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Abstract
Graph neural networks (GNNs) have been in-

tensively applied to various graph-based applica-

tions. Despite their success, manually designing

the well-behaved GNNs requires immense human

expertise. And thus it is inefficient to discover

the potentially optimal data-specific GNN archi-

tecture. This paper proposes DFG-NAS, a new

neural architecture search (NAS) method that en-

ables the automatic search of very deep and flex-

ible GNN architectures. Unlike most existing

methods that focus on micro-architectures, DFG-

NAS highlights another level of design: the search

for macro-architectures on how atomic propaga-

tion (P) and transformation (T) operations are

integrated and organized into a GNN. To this

end, DFG-NAS proposes a novel search space

for P-T permutations and combinations based

on message-passing dis-aggregation, defines four

custom-designed macro-architecture mutations,

and employs the evolutionary algorithm to con-

duct an efficient and effective search. Empirical

studies on four node classification tasks demon-

strate that DFG-NAS outperforms state-of-the-art

manual designs and NAS methods of GNNs.

1. Introduction
Graph Neural Networks (GNNs) are a set of message pass-

ing algorithms, whose intuition is to smooth the node em-

bedding across the edges of a graph. By staking multiple

GNN layers, each node can enhance its node embedding

with distant neighborhood nodes. Recently, GNNs have

been applied in various domains such as social network

analysis (Zhang et al., 2020; Huang et al., 2021), chemistry

and biology (Dai et al., 2019; Bradshaw et al., 2019), rec-
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ommendation (Jiang et al., 2022; Wu et al., 2020), natural

language processing (Wu et al., 2021; Vashishth et al., 2020),

and computer vision (Shi et al., 2019; Sarlin et al., 2020).

Despite a broad spectrum of applications, designing GNN

architectures manually is a knowledge-intensive and labor-

intensive process. Existing literature (Huan et al., 2021)

suggests that handcrafted architectures (e.g., GCN (Kipf &

Welling, 2017), GraphSAGE (Hamilton et al., 2017), and

GAT (Velickovic et al., 2018)) can not behave well in all

scenarios. Therefore, there is an ever-increasing demand

for automated architecture exploration to obtain the optimal

data-specific GNN architectures.

Motivated by the success of neural architecture search

(NAS) in other established areas, e.g., computer vision, sev-

eral recent graph neural architecture search (G-NAS) meth-

ods are proposed to effectively tackle the architecture chal-

lenge in GNNs, including GraphNAS (Gao et al., 2020a),

Auto-GNN (Zhou et al., 2019), and GraphGym (You et al.,

2020). These G-NAS methods assume GNNs consist of

several repetitive message passing layers, and focus more

on the intra-layer design such as aggregation function and

nonlinear activation function. Despite their effectiveness,

they suffer from two limitations:

Fixed Pipeline Pattern. To generate GNNs, existing meth-

ods adopt a fixed message-passing pipeline to organize two

types of atomic operations: propagating (P) representa-

tions of its neighbors and applying transformation (T) on

the representations. In particular, most G-NAS methods

adopt the tight entanglement of applying transformation

after propagation in each layer (e.g., P-T-P-T). Several

handcrafted architectures include a certain degree of entan-

glement by only retaining the first transformation or prop-

agation, e.g., T-P-P-P (Klicpera et al., 2019; Liu et al.,

2020) or P-P-P-T (Wu et al., 2019; Rossi et al., 2020;

Zhang et al., 2021c). However, these specific P-T permu-

tations and combinations are still fixed pipeline designs,

limiting the expressive power of macro-architecture search

space. It remains to be seen whether more general and

flexible pipelines can further improve the performance.

Restricted Pipeline Depth. A common practice to increase

the expressive power is to directly stack multiple GNN

layers (Kipf & Welling, 2017). However, when the lay-

ers become deeper, the performance decreases as the node
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embedding becomes indistinguishable with too many P op-

erations, which we refer to as the over-smoothing issue (Li

et al., 2018; Miao et al., 2021b). Therefore, the existing G-

NAS methods fix the number of layers to a small constant.

For example, both AutoGNN and GraphNAS pre-define

a very restricted GNN layer number (e.g., ≤ 3). How to

increase the pipeline depth is another critical problem to

conduct effective G-NAS.

This paper proposes DFG-NAS, a new method for automatic

search of deep and flexible GNN architectures. Our key in-

sight is that propagation P and transformation T operation

correspond to enforcing and mitigating the effect of smooth-

ing. Inspired by this insight, we propose to search for the

best P-T permutations and combinations (i.e., pipeline) to

tune suitable smoothness level and thus obtain well-behaved

data-specific GNN architectures. Instead of the micro-

architecture in intra-layer design, we explore another level

of design—pipeline search in the GNN macro-architecture.

Specifically, DFG-NAS greatly increases the capabilities

of GNN macro-architecture search in two dimensions: the

pipeline pattern and depth of GNN generation. We accom-

plish this by dis-aggregate the P and T operations in our

search space and define four effective mutation designs to

explore P-T permutations and combinations. To solve the

over-smoothing problem, we propose a gating mechanism
between different P operations so that node-adaptive propa-

gation can be achieved. Furthermore, the skip-connection

mechanism is used to T operations to avoid model degra-

dation (He et al., 2016; Zhang et al., 2021a). Besides the

pipeline and mutation designs, an evolutionary algorithm is

applied to search for well-behaved GNN architectures.

