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Abstract
Recently, graph neural networks (GNNs) have

shown prominent performance in graph represen-

tation learning by leveraging knowledge from

both graph structure and node features. How-

ever, most of them have two major limitations.

First, GNNs can learn higher-order structural in-

formation by stacking more layers but can not deal

with large depth due to the over-smoothing issue.

Second, it is not easy to apply these methods on

large graphs due to the expensive computation

cost and high memory usage. In this paper, we

present node-adaptive feature smoothing (NAFS),

a simple non-parametric method that constructs

node representations without parameter learning.

NAFS first extracts the features of each node with

its neighbors of different hops by feature smooth-
ing, and then adaptively combines the smoothed

features. Besides, the constructed node represen-

tation can further be enhanced by the ensemble of

smoothed features extracted via different smooth-

ing strategies. We conduct experiments on four

benchmark datasets on two different application

scenarios: node clustering and link prediction.

Remarkably, NAFS with feature ensemble outper-

forms the state-of-the-art GNNs on these tasks

and mitigates the aforementioned two limitations

of most learning-based GNN counterparts.

1. Introduction
In recent years, graph representation learning has been exten-

sively applied in various application scenarios, such as node

clustering, link prediction, node classification, and graph

classification (Kipf & Welling, 2016b; Wu et al., 2020a;

Zhang et al., 2020; Miao et al., 2021a; Jiang et al., 2022;

Wang et al., 2016; Wu et al., 2020b; Miao et al., 2021b).
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The goal of graph representation learning is to encode graph

information to node embeddings. Traditional graph rep-

resentation learning methods, such as DeepWalk (Perozzi

et al., 2014), Node2vec (Grover & Leskovec, 2016), LINE

(Tang et al., 2015), and ComE (Cavallari et al., 2017) merely

focus on preserving graph structure information. GNN-

based graph representation learning has attracted intensive

interest by combining knowledge from both graph structure

and node features. While most of these GNN-based meth-

ods are designed based on Graph AutoEncoder (GAE) and

Variational Graph AutoEncoder (VGAE) (Kipf & Welling,

2016b), these methods share two major limitations:

Shallow Architecture. Previous work shows that although

stacking multiple GNN layers in Graph Convolutional Net-

work (GCN) (Kipf & Welling, 2016a) is capable of exploit-

ing deep structural information, applying a large number of

GNN layers might lead to indistinguishable node embed-

dings, i.e., the over-smoothing issue (Li et al., 2018; Zhang

et al., 2021a). Therefore, most state-of-the-art GNNs re-

sort to shallow architectures, which hinders the model from

capturing long-range dependencies.

Low Scalability. GNN-based graph representation learn-

ing methods can not scale well to large graphs due to the

expensive computation cost and high memory usage. Most

existing GNNs need to repeatedly perform the computa-

tionally expensive and recursive feature smoothing, which

involves the participation of the entire graph at each train-

ing epoch. (Zhang et al., 2022) Furthermore, most methods

adopt the same training loss function as GAE, which in-

troduces high memory usage by storing the dense-form

adjacency matrix on GPU. For a graph of size 200 million,

its dense-form adjacency matrix requires a space of roughly

150GB, exceeding the memory capacity of the current pow-

erful GPU devices.

To tackle these issues, we propose a new graph representa-

tion learning method, which is embarrassingly simple: just

smooth the node features and then combine the smoothed

features in a node-adaptive manner. We name this method

node-adaptive feature smoothing (NAFS), and its goal is

to construct better node embeddings that integrate the in-

formation from both graph structural information and node

features. Based on the observation that different nodes

have highly diverse “smoothing speed”, NAFS adaptively
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smooths each node feature and takes advantage of both

low-order and high-order neighborhood information of each

node. In addition, feature ensemble is also employed to com-

bine the smoothed features extracted via different smoothing

operators. Since NAFS is training-free, it significantly re-

duces the training cost and scales better to large graphs than

most GNN-based graph representation learning methods.

This paper is not meant to diminish the current advance-

ments in GNN-based graph representation learning ap-

proaches. Instead, we aim to introduce an easier way to

obtain high-quality node embeddings and understand the

source of performance gains of these approaches better. Fea-

ture smoothing could be a promising direction towards a

more simple and effective integration of information from

both graph structure and node features.

Our contributions are as follows: (1) New perspective. To

the best of our knowledge, we are the first to explore

the possibility that simple feature smoothing without any

trainable parameters could even outperform state-of-the-

art GNNs; this incredible finding opens up a new direc-

tion towards efficient and scalable graph representation

learning. (2) Novel method. We propose NAFS, a node-

adaptive feature smoothing approach along with various

feature ensemble strategies, to fully exploit knowledge

from both the graph structure and node features. (3)

State-of-the-art performance. We evaluate the effectiveness
and efficiency of NAFS on different datasets and graph-

based tasks, including node clustering and link prediction.

Empirical results demonstrate that NAFS performs compara-

bly with or even outperforms the state-of-the-art GNNs, and

achieves up to two orders of magnitude speedup. In particu-

lar, on PubMed, NAFS outperforms GAE (Kipf & Welling,

2016b) and AGE (Cui et al., 2020) by a margin of 9.0% and

3.8% in terms of NMI in node clustering, while achieving

up to 65.4× and 88.6× training speedups, respectively.

2. Preliminary
In this section, we first explain the notations and problem

formulation. Then, we review current GNNs and GNN-

based graph representation learning.

2.1. Notations and Problem Formulation.

In this paper, we consider an undirected graph G = (V ,E)

with |V| = n nodes and |E| = m edges. Here we suppose

that m ∝ n as it is the case in most real-world graphs. We

denote by A the adjacency matrix of G. Each node can

possibly have a feature vector of size f , which stacks up

to an n × f feature matrix X. The degree matrix of A
is denoted as D = diag (d1, d2, · · · , dn) ∈ R

n×n, where

di =
∑

vj∈V Aij . We denote the final node embedding

matrix as Z, and evaluate it in both the node clustering

and the link prediction tasks. The node clustering task

requires the model to partition the nodes into c disjoint

groups G1, G2, · · · , Gc, where similar nodes should be in

the same group. The target of the link prediction task is to

predict whether an edge exists between given node pairs.

2.2. Graph Convolutional Network.

Based on the assumption that locally connected nodes are
likely to enjoy high similarity (McPherson et al., 2001),
each node in most GNN models iteratively smooths the
representations of its neighbors for better node embedding.
Below is the formula of the l-th GCN layer (Kipf & Welling,
2016a):

X(l) = δ
(
ÂX(l−1)Θ(l)), Â = D̃−1/2ÃD̃−1/2, (1)

where Ã = A+In is the adjacency matrix of the undirected

graph G with self loop added, X(l) is the node embedding

matrix at layer l, X(0) is the original feature matrix, Θ(l)

are the trainable weights, and δ is the activation function.

Â is the smoothing matrix that helps each node to smooth

representations of neighboring nodes.

As shown in Eq. 1, each GCN layer contains two operations:

feature aggregation (smoothing) and feature transformation.

Figure 1 shows the framework of a two-layer GCN. The l-th
layer in GCN firstly executes feature smoothing on the node

embedding X(l−1). Then, the smoothed feature X̃(l−1)

is transformed with trainable weights Θ(l) and activation

function δ to generate new node embedding X(l). Note that

GCN will degrade to MLP if feature smoothing is removed

from each layer.

