∥(I −R) · y∥2 ≤ ∥WAy∥2 ≤ ∥(I −R) · y∥2 ,
WA = WT

A , ⟨1N ,WA⟩ = 0.
(5)

PD 2 (Lipschitz Smoothness) The local controller is Lip-
schitz continuous, that is:

∥Gℓ(si; fi)−Gℓ(s
′
i; fi)∥ ≤ L ∥si − s′i∥ ,

∀ i ∈ [N ], si, s
′
i ∈ Rdx+dv+dz .

PD 3 (Size of Control Signals) For given si, the sizes of
the control signals are upper bounded by that of the local
gradients, i.e., for some positive constants Cx, Cv , Cz and
Cf = C2

x + C2
v + C2

z :

∥ui,ℓ,x∥ ≤ Cx ∥∇fi(xi)∥ , ∥ui,ℓ,v∥ ≤ Cv ∥∇fi(xi)∥ ,

∥ui,ℓ,z∥ ≤ Cz ∥∇fi(xi)∥ , ∥ui,ℓ∥2 ≤ Cf ∥∇fi(xi)∥2 .
These properties are easy to verify: PD1 follows A1, PD2
and PD3 can be derived from A2. Further, assume that
within the sampling intervals the stepsizes are kept as con-
stants, i.e., ηg(t1) = ηg(t), ∀t1 ∈ [t, t+ τg), and ηℓ(t1) =
ηℓ(t), ∀ti ∈ [t, t+ τℓ),

3.2. System Stochasticity

As mentioned in the introduction, in practical ML appli-
cations, it is often preferred to use stochastic algorithms
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Case τℓ, τg Comm. Comp. Related Algorithm
I τg = τℓ > 0 Same rate DGD (Yuan et al., 2016), DGT (Yuan et al., 2020)
II τg = Qτℓ > 0 Slow Fast FedPD (Zhang et al., 2020), Scaffold (Karimireddy et al., 2020)
III τℓ = Kτg > 0 Fast Slow xFilter (Sun & Hong, 2019), DSAGD (Rogozin et al., 2021)

Table 1: Summary of discretization settings, and the corresponding distributed algorithms.

rather than deterministic ones. Therefore, we consider re-
placing the deterministic controllers introduced previously
(Fig. 1) with stochastic ones, denoted by G̃ℓ(·), G̃g(·).
We start by providing generic discussions on how these
stochastic controllers are modeled. Specific correspon-
dence of these controllers to concrete applications will be
presented in Section 5.
Additive Noise: The first form of stochastic controller has
additive noise at its output. That is:

ũ = u+ w,
where w is the additive noise, and in most cases we con-
sider white noise (i.e., E[w(t)] = 0 and Cov(w(t), w(t +
h)) = 0,∀ h ̸= 0). Additive white noises arise in many
situations, for example, in algorithms involving stochastic
gradients or differential privacy.
Multiplicative Noise: The second form of stochastic con-
troller has multiplicative noise. That is:

ũ = (I +W) · u,
where W is a random matrix. This type of stochasticity
can be used to model random communication graphs, par-
tial participation, and communication sparsification.
Mixture of Noise: The third form of stochastic controller is
the combination of the previous two, involving a mixture of
additive and multiplicative noises. This setting can be used
to model complex algorithms, e.g., FL algorithms that in-
volve both differentially private noise and agent sampling;
cf. (McMahan et al., 2018).

From the above-mentioned scenarios, we can abstract the
following assumptions on the stochastic controllers:
PS 1 (Expected Control Signal) The stochastic GCFL is
an unbiased estimator of its deterministic counterpart:

E[G̃g(x,v;A)] = Gg(x,v;A),∀x ∈ RNdx ,v ∈Ndv ,
and (A) the stochastic LCFL is also unbiased, satisfying:

Et[G̃ℓ(si; fi)] = Gℓ(si; fi), ∀ i ∈ [N ], si ∈ Rdx+dv+dz ,
or (B) the stochastic LCFL is biased: there exist positive
constants C1, C2, σG satisfying the following:

E
[〈

G̃ℓ(si; fi), Gℓ(si; fi)
〉]

≥ C2 ∥Gℓ(si; fi)∥2 − σ2
G,∥∥∥E[G̃ℓ(si; fi)]

∥∥∥2 ≤ C1, ∀ i ∈ [N ], si ∈ Rdx+dv+dz .

Note that the controller Gg(y(t);A) is linear in y(t), thus
we can guarantee it is unbiased. However, the LCFL
may be nonlinear or nonconvex; consequently, PS1(A) can
be difficult to satisfy. Therefore, we make a relaxed as-
sumption PS1(B), which allows certain degrees of bias and
misalignment between the deterministic controller and its
stochastic counterpart. It is easy to see that PS1(A) is a
special case of (B) with C1 = ∞, C2 = 1, σG = 0.

PS 2 (Bounded Variance) There exist positive constants
Bg, Bℓ, σg, σℓ, such that the following hold:

E
[∥∥∥G̃ℓ(si; fi)− E[G̃ℓ(si; fi)]

∥∥∥2]
≤ Bℓ

∥∥∥E[G̃ℓ(si; fi)]
∥∥∥2 + σ2

ℓ , ∀ i ∈ [N ], si ∈ Rdx+dv+dz ,

E
[∥∥∥G̃g(x,v;A)−Gg(x,v;A)

∥∥∥2]
≤ Bg ∥Gg(x,v;A)∥2 + σ2

g , ∀x ∈ RNdx ,v ∈ RNdv .

Note that if the stochasticity in the controller is an additive
white noise, then it is easy to see that Bℓ = 0, Bg = 0 and
PS1(A) is satisfied.

PS 3 (Independence) The stochastic noise terms in the
controllers are independent, satisfying the following:

Covt

(
G̃g(x(t),v(t);A), G̃ℓ(si(t); fi)

)
= 0.

Note that we only assume independence between the con-
sensus and local control signals at time t, while the control
signals at different times can be correlated.

4. Convergence Analysis
In this section, we analyze the theoretical behavior of the
stochastic system described in Section 3.2. First, we intro-
duce an energy-like function for the system:

E(t) := f(x̄(t))− f⋆ + ∥(I −R) · y(t)∥2 . (6)
Note that E(t) ≥ 0 for all s(t) = [x(t);v(t); z(t)].

Let us begin by assuming that the deterministic system sat-
isfies the following property.

PD 4 (Descent of Deterministic System) The difference
of the energy function of the deterministic system satisfies:

E(t)− E(0) ≤ −
t/τ−1∑
r=0

γ1(rτ) · ∥∇f(x̄(rτ)∥2

−
t/τ−1∑
r=0

γ2(rτ) · ∥(I −R) · y(rτ)∥2 ,

(7)

where γ1(rτ), γ2(rτ) > 0 are coefficients depending on
the choice of ηℓ, ηg, τℓ, τg .

This property immediately implies that the algorithm con-
verges to the FOSP of the problem, in the sense that the
following holds: the convergence error and consensus error
are both decreasing to zero as the LHS is lower bounded by
−E(0). Property PD4 appears to be strong compared with
Properties PD1 – PD3, since it is about the entire sequence
generated by the control system. We require that the de-
terministic system satisfies this property because: 1) This
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is in fact a standard property that a wide range of deter-
ministic algorithms can satisfy; 2) Having this property can
help us focus on investigating the effect of various kinds of
stochasticity on the system performance. To see point 1)
above, we note that this property has been explicitly shown
in algorithms such as DGD (Zeng & Yin, 2018)[Theorem
2], DGT (Di Lorenzo & Scutari, 2016)[Theorem 3], xFil-
ter (Sun & Hong, 2019)[Theorem 5.1], and FedDP (Zhang
et al., 2020)[Theorem 1 Case I]. Of course, when design-
ing a new (stochastic) algorithm, this property has to be
verified for its deterministic counterpart, before we move
to analyze the entire stochastic system.