The contribution of the paper is summarized as follows: (1)

By decoupling the P and T operations, DFG-NAS suggests

a transition from studying specific fixed GNN pipelines to

studying the GNN pipeline design space. (2) By further

adding gating and skip-connection mechanisms, DFG-NAS

could support both deep propagation and transformation,

which has the ability to explore the best architecture design

to push forward the GNN performance boundary. (3) We

search for the flexible pipeline using a custom-designed ge-

netic algorithm so that the final searched GNN architecture

represents the result of joint optimization over the pattern

and depth of pipelines. (4) Empirical results demonstrate

that DFG-NAS achieves an accuracy improvement of up to

0.9% over state-of-the-art manual designs and brings up to

15.96x speedups over existing G-NAS methods.

2. Preliminary
2.1. Problem Formulation

Given a graph G = (V , E) with |V| = N nodes and |E| =
M edges, feature matrix X = {x1,x2...,xN} in which

xi ∈ R
d is the feature vector of node vi, the node set V

is partitioned into training set Vtrain (including both the

labeled set Vl and unlabeled set Vu), validation set Vval and

test set Vtest. Suppose c is the number of label classes, the

one-hot vector yi ∈ R
c is the ground-truth label for node

vi, M is the performance evaluation metric of a design in

any given graph analysis task, e.g., F1 score or accuracy

in the node classification task. Specifically, let F be the

search space (finite or infinite) of graph neural architecture.

Graph neural architecture search (G-NAS) aims to find the

optimal design f ∈ F , so that the model can be trained

to achieve the best performance in terms of the evaluation

metric M on the validation set. Formally, it can be defined

as the following bi-level optimization problem:

argmax
f∈F

Evi∈Vval [M (yi, P (ŷi|f(θ∗)))] ,

s.t. : θ∗ = argmin
θ

�(f(θ∗),Vtrain),
(1)

where P (ŷi|f(θ∗)) is the predicted label distribution of

node vi, � is the loss function and θ∗ is the optimized

weights of model design f . For each design f , G-NAS

first trains the corresponding model weight θ on the training

set Vtrain. Then, it evaluates the trained model f(θ∗) on

the validation set Vval to obtain the final evaluation result.

2.2. Graph Neural Networks

Based on the intuitive assumption that locally connected

nodes are likely to have the same label, most GNNs itera-

tively propagate the information of each node to its adjacent

nodes, and then transform the information with non-linear

transformation. We refer to the propagation and transfor-

mation operations as P and T, respectively. At timestep t,
a message vector mt

v for node v ∈ V is computed with the

representations of its neighbors Nv using the P operation,

which is mt
v ← P

({
ht−1
u |u ∈ Nv

})
. Then, mt

v is then up-

dated according to ht
v ← T(mt

v) via the T operation, where

T is usually a dense layer.

Take the vanilla GCN (Kipf & Welling, 2017) as an example,

a message passing layer can be formulated as:

P : Mt = ÂHt−1,

T : Ht = δ(MtWt),
(2)

where Â is the normalized adjacent matrix, Wt is the train-

ing parameters of the t-th layer, Mt and Ht are matrices

formed by mt
v and ht

v, respectively. By stacking k layers,

each node in GCN can utilize the information from its k-

hop neighborhood. Therefore, the model performance is

expected to be improved when more distant neighborhood

nodes get involved in the training process.
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2.3. Graph Neural Architecture Search

As the basic operations of GNNs, the search of P and T oper-

ations has been widely discussed. Specifically, the existing

G-NAS methods can be classified into micro-architecture

search and macro-architecture search.

Micro-architecture search. Micro-architecture corre-

sponds to the design of graph convolution layers, especially

the details for P and T operations. Specifically, the P opera-

tion determines how to exchange messages among different

nodes in each graph convolution layer. Many GNNs (Kipf &

Welling, 2017; Wu et al., 2019; Klicpera et al., 2019) adopt

the normalized adjacency matrix for neighbor propagation,

and several attention mechanisms (Velickovic et al., 2018;

Wang et al., 2021) are also proposed for more effective prop-

agation. In addition, how to combine the propagated node

embeddings is also important in P (e.g., MEAN, MAX, etc).

Unlike P, which is closely related to the graph structure,

T focuses on the non-linear transformation in the neural

network, including the choices of hidden size and activation

function. Several G-NAS frameworks (Gao et al., 2020b;

Zhou et al., 2019; Cai et al., 2021; Li et al., 2021b) have

been proposed to search for the best P and T operations

from a pool of various implementations. Different from

these works, we focus on macro-architecture.

Macro-architecture search. Different from the micro-

architecture that highlights the details in each GNN layer,

the macro-architecture search focuses on the interaction

between different layers. Concretely, macro-architecture

search involves the design of network topology, including

the choices of layer depth and the inter-layer skip connec-

tions. Similar to residual connections and dense connections

in CNNs (He et al., 2016; Huang et al., 2017), node represen-

tations in one GNN layer do not necessarily solely depend

on the immediate previous layer (Xu et al., 2018; Li et al.,

2019; Miao et al., 2021a). Take the representative Graph-

Gym (You et al., 2020) as an example, the search space for

macro-architecture includes the choice of graph convolu-

tional layer depth, the pre-processing and post-processing

layer depth, and the skip-connections. The main difference

between our method and previous work is that we open up

new design opportunities for macro-architecture search in

GNNs. Specifically, we disentangle the P and T operations

in GNN layers, and thus allow exploring P-T permutations

and combinations in designing GNN architectures.

