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Abstract
Spurious correlations pose a major challenge for
robust machine learning. Models trained with
empirical risk minimization (ERM) may learn to
rely on correlations between class labels and spu-
rious attributes, leading to poor performance on
data groups without these correlations. This is
challenging to address when the spurious attribute
labels are unavailable. To improve worst-group
performance on spuriously correlated data with-
out training attribute labels, we propose Correct-
N-Contrast (CNC), a contrastive approach to di-
rectly learn representations robust to spurious cor-
relations. As ERM models can be good spurious
attribute predictors, CNC works by (1) using a
trained ERM model’s outputs to identify samples
with the same class but dissimilar spurious fea-
tures, and (2) training a robust model with con-
trastive learning to learn similar representations
for these samples. To support CNC, we introduce
new connections between worst-group error and
a representation alignment loss that CNC aims
to minimize. We empirically observe that worst-
group error closely tracks with alignment loss,
and prove that the alignment loss over a class
helps upper-bound the class’s worst-group vs. av-
erage error gap. On popular benchmarks, CNC
reduces alignment loss drastically, and achieves
state-of-the-art worst-group accuracy by 3.6% av-
erage absolute lift. CNC is also competitive with
oracle methods that require group labels.

1. Introduction
For many tasks, deep neural networks (NNs) are negatively
affected by spurious correlations—dependencies between
observed features and class labels that only hold for certain
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groups of data. For example, consider classifying cows
versus camels in natural images. 90% of cows may appear
on grass, and 90% of camels on sand. A model trained
with standard ERM may learn to minimize average training
error by relying on the spurious background attribute in-
stead of the desired animal, performing well on average yet
obtaining high worst-group test error (e.g., misclassifying
cows on sand as camels) (Ribeiro et al., 2016; Beery et al.,
2018). This illustrates a widespread issue where models
are systematically biased due to the presence of spurious
attributes. This issue is critical to address in fields ranging
from algorithmic fairness to medical ML (Blodgett et al.,
2016; Buolamwini & Gebru, 2018; Hashimoto et al., 2018).

How can we improve robustness to spurious correlations
and reduce worst-group error? If group or spurious attribute
labels are available, one option is to reweight groups during
training to directly minimize worst-group error, e.g. via
group distributionally robust optimization (GDRO) (Sagawa
et al., 2019). However, such group labels may be expen-
sive to obtain or unknown a priori (Oakden-Rayner et al.,
2020), limiting the applicability of these “oracle” methods.
To tackle spurious correlations without these labels, many
prior works recognize that because ERM models can learn
spurious correlations, such models can help infer the groups
or spurious attributes. These methods thus first infer data
groups with a trained ERM model, before using these in-
ferred groups to train a more robust model. For example,
Sohoni et al. (2020) cluster an ERM model’s feature rep-
resentations to infer groups, before running GDRO using
these clusters as groups. Nam et al. (2020); Liu et al. (2021)
treat an ERM model’s misclassifications as minority group
samples, and upweight these groups to train a robust model.
Ahmed et al. (2021); Creager et al. (2021) use invariance
objectives to both infer groups with an ERM model and
train a more robust model. However, while these methods
significantly improve worst-group error over ERM without
training group labels, they still perform worse than methods
that use group labels (e.g., GDRO).

In this work, we thus aim to further improve worst-group
accuracy without requiring group labels. We start with the
motivating observation that across spurious correlation set-
tings, a neural network’s worst-group accuracy strongly
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�D� �E�Figure 1. (1) ERM-trained models classify by spurious features, shown via GradCAM (Selvaraju et al., 2017). (2) CNC learns similar
representations for same-class samples with different ERM predictions to ignore spurious attributes and classify samples correctly.