Next, we move on to characterize the impact of the stochas-
ticity in the controllers satisfying PS1 - PS3. The key chal-
lenge is to characterize the deviations of E(t) caused by the
system stochasticity in different discretization cases.
Case I: For Case I, τg = τℓ > 0. Let us denote the states at
the rth sampling time instance as (·)r := (·)(rτℓ), then the
discretized system can be written as:

x̃r+1 = x̃r − η′rℓ · ũr
ℓ,x − η′rg · ũr

g,x

ṽr+1 = ṽr − η′rℓ · ũr
ℓ,v − η′rg · ũr

g,v (8)

z̃r+1 = z̃r − η′rℓ · ũr
ℓ,z,

where η′rℓ = τℓ · ηℓ(rτℓ), η′rg = τℓ · ηg(rτℓ).

Then, we have the following results:

Lemma 1 Suppose the deterministic system satisfies PD1
- PD4, and the stochastic controllers satisfy PS2 and PS3.
Consider the discretization Case I with τg = τℓ > 0.
(A) If PS1(A) is satisfied, then we have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − Cr

11)︸ ︷︷ ︸
=:γ′

1(r)

·E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − Cr

12)︸ ︷︷ ︸
=:γ′

2(r)

·E[∥(I −R) · ỹr∥2]

+ C13(t)σ
2
g + C14(t)σ

2
ℓ ,

(9)

where Cr
11 := Bℓ · (C2

x + C2
v ) · (1 +

Lf

2N ) · (η′rℓ )2, Cr
12 :=

Cr
11L

2
f + Bg · (η′rg )2 · (1 +

Lf

2N ), C13(t) :=
∑t−1

r=0(η
′r
g )

2 ·
(1 +

Lf

2N ), C14(t) :=
∑t−1

r=0(η
′r
ℓ )

2 · (1 + Lf

2N ).

(B) If PS1(B) is satisfied, then we have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − C′r

11)︸ ︷︷ ︸
:=γ′

1(r)

·E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − C′r

12)︸ ︷︷ ︸
:=γ′

2(r)

·E[∥(I −R) · ỹr∥2]

+ C13(t)σ
2
g + C14(t)σ

2
ℓ + C15(t)C1 + C16(t)σ

2
G.

where C ′r
11, C

′r
12, C15(t), C16(t) are positive coefficients

depending on L,Lf , C2, Cx, Cv , Bℓ, Bg, η
′r
ℓ , η

′r
g ,.

The proofs and choices of the parameters for Lemma 1(A)

and (B) are provided in Appendix B.1.1 and Ap-
pendix B.1.2 due to space limits. This lemma indicates that
by using stochastic controllers, the system introduces extra
perturbations. Compared with (A), the result in (B) has two
extra error terms which are caused by the biased stochas-
tic local controllers. The key point is to choose η′rℓ , η

′r
g

such that γ′
1(r) > 0, γ′

2(r) > 0 and minimize {C1i(t)}6i=3,
so that the error terms accumulate slower than the rate at
which the first two terms decrease. This choice depends
on the specification of the deterministic algorithm. Further,
we have:

Theorem 1 Suppose the deterministic system in Case I
satisfies PD1 - PD4, with stochastic controllers satisfying
PS1, PS2 and PS3. The algorithm converges with:

E
[∥∥∇f(˜̄xr1)

∥∥2 + ∥(I −R) · ỹr1∥2
]
≤ E0 + C3(t)∑t−1

r=0 γ
′(r)

,

where γ′(r) := min{γ′
1(r), γ

′
2(r)}, C3(t) = C13(t)σ

2
g +

C14(t)σ
2
ℓ for PS1(A) and C3(t) = C13(t)σ

2
g +C14(t)σ

2
ℓ +

C15(t)C1 + C16(t)σ
2
G for PS1(B).

For Case II and Case III, similar results can be derived.
Detailed derivations are provided in Appendix B.2.

In summary, starting with a convergent deterministic sys-
tem, we can replace the controllers with their stochastic
versions that satisfy properties PS1-PS3. The resulting
stochastic systems not only slow down by a certain fac-
tor depending on Ci1, Ci2, but also suffers form additional
error terms in C3. Let us comment on these terms:

1) Suppose that PS1(A) is satisfied and σg = σℓ = 0 in
PS2, i.e., the variance of the controller can be fully bounded
by the size of the deterministic control signal, then C3 = 0.
Therefore, it only requires Ci1 < cγ1, Ci2 < cγ2 with con-
stant 0 ≤ c < 1 for the stochastic algorithm to converge. In
this case, the convergence rate of the stochastic algorithm
will have the same order as the baseline deterministic algo-
rithm.

2) If σg, σℓ > 0, i.e., the variance of the controller stays
constant, then we need to balance between the error term
and the descent terms. In this case, the convergence rate of
the stochastic algorithm may slow down in order, or lose
it convergence. In Section 5.3, we use the DGT algorithm
to demonstrate how the parameters are specified to balance
the error and the convergence rate.

5. Applications of the Framework
In this section, we demonstrate the modeling capability of
the proposed control system. We first show that a few
important algorithmic features can be mapped to specific
types of stochastic controllers. We then combine these con-
trollers in different ways to construct a number of popular
distributed algorithms. Finally, we use the DGT algorithm
as an example to illustrate how the proposed framework fa-
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cilitates new algorithm design.

5.1. Mapping Features to the Stochastic Controllers

We first discuss how a number of features that are desirable
to distributed algorithms can be mapped to specific stochas-
tic controllers, which satisfy PS1-PS3.

First, we discuss a few realizations of G̃g(y(t);A):
• Randomized Communication Graph (RG): Suppose
the communication graph G(t) is randomly time-varying.
This can be caused by limited bandwidth or unreliable con-
nection, so that at time t, the agents randomly choose a sub-
set of their neighbours to broadcast local information, and
gather the information from a possibly different random
subset of neighbours (Koloskova et al., 2020; Yuan et al.,
2021). In this case, G̃g(y(t);A) := W̃A(t)y(t), where
W̃A(t) is a random matrix satisfying E[W̃A(t)] = WA and
if (i, j) ̸∈ E, W̃A,ij(t) = 0. An extreme is that W̃A is di-
agonal and no communication happens. This case satisfies
PS1 and PS2.
• Partial Agent Participation (PP): Partial agent partic-
ipation often arises in FL, where at each communication
round, only a subset of P agents send their updates to the
server (Bonawitz et al., 2019; Acar et al., 2021). PP is a
more practical approach than full agent aggregation and
can be viewed as a special case of randomized communi-
cation graph G̃g(y(t);A) := W̃A(t)y(t), where the aver-
aging matrix takes the following form:

W̃A(t) =
1NBT (t)

1
T
NB(t)

, B(t) ∈ {0, 1}N , E[B(t)] =
P

N
1N ,

where B(t) is a length-N random vector. In this case, it
satisfies PS1 that E[W̃A(t)] = R and PS2 with σg = 0.
• Compressed Communication (CC): A different way
of resolving the communication bandwidth issue is to re-
duce the data transmitted as each communication round by
using compression methods such as (randomized) quanti-
zation and sparsification (Tang et al., 2018; 2020). The
controller can be written as:

G̃g(y;A) := Gg(Wy;A), E[W] = I,
where W is a diagonal multiplicative noise matrix for com-
pression and satisfies PS1, PS2. For example, we can set
W as the sparsification matrix with:

Wjj =

{
1
p
, w.p. p,

0, w.p. 1− p,

where p < 1 denotes the compression rate (Basu et al.,
2019); or set W as the quantization matrix with:

Wjj =

{ ⌈yj⌉
yj

, w.p. yj−⌊yj⌋
⌈yj⌉−⌊yj⌋

,
⌊yj⌋
yj

, w.p. ⌈yj⌉−yj

⌈yj⌉−⌊yj⌋
,

where ⌈·⌉, ⌊·⌋ denote the upper and lower quantization lev-
els (Koloskova et al., 2019a) which satisfies PS1 and PS2.
These methods can efficiently save the communication on
structured data.
• Differential Privacy Noise: One important motivation

to implement distributed systems is to guarantee user data
privacy. DP is a widely used notion for measuring pri-
vacy, because it provides strong guarantees, while being
easily implementable (Abadi et al., 2016). The most popu-
lar mechanism to ensure DP is called the Gaussian mech-
anism, which adds noise to the algorithm outputs (Abadi
et al., 2016). In a distributed setting, this mechanism can
be viewed as adding noise to the local messages before they
get transmitted. To model the DP noise, the stochastic con-
troller can be written as

G̃g(y;A) := WA · (y +wg),

where wg ∼ N (0, σ2I) with σ2 = Ω(pt log(δ
−1)

Nϵ2 ) captur-
ing the privacy noise (McMahan et al., 2018).

Next, we discuss a few realizations of G̃ℓ(si(t); fi):
• Clipping: Note that when implementing differentially
private algorithms, local clipping operation is usually
needed to bound the algorithm sensitivity, which can be
written as:

clip(Gℓ,i(si; fi); c) := Gℓ,i(si; fi) ·max

{
1,

c

∥Gℓ,i(si; fi)∥

}
,

where c denotes the clipping threshold. In this case, even if
Gℓ,i(si; fi) is unbiased, the non-linear clipping operation
will introduce extra biased noise (Chen et al., 2020) satis-
fying PS1(B) with C1 = c, and C2, σG depending on data
distribution.
• Stochastic Gradient (SG): As mentioned before, state-
of-the-art ML applications often use SGD based local up-
dates. This can be easily translated to a stochastic local
controller where the stochastic gradient is estimated on
sampled data:

ũi,ℓ(t) = ∇fi(xi(t)) +∇fi(xi(t); ξi(t))−∇fi(xi(t))︸ ︷︷ ︸
wi(t)

,

where wi(t) is the additive noise; ξi(t) is drawn uniformly
from the local dataset. So E[∇̃fi(xi(t))] = ∇fi(xi(t))
which satisfies PS1, and it is common to assume that
Var(wi(t)) satisfies PS2 (Lian et al., 2017; Lu et al., 2019;
Karimireddy et al., 2020).
• Zeroth-order Optimization (ZO): the zeroth-order op-
timization method have been developed in recent years
in the setting that only the loss values fi(xi) can be ac-
cessed (Yuan et al., 2015; Sahu et al., 2018; Hajinezhad
et al., 2019). One can use zeroth-order method to approxi-
mate the gradient:

∇̃fi(xi) :=
fi(xi + δh)− fi(xi − δh)

2h
δ,

where δ uniformly samples from the unit sphere and h is a
sufficiently small scalar. Similar to the previous case, we
have:

ũi,ℓ(t) = ∇fi(xi(t)) + ∇̃fi(xi(t))−∇fi(xi(t))︸ ︷︷ ︸
wi(t)

,

where wi(t) is a biased additive noise (Yuan et al., 2015).

Note that different forms of noises can be combined to-
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gether for more complex applications, e.g., in DP, we may
combine DP with Clipping and SG for better performance.

5.2. Algorithm Classification

In this subsection, we discuss some popular distributed al-
gorithms and how they fall into the proposed framework.
• We first start with DT algorithms, which belongs to
Case I: DSGD (Lian et al., 2017) uses stochastic gradient
as LCFL with deterministic GCFL. Its variations include
(Koloskova et al., 2020) which studies random communi-
cation graph, (Koloskova et al., 2019b;a) with communi-
cation compression, and D-(DP)2SGD (Yuan et al., 2021)
with differential privacy. GNSD (Lu et al., 2019) uses
gradient tracking on stochastic gradient, and ZONE (Ha-
jinezhad et al., 2019) uses zeroth-order optimization for
gradient estimation.
• FL is another popular class of distributed algorithms,
which uses discretization Case II. Popular algorithms in-
clude FedPD (Zhang et al., 2020) that implements the
ADMM algorithm with stochastic gradient as local solver,
and uses random aggregation scheme to save communi-
cation while FedDyn (Acar et al., 2021) considers partial
client participation. Scaffold (Karimireddy et al., 2020)
tracks local stochastic gradients to correct the update di-
rection; DP-FedAvg (McMahan et al., 2018; Zhang et al.,
2021) apply differential privacy to FedAvg; Qsparse-Local-
SGD uses communication sparsification on FedAvg (Basu
et al., 2019).
• Finally, we give an example algorithm trying to optimize
the convergence rate dependencies via multi-step commu-
nication in Case III: DSAGD (Rogozin et al., 2021) uses
stochastic gradient and multi-step averaging on random
communication graphs to accelerate consensus.

We summarize the above discussions in Table 2, where we
specify the discretization cases and the stochasticities in
each algorithm. More detailed algorithmic correspondence
are included in Appendix A.2

5.3. Algorithm Design: A Case Study

In this subsection, we take the decentralized gradient track-
ing (DGT) algorithm as an example to illustrate how the
framework can be applied to design new algorithms for dif-
ferent applications. In specific, we modify the DGT algo-
rithm to include features such as SG, RG and DP, and name
the resulting algorithms as Distributed Stochastic Gradi-
ent Tracking (DSGT) (which is the same as GNSD (Lu
et al., 2019)), Distributed Dynamic-graph Gradient Track-
ing (D2GT) and Differentially Private DSGT (DP-DSGT).
By verifying PD1-PD4 and PS1-PS3 for each case, we have
the following informal theoretical result:

Corollary 1 (Informal) With properly chosen stepsize,
the expected stationarity gaps of DSGT, D2GT, and
DP-DSGT converge with rates O( log(t)√

t
), O( 1t ), and

Algorithm Discretization Stochasticity
DSGD Case I SG, CC, RG
GNSD Case I SG
D-(DP)2SGD Case I SG, DP, RG
ZONE Case I ZO
FedPD/FedDyn Case II SG, RG/PP
Scaffold Case II SG, PP
Qsparse-Local-SGD Case II SG, CC
DP-FedAvg Case II SG, DP, PP
DSAGD Case III SG, RG

Table 2: Summary of the distributed stochastic algorithms, with
discretization cases and stochasticity in the controller.

Figure 3: The convergence of the stationarity gap of DGT,
D2GT, GSGT and DP-DSGT.
O(

√
dx+dv log(δ−1)

Nϵ ) respectively, where the expectation is
taken over the iterations, and DP-DSGT satisfies the (ϵ, δ)-
differential privacy.
We can see that with multiplicative noise, D2GT has the
fastest convergence rate, which is essentially the same or-
der as DGT; DSGT converges slower due to the additive
noise in SG, and recovers the rate obtained in (Lu et al.,
2019); DP-DSGT has a constant error independent of t due
to the additive noises caused by DP.
Numerical results for the algorithms on the non-convex
regularized logistic regression problem (Antoniadis et al.,
2011) are shown in Figure 3. In the experiment, we choose
the stepsizes based on the theoretical result, i.e., η′g, η

′
ℓ as

constants for DGT, D2GT; and η′rℓ = O(1/
√
r) for GNSD

and DP-GNSD. It can be observed that D2GT has the same
convergence rate as DGT with a constant slow down, while
GNSD and DP-GNSD have slower convergence rates. Due
to page limitation, we refer to Appendix C for detailed dis-
cussions on the algorithm modifications, theoretical analy-
ses and experiment settings and additional results.