3. How do P and T influence GNNs?
3.1. Entanglement of GNNs

Entangled GNNs. The pattern of Entangled Propagation

and Transformation is widely adopted by mainstream GNNs,

e.g., GCN (Kipf & Welling, 2017), GraphSAGE (Hamil-

ton et al., 2017), GAT (Velickovic et al., 2018), Graph-

P T TP

Propagation Transformation P T

GCN

P TPData T SGC

APPNPT PT P

Data

Data

Figure 1. Entanglement of GNNs.

SAINT (Zeng et al., 2020). Similar to GCN shown in Fig-

ure 1, entangled GNNs pass the input signals through a

set of filters to propagate the information, which is further

followed by a non-linear transformation. The propagation

operation P and transformation operation T are intertwined

and executed alternately in entangled GNNs. Therefore, the

entangled GNNs share a strict restriction that Dp = Dt,

where Dp and Dt are the number of propagation and trans-

formation operations, respectively.

Disentangled GNNs. Recently, some researches show that

the entanglement of P and T could compromise performance

on a range of benchmark tasks (Wu et al., 2019; He et al.,

2020; Liu et al., 2020; Frasca et al., 2020; Klicpera et al.,

2019). They also argue that the true effectiveness of GNNs

lies in the propagation operation P rather than the T op-

eration inside the graph convolution. In this way, some

disentangled GNNs are proposed to separate P and T. Fol-

lowing SGC (Wu et al., 2019) as shown in Figure 1, several

methods (He et al., 2020; Frasca et al., 2020) execute P oper-

ations in advance, and then feed the propagated features into

multiple T operations. On the contrary, several methods first

transform the node features and then propagate the node

information to distant neighbors, e.g., APPNP (Klicpera

et al., 2019), DAGNN (Liu et al., 2020), etc.

3.2. Pipeline Pattern and Depth

The number of P and T operations plays a very important

role in GNN learning.. As introduced in previous stud-

ies (Wu et al., 2019; Liu et al., 2020; Miao et al., 2021a),

more P operations are required to enhance the information

propagation when the edges, labels or features are sparse.

In addition, it is widely recognized that more training pa-

rameters and T operations should be used to increase the

expressive power of neural networks when the size of dataset

(i.e., the number of nodes in a graph) is large.

Besides the number of P and T operations, the pipeline

pattern (i.e., permutations and combinations) of P and T
operations also matters. To verify this, we fix the depths

of P and T operations to 2 and only change the pipeline

pattern. We evaluate the three architectures in Figure 1, and

report their test accuracy on three citation networks. The
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Table 1. Test accuracy of GNNs with different PT orders.

Methods Cora Citeseer PubMed

PPTT 83.4±0.3 72.2±0.4 78.5±0.5

TTPP 82.8±0.2 71.8±0.3 79.8±0.3

PTPT 81.2±0.6 71.2±0.4 79.1±0.2

experimental results in Table 1 show that the test accuracy

varies a lot in the pipeline pattern. Concretely, the TTPP ar-

chitecture achieves the best performance on PubMed, while

it is less competitive than the PPTT architecture on Cora

and Citeseer. Since the pipeline pattern highly influences

the architecture performance and the optimal pipeline pat-

tern varies across different graph datasets, it is necessary to

consider the pipeline pattern given a specific dataset/task.

3.3. Influence on smoothness

It is widely recognized that the propagation operation in

GNN is a Laplacian smoothing, which may lead to indistin-

guishable node representations (Li et al., 2018). In other

words, the representations for all nodes will converge to

the same value when GNNs go deeper, which is also called

over-smoothing. In fact, most entangled GNNs (e.g., GCN

and GAT) face the over-smoothing problem and suffer from

performance degradation when stacking too many GNN lay-

ers. To better measure the influence of P and T operations

on smoothness, we analyze the change of smoothness when

adding a single P or T operation each time.

We measure the smoothness by calculating the average sim-

ilarity (Liu et al., 2020) between two different node em-

beddings after a P or T operation. Concretely, the node

smoothness is defined as follows,

St
i = 1− 1

2N − 2

∑
j∈V,j �=i

∥∥∥∥
et
i

||et
i||

− et
j

||et
j ||

∥∥∥∥ , (3)

where eti is the i-th node embedding of the t-th GNN layer,

and St
i measures the similarity of eti to the entire graph.

Larger eti means node i faces higher risk of over-smoothing

issue, and St
i ranges in [0, 1] since we adopt the normal-

ized node embedding to compute their Euclidean distance.

Based on the node smoothness St
i , we further measure the

average similarities between all the node pairs and define

the smoothness of the whole graph G as:

St =
1

N

∑
i∈V

St
i , (4)

where St is the graph smoothness of the t-th GNN layer.

Unlike previous G-NAS methods that treat the combination

of P T as one GNN layer, we treat each P or T here as an

individual layer. We change different permutations and com-

binations of P and T, and report the corresponding output
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Figure 2. Smoothness of different PT orders.

smoothness of each layer in SGC and GCN on Cora. As

shown in Figure 2, the results show that 1) the smoothness

increases, i.e., the node embedding becomes similar, by

applying the P operation; 2) the smoothness decreases by

applying the T operation, which implies that the T operation

has the ability to alleviate the over-smoothing issue. While

over-smoothing leads to indistinguishable node embedding,

under-smoothing cannot unleash the full potential of the

graph structure. Therefore, how to carefully control the

smoothness with P or T in GNNs is also an open question.

4. The Proposed Method
Based on the message passing dis-aggregation, we propose

a general design space for GNN pipeline search, which

includes the crucial aspects of the number, and the permu-

tations and combinations of P and T operations. Then we

provides a custom-designed genetic algorithm to search the

space of pipeline pattern and depth.