2.3. GNN-based Graph Representation Learning.

GAE (Kipf & Welling, 2016b), the first and the most repre-
sentative GNN-based graph embedding method, adopts an
encoder to generate node embedding matrix Z with inputs

Â and X. A simple inner product decoder is then used to
reconstruct the adjacency matrix. The final training loss

of GAE is the binary entropy loss between A′ and Ã, the
reconstructed adjacency matrix and the original adjacency
matrix with self loop added. Specifically, the loss function
can be defined as follow

L =
∑

1≤i,j≤n

−Ãi,j logA
′
i,j − (1− Ãi,j) log(1−A′

i,j)), (2)

Where A′ = sigmoid(Z · ZT) is the reconstructed ad-

jacency matrix. Motivated by GAE, lots of GNN-based

graph representation learning methods have been proposed

recently. MGAE (Wang et al., 2017) presents a denoising

marginalized autoencoder that reconstructs the node feature

matrix X. ARGA (Pan et al., 2018) adopts the adversarial

learning strategy, and its generated node embeddings are

forced to match a prior distribution. DAEGC (Wang et al.,

2019) exploits side information to generate node embed-

dings in a self-supervised way. AGC (Zhang et al., 2019)
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Figure 1. The framework of a two-layer GCN models.

proposes an improved filter matrix to better filter out the

high-frequency noise. AGE (Cui et al., 2020) further im-

proves AGC by using the similarity of embedding rather

than the adjacency matrix to consider original node feature

information. Compared with GNN-based graph representa-

tion learning methods that rely on the trainable parameters

to learn node embeddings, our NAFS is training-free and

thus enjoys higher efficiency and scalability.

3. Observation and Insight
In this section, we make a quantitative analysis on the over-

smoothing issue at the node level and then provide some

insights when designing NAFS on graphs.

3.1. Feature Smoothing in Decoupled GNNs

Recently, many works (Wu et al., 2019; Zhu & Koniusz,

2021; Chen et al., 2020; Zhang et al., 2021c) propose to de-

couple the feature smoothing and feature transformation in

each GCN layer for scalable node classification. Concretely,

they execute the feature smoothing operation in advance,

and the smoothed features are then fed into a simple MLP

to generate the final predicted node labels. The predictive

node classification accuracy of these methods is comparable

with or even higher than the one of coupled GNNs.

These decoupled GNNs contain two parts: feature smooth-

ing and MLP training. Feature smoothing aims to combine

the graph structural information and node features into better

features for the subsequent MLP; while MLP training only

takes in the smoothed feature and is specially trained for

a given task. As stated by previous decoupled GNNs (Wu

et al., 2019; Zhu & Koniusz, 2021; Zhang et al., 2021b), the

true success of GNNs lies in feature smoothing rather than

feature transformation. Correspondingly, we propose to re-

move feature transformation and preserve the key feature

smoothing part alone for simple and scalable node represen-

tation.

There is another branch of GNNs that also decouple the

feature smoothing and feature transformation. The most

representative method of this category is APPNP (Klicpera

et al., 2018). It first feeds the raw node features into an

MLP to generate intermediate node embeddings. Then the

personalized PageRank-based propagation operations are

performed on the node embeddings to produce final predic-

tion results. However, compared with scalable decoupled

GNNs mentioned in the previous paragraph, this branch of

GNNs still have to recursively execute propagation oper-

ations in each training epoch, which makes it impossible

to perform on large-scale graphs. In the remaining part of

this paper, the terminology “decoupled GNNs” refers par-

ticularly to the scalable decoupled GNNs mentioned in the

previous two paragraphs.

3.2. Measuring Smoothing Level

To capture deep graph structural information, a straightfor-

ward way is to simply stack multiple GNN layers. However,

a large number of feature smoothing operations in a GNN

model would lead to indistinguishable node embeddings,

i.e., the over-smoothing issue (Li et al., 2018). Concretely,

if we execute ÂX for infinite times, the node embeddings

within the same connected component would reach a station-

ary state. When adopting Â = D̃r−1ÃD̃−r, Â∞ follows

Â∞
i,j =

(di + 1)r(dj + 1)1−r

2m+ n
. (3)

which shows that the influence from node vi to vj is only

determined by their degrees. Under the extreme condition

that r = 0, all the nodes within one connected component

have exactly the same representation, making it impossible

to apply the node embeddings to subsequent tasks.

Here we introduce a new metric, “Over-smoothing Dis-

tance”, to measure each node’s smoothing level. A smaller

value indicates that the node is closer to the stationary state,

i.e., closer to over-smoothing.

Definition 1 (Over-smoothing Distance). The Over-
smoothing Distance Di(k) parameterized by node i and
smoothing step k is defined as

Di(k) = Dis([ÂkX]i, [Â
∞X]i), (4)

where [ÂkX]i denotes the ith row of ÂkX, representing the
representations of node vi after smoothing k times; [Â∞X]i
denotes the ith row of Â∞X, representing the stationary
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Figure 2. The diverse smoothing speed across nodes with different

degrees. Nodes with larger degree have larger smoothing speed.

state of node vi; Dis(·) is a distance function or a func-
tion positively relative with the difference, which can be
implemented using Euclidean distance, the inverse of cosine
similarity, etc.

3.3. Diverse Smoothing Speed across Nodes.

To examine the factors that affect Di(k), we divide nodes

in the PubMed dataset into three different groups according

to their degrees. In Figure 2, we show the trends of nodes

in the first group and the second group where the group-

averaged Di(k) changes with the number of smoothing step

increases. The trend of Di(k) averaged over all the nodes is

also provided, and the Euclidean distance is chosen as the

distance function. Figure 2 shows that the Di(k) of nodes

with degrees larger than 60 drops more quickly than nodes

with degrees smaller than 3, which implies that nodes with

high degrees approach the stationary state more rapidly than

the nodes with low degrees.

The quantitative analysis empirically illustrates that the de-

gree of each node plays an essential role in one’s optimal

smoothing step. Intuitively, nodes with high degrees should

have relatively small smoothing steps than nodes with low

degrees. In addition, in Appendix A, we have made a de-

tailed theoretical analysis about the graph sparsity, another

factor that influences the smoothing speed.

3.4. Design Insights of NAFS

Though using feature smoothing operations inside the previ-

ous decoupled GNNs is scalable for large graph representa-

tion learning, it will lead to sub-optimal node representation.

According to the observation in Sec. 3.3, it is sub-optimal to

execute feature smoothing for all the nodes indiscriminately

as previous decoupled GNNs do since nodes with different

structural properties have diverse smoothing speeds. There-

fore, node-adaptive feature smoothing (i.e., different nodes

have different smoothing levels or mechanisms with equiva-

lent effect) must be adopted to satisfy each node’s diverse

needs of smoothing level. In our proposed method NAFS,

we utilize the metric Di(k) defined in Def. 1 to help accom-

plish the aim of node-adaptive feature smoothing.

4. Proposed method
In this section, we present NAFS, a training-free method

for scalable graph representation learning. We first compute

the smoothed features with the feature smoothing operation.

Then the feature ensemble operation is used to combine the

smoothed features generated by different smoothing strate-

gies. The pseudo code of NAFS is provided in Appendix D.

4.1. Node-Adaptive Feature Smoothing

Figure 3 provides an overview of NAFS. When repeatedly

executing X(l) = ÂX(l−1), the smoothed node embedding

matrix X(l−1) contains deeper graph structural information

with l increases. The multi-scale node embedding matrices

{X(0),X(1), ...,X(K)} (K is the maximal smoothing step)

are then combined into a single matrix X̂ such that both

local and global neighborhood information are reserved.