6. Conclusion
In this work, we have proposed a feedback-control sys-
tem to model distributed optimization algorithms from the
multi-rate stochastic control perspective. We have shown
that the multi-rate stochastic control system can represent
a variety of distributed stochastic algorithms. Illustrative
examples demonstrate how the system can help understand
existing algorithms and design new algorithms.
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A. Additional Discussions
In this section, we provide additional discussions missing
in the main paper.

A.1. Related Works in Dynamic Systems

In this subsection, we provide additional discussion on ex-
isting works, which are related to using control theory, and
dynamic system to analyze distributed algorithms.

Controlling the stochastic system using robust control has
been a standard approach in the control theory (Liu et al.,
2018). More recent works such as (Jakovetić, 2018) gen-
eralizes the small gain theorem to nonlinear control sys-
tems to analyze the system stability with stochasticity. Dis-
tributed control system has been studied for optimizing
global performance in distributed energy resources appli-
cations (Khan et al., 2016). Researches have shown that
centralized and decentralized deterministic optimization al-
gorithms (Wang & Elia, 2011; França et al., 2018; Muehle-
bach & Jordan, 2019) can be analyzed as dynamic systems.
However, these works are restricted to convex optimization
with deterministic controllers in continuous time, and fail
to capture the impact of the “multi-rate” discretization, thus
cannot cover the FL and algorithms that performs multiple
consensus steps (Scaman et al., 2017; Lu & De Sa, 2021;
Rogozin et al., 2021).

From the continuous-time perspective, there are a series
of related researches focus on both gradient and stochastic
gradient flow algorithms. The convergence rate of the non-
convex stochastic gradient flow algorithm has been studied
in (Orvieto & Lucchi, 2019) as the continuous-time coun-
terpart of stochastic gradient descent algorithm in central-
ized setting. Some recent works focus on analyzing the
stochastic gradient Langevin dynamics (El Mekkaoui et al.,
2021; Chau et al., 2021) which are closely related to the
stochastic gradient descent algorithms in both centralized
and distributed settings. However, they are hard to be gen-
eralized to other stochastic algorithms.

A.2. Algorithm Discussion

In this part, we provide some concrete examples on how
the existing algorithms are covered by the proposed model.

First we start with the ZONE algorithm (Hajinezhad et al.,
2019) in decentralized training setting:

The update steps of ZONE are:

xr+1 = xr − ρ · (vr +Wxr)− η′ℓ∇̃f(xr)

vr+1 = vr +Wxr+1,

where W = ATA, ∇̃f(xr) is the stochastic zeroth-order
estimation of ∇f(xr). It is easy to see that the correspond-

ing continuous-time deterministic controllers are:

ug(t) =

[
ρW ρI
−W 0

] [
x(t)
v(t)

]
,

ui,ℓ(t) =

[
∇f(x(t))

0

]
.

ZONE corresponds to discretization Case I with τg = τℓ =
1, and has zeroth-order gradient as stochastic LCFL.

Second, we provide the mapping for FedPD (Zhang et al.,
2020) and FedDyn (Acar et al., 2021) in the federated
learning setting where the communication graph can be
viewed as a complete graph, and WA = I −R:

The update of FedPD is given by (Zhang et al., 2020):

xr,q+1 = xr,q − η′ℓ∇̃f(xr,q; ξr,q)

+ η′g · (ρ · (xr,q −wr,q) + vr,0)

vr,q+1 =

{
vr,q + η′g · (xr,q+1 −wr,q), (q + 1) = Q

vr,q, (q + 1) ̸= Q,

wr,q+1 =


η′
g

p R · (2xr,q+1 −wr,q), (q + 1) = Q, w.p. p
2xr,q+1 −wr,q, (q + 1) = Q, w.p. 1− p

wr,q, (q + 1) ̸= Q,

where ∇̃f(xr,q; ξr,q) denotes the stochastic gradient esti-
mated on samples ξr,q . Observe that w tracks Rx and up-
date with probability p, so in continuous time, we can re-
place w with Rx, and obtain the following continuous-time
controllers:

ug(t) =

[
ρ · (I −R) ρI
−(I −R) 0

] [
x(t)
v(t)

]
,

ui,ℓ(t) =

[
∇f(x(t))

0

]
.

FedPD corresponds to discretization Case II with τg =
Qτℓ = 1, and has both stochastic gradient as stochastic
LCFL and random communication graph

W̃A =



[
ρ · (I −R/p) ρI

−(I −R/p) 0

]
w.p. p,[

ρI ρI

−I 0

]
w.p. 1− p,

in the stochastic GCFL.

The update of FedDyn is given by (Acar et al., 2021):

xr,q+1 = xr,q − η′ℓ∇̃f(xr,q; ξr,q)

+ η′g · (ρ · (xr,q −wr,q) + vr,0)

vr,q+1 =

{
vr,q + η′g · (xr,q+1 −wr,q), (q + 1) = Q

vr,q, (q + 1) ̸= Q,

wr,q+1 =

{
R̃ · (2xr,q+1 −wr,q), (q + 1) = Q,

wr,q, (q + 1) ̸= Q,

where ∇̃f(xr,q; ξr,q) denotes the stochastic gradient esti-
mated on samples ξr,q , and R̃ := 1NBT

1
T
NB

, B ∈ {0, 1}N is a



Stochastic Multi-Rate System Perspective

random vector denotes the partial participation pattern with
E[R̃] = R. Observe that w tracks Rx in expectation, so in
continuous time we can replace w with Rx, and obtain the
following deterministic controllers:

ug(t) =

[
ρ · (I −R) ρI
−(I −R) 0

] [
x(t)
v(t)

]
,

ui,ℓ(t) =

[
∇f(x(t))

0

]
.

FedDyn corresponds to discretization Case II with τg =
Qτℓ = 1, and has both stochastic gradient as stochastic
LCFL and random communication graph

W̃A =

[
ρ · (I − R̃) ρI

−(I − R̃) 0

]
,

in the stochastic GCFL.

Lastly, we map the DSAGD algorithm (Rogozin et al.,
2021) to our system:

The update of DSAGD is given by (Rogozin et al., 2021):

xr,k+1 =

{
xr,k − η′ℓ · (xr,k − vr,k+1), k + 1 = K

xr,k, k + 1 ̸= K
,

vr,k+1 = W̃ r,k · (αkxr,0 + (1− αk) · vr,0)

− αkβr∇̃f(zr,0; ξr)

zr,k+1 =

{
zr,k − η′ℓ · (xr,k+1 − vr,k+1), k + 1 = K

zr,k, k + 1 ̸= K
,

where ∇̃f(zr,0; ξr) denotes the stochastic gradient esti-
mated on samples ξr, and W̃ r,k are random mixing matri-
ces. We can obtain the following deterministic controller:

ug(t) =

[
0 0

−α(t) ·W I − (1− α(t)) ·W

] [
x(t)
v(t)

]
,

ui,ℓ(t) =

 x(t)− v(t)
α(t) · β(t) · ∇f(z(t))

x(t)− v(t)

 .