4.1. Pipeline Search Space

Our general search space of GNNs pipeline includes P-T
permutations and combinations, and the number of P-T op-

erations. Besides, we further add connections among each

type of operation to enable deep propagation and transfor-

mation in DFG-NAS. Suppose a single P or T operation is

one GNN layer in DFG-NAS, o
(l)
v is the output of node v in

the l-th layer, LP and LT are two sets that include the layer

index of all P operations and T operations, respectively. The

layer connections between different layers is as follows.

Propagation Connection. As introduced in Section 3.3,

GNNs may suffer from the over-smoothing or under-

smoothing issue if we execute too many or too few propaga-

tion operations. In addition, a previous study (Zhang et al.,

2021b) shows that the nodes with different local structures

have different smoothing speeds. Therefore, how to control

the smoothness of different nodes in a node-adaptive way is

essential in GNN architecture design.

To allow deep propagation and provide suitable smoothness



DFG-NAS: Deep and Flexible Graph Neural Architecture Search (with appendix)

P P T+T P P T+

Gating for deep Skip-connection for deep 

T

Figure 3. GNN pipeline example in the search space of DFG-NAS.

for different nodes, we adopt a gating mechanism upon

P operations. The output of the l-th P operation is the

propagated node embedding of o(l−1) if its next operation

is P. As shown in Figure 3, if the next operation is T, we

assign a node-adaptive combination weight for the node

embeddings propagated by all previous P operations. The

above process can be formulated as,

z(l)v = P(o(l−1)
v ),

o(l)
v =

⎧⎪⎨
⎪⎩

z(l)v , Followed by P∑
i∈LP ,i≤l

Softmax(αi)z
(i)
v , Followed by T ,

(5)

where αi = σ(s · oi
v) is the weight for i-th layer output

of node v. s is the trainable vector shared by all nodes ,

and σ denotes the Sigmoid function We adopt the Softmax

function to scale the sum of gating scores to 1.

Transformation Connection. GNNs require more training

parameters and non-linear transformation operations to en-

hance their expressive power on larger graphs. However, it

is widely acknowledged that too many transformation op-

erations will lead to the model degradation issue (He et al.,

2016), i.e., both the training and test accuracies decrease

along with the increased transformation steps.

To allow deeper transformation and meanwhile alleviate the

model degradation issue, we introduce the skip-connection

mechanism into T operations. As shown in Figure 3, the

input of each T operation is the sum of the output of the

last layer and the outputs of all previous T operations before

the last layer. Concretely, the input and output of the l-th T
operation can be defined as follows:

z(l)v = o(l−1)
v +

∑
i∈LT ,i<m(l)

o(i)
v ,

o(l)
v = σ

(
z(l)v W(l)

)
,

(6)

where m(l) is the index of the last T operation before the

l-th layer, and W(l) is the learnable parameter in the l-th T
operation. Specifically, the first layer in our search space is

a T operation, and z(1) refers to the original node features.

4.2. Search via Genetic Algorithm

Genetic algorithm (GA) aims to evolve and improve an

entire population of individuals via nature-inspired mech-

anisms such as mutations. In DFG-NAS, an individual’s

chromosome represents a GNN pipeline. To create a new

generation of individuals, we perform the following muta-

tions on the chromosomes of the current generation.

Mutation Designs. Evolutionary algorithms are a class

of optimization algorithms inspired by biological evolu-

tion. Specifically, they apply mutations on a population

of designs, i.e., the set of different GNN architectures. In

DFG-NAS, each GNN architecture is encoded as a sequence

consisting of the P and T operations. As shown in Figure 4,

we design four mutations, which are as follows,

Case 1 + P: Add a propagation operation.

Case 2 + T: Add a transformation operation.

Case 3 P→ T: Replace a propagation operation by a trans-

formation operation.

Case 4 T → P: Replace a transformation operation by a

propagation operation.

The above four mutations take place at a random position

of the sequence. For example, we can add a propagation

operation after or before any other operations. These four

specific mutations are proposed for their similarity to the

actions that a human designer may take when improving the

GNN architecture.

Evolutionary Algorithm. To perform an efficient and effec-

tive search on our search space, we adopt the evolutionary

algorithm as the searching method, which is a class of opti-

mization algorithms inspired by biological evolution. The

concrete searching pipeline is summarized in Algorithm 1.

We randomly generate k different GNN architectures as

initial individuals in a population set Q (line 1), and then

evaluate these GNNs on the validation set (line 2). Next,

we randomly sample m (m < k) individuals from the pop-

ulation (line 4) and select the architecture with the best

validation performance as parent A (line 5). After that, the

child GNN architecture B is generated by randomly picking

one of the four mutations (i.e., + P, + T, P→ T, or T→ P)

introduced in Section 4.2. At last, B is evaluated and added

to the population (line 7), and then the oldest individual in

Q is removed (line 8). The above process is repeated for T
generations and finally returns the architecture with the best

observed evaluation performance (line 9).

4.3. Relationship with Existing Literature

The proposed DFG-NAS differs from existing G-NAS meth-

ods in both the pipeline pattern and pipeline depth of the

searched architectures.

Fixed vs. Flexible. The existing G-NAS methods treat

the combination of propagation and transformation as one
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Algorithm 1 Searching method.
Input: The population set Q, the maximum generation

times T , the generation number t = 1.

Output: The best GNN architecture.