The analysis in Sec. 3.3 illustrates that the speed each node

achieves its stationary state is highly diverse, which suggests

that nodes should be treated individually. To this end, we

define “Smoothing Weight” based on Di(k) introduced in

Def. 1 for each node so that the smoothing operation can be

performed in a node-adaptive manner.

Definition 2 (Smoothing Weight). The Smoothing Weight
wi(k) parameterized by node vi and smoothing step k
is defined with the softmax value of {Di(0), Di(1), · · · ,
Di(K)}:

wi(k) = eDi(k)/

K∑
l=0

eDi(l), (5)

where K is the maximal smoothing step.

To calculate Di(k) more efficiently, an alternative is to re-

place [Â∞X]i in Eq. 4 with Xi and implement Dis(·) as

the cosine similarity. Larger Di(k) in this case means that

node vi is farther from the stationary state and [ÂkX]i intu-

itively contains more relevant node information. Therefore,

for node vi, the smoothed feature with larger Di(k) (i.e.,

larger wi(k)) should contribute more to the final node em-

bedding. The smoothing weight can be formulated in the

following matrix form:

Definition 3 (Smoothing Weight Matrix). The Smoothing
Weight Matrix W(k) parameterized by smoothing step k is
defined as the diagonal matrix derived from η(k) ∈ R

n:

W(k) = Diag(η(k)), η(k)[i] = wi(k), ∀1 ≤ i ≤ n. (6)

Given the maximal smoothing step K, the multi-

scale smoothed features {X(0),X(1), ...,X(K)},

and the corresponding Smoothing Weight Matrices
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Figure 3. An overview of node-adaptive feature smoothing.

{W(0),W(1), ...,W(K)} , the final smoothed feature X̂

can be represented as: X̂ =
K∑

k=0

W(k)ÂkX.

4.2. Feature Ensemble

Different smoothing operators actually act as different

knowledge extractors. For example, by setting r = 0.5,

1 and 0, Â = D̃r−1ÃD̃−r represents the symmetric nor-

malized adjacency matrix D̃−1/2ÃD̃−1/2 (Kipf & Welling,

2016a), the random walk transition probability matrix

D̃−1Ã (Xu et al., 2018), and the reverse random walk

transition probability matrix ÃD̃−1 (Zeng et al., 2019),

respectively. These variants of Â captures and reserves dif-

ferent scales and dimensions of knowledge from both graph

structures and node features.

To achieve the same effect, the feature ensemble operation

has multiple knowledge extractors: we vary the value of r
in the normalized adjacency matrix Âr = D̃r−1ÃD̃−r to

easily acquire different knowledge extractors. These knowl-

edge extractors are adopted inside the feature smoothing

operation to generate different smoothed features. Con-

cretely, the value of r controls the normalized weight of

each edge. So different values of r generate different weight

values for all the edges in the graph, which would increase

the diversity of our smoothed features evidently. The ab-

lation study in Sec. 6.6 shows that the increased diversity

contributes a lot to the high performance of our generated

node embeddings when applied to downstream tasks.

The detailed procedure of feature ensemble operation is

as follows: Given {r1, r2, ..., rT }, we firstly perform the

feature smoothing operation to generate corresponding

smoothed features {X̂(1), X̂(2), ..., X̂(T )}. Then, we com-

bine them as Z ← ⊕i∈{1,2,...,T}X̂(i), where ⊕ is the ensem-

ble strategy, which can be implemented as concatenating,

mean pooling, max pooling, etc.

4.3. Theoretical Analysis

The essential kernel of NAFS is the Smoothing Weight,

which determines the output results. We now analyze the

factors affecting the value of Smoothing Weight. To simplify

our analysis, we suppose r = 0 in the normalized adjacency

matrix and apply Euclidean distance as the distance function

in Definition 1. Thus we have

Di(k) = ||[ÂkX]i − [Â∞X]i||2, (7)

where || · ||2 symbols two-norm.

Theorem 1. For any node i in graph G, there always exists

Di(k) ≤ λk
2

√√√√√ n∑
j=1

(d̃j ||Xj ||22)

d̃i
, (8)

where d̃i = di + 1, ||Xj ||2 denotes the two-norm of the
initial feature of node j, and 0 < λ2 < 1 denotes the second
largest eigenvalue of the normalized adjacency matrix Â.

Eq. 8 shows that the nodes with smaller degrees may have

larger Di(k). Combined with definition 2, we infer that

larger Di(k) makes the maxk Di(k) more dominant after

the softmax operation, causing that weighted average results

depend more on itself and its near neighbors. Inversely, for

the nodes with smaller degrees, its result of weighted aver-

age depends more equally on all itself, its near neighbors,

and its distant neighbors.

Besides, Di(k) in a sparser graph (λ2 is positively relative

with the sparsity of a graph) decays slower as k increases.

Thus, the weighted average result depends more equally on

itself, its near neighbors and its distant neighbors. While

for the nodes in a denser graph, the weighted average result

depends more on its near neighbors and itself.

The detailed proof of Eq. 8 is in Appendix A.1. Besides, we

theoretically analyze how NAFS prevent over-smoothing

in Appendix A.2. Lastly, we also theoretically show how

NAFS leverages the multiple features over different smooth

steps in a node-adaptive manner in Appendix A.3.

5. Advantages over Traditional Approaches
NAFS generates node embeddings in a training-free man-

ner, making it highly efficient and scalable. Moreover, the

node-adaptive smoothing strategy enables it to capture deep

structural information. In this subsection, we analyze the

advantages of our NAFS over GAE and its variants.

Deep Structural Information. By assigning each node

with personalized smoothing weights, NAFS can gather

deep structural information without encountering the over-

smoothing issue and keep the time and memory cost low.

While for GAE and its variants, they either 1) have a cou-

pled structure that cannot go deep due to low efficiency and

high memory cost (e.g., GAE) or 2) are unable to adap-

tively capture structural information and encounter the over-

smoothing issue when going deeper (e.g., AGE).

Efficiency. Compared with GAE and its variants, our pro-

posed NAFS does not have any trainable parameters, giving
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it a significant advantage in efficiency. When generating

node embeddings, NAFS only needs to execute the feature

smoothing and feature ensemble operations, which has a

time complexity of O(Kmf +Kn), where K denotes the

maximal smoothing step. On the other hand, the asymp-

totic training time complexity of GAE and its variants is

O(nf2 + n2f), which is one magnitude larger than NAFS.

In Sec. 6.4, we further present efficiency comparison in

detail on real-world datasets between NAFS and GAE.

Memory Cost. Our proposed NAFS enjoys not only high

efficiency but also low memory cost. NAFS only requires

to store the sparse adjacency matrix and the smoothed fea-

tures, and thus the memory cost is O(m + nf), which

grows linearly with graph size n in typical real-world

graphs. For GAE and its variants, they need additional

space to store the training parameters and especially the

reconstructed dense adjacency matrix, making their mem-

ory cost O(n2 + m + nf), which is also one magnitude

larger than NAFS. Scalability comparison conducted on

synthetic datasets between NAFS and GAE can be found in

Appendix C.2.

6. Experimental Results
In this section, we conduct extensive experiments to evalu-

ate the proposed NAFS. We first introduce the considered

baseline methods, used datasets, and experimental settings.

Then, we demonstrate the advantages of NAFS from the fol-

lowing three perspectives: (1) end-to-end comparison with

the state-of-the-art methods, (2) scalability and efficiency,

and (3) effectiveness along with ablation studies.