DSAGD corresponds to discretization Case III with τℓ =
Kτg > 0, and has both stochastic gradient as stochastic
LCFL and random communication graph

W̃A =

[
0 0

−αkW̃ r,k (I − (1− αk) · W̃ r,k)

]
,

in the stochastic GCFL.

Algorithm connections: Interestingly, we can observe that
ZONE, FedPD and FedDyn has almost the same determin-
istic continuous-time controllers, where the only difference
is the the mixing matrix W = R in FL. These three al-
gorithms distinguish from each other by having different
sampling rates and introducing different forms of stochas-
ticities.

B. Detailed Discussions for Section 4
In this section, we provide the proof for the lemmas in Sec-
tion 4. Before we start, let us introduce some useful rela-
tions:

⟨a, b⟩ = 1

2α
∥a∥2 + α

2
∥b∥2 − 1

2

∥∥∥∥ 1√
α
a+

√
αb

∥∥∥∥2
≤ 1

2α
∥a∥2 + α

2
∥b∥2 (10)

(I −R)2 = I − 2R+R2 = I −R. (11)

B.1. Proofs for Case I

We first present the proof for Lemma 1 in Case I.

B.1.1. CASE I: LEMMA 1(A)

The proof for Lemma 1(A) is straightforward. We first
write the difference between the consecutive energy func-
tions as:

Er

[
Ẽr+1 − Ẽr

]
= Er

[
Ẽr+1

]
− Er+1︸ ︷︷ ︸

∆r+1

+ Er+1 − Ẽr︸ ︷︷ ︸
term I

,

(12)
where we can apply PD4 to bound the sum of term I. The
main challenge is to bound ∆r+1. This can be proceed by
the following:

Er[Ẽr+1 − Er+1] = Er

[
f(˜̄xr+1)− f(x̄r+1)

]
+ Er

[∥∥(I −R) · ỹr+1
∥∥2 − ∥∥(I −R) · yr+1

∥∥2]
(i)

≤ Varr((I −R) · ỹr+1) +
Lf

2
Er(
∥∥˜̄xr+1 − x̄r+1

∥∥2)
+ Er

[〈
∇f(x̄r+1), ˜̄xr+1 − x̄r+1

〉]
(ii)

≤
(
1 +

Lf

2N

)
·Varr(ỹr+1)

(iii)
=

(
1 +

Lf

2N

)
·Varr(η′rg ũr

g + η′rℓ ũ
r
ℓ,y)

(PS3)
=

(
1 +

Lf

2N

)
×
(
(η′rg )

2 ·Varr(ũr
g) + (η′rℓ )

2 ·Varr(ũr
ℓ,y)
)

(PS2)

≤
(
1 +

Lf

2N

)
· (η′rg )2 ·

(
Bg

∥∥ur
g

∥∥2 + σ2
g

)
+

(
1 +

Lf

2N

)
· (η′rℓ )2 ·

(
Bℓ

∥∥ur
ℓ,y

∥∥2 + σ2
ℓ

)
(iv)

≤
(
1 +

Lf

2N

)
· (η′rg )2 · (Bg ∥(I −R) · ỹr∥2 + σ2

g)

+

(
1 +

Lf

2N

)
· (η′rℓ )2 ·

(
Bℓ(C

2
x + C2

v )

·
(∥∥∇f(˜̄xr)

∥∥2 + L2
f ∥(I −R) · x̃r∥2

)
+ σ2

ℓ

)
,
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where in (i) we apply A2 to the first two terms; in (ii)
we apply PS1(A) to the last term as Er ˜̄x

r+1 = x̄r+1

and merge the other two terms by using the fact that∥∥˜̄xr − x̄r
∥∥2 ≤ 1

N ∥x̃r − xr∥2 and x is a sub-vector of y;
in (iii) we apply the update steps of ỹr in (8); in (iv) we
apply PD1 to the first term and bound the third term by∥∥ur

ℓ,y

∥∥2 (PD3)

≤ (C2
x + C2

v ) ∥∇f(x̃r)∥2 (13)

≤ 2(C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + ∥∥∇f(x̃r)−∇f(˜̄xr)
∥∥2)

(A2)

≤ 2(C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + L2
f

∥∥x̃r − ˜̄xr
∥∥2

= 2(C2
x + C2

v ) · (
∥∥∇f(˜̄xr)

∥∥2 + L2
f ∥(I −R) · x̃r∥2)

Finally, substitute the above result into ∆r+1 in (12) and
apply PD4, then Lemma 1(A) is proved.

B.1.2. CASE I: LEMMA 1(B)

In Lemma 1(B), the key step is to bound:

∆r+1 = Er

[
Ẽr+1

]
− Er+1

= Er

[
Ẽr+1

]
− f(Er ˜̄x

r+1)− ∥(I −R) · Er ỹ
r∥2︸ ︷︷ ︸

∆A

+ f(Er ˜̄x
r+1) + ∥(I −R) · Er ỹ

r∥2 − Er+1︸ ︷︷ ︸
∆B

.

(14)

First, we bound ∆A, which is the same as ∆r+1 in the pre-
vious case:

∆A ≤ (1 +
Lf

2N
) ·Varr(η′rℓ ũr

ℓ + η′rg ũ
r
g)

(PS2)

≤ (1 +
Lf

2N
) · (η′rℓ )2(Bℓ ∥Er ũ

r
ℓ∥

2
+ σ2

ℓ )

+ (1 +
Lf

2N
) · (η′rg )2(Bg

∥∥Er ũ
r
g

∥∥2 + σ2
g)

(i)

≤ (1 +
Lf

2N
) · (η′rℓ )2(BℓC1 + σ2

ℓ )

+ (1 +
Lf

2N
) · (η′rg )2(Bg ∥(I −R) · ỹr∥2 + σ2

g),

where in (i) we apply PS1(B) to bound the first term and
PD1 to bound

∥∥Er ũ
r
g

∥∥2.

We then bound ∆B by:

∆B

(A2)

≤
〈
∇f(x̄r+1),Er ˜̄x

r+1 − x̄r+1
〉

+
Lf

2

∥∥Er ˜̄x
r+1 − x̄r+1

∥∥2
+ 2

〈
(I −R) · yr+1, (I −R) · (Er ỹ

r+1 − yr+1)
〉

+
∥∥(I −R) · (Er ỹ

r+1 − yr+1)
∥∥2

(i)

≤
〈
∇f(x̄r+1)−∇f(˜̄xr),Er ˜̄x

r+1 − x̄r+1
〉

+
〈
∇f(˜̄xr),Er ˜̄x

r+1 − x̄r+1
〉

+

(
1 +

Lf

2N

)∥∥Er ỹ
r+1 − yr+1

∥∥2

+ 2
〈
(I −R) · (yr+1 − ỹr), (I −R) · (Er ỹ

r+1 − yr+1)
〉

+ 2
〈
(I −R) · ỹr, (I −R) · (Er ỹ

r+1 − yr+1)
〉

(10)
≤ β2

2

∥∥∇f(˜̄xr)
∥∥2 + β3

2
∥(I −R) · ỹr∥2

+
β1(2 + L2

f )

2

∥∥yr+1 − ỹr
∥∥2

+

(
1 +

Lf

2N
+

1

β1
+

β2 + β3

2β2β3

)∥∥Er ỹ
r+1 − yr+1

∥∥2 ,
where in (i) we use the fact that x is a sub-vector of y and
combine the two norms; add and subtract ∇f(˜̄xr) to the
first term, and add and subtract (I − R) · ỹr to the third
term.