tracks how well its representations—i.e., the outputs from
its last hidden layer—exhibit dependence only on ground-
truth labels, and not on spurious attributes. We quantify
this property via estimated mutual information as well as a
notion of geometric representation alignment, inspired by
prior work in contrastive learning (Wang & Isola, 2020).
Here, the alignment measures how close samples with the
same class but different spurious attributes embed in rep-
resentation space. We first empirically observe that this
dependence consistently holds across datasets with increas-
ingly strong spurious correlations, and also helps explain
when upweighting methods (e.g., JTT (Liu et al., 2021))
improve worst-group error over ERM. We then theoretically
show that a model’s alignment loss for a class can be used
to upper-bound its worst-group versus average error gap for
that class. Thus, by improving alignment while keeping av-
erage error low for a class, we can help improve the class’s
worst-group error. However, current methods do not directly
optimize for representation-level properties, suggesting one
underexplored direction to improve worst-group error.

We thus propose Correct-N-Contrast (CNC), a two-stage
contrastive learning approach for better-aligned represen-
tations and improved robustness to spurious correlations.
The key idea is to use contrastive learning to “push together”
representations for samples with the same class but different
spurious attributes, while “pulling apart” those with differ-
ent classes and the same spurious attribute (Fig. 1). CNC
thus improves intra-class alignment while also maintaining
inter-class separability, encouraging models to rely on fea-
tures predictive of class labels but not spurious attributes. As
we do not know the spurious attribute labels, CNC first in-
fers the spurious attributes using a regularized ERM model
trained to predict class labels (similar to prior work). Dif-
ferent from these works, we use these predictions to train
another robust model via contrastive learning and a novel
sampling strategy. We randomly sample an anchor, select
samples with the same class but different ERM predictions
as hard positives to “push together,” and select samples from
different classes but the same ERM prediction as hard neg-
atives to “pull apart.” This encourages ignoring spurious
differences and learning class-specific similarities between

anchor and positives, and conversely ignoring spurious sim-
ilarities and learning class-specific differences between an-
chor and negatives. CNC thus corrects for the ERM model’s
learned spurious correlations via contrastive learning.

We evaluate CNC on four spurious correlation benchmarks.
Among methods that do not assume training group labels,
CNC substantially improves worst-group accuracy, obtain-
ing up to 7.7% absolute lift (from 81.1% to 88.8% on
CelebA), and averaging 3.6% absolute lift over the second-
best method averaged over all tasks (JTT, Liu et al. (2021)).
CNC also nearly closes the worst-group accuracy gap with
methods requiring training group labels, only falling short
of GDRO’s worst-group accuracy by 0.9 points on aver-
age. To help explain this lift, we find that CNC indeed
improves alignment and learns representations with substan-
tially higher dependence on classes over spurious attributes.
Finally, we run additional ablation experiments that show
that: CNC is more robust to noisy ERM predictions than
prior methods; with spurious attribute labels, CNC improves
worst-group accuracy over GDRO by 0.9% absolute on av-
erage; and CNC’s sampling approach improves performance
compared to alternative approaches. These results show that
our contrastive learning and sampling strategies are effective
techniques to tackle spurious correlations.

Summary. We summarize our contributions as follows: (1)
We empirically show that worst-group error correlates with
alignment loss, and theoretically analyze this connection.
(2) We propose CNC, a two-stage contrastive approach with
a hard negative sampling scheme to improve representation
alignment and thus train models more robust to spurious
correlations. (3) We show that CNC achieves state-of-the-art
worst-group accuracy on three benchmarks and learns better-
aligned representations less reliant on spurious features.

2. Preliminaries
Problem setup. We present our setting and the loss objec-
tives following Sagawa et al. (2019). Let X = {x1, . . . , xn}
and Y = {y1, . . . , yn} be our training dataset of size n.
Each datapoint has an observed feature vector xi 2 X , label



Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Figure 2. UMAPs (Uniform Manifold Approximation and Projec-
tion) (McInnes et al., 2018) for dimensionality reduction and vi-
sualization of ERM-trained hidden-layer representations. Models
trained on spuriously correlated data (pcorr = 0.95) exhibit greater
dependence on spurious attributes over ground-truth concepts ver-
sus models trained on spuriously uncorrelated data (pcorr = 0.20).