6.1. Datasets and Baseline Methods

Several widely-used network datasets (i.e., Cora, Citeseer,

PubMed, Wiki and ogbn-products) are used in our experi-

ments. We include the properties of these datasets in Ap-

pendix B.1.

For different tasks, the compared baselines are as follows:

• Link prediction: Spectral Clustering (SC) (Ng

et al., 2002), DeepWalk (Perozzi et al., 2014), GAE

and VGAE (Kipf & Welling, 2016b), ARGA and

ARVGA (Pan et al., 2018), GALA (Park et al., 2019),

and AGE (Cui et al., 2020).

• Node clustering: GAE and VGAE (Kipf & Welling,

2016b), MGAE (Wang et al., 2017), ARGA and

ARVGA (Pan et al., 2018), AGC (Zhang et al., 2019),

DAEGC (Wang et al., 2019), and AGE (Cui et al.,

2020).

For NAFS, we investigate the following three variants:

NAFS-mean, NAFS-max, and NAFS-concat. They all have

Table 1. Link prediction performance comparison.

Methods Cora Citeseer PubMed
AUC AP AUC AP AUC AP

SC 84.6±0.0 88.5±0.0 80.5±0.0 85.0±0.0 84.2±0.0 87.8±0.0

DeepWalk 83.1±0.3 85.0±0.4 80.5±0.5 83.6±0.4 84.4±0.4 84.1±0.5

GAE 91.0±0.5 92.0±0.4 89.5±0.3 89.9±0.4 96.4±0.4 96.5±0.5

VGAE 91.4±0.5 92.6±0.4 90.8±0.4 92.0±0.3 94.4±0.5 94.7±0.4

ARGA 92.4±0.4 93.2±0.3 91.9±0.5 93.0±0.4 96.8±0.3 97.1±0.5

ARVGA 92.4±0.4 92.6±0.4 92.4±0.5 93.0±0.3 96.5±0.5 96.8±0.4

GALA 92.1±0.3 92.2±0.4 94.4±0.5 94.8±0.5 93.5±0.4 94.5±0.4

AGE 95.1±0.5 94.6±0.5 96.3±0.4 96.6±0.4 94.3±0.3 93.5±0.5

NAFS-mean 92.6±0.0 93.9±0.0 94.9±0.0 95.9±0.0 97.4±0.0 97.2±0.0
NAFS-max 93.0±0.0 94.2±0.0 94.8±0.0 96.0±0.0 97.5±0.0 97.1±0.0

NAFS-concat 92.6±0.0 93.8±0.0 93.7±0.0 93.1±0.0 97.6±0.0 97.2±0.0

the complete NAFS framework and only differ in the en-

semble strategy adopted in feature ensemble operation.

6.2. Experimental Settings

Node Clustering. For the node clustering task, we apply

K-Means (Hartigan & Wong, 1979) to node embeddings to

get the clustering results. Three widely-used metrics are

used for evaluation: Accuracy (ACC), Normalized Mutual

Information (NMI), and Adjusted Rand Index (ARI).

Link Prediction. For the link prediction task, 5% and 10%

edges are randomly reserved for the validation set and the

test set. Once the node embeddings have been generated,

we follow the same procedure as GAE to reconstruct the

adjacency matrix. Two metrics - Area Under Curve (AUC)

and Average Precision (AP) are used in the evaluation of

the link prediction task.

We run the compared baselines with 200 epochs and repeat

the experiment 10 times on all the datasets, and report the

mean value of each evaluation metric. The detailed setting

of the hyperparameters and experimental environment are

introduced in Appendix B.2 and B.3.

6.3. End-to-end Comparison

Link Prediction. Table 1 shows the performance of dif-

ferent methods on the link prediction task. On the three

datasets, the proposed NAFS consistently achieves the best

or the second-best performance compared with all the base-

line methods. Remarkably, NAFS-concat achieves state-

of-the-art performance on PubMed, and outperforms the

current state-of-the-art method - ARGA by 0.8% and 0.1%

on AUC and AP, respectively.

Node Clustering. The node clustering results of each

method are shown in Table 2. Among three ensemble strate-

gies, NAFS-concat has the overall best performance across

the three datasets, which also consistently outperforms the

strongest baseline - AGE. For example, the best of NAFS

variants exceeds AGE by 2.6%, 1.8%, 0.7%, and 3.5% on

Cora, Citeseer, PubMed, and Wiki, respectively. Although

NAFS-concat has the overall best performance, it falls be-
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Table 2. Node clustering performance comparison.

Methods Cora Citeseer PubMed Wiki
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

GAE 53.3±0.2 40.7±0.3 30.5±0.2 41.3±0.4 18.3±0.3 19.1±0.3 63.1±0.4 24.9±0.3 21.7±0.2 37.9±0.2 34.5±0.3 18.9±0.2

VGAE 56.0±0.3 38.5±0.4 34.7±0.3 44.4±0.2 22.7±0.3 20.6±0.3 65.5±0.2 25.0±0.4 20.3±0.2 45.1±0.4 46.8±0.3 26.3±0.4

MGAE 63.4±0.5 45.6±0.3 43.6±0.4 63.5±0.4 39.7±0.4 42.5±0.5 59.3±0.5 28.2±0.2 24.8±0.4 52.9±0.3 51.0±0.4 37.9±0.5
ARGA 63.9±0.4 45.1±0.3 35.1±0.5 57.3±0.5 35.2±0.3 34.0±0.4 68.0±0.5 27.6±0.4 29.0±0.4 38.1±0.5 34.5±0.3 11.2±0.4

ARVGA 64.0±0.5 44.9±0.4 37.4±0.5 54.4±0.5 25.9±0.5 24.5±0.3 51.3±0.4 11.7±0.3 7.8±0.2 38.7±0.4 33.9±0.4 10.7±0.2

AGC 68.9±0.5 53.7±0.3 48.6±0.3 66.9±0.5 41.1±0.4 41.9±0.5 69.8±0.4 31.6±0.3 31.8±0.4 47.7±0.3 45.3±0.5 34.3±0.4

DAEGC 70.2±0.4 52.6±0.3 49.7±0.4 67.2±0.5 39.7±0.5 41.1±0.4 66.8±0.5 26.6±0.2 27.7±0.3 48.2±0.4 44.8±0.4 33.1±0.3

AGE 72.8±0.5 58.1±0.6 56.3±0.4 70.0±0.3 44.6±0.4 45.4±0.5 69.9±0.5 30.1±0.4 31.4±0.6 51.1±0.6 53.9±0.4 36.4±0.5

NAFS-mean 70.4±0.0 56.6±0.0 48.0±0.0 71.8±0.0 45.1±0.0 47.6±0.0 70.5±0.0 33.9±0.0 33.2±0.0 54.6±0.0 49.4±0.0 27.3±0.0

NAFS-max 70.8±0.0 56.6±0.0 49.0±0.0 70.1±0.0 45.1±0.0 44.7±0.0 70.6±0.0 33.4±0.0 33.1±0.0 51.4±0.0 45.8±0.0 25.5±0.0

NAFS-concat 75.4±0.0 58.6±0.0 53.8±0.0 71.1±0.0 45.8±0.0 46.1±0.0 70.5±0.0 33.9±0.0 33.2±0.0 53.6±0.0 50.5±0.0 26.3±0.0

(a) Weighting strategies (b) Ensemble strategies

Figure 4. Ablation study to verify the effectiveness of each strategy.

Figure 5. Efficiency comparison on the three ci-

tation networks.

hind NAFS-mean or NAFS-max on some metrics of some

datasets; and it needs more CPU memory to store the node

embeddings and longer time for inference.