To bound the last two terms in the above relation, we have:∥∥yr+1 − ỹr
∥∥2 =

∥∥η′r
ℓ ur

ℓ,y + η′r
g ur

g

∥∥2
≤ 2(η′r

ℓ )2 · (C2
x + C2

v) · (
∥∥∇f(˜̄xr)

∥∥2 + L2
f ∥(I −R) · x̃r∥2)

+ 2(η′r
g )2 ∥(I −R) · ỹr∥2 ,

where we apply (13) to bound ur
ℓ,y and PD1 to bound ur

g .
And we have∥∥Er ỹ

r+1 − yr+1
∥∥2

=
∥∥η′r

ℓ (Er ũ
r
ℓ,y − ur

ℓ,y) + η′r
g (Er ũ

r
g − ur

g)
∥∥2

(PS1)
= (η′r

ℓ )2 ·
(∥∥Er ũ

r
ℓ,y

∥∥2 + ∥∥ur
ℓ,y

∥∥2 − 2
〈
Er ũ

r
ℓ,y, u

r
ℓ,y

〉2)
(PS1)

≤ (η′r
ℓ )2 ·

(
C1 + (1− 2C2) ·

∥∥ur
ℓ,y

∥∥2 + 2σ2
G

)
(13)
≤ 2(η′r

ℓ )2 · (C2
x + C2

v) · (1− 2C2) ·
∥∥∇f(˜̄xr)

∥∥2
+ 2L2

f · (η′r
ℓ )2 · (C2

x + C2
v) · (1− 2C2) · ∥(I −R) · x̃r∥2

+ (η′r
ℓ )2 · (C1 + 2σ2

G).

substitute the above results to (14), we have:

Er

[
Ẽr+1

]
− Er+1

≤ C ′
11

∥∥∇f(˜̄xr)
∥∥2 + C ′

12 ∥(I −R) · ỹr∥2

+ (1 +
Lf

2N
) · (η′rg )2 · σ2

g + (1 +
Lf

2N
) · (η′rℓ )2 · σ2

ℓ

+ (Bℓ(1 +
Lf

2N
) + C17) · (η′rℓ )2 · C1 + (η′rℓ )

2 · C17σ
2
G,

where we define the following constants

C ′
11 :=

β2

2
+ β1 · (2 + Lf ) · C18 + 2C17C18 · (1− 2C2),

C ′
12 := (1 +

Lf

2N
) · (η′rg )2Bg + 2L2

fC17C18 · (1− 2C2)

+
β2

2
+ β1 · (2 + Lf ) · (C18 · L2

f + (η′rg )
2),

C15 := C14Bℓ +

t∑
r=0

C17 · (η′rℓ )2,

C16 :=

t∑
r=0

C17 · (η′rℓ )2,

C17 := 1 +
Lf

2N
+

1

β1
+

β2 + β3

2β2β3
,
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C18 := (η′rℓ )
2 · (C2

x + C2
v ).

Plug it into (12), and apply PD4, then Lemma 1(B) is
proved.

B.2. Case II and III

Case II: For Case II, τg = Qτℓ > 0. Let us denote
the states at rth global sampling time instance as (·)r :=
(·)(rτg), where the qth local sampling time between two
consecutive global sampling instance as (·)r,q := (·)(rτg+
qτℓ), then the system can be written as:

xr,q+1 = xr,q − η′r,qℓ · ũr,q
ℓ,x − η′r,qg · ũr

g,x

vr,q+1 = vr,q − η′r,qℓ · ũr,q
ℓ,v − η′r,qg · ũr

g,v (15)

zr,q+1 = zr,q − η′r,qℓ · ũr,q
ℓ,z,

where η′r,qℓ = τℓη
r,q
ℓ , η′r,qg = τℓη

r,q
g . Note that we have

(·)r,Q = (·)r+1,0. In this case, we have the following result
for the stochastic system:

Lemma 2 Suppose the deterministic system satisfies PD1 -
PD4, with stochastic controllers satisfy PS1(A) - PS3, and
consider the discretization Case II with τg = Qτℓ > 0.
Then we have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − Cr

21) · E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − Cr

22) · E[∥(I −R) · ỹr∥2]

+ C23(t)σ
2
g + C24(t)σ

2
ℓ ,

(16)

where {C2i}4i=1 are some coefficients related to L,Lf ,
Cx, Cv , Bℓ, Bg, η

′r,q
ℓ , η′r,qℓ , and Q.

This result is similar to Lemma 1(A). The proof of this
lemma is given in Sec. B.2.1.

Also, a similar result with the LCFL satisfies PS1(B) can
be proved following similar steps as Lemma 1(B) and
Lemma 2. We omitted these derivations to avoid repe-
tition.

Case III: For Case III, τℓ = Kτg > 0. Let us de-
note the states at rth local sampling time instance as
(·)r := (·)(rτℓ), where the kth global sampling time be-
tween two consecutive local sampling time instances as
(·)r,k := (·)(rτℓ + kτg), then the system can be written
as:

x̃r,k+1 = x̃r,k − η′r,kℓ · ũr
ℓ,x − η′r,kg · ũr,k

g,x

ṽr,k+1 = ṽr,k − η′r,kℓ · ũr
ℓ,v − η′r,kg · ũr,k

g,v (17)

z̃r,k+1 = z̃r,k − η′r,kℓ · ũr
ℓ,z,

where η′r,kℓ = τgη
r,k
ℓ , η′rg = τgη

r,k
g . Note that (·)r,K =

(·)r+1,0.

A similar result to Case I can be shown for Case III:

Lemma 3 Suppose the deterministic system satisfies PD1
- PD4, with stochastic controllers satisfy PS1(A) - PS3, and
consider the discretization Case III with ηℓ = Kηk > 0.
Then we have the following:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − Cr

31) · E[
∥∥∇f(˜̄xr

∥∥2]
−

t−1∑
r=0

(γr
2 − Cr

32) · E[∥(I −R) · ỹr∥2]

+ C33(t)σ
2
g + C34(t)σ

2
ℓ ,

(18)

where {C3i}4i=1 are some coefficients related to L,Lf ,
Cx, Cv , Bℓ, Bg, η

′r,q
ℓ , η′r,qℓ , and K.

The proof follows the similar steps as in Case I and Case II
so we omit it due to page limitation.

B.2.1. PROOF OF LEMMA 2

The proof follows the similar steps as in Case I. We first
break down the difference between the energy functions of
the consecutive communications as:

Er,0

[
Ẽr+1,0 − Ẽr,0

]
= Er,0

[
Ẽr+1,0

]
− Er+1,0︸ ︷︷ ︸

∆r+1

+ Er+1,0 − Ẽr,0︸ ︷︷ ︸
term I

,
(19)

Then the key is to bound ∆r+1. We proceed by the follow-
ing:

∆r+1 = Er,0

[
f(˜̄xr+1,0)− f(x̄r+1,0)

]
+ Er,0

[∥∥(I −R) · ỹr+1,0
∥∥2 − ∥∥(I −R) · yr+1,0

∥∥2]
(A2)

≤ (1 +
Lf

2N
) · Er,0

∥∥yr+1,0 − ỹr+1,0
∥∥2

+ Er,0

[〈
∇f(x̄r+1,0), ˜̄xr+1,0 − x̄r+1,0

〉]
= (1 +

Lf

2N
) · Er,0

∥∥yr+1,0 − ỹr+1,0
∥∥2

+ Er,0

[〈
∇f(x̄r+1,0)−∇f(˜̄xr,0), ˜̄xr+1,0 − x̄r+1,0

〉]
+ Er,0

[〈
∇f(˜̄xr,0), ˜̄xr+1,0 − x̄r+1,0

〉]
(10)
≤ (1 +

Lf

2N
) · Er,0

∥∥yr+1,0 − ỹr+1,0
∥∥2

+
β1

2

∥∥∇f(x̄r+1,0)−∇f(˜̄xr,0)
∥∥2 + β2

2

∥∥∇f(˜̄xr,0)
∥∥2

+
β1 + β2

2β1β2
Er,0

∥∥˜̄xr+1,0 − x̄r+1,0
∥∥2 .