1 Initialize the population set Q with |Q| = k;

2 Evaluating k different GNN architectures in Q;

3 for 1 ≤ t ≤ T do
4 Randomly sample m individuals from Q;

5 Select the parent A with best evaluation performance

from the m individuals;

6 Randomly mutate A with the mutation designs, and get

the mutated individual B;

7 Evaluate B and adding it to Q;

8 Remove the oldest individual in Q;

9 return the individual with best evaluation performance.

GNN layer, which leads to a fixed pipeline pattern. Instead,

DFG-NAS disentangles the propagation and transformation

operations and thus enjoys better flexibility.

Shallow vs. Deep. The over-smoothing issue in deep GNNs

has not been well studied and considered in the search space

of the existing methods. For example, both GraphNAS and

AutoGNN adopt a search space that applies a fixed three-

layer GNN as the macro-architecture. DFG-NAS enables

both deep P and T with the gating mechanism and skip-
connection mechanism, respectively.

Note that DFG-NAS mainly focuses on GNN macro-

architecture search, so it is orthogonal to and compatible

with the GNN micro-architecture search space (e.g, aggre-

gation/activation functions, batch normalization, etc.) used

by existing G-NAS methods.

5. Experiments and Results
To evaluate DFG-NAS, we apply it on four public graph

datasets. Compared with the state-of-the-art baselines, we

list three main insights that we will investigate as follows,

• DFG-NAS generates more powerful architectures than

state-of-the-art manual designs.

• DFG-NAS works more efficiently than other NAS

methods for GNN. It reaches similar performance to

other methods while spending less search time.

• DFG-NAS is able to tackle the two limitations as men-

tioned in Section 1. Concretely, the Gate operation

helps avoid over-smoothing while the disentanglement

of P and T increases architecture flexibility.

5.1. Experimental Setup

Baselines. We compare our proposed method DFG-NAS

P T TP
P

P T TPP

P T TP P T TP
T

T

P T TP P T T
T

T

P T TP P T
P

P P

Figure 4. Overview of four different mutations.

with nine manual GNN architectures and three NAS meth-

ods for GNN. The manual designs include the following

three types of GNNs according to their pipeline pattern of

propagation (P) and transformation (T) operations.

• Alternate P and T: GCN (Kipf & Welling, 2017),

GraphSAGE (Hamilton et al., 2017), and GAT

(Veličković et al., 2017). The propagation operation

P and transformation operation T are intertwined and

executed alternately in these entangled GNNs.

• T before P: APPNP (Klicpera et al., 2019), AP-

GCN (Spinelli et al., 2021), and DAGNN (Liu et al.,

2020). These disentangled GNNs firstly transform the

node features with T operations, and then propagate

the outputs with multiple P operations.

• P before T: SGC (Wu et al., 2019) , SIGN (Rossi

et al., 2020), and S2GC (Zhu & Koniusz, 2021). On

contrary to APPNP, these disentangled GNNs execute

multiple P operations in advance, and then transform

propagated features with T operations.

More details of the above manual methods are provided

in Appendix A.3. Besides, the compared G-NAS meth-

ods include: (1) Auto-GNN (Zhou et al., 2019): a rein-

forced conservative search strategy by adopting both RNNs

and evolutionary algorithms in the controller; (2) Graph-

NAS (Gao et al., 2020a): a reinforcement learning-based

method that uses an RNN controller to sample from the mul-

tiple architectures sequentially; (3) GraphGym (You et al.,

2020): a variant of random search on a general GNN search

space that considers intra-layer design, inter-layer design,

and training configurations.

Datasets. We conduct the experiments on four public

graph datasets: three citation graphs (Cora, Citeseer and

PubMed) (Kipf & Welling, 2017), and one large OGB graph

(ogbn-arxiv) (Hu et al., 2020). We follow the public train-

ing/validation/test split for three citation networks and adopt

the official split in the OGB graph. The statistics of these

datasets are summarized in Appendix A.1.

Experimental Settings. For a fair end-to-end compari-

son on each task, we run DFG-NAS for 500 iterations, and
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Table 2. Test accuracy on the node classification task.

Methods Cora Citeseer PubMed ogbn-arxiv
Alternate P and T

GCN 81.3±0.6 71.1±0.1 78.8±0.4 71.7±0.3

GAT 82.9±0.2 70.8±0.5 79.1±0.1 71.9±0.2

GraphSAGE 79.2±0.6 71.6±0.5 77.4±0.5 71.5±0.3

T before P
APPNP 83.1±0.5 71.8±0.4 80.1±0.2 72.0±0.1

AP-GCN 83.4±0.3 71.3±0.5 79.7±0.3 71.9±0.2

DAGNN 84.3±0.2 73.3±0.6 80.5±0.5 72.0±0.3

P before T
SGC 81.7±0.2 71.3±0.2 78.8±0.1 71.6±0.3

SIGN 82.1±0.3 72.4±0.8 79.5±0.5 71.9±0.1

S2GC 82.7±0.3 73.0±0.2 79.9±0.3 71.8±0.3

G-NAS Methods
GraphNAS 83.7±0.4 73.5±0.3 80.5±0.3 71.7±0.2

AutoGNN 83.6±0.3 73.8±0.7 79.7±0.4 /

GraphGym 83.5±0.2 73.4±0.3 80.3±0.2 71.6±0.3

DFG-NAS 85.2±0.2 74.1±0.4 81.1±0.3 72.3±0.2

set the time cost as the budget for other G-NAS baselines.

Then we report the average best observed test accuracy of

the searched architecture. Specifically, we re-training each

searched architecture ten times to avoid randomness. These

baselines are implemented based on their open-sourced ver-

sion. Since AutoGNN is not publicly available, we only

report its performance on citation graphs following its paper.