yi 2 Y , and unobserved spurious attribute ai 2 A. The
set of groups G is defined as the set of all combinations of
class label and spurious attribute pairs, i.e. G = Y ⇥ A.
Let C = |Y| be the number of classes and K = |G| be the
number of groups. We assume that each example (xi, yi, ai)
is drawn from an unknown joint distribution P , and at least
one sample from each group is observed in the training data.
Let Pg be the distribution conditioned on (y, a) = g, for
any g 2 G. Given a model f✓ : X 7! RC and a convex loss
` : X ⇥ Y 7! R, the worst-group loss is:

Lwg(f✓) := max
g2G

E(x,y,a)⇠Pg
[`(f✓(x), y)]. (1)

ERM minimizes the training loss as a surrogate for the
expected average population loss Lavg:

Lavg(f✓) := E(x,y,a)⇠P [`(f✓(x), y)] (2)

While ERM is the standard way to train NNs, spurious cor-
relations can cause ERM to obtain high minority group error
even with low average error. Minimizing the empirical ver-
sion of (1) via GDRO is a strong baseline for improving
worst-group error, if training group labels {a1, . . . , an} are
available (Sagawa et al., 2019). We tackle the more challeng-
ing setting where training group labels are not available.

Contrastive learning. We briefly describe contrastive learn-
ing (Chen et al., 2020), a central component of our approach.
Let f✓ be a neural network model with parameters ✓. Let
the encoder fenc : X 7! Rd be the feature representation
layers of f✓. Let fcls : Rd 7! RC be the classification
layer of f✓, which maps encoder representations to one-
hot label vectors. We learn fenc with the supervised con-

trastive loss Lsup
con proposed in Khosla et al. (2020). For each

anchor x, we sample M positives {x+
i }Mi=1 and N nega-

tives {x�
i }Ni=1. Let y, {y+i }Mi=1, {y

�
i }Ni=1 be the labels and

z, {z+i }Mi=1, {z
�
i }Ni=1 be the normalized outputs of fenc(x)

for the anchor, positives, and negatives respectively. With
input x mapped to z, the training objective for the encoder
is to minimize Lsup

con(x; fenc), defined as

E

"
� log

exp(z>z+i /⌧)
PM

m=1 exp(z
>z+m/⌧) +

PN
n=1 exp(z

>z�n /⌧)

#
,

(3)

where ⌧ > 0 is a scalar temperature hyperparameter and the
expectation is over z, {z+i }, {z

�
i }. Minimizing Eq. 3 leads

to z being closer to z+ than z� in representation space.

3. The impact of spurious correlations on
learned data representations

We present our key observation that a model’s worst-group
accuracy correlates with how well its learned representa-
tions depend on the class labels, and not the spurious at-
tributes. We draw connections between a neural network’s
worst-group error and its alignment and mutual information
metrics, noting a strong inverse relationship between worst-
group accuracy and a class-specific alignment loss, and then
theoretically justify this relationship.

3.1. Understanding worst-group performance using
representation metrics

We first illustrate that when neural networks are trained
with standard ERM on spuriously correlated data, their hid-
den layer representations exhibit high dependence on the
spurious attribute. To better understand and connect this
behavior to worst-group error, we quantify these results
using representation alignment (cf. Eq. 4) and mutual in-
formation metrics. We observe that these metrics explain
trends in ERM’s worst-group accuracy on various spuriously
correlated datasets. These trends also apply to upsampling
methods that mitigate the impact of spurious features.

Example setup. We model spurious correlations with CM-
NIST⇤, a colored MNIST dataset inspired by Arjovsky et al.
(2019). There are 5 digit classes and 5 colors. We color a
fraction pcorr of the training samples with a color a associ-
ated with each class y, and color the test samples uniformly-
randomly. To analyze learned representations, we train a
LeNet-5 CNN (LeCun et al., 1989) with ERM to predict
digit classes, and inspect the outputs of the last hidden layer
z = fenc(x). As shown in Fig. 2, with low pcorr, models
learn representations with high dependence on the actual
digit classes. However, with high pcorr, we learn z highly
dependent on a, despite only training to predict y.