We need to bound each term separately. Notice that we
have ∥∥˜̄xr,q − x̄r,q

∥∥2 ≤ 1

N
∥x̃r,q − xr,q∥2 ,

∥x̃r,q − xr,q∥2 ≤ ∥ỹr,q − yr,q∥2 ≤ ∥s̃r,q − sr,q∥2 .

Therefore, we first bound the first term and the last term in
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the above equation by:

Er,0 ∥s̃r,q − sr,q∥2 (20)

= Er,0

∥∥∥∥∥
q∑

q1=0

η′r,q1ℓ (ũr,q1
ℓ − ur,q1

ℓ ) + qη′rg (ũ
r,0
g − ur,0

g )

∥∥∥∥∥
2

(i)

≤ 2q ·
q∑

q1=0

(η′r,q1ℓ )2 · Er,0 ∥ũr,q1
ℓ − ur,q1

ℓ ∥2

+ 2q2 · (η′rg )2 · Er,0

∥∥ũr,0
g − ur,0

g

∥∥2
(ii)

≤ 4q ·
q∑

q1=0

(η′r,q1ℓ )2 · Er,0 ∥ũr,q1
ℓ − Er,q1 ũ

r,q1
ℓ ∥2

+ 4q ·
q∑

q1=0

(η′r,q1ℓ )2 · Er,0 ∥Er,q1 ũ
r,q1
ℓ − ur,q1

ℓ ∥2

+ 2q2 · (η′rg )2 ·Varr,0(ũr,0
g )

(iii)

≤ 4q ·
q∑

q1=0

(η′r,q1ℓ )2 ·
(
Bℓ ∥Er,q1 ũ

r,q1
ℓ ∥2 + σ2

ℓ

)
+ 4qL2 ·

q∑
q1=0

(η′r,q1ℓ )2 · Er,0 ∥s̃r,q1 − sr,q1∥2

+ 2q2 · (η′rg )2 ·
(
Bg

∥∥Er,0 ũ
r,0
g

∥∥2 + σ2
g

)
,

where in (i) we plug in the update (15) and apply
Cauchy–Schwarz inequality; in (ii) we add and subtract
Er,q1 ũ

r,q1
ℓ to the first term and apply PS1 to the second

term; in (iii) we apply PS2 to the first and third terms and
apply PD2 to the second term. Note that same as (13), we
have

∥Er,q ũ
r,q
ℓ ∥2 ≤ Cf ∥∇f(x̃r,q)∥2

≤ 2Cf (
∥∥∇f(˜̄xr,q)

∥∥2 + ∥∥∇f(x̃r,q)−∇f(˜̄xr,q)
∥∥2)

≤ 2Cf (
∥∥∇f(˜̄xr,q)

∥∥2 + L2
f

∥∥x̃r,q − ˜̄xr,q
∥∥2)

= 2Cf (
∥∥∇f(˜̄xr,q)

∥∥2 + L2
f ∥(I −R) · x̃r,q∥2)

(21)
Applying (21) to the first term and PD1 to the last term,
recursively apply (20) to the second term in (20), we obtain:

Er,0 ∥s̃r,q − sr,q∥2 (22)

≤
q∑

q1=0

Cr,q1
45

(
BℓCf

∥∥∇f(˜̄xr,q1)
∥∥2 + σ2

ℓ

)
+

q∑
q1=0

Cr,q1
45 BℓCfL

2
f ∥(I −R) · x̃r,q1∥2

+
2q3 · (η′rg )2

1− 4qL2 · (η′r,0ℓ )2
·
(
Bg

∥∥(I −R) · yr,0
∥∥2 + σ2

g

)
,

where we define Cr,q
45 :=

4q·(η′r,q
ℓ )2

1−4qL2·(η′r,q
ℓ )2

.

Next, we bound the second term by:∥∥∇f(x̄r+1,0)−∇f(˜̄xr,0)
∥∥2 (A2)

≤ L2
f

∥∥x̄r+1,0 − ˜̄xr,0
∥∥2

(15)
= L2

f

∥∥∥∥∥1T
N

N

Q−1∑
q=0

η′r,qℓ ur,q
ℓ

∥∥∥∥∥
2

(i)

≤
QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2 ∥ur,q
ℓ − Er,q ũ

r,q
ℓ + Er,q ũ

r,q
ℓ ∥2

(ii)

≤
2QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2 ∥Er,q ũ
r,q
ℓ ∥2

+
2QL2

f

N

Q−1∑
q=0

(η′r,qℓ )2L2 ∥sr,q − s̃r,q∥2 , (23)

where in (i) we apply Cauchy–Schwarz inequality; in (ii)
we first apply Cauchy–Schwarz inequality and then apply
PD2. Further plug (21) and (22) into (23), we have:∥∥∇f(x̄r+1,0)−∇f(˜̄xr,0)

∥∥2
≤

4QCfL
2
f

N

Q−1∑
q=0

(η′r,q
ℓ )2(

∥∥∇f(˜̄xr,q)
∥∥2 + L2

f ∥(I −R) · x̃r,q∥2)

+
2QL2

f

N

Q−1∑
q=0

(η′r,q
ℓ )2

×
(
L2

q∑
q1=0

Cr,q1
45

(
BℓCf

∥∥∇f(˜̄xr,q1)
∥∥2 + σ2

ℓ

)
+

q∑
q1=0

Cr,q1
45 BℓCfL

2
f ∥(I −R) · x̃r,q1∥2

+
2q3 · (η′r

g )2

1− 4qL2 · (η′r,0
ℓ )2

·
(
Bg

∥∥(I −R) · yr,0
∥∥2 + σ2

g

))
,

(24)

Substitute (22) and (24) into ∆r+1 in (19), then apply PD4,
Lemma 2 is proved.

C. Algorithm Design: a Case Study
In this part, we take the gradient tracking algorithm as an
example to illustrate how the framework can be applied to
design new algorithms for different applications. In spe-
cific, we modify the stochastic local and consensus con-
trollers for different applications. Then we verify PS1 -
PS3 for the stochastic controllers and PD1-PD4 for the de-
terministic system, so that we can apply Theorem 1 to ob-
tain the final convergence result and optimize the hyper-
parameters. Finally we conduct additional numerical ex-
periments to verify these convergence results.

C.1. Gradient-tracking Based Stochastic Algorithm

We start with the deterministic gradient tracking algorithm
described in (4) as baseline. First, we consider adopting
the stochastic gradient, which results in the Distributed
Stochastic Gradient Tracking (DSGT) algorithm (Lu et al.,
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2019), with the following updates:
x+ = x−Wx− αv,

v+ = v −Wv + (∇̃f(x)− ∇̃f(z)),

z+ = x,

(25)

where the LCFL for auxiliary state v are replaced by the
difference of stochastic gradients ∇̃f(·) estimated with a
subset of samples.

Then, we consider the randomized communication scheme,
where each communication connection between the agents
has a p failure rate at each round of communication. Which
result in gradient tracking on dynamic directed communi-
cation graph (D2GT):

x+ = x− η′gW̃x− αv,

v+ = v − η′gW̃v + (∇f(x)−∇f(z)),

z+ = x,

(26)

where W̃ is a stochastic weight matrix satisfies

W̃ij = W̃ji :=

{
Wij/(1− p), w.p. 1− p

0, w.p. p
.