The details of hyperparameters and reproduction instruc-

tions are provided in Appendix A.2 and A.5.

5.2. Comparison with Existing GNNs

We first compare the architectures obtained by DFG-NAS

with state-of-the-art manual designs on four datasets in

Table 2. The structures of the searched architectures are

provided in Appendix A.6. Among the manual designs,

DAGNN achieves stable and competitive performance on

four datasets. The reason is that it applies a single Gate op-

eration to combine all propagation outputs, and in this way,

it allows a deeper propagation than other manual designs.

However, DAGNN employs the straight-forward MLP for

transformation, which may lead to the model degradation is-

sue when transformation goes deeper. In addition, as all the

compared manual designs follow a specific pipeline pattern

of P and T, their performance can not be further improved

due to their restricted flexibility. As a result, DFG-NAS ob-

tains the deepest architectures with high expressive power

and achieves the best performance on all four datasets. Re-

markably, the architecture searched by DFG-NAS on the

large-scale ogbn-arxiv dataset contains 27 P and 16 T oper-

ations, and it outperforms the best manual design DAGNN

by a margin of 0.3% on test accuracy.

5.3. Comparison with NAS methods

Figure 5 and Table 2 demonstrate the performance of DFG-

NAS compared with existing NAS methods for GNN. Since

Table 3. Ablation study on Gate operations.

Methods Cora Citeseer PubMed ogbn-arxiv
A w/o Gate 82.0±0.3 70.8±0.5 78.1±0.1 68.5±0.6

S w/o Gate 83.6±0.2 72.6±0.2 79.3±0.3 71.5±0.4

DFG-NAS 85.2±0.2 74.1±0.4 81.1±0.3 72.3±0.2

Table 4. Ablation study on pipeline pattern.

Methods Cora Citeseer PubMed ogbn-arxiv
P before T 83.2±0.3 72.7±0.2 80.0±0.4 69.4±0.1

T before P 83.6±0.5 71.8±0.3 79.0±0.5 70.0±0.1

Alternate P and T 82.5±0.4 69.9±0.6 78.1±0.3 68.1±0.4

DFG-NAS 85.2±0.2 74.1±0.4 81.1±0.3 72.3±0.2

AutoGNN is not open-sourced, we only report the results

on three datasets from its paper. From Figure 5, we observe

that DFG-NAS consistently outperforms the compared NAS

methods. The main reason is that the existing NAS methods

only consider a fixed pipeline pattern of propagation and

transformation operations in their architecture design, which

may not be the optimal order as introduced in Section 3.2.

When the search budget exhausts, DFG-NAS outperforms

the second-best baseline by a margin of 0.3-1.5% on test ac-

curacy. Compared with the second-best baseline GraphNAS,

DFG-NAS achieves 6.97-15.96x speedups when achieving

the same test accuracy on four datasets, which indicates the

superior efficiency of our proposed method.

5.4. Ablation Study

In this part, we present an ablation study to show the ef-

fectiveness of three designs in DFG-NAS, which are 1) the

Gate operation; 2) the disentanglement of architectures and

3) the skip-connection operation.

In Table 3, we compare DFG-NAS with two baselines: 1)

A w/o Gate: the resulting architecture with the Gate op-

eration disabled and 2) S w/o Gate: the searched results

over a reduced space without the Gate operation in archi-

tecture design. We observe that the accuracy declines on

all datasets. Remarkably, the accuracy drops by 3.0-3.8%

for architectures without Gate. The reason is that without

the Gate operation, the transformation steps only take the

last output of the propagation steps as inputs, which may

suffer from a risk of over-smoothing. The Gate operation dy-

namically aggregates the information from all propagation

steps and thus controls the smoothness of different nodes

in a node-adaptive way. In addition, when the Gate opera-

tion is removed from the architecture space, the accuracy

drops by 0.8-1.8%. In this setting, the searched architec-

tures tend to have shallow propagation (i.e., only 3-5 steps)

on all datasets, which is not enough to capture sufficient

neighborhood information for each node. These ablation

results demonstrate the importance of the gating mechanism

on GNN architecture design.
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Figure 5. Test results during neural architecture search on four datasets.

Table 5. Ablation study on skip-connection.

Methods Cora Citeseer PubMed
A w/o Skip 83.7±0.5 71.6±0.5 81.0±0.3

S w/o Skip 83.9±0.4 72.8±0.6 80.6±0.2

DFG-NAS 85.2±0.2 74.1±0.4 81.1±0.3

To show the flexibility of the search space in DFG-NAS, we

consider the following search spaces inspired by existing

designs of propagation (P) and transformation (T): (1) P be-

fore T, (2) T before P, and (3) alternate P and T. The depths

of P and T range from 1 to 10, which leads to 100 unique ar-

chitectures in (1) and (2), and ten unique architectures in (3).

We exhaustively evaluate all possible architectures in the

baseline search space, and Table 4 shows the best observed

performance over each search space. Among the baselines,

alternate P and T has the worst performance, which is con-

sistent with the observations in previous studies (Liu et al.,

2020). In addition, none of the three baselines dominate

the others on all datasets, which indicates the necessity of a

more flexible search on macro-architecture. Since the search

space of DFG-NAS does not restrict the pipeline pattern of

P and T, the space of DFG-NAS covers the compared base-

lines, and the architectures are more flexible than those from

the baselines. As a result, DFG-NAS achieves an increase

of 1.1% to 2.3% on all datasets.