Representation metrics. To quantify this behavior, we
use two metrics designed to capture how well the learned
representations exhibit dependence on the class label versus
the spurious attributes. First, we compute an alignment

loss L̂align(fenc; g, g0) between two groups g = (y, a) and
g0 = (y, a0) where a 6= a0. This measures how well fenc
maps samples with the same class, but different spurious
attributes, to nearby vectors via Euclidean distance.

Letting G and G0 be the subsets of training data in groups g
and g0 respectively, we define L̂align(fenc; g, g0) as

1

|G|
1

|G0|
X

(x,y,a)2G

X

(x0,y,a0)2G0

kfenc(x)� fenc(x
0)k2 (4)
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Figure 3. Accuracy and representation metrics from ERM models trained on increasingly spuriously correlated Colored MNIST. Lower
worst-group accuracy (Fig. 3a) corresponds to both higher alignment loss (Fig. 3b) and Î(Y ;Z) < Î(A;Z) (Fig. 3c, Fig. 3d).
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Figure 4. Higher worst-group accuracy with JTT (versus Fig. 3a)
coincides with keeping Î(Y ;Z)� Î(A;Z).

Thus, lower L̂align means better alignment. We also quantify
representation dependence by estimating the mutual infor-
mation (MI) of a model’s learned representations with the
class label, i.e. Î(Y ;Z) and the spurious attributes Î(A;Z).
We defer computational details to Appendix E.

Results for ERM. In Fig. 3 we find that worst-group er-
ror is strongly associated with both alignment and mutual
information (MI) metrics. As pcorr increases, ERM mod-
els not only drop in worst-group accuracy, but also incur
higher alignment loss (Fig. 3ab). Fig. 3c further illustrates
this with MI. We plot the estimated MI and worst-group
accuracy for models at each epoch. A substantial drop in
worst-group accuracy occurs with high Î(A;Z) (especially
when Î(A;Z) > Î(Y ;Z), even when Î(Y ;Z) is high).
Fig. 3d also captures this trend: as pcorr increases, Î(A;Z)
does as well while Î(Y ;Z) decreases.

Results for JTT. In Fig. 4, we also show that this rela-
tion holds when training with another recent (upsampling-
based) approach, JTT (Liu et al., 2021). With high pcorr,
JTT achieves higher worst-group accuracy compared to
ERM, and this corresponds to learning representations with
high Î(Y ;Z) and low Î(A;Z). However, we note that JTT
and other previous approaches do not explicitly optimize
representation-level metrics, suggesting a new direction to
improve worst-group performance.

3.2. Justification that better alignment encourages lower
worst-group loss

Next, we give a rigorous justification of the relation
from lower alignment loss to lower worst-group loss. For

any label y 2 Y , let Gy be the set of groups with label y in G.
Let Lwg(f✓; y) be the worst-group loss among groups in Gy:

Lwg(f✓; y) := max
g2Gy

E
(x,ỹ,a)⇠Pg

[`(f✓(x), ỹ)] .

Let Lavg(f✓; y) be the average loss among groups in Gy:
Lavg(f✓; y) := E

(x,ỹ,a)⇠P :8a2A
[`(f✓(x), ỹ)] .

Additionally, let L̂align(f✓; y) be the largest cross-group
alignment loss among groups in Gy:

L̂align(f✓; y) := max
g2Gy,g02Gy : g 6=g0

L̂align(fenc; g, g
0). (5)

We state our result as follows.
Theorem 3.1. In the setting described above, suppose the

weight matrix of the linear classification layer W satisfies

kWk2  B, for some B > 0. Suppose the loss function

`(x, y) is C1-Lipschitz in x and bounded from above by

C2, for some C1 > and C2 > 0. Let ng be the size of any

group g 2 G in the training set. Then, for any � > 0, with

probability 1� �, the following holds for any y 2 Y:

Lwg(f✓; y)� Lavg(f✓; y) (6)

 BC1 · L̂align(f✓; y) + max
g2Gy

C2

q
8 log(|Gy|/�)/ng.