For the third application, we consider adopting the Gaus-
sian mechanism (Abadi et al., 2016) to provide DP guaran-
tee for the local data. The resulting DP-DSGT algorithm
is:
x+ = x− η′gW̃ · (x+wx)− α · clip(v, βx),

v+ = v − η′gW̃ · (v +wv) + clip(∇̃f(x)− ∇̃f(z), βv),

z+ = x,
(27)

where W̃ is the same as the one in (26), wx ∼
N (0, σ2

xI),wv ∼ N (0, σ2
vI) are the privacy noises, and

βx, βv are the clipping thresholds.

C.2. Theoretical Analysis

In this part, we show how the proposed framework helps
analyze the stochastic algorithms. It is easy to verify PD1-
PD3. We can also verify PD4 for the deterministic algo-
rithm with γr

1 = O(αr), γr
2 = O(αr), cf. (Lu et al., 2019):

Lemma 4 ((Lu et al., 2019) Lemma 4) With the energy
function E(t) defined in (6), we have

Er+1 − Er ≤ −c1α ∥∇f(x̄r)∥2 − c2α ∥(I −R) · yr∥2 ,
where c1 and c2 are some constants depending on
Cg, Lf , N .

For DSGT, only the LCFL has stochasticity. By assuming
the stochastic gradients are unbiased and has bounded vari-
ance, i.e.,

E∇̃f(x) = ∇f(x), E
∥∥∥∇̃f(x)−∇f(x)

∥∥∥ ≤ σ2.

then PS1(A) is satisfied; PS2 is satisfied with Bℓ =
0, σℓ = 2σ; and PS3 is also satisfied. Therefore, apply

Lemma 1(A), we obtain the following convergence result:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

O(αr) · E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

O(αr) · E[∥(I −R) · ỹr∥2] + C14(t)σ
2
ℓ ,

where C14 =
∑t−1

r=0(α
r)2 · (1 +

Lf

2N ). Therefore, we can
choose αr = O(1/

√
r), then the algorithm converges with

E
[∥∥∇f(˜̄xr1)

∥∥2 + ∥(I −R) · ỹr1∥2
]

= O

(
1∑t−1

r=0 α
r

)
E0 +O

(∑t−1
r=0(α

r)2∑t−1
r=0 α

r

)
σ2
ℓ .

with rate O(log(t)/
√
t). This recovers the convergence re-

sult in (Lu et al., 2019).

For D2GT, only the GCFL has stochasticity. We can ver-
ify that PS1(A) is satisfied, PS2 is satisfied with Bg =
p/(1 − p), σg = 0, and PS3 is also satisfied. There-
fore, apply Lemma 1(A), it requires Cr

12 = Bg · (η′g)2 ·
(1 +

Lf

2N ) < c2α
r. So we can choose α = O(1), η′g =

O
(√

Bgc2αr · (1 + Lf

2N )

)
, and we obtain the following

convergence result:

E
[∥∥∇f(˜̄xr1)

∥∥2 + ∥(I −R) · ỹr1∥2
]
= O

(
1∑t−1

r=0 α
r

)
E0.

with rate O(1/t).

For DP-DSGT, both controllers have stochasticities. We
can verify that PS1(B) is satisfied, with C1 = 2(βx + βv).
For C2, σG can be derived with similar technique in (Chen
et al., 2020). For PS2, we can verify that Bℓ = 0, σℓ = 2σ
and Bg = p/(1 − p), σg = σx + σv . If we assume βx ≥

∥v∥2 and βv ≥
∥∥∥∇̃f(x)− ∇̃f(z)

∥∥∥2 for all t ∈ [0,∞),

then PS1(A) is satisfied. Applying Lemma 1(B), we obtain:

E[Ẽt]− E0 ≤ −
t−1∑
r=0

(γr
1 − C ′r

11) · E[
∥∥∇f(˜̄xr)

∥∥2]
−

t−1∑
r=0

(γr
2 − C ′r

12) · E[∥(I −R) · ỹr∥2]

+ C13(t)σ
2
g + C14(t)σ

2
ℓ + C15(t)C1 + C16(t)σ

2
G.

where
C′r

11 = O((αr)2), C′r
12 = O((αr)2 + (η′r

g )2),

{C1i}6i=3 = O(

t−1∑
r=0

(αr)2), σ2
x = Ω

(
C1d

2
xt · (1− p)

Nϵ2

)
,

σ2
v = Ω

(
C1d

2
vt · (1− p)

Nϵ2

)
,

σx, σv are chosen for the algorithm to provide (ϵ, δ)-DP
guarantee, cf. (Abadi et al., 2016)[Definition 1, Theorem
1]:
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Definition 2 ( (ϵ, δ)-DP) An algorithm M is (ϵ, δ)-DP if

P (M(D) ∈ S) ≤ eϵP (M(D′) ∈ S) + δ, (28)
where D and D′ are neighboring datasets, S is an arbitrary
subset of outputs of M.

Theorem 2 (Privacy of DP-DSGT) There exist constants
u and v so that given the number of iterations t, for any
ϵ ≤ u(1 − p)2t with p as communication dropout rate,
Algorithm DP-DSGT is (ϵ, δ)-differentially private for any

δ > 0 if σ2 ≥ v
C2

1 (1−p)T ln( 1
δ )

Nϵ2 .

Optimizing p, α, t, βx, βv , σx, σv , we obtain the final con-
vergence rate O(

√
dx+dv

Nϵ ).

C.3. Numerical Results

In this subsection, we provide numerical results for imple-
mentations of the three algorithms discussed in the previ-
ous subsection. We verify the convergence speed derived
from the previous subsection for each algorithm.

In the experiments, we consider optimizing the non-convex
regularized logistic regression problem:

fi(x; (ai, bi)) = log(1 + exp(−bix
Tai)) +

dx∑
d=1

βα(x[d])2

1 + α(x[d])2
,

where ai denotes the features and bi denotes the labels
of the dataset on the ith agent. We set the number of
agent N = 200 and each agent has local dataset of size
1000. We use an Erdős–Rényi random graph with den-
sity 0.5 for the network and the weight matrix is select as
W := 0.9ATA/max{ATA}

For DSGT and DP-DSGT, we use batch size 10 to esti-
mate the stochastic gradients; for D2GT, and DP-DSGT,
we choose the communication dropout rate p = 0.9. The
clipping threshold βx, βv are set as the average of local
controller’s magnitude of the DSGT algorithm and σx, σv

are chosen following (McMahan et al., 2018) with (ϵ, δ) =
(4, 10−5) at t = 128.

The result is shown in Figure 4a. It can be observed that
D2GT has the same convergence rate as DGT with a con-
stant slow down, while DSGT and DP-DSGT have slower
convergence rates. These results match with the theoretical
results in the previous subsection.

In addition, we provided another example demonstrating
the necessity of the O(1/

√
t) rate for DSGT. We run the

DSGT algorithm with batch size 2 to estimate the stochas-
tic gradients. In one setting we choose α = O(1) and
α = O(1/

√
t) in the other setting. The result is shown

in Figure 4b. We can see that with improperly chosen con-
stant stepsize, DSGT will not converge.

(a) The convergence of the Energy function E(t) of DGT,
D2GT, DSGT and DP-DSGT.

(b) Energy function E(t) of DSGT with different decreas-
ing and constant stepsizes η′

ℓ(t).

Figure 4: The performance of DGT, D2GT, DSGT and DP-
DSGT.
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