To show the effectiveness of skip-connection. In Table 5,

we compare DFG-NAS with two baselines: 1) A w/o Skip:

the resulting architecture with the Skip-connection disabled

and 2) S w/o Skip: the searched results over a reduced

space without the skip-connection in architecture design.

We observe that the accuracy declines on all datasets. And

we also find when the skip-connection is removed from the

search space, the architectures searched by our method will

have less T operations.

To summarize, the searched architecture performance is im-

proved by introducing the Gate operation in propagation

steps, disentangling P and T in architecture designs, and the

skip-connection in T operations. All of them may help un-

leash the full potential of GNNs and inspire more powerful

manual designs.
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Figure 6. Average smoothness over iterations on two datasets.
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Figure 7. Left: Average number of P operations along with the

increased sparsity on PubMed. Right: Average number of T opera-

tions along with the increased nodes of different datasets.

5.5. Interpretability

In Figure 6, we plot the average smoothness of the last layer

outputs of architectures in the population during each it-

eration on two datasets. The definition of smoothness is

provided in Equation 4. Though graph datasets differ in the

requirement of smoothness, both two curves are generally

saturating. In the first half of the search process, the smooth-

ness quickly increases due to the frequent elimination of bad

initial individuals. Then, the smoothness fluctuates around

a certain level (0.46 for Cora and 0.90 for Pubmed), which

implies that the search algorithm in DFG-NAS can ensure

sufficient smoothness of inputs in the searched architectures,

and meanwhile avoid over-smoothing.

Finally, we study how the sparsity and size of datasets in-

fluence the number of P and T in the searched architectures,

respectively. To simulate datasets with different sparsity, we

randomly delete some of the edges in PubMed. Figure 7(a)

shows that the average number of P in top-10 architectures

increases when the dataset grows sparser. The reason is that,

when the graph is sparse, the architecture should contain
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more propagation steps so that each node is able to capture

sufficient neighborhood information for classification. On

the other hand, when the size of datasets grows larger, the

architecture should include more transformation steps to

ensure the expressive power. As shown in Figure 7(b), the

average number of T is similar in Core and Citeseer, which

includes about 3k samples. The number further increases

to 4.5 and 13.0 on larger datasets PubMed and ogbn-arxiv

with 20k and 169k samples, respectively. The trend of P
and T discovered by DFG-NAS may help guide the manual

design of flexible GNN architectures, i.e., more propagation

steps are required when the graph is sparse, while more

transformation steps are needed for the large graph.

6. Conclusion
In this paper, we proposed DFG-NAS, a new method that al-

lows both flexible and deep graph neural architecture search.

The key idea of DFG-NAS is to dis-aggregate the design

pipeline of GNN generation, allowing a flexible permuta-

tions and combinations of the two basic operations in GNNs:

propagation and transformation. In addition, we also ana-

lyzed how both operations influence the smoothness. Based

on the observation, we adopted the gating mechanism and

skip-connection mechanisms to support very deep GNN

pipelines. We provided the genetic algorithm to search for

a good permutations and combinations in GNNs. The ex-

perimental results on four different graph datasets showed

that DFG-NAS achieves an accuracy improvement of up to

0.9% over state-of-the-art manual designs and brings up to

15.96x speedups over existing G-NAS methods.
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then propagate: Graph neural networks meet personalized

pagerank. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

Li, G., Muller, M., Thabet, A., and Ghanem, B. Deepgcns:

Can gcns go as deep as cnns? In Proceedings of the
IEEE/CVF International Conference on Computer Vision,

pp. 9267–9276, 2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph

convolutional networks for semi-supervised learning. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Li, Y., Shen, Y., Zhang, W., Chen, Y., Jiang, H., Liu, M.,

Jiang, J., Gao, J., Wu, W., Yang, Z., et al. Openbox:

A generalized black-box optimization service. arXiv
preprint arXiv:2106.00421, 2021a.

Li, Y., Wen, Z., Wang, Y., and Xu, C. One-shot graph neu-

ral architecture search with dynamic search space. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 8510–8517, 2021b.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural

networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 338–348, 2020.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A.,

Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
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A. Outline
The appendix is organized as follows:

A.1 Datasets Description.

A.2 Hyper-parameters Setting.

A.3 Compared Baselines.

A.4 Efficiency Analysis.

A.5 Reproduction Instructions.

A.6 The Best Architecture Searched by DFG-NAS.

A.1. Dataset Description

Cora, Citeseer, and Pubmed1 are three popular cita-

tion network datasets, and we follow the public train-

ing/validation/test split in GCN (Kipf & Welling, 2017).

In these three networks, papers from different topics are

considered as nodes, and the edges are citations among the

papers. The node attributes are binary word vectors, and

class labels are the topics papers belong to.

ogbn-arxiv is a directed graph, representing the citation

network among all Computer Science (CS) arXiv papers

indexed by MAG. The training/validation/test split in our

experiment is the same as the public version. The public

version provided by OGB2is used in our paper.

A.2. Hyper-parameters Setting

For the architecture search, the number of the population

set k and the maximum generation times T in Algorithm 1

are 20 and 500 for all datasets. For the training of GNN

architectures, we follow the same hyper-parameter in their

original paper and tune it with OpenBox (Li et al., 2021a).

The training budget of each searched GNN architecture in

DFG-NAS is 200 epochs for three citation networks and

500 epochs for the ogbn-arxiv dataset. Specifically, we train

them using Adam optimizer with a learning rate of 0.02

for Cora, 0.03 for Citeseer, 0.1 for PubMed, and 0.001 for

ogbn-arxiv. The regularization factor is 5e-4 for all datasets.