The broader implication of our result is that reducing the
alignment loss closes the gap between worst-group and
average-group losses. The proof is deferred to Appendix B.

Broader implications. We summarize this section with
two takeaways: (1) When trained on spuriously correlated
datasets, ERM networks learn data representations highly
dependent on spurious attributes. Representation clusters
(Sohoni et al., 2020) or the ERM model’s outputs (Liu et al.,
2021; Nam et al., 2020) can thus serve as (noisy) pseudola-
bels for spurious attributes. (2) Both representation metrics
correlate with worst-group error, such that a viable way to
improve worst-group error is to improve alignment within
each class. Both takeaways motivate our approach next.

4. Our approach: Correct-N-Contrast (CNC)
We now present CNC, a two-stage method to improve worst-
group performance and robustness to spurious correlations,
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without training group labels. Similar to prior works, our
first stage trains an ERM model with proper regularization1

on the training set, in order to infer spurious attributes.

The key difference is our second stage: we aim to train a
more robust model by learning representations such that
samples in the same class but different groups are close to
each other. To do so, we use a contrastive learning strategy,
proposing a new sampling scheme where we treat sam-
ples with the same class but different spurious attributes as
distinct “views” of the same class (anchors and positives),
while sampling anchors and negatives as datapoints with the
same inferred spurious attributes but different classes. By
training the second stage model with contrastive learning
over these samples, we intuitively encourage the second
model to “pull together” samples’ representations based on
shared class-specific features, while ignoring different spu-
rious features. To obtain such samples, we use the initial
ERM model’s predictions as spurious attribute proxies.

Later in Sec. 5.1 and Sec. 5.2, we show that CNC indeed re-
duces L̂align(f✓; y) and substantially improves worst-group
accuracy. In Sec. 5.3 we also show that alternative sampling
strategies degrade performance. We include further details
on both stages below, and summarize CNC in Algorithm 1.

Stage 1: Inferring pseudo group labels. We train an
initial model f✓̂ on the training dataset {(xi, yi)}ni=1 with
ERM and regularization, and save its predictions {ŷi}ni=1

on the training datapoints. We consider two ways to get
predictions ŷ: standard argmax over the ERM model’s final-
layer outputs (as in Liu et al. (2021)), and clustering its last
hidden-layer outputs into C clusters2 (similar to Sohoni et al.
(2020)). While both approaches exploit the ERM model’s
learned spurious correlations, we find clustering to lead to
better performance (cf. Appendix E.2).

Stage 2: Supervised contrastive learning. Next, we train a
robust model with supervised contrastive learning using the
ERM predictions. Our approach is based on standard con-
trastive learning methods (Chen et al., 2020; Khosla et al.,
2020), but we introduce new “contrastive batch” sampling
and optimization objectives in order to induce robustness to
spurious correlations.

Contrastive batch sampling. As described in Sec. 2, con-
trastive learning involves sampling anchors, positives, and
negatives with the general form {x}, {x+}, {x�}. Here, we
wish to sample points such that by maximizing the simi-
larity between anchors and positives (and keeping anchors

1As we train on the same dataset we infer spurious attributes
on, regularization (via high weight decay or early stopping) is to
prevent the ERM model from memorizing train labels. This is stan-
dard (e.g., (Sohoni et al., 2020; Liu et al., 2021)). In Sec. 5.3 we
show that we do not require extremely accurate spurious attribute
predictions to substantially improve robustness in practice.

2Recall that C is the number of classes.

Algorithm 1 Correct-N-Contrast (CNC)
Input: Training dataset (X,Y ); # positives M ; # negatives N ;

learning rate ⌘, # epochs K.
Stage 1: Inferring pseudo group labels

1: Train ERM model f✓̂ on (X,Y ); save ŷi := f✓̂(xi).
Stage 2: Supervised contrastive learning

2: Initialize “robust” model f✓ (e.g., with random weights)
3: for epoch 1, . . . ,K do
4: for anchor (x, y) 2 {(X,Y ) : ŷ = y} do
5: (Let ŷ := f✓̂(x) be the ERM model prediction of x.)
6: Get M positives {(x+

m, y+
m)} where y+

m = y, ŷ+
m 6= ŷ.