It is quite interesting to find that the three NAFS variants

outperform training-based GAE on all the four datasets,

and they outperforms the current SOTA method, AGE, in

most cases. The competitive performance of NAFS further

illustrates that it is possible to achieve decent performance

on graphs with only feature smoothing without any training

parameters.

6.4. Efficiency Analysis

To validate the efficiency of NAFS, we compare it with

GAE and AGE, measuring their overall running time for

generating node embeddings. The comparison is conducted

on the three citation networks. For fairness, all methods

only use CPUs for computation. Figure 5 showcases the

results along with the speedup ratio of NAFS against AGE.

Figure 5 shows that NAFS is significantly faster than the

considered methods on the three datasets. For example,

NAFS is almost two magnitudes faster than AGE on the

relatively large dataset - PubMed. The high efficiency of

NAFS is attributed to no trainable parameters, while GAE

and AGE are both training-based methods. Although AGE

executes the feature smoothing step in advance, it adopts a

time-consuming ranking policy to select positive and nega-

tive examples. This alteration in AGE brings both superior

performance and longer running time compared with GAE.

6.5. Scalability Analysis

A challenging task in graph representation learning is how

to effectively get decent node embedding on very large

graphs. To verify the scalability advantage of NAFS, we

add the evaluation on the large real-world datasets. The

experiment settings are altered compared to Sec. 6.4: both

GAE and AGE are trained on an NVIDIA TITAN RTX,

which has 24 GB of memory since only using CPU to train

is unacceptable on large graphs in real-world applications.

Concretely, we sample subgraphs of different scales from

the full ogbn-products graphs via uniformly random node se-

lection and then report the sampled graph size (i.e., number

of nodes) and the corresponding runtime (seconds) in Ta-

ble 3. The experimental results show that NAFS can support

the larger graphs (i.e., larger than 30,000 nodes) than the

compared baselines. Besides, it is significantly faster than

the compared baselines, especially for large graph datasets.

We also include more details in Appendix C.2 to demon-

strate the excellent scalability of NAFS (See Figure 7).

6.6. Ablation Study

To thoroughly investigate the proposed NAFS, ablation stud-

ies on the node clustering task are designed to analyze the
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(a) original (b) our 5 (c) our 10 (d) our 20 (e) our 50 (f) our 100 (g) our 150 (h) our 200

(i) original (j) only 5 (k) only 10 (l) only 20 (m) only 50 (n) only 100 (o) only 150 (p) only 200

Figure 6. T-SNE visualization of node embedding on the Cora dataset.

Table 3. Scalablity comparison with different sample sizes on the

ogbn-products dataset.

Methods 10,000 20,000 30,000 50,000 100,000

GAE 10.2s 36.3s OOM OOM OOM

AGE 68.5s 256.2s 727.7s 2315.7s OOM

NAFS-mean 2.8s 6.5s 10.8s 13.8s 23.7s

effectiveness of feature smoothing and feature ensemble

in NAFS. The experiments are conducted on the PubMed

dataset, and Normalized Mutual Information (NMI) is used

to measure the performance.

Different Weighting Strategies. One important operation

in NAFS is to use the node-adaptive weight to average the

smoothed features of different smoothing steps. Here we

change the “Adaptive Weight” in our method to “Single

Hop” (only the smoothed feature at the last smoothing step

is reserved) and “Naive Average” (smoothed features at

every smoothing step has equal weight) and evaluate their

performance. Figure 4(a) shows the performance of these

three different weighting strategies.

From Figure 4(a), the weighting strategy “Single Hop” per-

forms the worst among the three, since it only makes use

of the information at the last smoothing step, which could

lead to the over-smoothing issue when the maximal smooth-

ing step becomes large. On the other hand, the weighting

strategy “Adaptive Weight” shows a better performance than

“Naive Average”. Besides, when the number of maximal

smoothing steps becomes large, the performance of “Naive

Average” begins to drop, while “Adaptive Weight” does

not. “Naive Average” assigns the same weight across all

the different steps of smoothed features, which also leads to

over-smoothing when it tries to exploit extremely deep struc-

tural information. Instead, by assigning adaptive weights,

the “Adaptive Weight” strategy in NAFS could exploit such

deep information and avoid the over-smoothing issue, thus

improving the quality of the generated node embedding.

Different Ensemble Strategies. We use different ensem-

ble strategies to obtain the final node embeddings in our

proposed method - NAFS, which include “Mean”, “Max”,

and “Concat”. To evaluate the impacts of these different

ensemble strategies, we change the maximal smoothing

step, K, from 15 to 40, and evaluate corresponding node

clustering performance. For reference, the performance of

NAFS without feature ensemble, “r=0.3 only” is also re-

ported. The experimental results in Figure 4(b) illustrate

that at most times, “r=0.3 only” performs worse than oth-

ers, which shows the effectiveness of the three different

ensemble strategies. However, if we limit the comparison

within the ensemble strategies, the performance superiority

is unclear. In Table 1 and 2, we can also have that differ-

ent ensemble strategies perform diversely across different

datasets and tasks. It indicates that these three ensemble

strategies all have necessities in their own way.

6.7. Interpretability

To better understand why NAFS is effective, we visualize the

node embedding generated by NAFS using T-SNE (Van der

Maaten & Hinton, 2008) on the Cora dataset. Moreover, we

also visualize the node embedding of ÂkX for reference.

All the visualization results are shown in Figure 6. The first

row is the results of our proposed NAFS, and the second

row is the results of ÂkX.

Figure 6(c) and 6(k) illustrate that at hop 10, the node em-

bedding produced by NAFS and ÂkX are both distinguish-

able. But as the value of maximal smoothing step becomes

larger, the node embedding of ÂkX falls into total disorder,

like the situation showed by Figure. 6(n), 6(o) and 6(p). At

the same time, NAFS is able to maintain the distinguish-

able results even when the value of the maximal number of

smoothing step increases to 200.

7. Conclusion
This paper presents NAFS, a novel graph representation

learning method. Unlike other GNN-based approaches,
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NAFS focuses on improving the feature smoothing oper-

ation in the GNN layer and generating node embeddings

in a training-free manner. NAFS proposes Node-Adaptive

Feature Smoothing to generate smoothed features with adap-

tivity to each node’s individual properties; it further employs

feature ensemble to combine multiple smoothed features

from diverse knowledge extractors effectively. Experiments

results on typical tasks demonstrate that NAFS performs

comparably with or even outperforms the state-of-the-art

GNNs, and at the same time enjoys high efficiency and

scalability where NAFS shows its absolute superiority.
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fusion improves graph learning. In Advances in Neural
Information Processing Systems, pp. 13354–13366, 2019.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph

convolutional networks for semi-supervised learning. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

Li, Y., Shen, Y., Zhang, W., Chen, Y., Jiang, H., Liu, M.,

Jiang, J., Gao, J., Wu, W., Yang, Z., et al. Openbox: A

generalized black-box optimization service. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 3209–3219, 2021.

Liu, M., Gao, H., and Ji, S. Towards deeper graph neural

networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, pp. 338–348, 2020.



NAFS: A Simple yet Tough-to-beat Baseline for Graph Representation Learning (with appendix)

McPherson, M., Smith-Lovin, L., and Cook, J. M. Birds of

a feather: Homophily in social networks. Annual review
of sociology, 27(1):415–444, 2001.
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A. Theoretical Analysis
A.1. What influences the Smoothing Weight?