We apply dropout to all feature vectors with rates of 0.5

for Cora and Citeseer, and 0.3 for PubMed and ogbn-arxiv.

Besides, the dropout between different GNN layers is 0.8

for Cora and Citeseer, and 0.5 for PubMed and ogbn-arxiv.

At last, the hidden size of each GNN layer is 128 for Cora

and ogbn-arxiv, 256 for Citeseer, and 512 for ogbn-arxiv.

A.3. Compared Baselines.

For existing manual GNNs, we summarize the existing base-

lines according to the pipeline pattern of propagation (P)

1https://github.com/tkipf/gcn/tree/master/gcn/data
2https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

Table 6. Overview of the Four Datasets.
Dataset #Nodes #Features #Edges #Classes #Train/Val/Test

Cora 2,708 1,433 5,429 7 1,208/500/1,000
Citeseer 3,327 3,703 4,732 6 1,827/500/1,000
Pubmed 19,717 500 44,338 3 18,217/500/1,000

ogbn-arxiv 169,343 128 1,166,243 40 90,941/29,799/48,603

and transformation (T) operations. Specifically, they can be

classified into the following three types.

(1) Alternate P and T:

• Graph Convolutional Network(GCN) (Kipf & Welling,

2017): GCN adopts an efficient layer-wise propagation

rule that is based on a first-order approx- imation of

spectral convolutions on graphs.

• Graph Attention Networks(GAT) (Veličković et al.,

2017): GAT leverages masked self-attention layers

to specify different weights to different nodes in a

neighborhood, thus better represent graph information.

• GraphSAGE (Hamilton et al., 2017): GraphSAGE is

an inductive framework that leverages node attribute

information to efficiently generate representations on

previously unseen data.

(2) P before T:

• Simplified GCN (SGC) (Wu et al., 2019): SGC sim-

plifies GCN by removing nonlinearities and collapsing

weight matrices between consecutive layers.

• Scalable Inception Graph Neural Networks (SIGN)

(Rossi et al., 2020): SIGN is an efficient and scalable

graph embedding method that sidesteps graph sam-

pling in GCN and uses different local graph operators

to support different tasks.

• Simple Spectral Graph Convolution (S2GC) (Zhu &

Koniusz, 2021): S2GC is a trade-off of low- and high-

pass filter bands which capture the global and local

contexts of each node

(3) T before P

• APPNP (Klicpera et al., 2019): APPNP has the ability

to use the relationship between graph convolution net-

works (GCN) and PageRank to derive improved node

representations.

• Adaptive Propagation Graph Convolution Network

(AP-GCN) (Spinelli et al., 2021): AP-GCN uses a

halting unit to decide a receptive range of a given node.

• Deep Adaptive Graph Neural Network (DAGNN):

DAGNN decouples the propagation and transformation
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Table 7. The searched GNN architecture in different datasets.
Datasets Searched Architectures (in sequence)

Cora [T, P, P, P, P, P, T, P, P, T]

Citeseer [T, P, P, P, P, P, P, P, P, P, P, P, T, P, T]

PubMed [T, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, P, T]

ogbn-arxiv [T, P, P, P, P, P, P, P, P, P, P, T, T, P, P, P, T, P, T, P, P, T, T, P, P, T, T, T, P, T, P, P, P, T, T, P, T, P, T, P, P, T, P, T, T]

operations, and it can adaptively incorporate informa-

tion from large receptive fields.

For G-NAS methods, the compared baselines are as follows:

• Auto-GNN (Zhou et al., 2019): Auto-GNN is a rein-

forced conservative search strategy by adopting both

RNNs and evolutionary algorithms in the controller.

• GraphNAS (Gao et al., 2020a): GraphNAS is a rein-

forcement learning-based method that uses an RNN

controller to sample from the multiple architectures

sequentially.

• GraphGym (You et al., 2020): GraphGym is a variant

of random search on a general GNN search space that

considers intra-layer design, inter-layer design, and

training configurations.

Note that we implement GraphNAS 3 and GraphGym 4

according to their open-sourced version.

A.4. Efficiency Analysis

The time complexity of the EA method is O(m), where m
is the population size. In other words, the method is inde-

pendent of the number of evaluations, and runs as fast as

random search. While P or T can be added infinitely, pre-

vious methods for finite spaces can not be directly applied

to our design space. And thus we perform the end-to-end

comparisons in our paper. Figure 5 shows that DFG-NAS

achieves similar performance to other methods with less

search time. As our searching algorithm is relatively simple,

we attribute this gain to the design of our search space, i.e.,

the well-designed architecture in our search space outper-

forms the precious ones.

A.5. Reproduction Instructions

The experiments are conducted on a machine with Intel(R)

Xeon(R) Gold 5120 CPU @ 2.20GHz, and a single NVIDIA

TITAN RTX GPU with 24GB GPU memory. The operat-

ing system of the machine is Ubuntu 16.04. For software

versions, we use Python 3.6, Pytorch 1.7.1, and CUDA

10.1. Our code is available in the anonymized repository

https://github.com/PKU-DAIR/DFG-NAS.

3https://github.com/GraphNAS/GraphNAS
4https://github.com/snap-stanford/GraphGym

A.6. The Best Architecture Searched by DFG-NAS

The best GNN architecture searched by DFG-NAS on dif-

ferent graph datasets is summarized in Table 7. Note that

each GNN architecture will begin with a T operation for

dimension reduction and end with a T operation for getting

the softmax outputs.