7: Get N negatives {(x�
n , y

�
n )} where y�

n 6= y, ŷ�
n = ŷ.

8: Update f✓ by ✓  ✓ � ⌘ ·rL̂(f✓;x, y) (cf. Eq. (7))
with anchor, M positives, and N negatives.

return final model f✓ from Stage 2.

and negatives apart), the Stage 2 model “ignores” spurious
similarities while learning class-consistent dependencies.
For each batch we randomly sample an anchor xi 2 X with
label yi and ERM prediction ŷi = y, M positives with the
same class as yi but a different ERM model prediction than
ŷi, and N negatives with different classes than yi but the
same ERM model prediction as ŷi. For more comparisons
per batch, we also switch anchor and positive roles. We
include implementation details in Appendix A.2.

Optimization objective and updating procedure. Recall
that we seek to learn aligned representations to improve
robustness to spurious correlations. Thus, we also jointly
train the full model to classify datapoints correctly. As we
have the training class labels, we jointly update the model’s
encoder layers fenc with a contrastive loss, and the full
model f✓ with a cross-entropy loss. Our overall objective is:

L̂(f✓;x, y) = �L̂sup
con(fenc;x, y) + (1� �)L̂cross(f✓;x, y). (7)

Here L̂sup
con(fenc;x, y) is the supervised contrastive loss of x

and its positive and negative samples, similar to Eq. (3) (see
Eq (8), Appendix A.2 for the full equation); L̂cross(f✓;x, y)
is average cross-entropy loss over x, the M positives, and
N negatives; �2[0, 1] is a balancing hyperparameter.

To calculate the loss, we first forward propagate one
batch

�
xi, {x+

m}Mm=1, {x�
q }Nq=1

�
through fenc and nor-

malize the outputs to obtain representation vectors�
zi, {z+m}Mm=1, {z�q }Nq=1

�
. To learn closely aligned zi and

z+ for all {z+m}Mm=1, we update fenc with the L̂sup
out (·; fenc)

loss. Finally, we also pass the unnormalized encoder outputs
fenc to the classifier layers fcls and compute a batch-wise
cross-entropy loss L̂cross(f✓) using each sample’s class la-
bels and f✓’s outputs. Further details are in Appendix A.

5. Experimental results
We conduct experiments to answer the following questions:
(1) Does CNC improve worst-group performance over prior
state-of-the-art methods on datasets with spurious corre-
lations? (2) To help explain any improvements, do CNC-
learned representations actually exhibit greater alignment
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Table 1. Worst-group and average accuracies. 1st / 2nd best worst-group accuracies bolded / underlined. On image datasets, CNC
substantially improves worst-group accuracy over comparable methods without group labels, competing with GDRO. CNC also competes
with SoTA on CivilComments. Starred results from original papers. Others run over 3 seeds. More implementation details in Appendix E.

CMNIST* Waterbirds CelebA CivilComments-WILDS

Accuracy (%) Worst-group Average Worst-group Average Worst-group Average Worst-group Average