The essential kernel of NAFS is the Smoothing Weight,

which determines the output results. We now analyze the

factors affecting the value of Smoothing Weight. To simplify

our analysis, we suppose r = 0 in the normalized adjacency

matrix and apply Euclidean distance as the distance function

in Definition 1. Thus we have

Di(k) = ||[ÂkX]i − [Â∞X]i||2, (9)

where || · ||2 symbols two-norm.

Theorem 2. For any node i in graph G, there always exists

Di(k) ≤ λk
2

√√√√√ n∑
j=1

(d̃j ||Xj ||22)

d̃i
, (10)

where d̃i = di+1, d̃j = dj+1, ||Xj ||2 denotes the two-norm
of the initial feature of node j, and 0 < λ2 < 1 denotes
the second largest eigenvalue of the normalized adjacency
matrix Â.

To prove Theorem 2, we introduce the following lemma.

Lemma 3.

|(eiÂk)j − (eiÂ
∞)j | ≤

√
d̃j

d̃i
λk
2 , (11)

where ei denotes a one-hot row vector with its ith components as
1 and other components as 0, λ2 is the second largest eigenvalue
of Â and d̃i denotes the degree of node i plus 1 (to include itself).

d̃i = di + 1, d̃j = dj + 1,

The proof of Lemma 3 can be found in (Chung & Graham,

1997). Next we will prove Theorem 2.

Proof. According to equation 7, we can have that

Di(k) = ||[ÂkX]i − [Â∞X]i||2
= ||(eiÂk − eiÂ

∞)X||2

=

√√√√ n∑
j=1

((eiÂk)j − (eiÂ∞)j)2X2
j

≤

√√√√√
λ2k
2

n∑
j=1

d̃j
f∑

p=1

X2
jp

d̃i
= λk

2

√√√√√ n∑
j=1

(d̃j ||Xj ||22)

d̃i
,

(12)

where Xjp denotes the pth feature of node j.

Based on Lemma 3 we then consider the smoothing distance

for weighted averaged embedding features to the station

state.

||[ÂkX]i − [Â∞X]i||2 (13)

Therefore there holds Theorem 2

Di(k) ≤ λk
2

√√√√√ n∑
j=1

(d̃j ||Xj ||22)

d̃i
. (14)

We denote the constant
n∑

j=1

(d̃j ||Xj ||22) as cdx because it is

independent with j, then Theorem 2 can be written as

Di(k) ≤ λk
2

√
cdx

d̃i
. (15)

We then analyze the factors affecting the Smoothing Weight

on a specific node vi. From Eq. 15 we know that the

nodes with smaller degrees may have larger Di(k). Com-

bined with definition 2, we infer that larger Di(k) makes

the maxk Di(k) more dominant after the softmax operation,

causing that weighted average results depend more on itself

and its near neighbors. Inversely, for the nodes with smaller

degrees, its result of weighted average depends more equally

on all itself, its near neighbors, and its distant neighbors.

At the same time, the Smoothing Weight of the node in a

sparser graph (λ2 is positively relative with the sparsity of

a graph) decays slower as k increases. Thus, the weighted

average result depends more equally on itself, its near neigh-

bors and its distant neighbors. While for the nodes in a

denser graph, the weighted average result depends more on

its near neighbors and itself.

A.2. How NAFS prevent over-smoothing?

Based on Theorem 2 we then consider the smoothing dis-

tance for weighted averaged embedding features to the sta-

tion state:

||
K∑

k=0

ωi(k) ∗ [ÂkX]i − [Â∞X]i||2

=||
K∑

k=0

ωi(k) ∗ ([ÂkX]i − [Â∞X]i)||2

≤
K∑

k=0

ωi(k) ∗ ||[ÂkX]i − [Â∞X]i||2

=

K∑
k=0

ωi(k) ∗Di(k).

(16)
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When ωi(k) = 1/(K +1), which means the average option

is non-weighted, we have

lim
K→∞

K∑
k=0

ωi(k) ∗Di(k)

= lim
K→∞

1

K + 1

K∑
k=0

Di(k)

≤ lim
K→∞

1

K + 1

K∑
k=0

λk
2

√
cdx

d̃i

= lim
K→∞

1

K + 1

1− λK+1
2

1− λ2

√
cdx

d̃i

=0,

(17)

causing over-smoothing.

When ωi(k) = Di(k)/(
∑K

l=0 Di(l)), let Xk
i = [ÂkX]i −

[Â∞X]i, we have:

||X̂i − [Â∞X]i||2 = lim
K→∞

ωi(0)||X0
i +

K∑
k=1

ωi(k)

ωi(0)
Xk

i ||2.

(18)

In real-world graphs, nodes have different initial features,

thus there is little chance that the combination of a node’s

neighboring features both lies in the opposite direction

and is of the same norm of the node’s initial feature.

Suppose that there exits a constant ε > 0 satisfying

min
(
Di(0), ||X0

i +
∑K

k=1
ωi(k)
ωi(0)

Xk
i ||2

)
≥ ε for node i,

we have:

||X̂i − [Â∞X]i||2 ≥ ε2

limK→∞
∑K

k=0 Di(k)

≥ ε2

1
1−λ2

√
cdx

d̃i

> 0
. (19)

Thus we see that even K goes to infinity, we are able to pre-

vent the node representations from reaching the stationary

state (the distance bound depends on the node degree di and

the initial feature Xi). Note that in practice the represen-

tation at k-th smoothing step X(k) achieves the stationary

state much earlier than the infinity-th smoothing step we use

in the theoretical analysis, so we use the softmax normaliza-

tion in Equation 5 to produce a slightly larger bias towards

features with longer distances to the stationary state.

A.3. The node-adaptive weighting in NAFS.

The above analysis theoretically proved our weighting

scheme is able to prevent over-smoothing as the smoothing

step goes to infinity. We now show that another advantage

Table 4. Overview of the datasets.
Dataset Nodes #Features #Edges #Classes

Cora 2,708 1,433 5,429 7

Citeseer 3,327 3,703 4,732 6

PubMed 19,717 500 44,338 3

Wiki 2,405 4,973 17,981 17

ogbn-arxiv 169,343 128 1,166,243 40

ogbn-products 2,449,029 100 61,859,140 47

of our method is that it can fully leverage the multiple fea-

tures over different smooth steps in a node-adaptive manner,

which is different from the traditional routine of the smooth-

blind and fixed scheme. Suppose that the feature of k step is

not over-smoothed yet for a specific node i, i.e., the distance

of Di(k) = εi > 0, we have:

ωi(k) =
εi

limK→∞
∑K

k=0 Di(k)
≥ εi

1
1−λ2

√
cdx

d̃i

> 0
. (20)

We see that as long as the feature is not over-smoothed, our

method will assign a non-zero weight to the feature. Further,

we see that the bound of weight can be affected by the over-

smoothing distance of εi and degree di of a specific node,

implying an adaptive weighting strategy.

B. Details on the Experiments
B.1. Datasets Description

Cora, Citeseer, PubMed, and Wiki are four popular network

datasets. The first three (Yang et al., 2016) are citation

networks where nodes stand for research papers, and an edge

exists between a node pair if one cites the other. Wiki (Yang

et al., 2015) is a webpage network where nodes stand for

webpages, and an edge exists between a node pair if one

links the other. The ogbn-arxiv (Hu et al., 2020) dataset

is also a citation network that contains more than 160M

nodes. Besides, the ogbn-products dataset is an undirected

and unweighted graph, representing an Amazon product

co-purchasing network. Table 4 presents an overview of

these six datasets.

B.2. Hyperparameters setting

When generating node embeddings, we use the values of r
in [0, 0.1, 0.2, 0.3, 0.4, 0.5] to get six different normalized

adjacency matrix Â. The only exception is the link predic-

tion task on the PubMed dataset, where we use values of r
in [0.3, 0.4, 0.5] instead. The optimal value of the maximal

smoothing steps ranges from 1 to 70. Hyperparameters for

all the baseline methods are tuned with OpenBox (Li et al.,

2021) or following the settings in their original paper.

B.3. Experimental Environment

The experiments are conducted on a machine with Intel(R)

Xeon(R) Gold 5120 CPU @ 2.20GHz, and a single NVIDIA
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Table 5. Test accuracy on the node classification task.

Methods Cora Citeseer PubMed

GCN 81.8±0.5 70.8±0.5 79.3±0.6

JK-Net 81.9±0.4 70.7±0.7 78.8±0.7

C&S 76.7±0.4 70.8±0.6 76.5±0.5

SGC 81.0±0.2 71.3±0.5 78.9±0.5

GAT 83.0±0.7 72.5±0.6 79.0±0.3

PPRGo 82.4±0.3 71.3±0.5 80.0±0.4

APPNP 83.3±0.5 71.8±0.5 79.7±0.3

DAGNN 84.4±0.6 73.3±0.6 80.5±0.5

NAFS-mean 84.2±0.6 73.2±0.5 80.5±0.6

NAFS-max 83.8±0.7 73.4±0.6 80.4±0.6

NAFS-concat 84.1±0.6 73.5±0.4 80.3±0.4

TITAN RTX GPU with 24GB GPU memory. The operat-

ing system of the machine is Ubuntu 16.04. For software

versions, we use Python 3.6, Pytorch 1.7.1, and CUDA 10.1.

C. Additional empirical results
C.1. Performance on the Node Classification Task

Node classification performance. In this part, we assess

the quality of the node embeddings generated by NAFS by

the evaluation on the node classification task. We follow

the linear evaluation protocol, which applies a linear clas-

sifier (i.e., Logistic Regression) to the node embeddings to

generate final prediction results. We choose GCN (Kipf &

Welling, 2016a), JK-Net (Xu et al., 2018), C&S (Huang

et al., 2020), SGC (Wu et al., 2019), GAT (Veličković et al.,

2017), PPRGo (Bojchevski et al., 2020), APPNP (Klicpera

et al., 2018), and DAGNN (Liu et al., 2020) as compar-

ison baselines on the node classification task. Note that

C&S in our evaluation adopts a two-layer MLP as the base

model. The evaluation results on three popular datasets,

Cora, Citeseer, and PubMed (Yang et al., 2016), are pro-

vided in Table 5.

The table shows that our method achieves comparable pre-

dictive accuracy as one of the state-of-the-art methods

DAGNN. However, since the node embeddings are gen-

erated before training, our method avoids performing recur-

sive feature smoothing at each training epoch and storing

the entire adjacency matrix on GPU. In this way, our method

is more scalable and efficient to apply on large graphs than

most state-of-the-art methods like DAGNN.

Performance-efficiency comparison. In this part, we

evaluate the node classification accuracy of NAFS-mean

and several baseline methods on the ogbn-arxiv dataset (Hu

et al., 2020). The predictive accuracy and runtime results

are both shown in Figure 8 whose X-axis is in log scale.

The Figure shows that NAFS-mean only falls behind GAT

and outperforms many competitive baselines in terms of

test accuracy. Although the test accuracy of GAT is slightly

higher than NAFS-mean, NAFS-mean achieves over 6x

speedup than GAT.

C.2. Scalability Comparison on Synthetic Graphs

To test the scalability of our proposed NAFS, we also use

the Erdős-Rényi graph generator in the Python package

NetworkX (Hagberg et al., 2008) to generate artificial graphs

of different sizes. The node sizes of the generated artificial

graphs vary from 5,000 to 100,000, and the probability of

an edge exists between two nodes is set to 0.0001. The

experiment settings are altered compared to Sec. 6.4: both

GAE and AGE are trained on an NVIDIA TITAN RTX,

which has 24 GB of memory since only using CPU to train

is unacceptable on large graphs in real-world applications.

The overall experiment results are shown in Figure 7. Fig-

ure 7(a) shows a more detailed comparison on relatively

small artificial graphs whose node sizes range from 5,000 to

20,000. Besides, Figure 7(b) shows that GAE encounters the

out-of-memory problem on the artificial graph composed

of 30,000 nodes, while AGE encounters the out-of-memory

problem at graph size 80,000. Our proposed NAFS is suc-

cessfully carried out on all the artificial graphs. On the

artificial graph consisting of 100,000 nodes, NAFS accom-

plishes the node embedding generation in 66.1 seconds,

which is less than the running time of AGE on the artificial

graph consisting of 10,000 nodes, 80.9 seconds. The graph

size limit of our proposed NAFS is bounded by the CPU

memory size. As long as one can successfully execute the

multiplication of the sparse adjacency matrix and the feature

matrix, NAFS can then be implemented.

C.3. Performance on sparse graphs

To validate the performance benefits of NAFS on sparse

graphs, we conduct experiments on the PubMed dataset

under two handcrafted sparsity settings: edge sparsity and

feature sparsity.

Two sparsity settings. Under the edge sparsity setting,

we randomly remove some edges in the original PubMed

dataset to strengthen the edge sparsity issue. The edges

removed from the original graph are kept the same across

all the compared methods under the same edge removing

rate. Under the feature sparsity setting, we randomly choose

some nodes in the original PubMed dataset and set their

feature vectors to all-zero vectors. The selected nodes are

kept the same across all the compared methods under the

same feature removing rate.

Experiment settings. We report the performance of GAE

and NAFS-mean on the link prediction task under different

sparsity settings. We adopt two metrics - Area Under Curve

(AUC) and Average Precision (AP) to evaluate the perfor-
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Figure 7. Scalablity comparison on synthetic graphs, OOM is “out of memory”.

Figure 8. Test accuracy versus efficiency on the ogbn-arxiv dataset.

Table 6. Performance comparison under different edge removing
rates on the PubMed dataset.

Methods Metrics 0.0 0.2 0.4 0.6

GAE
AUC 96.4±0.4 93.4±0.6 92.6±0.5 90.6±0.5

AP 96.5±0.5 93.7±0.4 92.4±0.6 90.4±0.5

NAFS-mean
AUC 97.4 (+1.0) 96.9 (+3.5) 95.9 (+3.3) 94.3 (+3.7)

AP 97.2 (+0.7) 96.4 (+2.7) 95.2 (+2.8) 93.5 (+3.1)

mance of each method. The evaluations are conducted with

the edge removing rate and the feature removing rate set to

0.2, 0.4, 0.6, respectively. We repeat each method 10 times

and report the mean performance and the corresponding

standard deviations in Table 6 and 7.

Experiment results. The experimental results from Ta-

ble 6 and 7 show that 1) under both edge and feature sparsity

settings, NAFS consistently outperforms GAE and GCN

on the link prediction task and the node classification task,

respectively. 2) the performance gains are larger in sparser

graphs with larger feature/edge removing rates. Concretely,

the AUC of NAFS outperforms GAE by a margin of 1.0%

if the edge is not removed, and the performance gain has

increased to 3.7% when the edge removing rate is 0.6.

The experiment results illustrate that NAFS can effectively

exploit distant neighborhood information without the over-

smoothing problem and thus get better performance on

sparse graphs compared with baseline methods.

Table 7. Performance comparison under different feature removing
rates on the PubMed dataset.

Methods Metrics 0.0 0.2 0.4 0.6

GAE
AUC 96.4±0.4 89.5±0.6 83.5±0.5 77.4±0.5

AP 96.5±0.5 90.4±0.4 85.5±0.6 80.9±0.5

NAFS-mean
AUC 97.4 (+1.0) 93.1 (+3.6) 87.7 (+4.2) 81.7 (+3.7)

AP 97.2 (+0.7) 94.4 (+4.0) 91.0 (+5.5) 86.8 (+5.9)

Table 8. Comparison with NDLS on different tasks.
(a) Node Clustering

Methods Metrics Cora Citeseer PubMed Wiki

NDLS

ACC 70.6 67.5 70.9 36.6

NMI 52.9 41.2 34.6 36.1

ARI 47.4 43.5 34.3 18.2

NAFS-concat

ACC 75.4 71.1 70.5 53.6
NMI 58.6 45.8 33.9 50.5
ARI 53.8 46.1 33.2 26.3

(b) Link Prediction

Methods Metrics Cora Citeseer PubMed

NDLS
AUC 90.6 92.5 95.3

AP 91.3 92.8 95.1

NAFS-concat
AUC 92.6 93.7 97.6
AP 93.8 93.1 97.2

C.4. Comparison with NDLS

NAFS differs from the related work NDLS in: 1) NDLS

searches for the optimal smoothing step for each node, while

NAFS presents “smoothing weight” to aggregate the outputs

after different smoothing steps. 2) Compared with NDLS,

NAFS further proposes to combine the smoothed outputs

of different smoothing operators. 3) NDLS only focuses on

the semi-supervised node classification task, while NAFS

further considers the unsupervised task. The comparison in

Table 8 shows NAFS’s performance superiority over NDLS

on unsupervised tasks.

D. More details of NAFS
D.1. Pseudo code of NAFS

Alg. 1 shows the whole pipeline of our proposed NAFS. We

first initialize X(0) as the original feature matrix X. Given

the normalization parameter rt, we obtained the correspond-

ing normalized adjacency matrix Ârt = D̃rt−1ÃD̃−rt ,

which acts as knowledge extractors (line 4). After that, for

each node, we use E.q. 4 to calculate the Over-smoothing
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Algorithm 1 NAFS pipeline.
Input: Smoothing step K, feature matrix X, adjacency ma-

trix A, and {r1, r2, ..., rT }.

Output: Graph embedding matrix Z.

1 Initialize the feature matrix X(0) = X;

2 Operation 1: Feature Smoothing
3 for 1 ≤ t ≤ T do
4 Update the normalized adjacency matrix Ârt =

D̃rt−1ÃD̃−rt ;

5 for 1 ≤ i ≤ n do
6 for 0 ≤ k ≤ K do
7 Calculate Di(k) and wi(k) with Eq. 4 and 5,

respectively;
8 for 0 ≤ k ≤ K do
9 Construct W(k) with Eq. 6;

10 Smooth the node features X with X̂(t) =
K∑

k=0

W(k)Âk
rtX;

11 Operation 2: Feature Ensemble
12 Compute the final embedding Z with Z ←

⊕i∈{1,2,...,T}X̂(i).

Distance with all the k ranging from 0 to K (line 6, 7). Then

we calculate its Aggregation Weights through Eq. 5 (line

8, 9). After obtaining Aggregation Weights with all k and

i, we construct the Aggregation Weight matrix for each k
with Eq. 6 (line 10, 11). Next, we compute the NAFS out-

put X̂(t) with X̂(t) =
K∑

k=0

W(k)Âk
rtX (line 12). Finally,

we compute the final embedding result of all t through

Z ← ⊕i∈{1,2,...,T}X̂(i) (line 14).

D.2. Motivation of Feature Ensemble

Adopting different smoothing operators in the feature

smoothing operation (the normalized adjacency matrix Â
in Eq. 1) is equivalent to smoothing features in different

manners. Other than the normalized adjacency matrix Â,

there are many alternatives that have been proposed recently.

For example, GraphSAGE (Hamilton et al., 2017) designs

three smoothing operators (i.e., Mean, LSTM and Pooling)

to flexibly capture the information of neighboring nodes.

SIGN (Frasca et al., 2020) enriches the smoothing operators

with Personalized-PageRank-based (Klicpera et al., 2019)

and triangle-based (Monti et al., 2018) adjacency matrices.

However, these methods are not designed for graph repre-

sentation learning, and different smoothing operators may

result in diverse smoothed features. For better node rep-

resentation, the feature ensemble is used to combine the

smoothed feature under different smoothing operators.

D.3. Relations with other Scalable GNN Architectures

The scalable GNNs can be roughly classified into two cat-

egories: (a) ”first propagate then predict”; (b) sampling +

ordinary GNN. The first category includes famous GNN

models like SGC (Wu et al., 2019) and SIGN (Frasca et al.,

2020). They disentangle the coupled propagation and trans-

formation operations in traditional GCN layers (Kipf &

Welling, 2016a), and execute all the propagation operations

as preprocessing. The most representative GNN model of

the second category is GraphSAGE (Hamilton et al., 2017),

and many other works have been proposed following it, like

FastGCN (Chen et al., 2018) and GraphSAINT (Zeng et al.,

2019). The main contribution of these works is effective

sampling strategies that can preserve the most valuable in-

formation from the original graph. The sampling strategies

always act as a plug-and-play module, and can be combined

with ordinary GNNs, which allows the latter to perform on

large-scale graphs. GNNs belong to the ”first propagate then

predict” category usually enjoy higher efficiency since they

avoid recursively performing propagation in each training

epoch. Our proposed NAFS belongs to the ”first propagate

then predict” category.

D.4. Advantage in Distributed Settings

NAFS can also be adapted to the distributed environment.

The feature smoothing process in NAFS is sparse matrix

dense matrix multiplications, which have mature implemen-

tations in distributed environments. Besides, this process

only needs to be pre-computed at once. In contrast, dur-

ing each training iteration of GAE and its variants, each

node must repeatedly pull the intermediate representations

of other nodes, leading to high communication costs.

D.5. Association with Mixing Time in Markov Chain

Setting r = 0 in the adjacency matrix makes the feature

smoothing process a Markov chain. To study the mixing

time at the node level, we denote tmix(ε, i) as the minimum

step for node i such that the distance between its representa-

tion and its stationary state is at most ε. It can be calculated

as follows with the help of Lemma 3 in Appendix A.1:

tmix(ε, i) = min
t∈N

{d(t, i) ≤ ε}

= min
t∈N

{
|P t

(i, ·) − π||TV ≤ ε
}

≤ min
t∈N

{
λt
2

∑n
j=1 d̃j |Xj |
2d̃i

≤ ε

}
= �logλ2

2d̃iε∑n
j=1 d̃j |Xj |

�.

Intuitively, tmix(ε, i) is negatively correlated with “smooth-

ing speed”. And the upper bound shows that nodes with

smaller degrees possess larger tmix(ε, i)s, which verifies

the above assumption: the nodes with smaller degrees own

slower ”smoothing speeds” as shown in Figure 2.
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E. Reproduction
The source code of NAFS can be found in Anonymous

Github (https://github.com/PKU-DAIR/NAFS).

To ensure reproducibility, we have provided the overview

of datasets and baselines in Sec. 6.1 and Appendix B.1. The

settings for each task and baseline can be found in Sec. 6.2.

Our experimental environment is presented in Appendix B.2,

and please refer to “README.md” in the Github repository

for more reproduction details.