ERM 0.0 (0.0) 20.1 (0.2) 62.6 (0.3) 97.3 (1.0) 47.7 (2.1) 94.9 (0.3) 58.6 (1.7) 92.1 (0.4)
LfF 0.0 (0.0) 25.0 (0.5) 78.0 (-)⇤ 91.2⇤ 77.2 (-)⇤ 85.1 (-)⇤ 58.8 (-)⇤ 92.5 (-)⇤
GEORGE 76.4 (2.3) 89.5 (0.3) 83.8 (1.0)⇤ 93.9 (0.8)⇤ 54.9 (1.9)⇤ 94.5 (0.2)⇤ - -
PGI 73.5 (1.8) 88.5 (1.4) 79.5 (1.9) 95.5 (0.8) 85.3 (0.3) 87.3 (0.1) - -
CIM 0.0 (0.0) 36.8 (1.3) 77.2 (-)⇤ 95.6 (-)⇤ 83.6 (-)⇤ 90.6 (-) ⇤ N/A N/A
EIIL 72.8 (6.8) 90.7 (0.9) 77.2 (1.0) 96.5 (0.2) 81.7 (0.8) 85.7 (0.1) 67.0 (2.4)⇤ 90.5 (0.2)⇤
JTT 74.5 (2.4) 90.2 (0.8) 83.8 (1.2) 89.3 (0.7) 81.5 (1.7) 88.1 (0.3) 69.3 (-)⇤ 91.1 (-)⇤

CNC (Ours) 77.4 (3.0) 90.9 (0.6) 88.5 (0.3) 90.9 (0.1) 88.8 (0.9) 89.9 (0.5) 68.9 (2.1) 81.7 (0.5)

Group DRO 78.5 (4.5) 90.6 (0.1) 89.9 (0.6) 92.0 (0.6) 88.9 (1.3) 93.9 (0.1) 69.8 (2.4) 89.0 (0.3)

and class-only dependence, and how is this impacted by the
strength of a spurious correlation? (3) To better understand
CNC’s components and properties, how do ablations on
the Stage 1 prediction quality and the Stage 2 contrastive
sampling strategy impact CNC in practice? We answer each
question in the following sections. In Sec. 5.1, we show
that CNC substantially improves worst-group accuracy with-
out group labels, averaging 3.6% points higher than prior
state-of-the-art. In Sec. 5.2, we verify that more desirable
representation metrics consistently coincide with these im-
provements. Finally in Sec. 5.3, we find CNC to be more ro-
bust to inaccurate Stage 1 predictions than alternatives, show
that CNC further improves robustness with group labels (im-
proving worst-group accuracy by 0.9 points over GDRO),
and validate the importance of CNC’s sampling criteria.
We present additional ablations on CNC’s components, in-
cluding the alignment approach, in Appendix C. We briefly
describe the benchmark evaluation tasks below. We run CM-
NIST⇤ with pcorr = 0.995. Following prior work (Sagawa
et al., 2019), we report all results with early stopping with re-
spect to worst-group validation accuracy. Further details on
datasets, models, and hyperparameters are in Appendix E.

Waterbirds (Sagawa et al., 2019): We classify Y =
{waterbird, landbird}. 95% of images have the same bird
type (Y) and background type (A = {water, land}) type.

CelebA (Liu et al., 2015): We classify celebrities’ hair color
Y = {blond, not blond} with A = {male, female}. Only
6% of blond celebrities in the dataset are male.

CivilComments-WILDS (Borkan et al., 2019; Koh et al.,
2021): We classify Y = {toxic, nontoxic} comments. A
denotes a mention of one of eight demographic identities.

5.1. Comparison of worst-group performance
To study (1), we evaluate CNC on image classification and
NLP tasks with spurious correlations. As baselines, we
compare against standard ERM and an ‘oracle’ GDRO ap-
proach that assumes access to the group labels. We also
compare against recent methods that tackle spurious corre-

lations without requiring group labels: GEORGE (Sohoni
et al., 2020), Learning from Failure (LfF) (Nam et al., 2020),
Predictive Group Invariance (PGI) (Ahmed et al., 2021), En-
vironment Inference for Invariant Learning (EIIL) (Creager
et al., 2021), Contrastive Input Morphing (CIM) (Taghanaki
et al., 2021), and Just Train Twice (JTT) (Liu et al., 2021). In
Appendix C.4, we also compare CNC with reported worst-
group accuracy results using more recent baselines from
Idrissi et al. (2021), who explore subsampling (SUBY) and
reweighting (RWY) to balance classes as baselines to im-
prove worst-group accuracy.

Results are in Table 1. CNC achieves highest worst-group
accuracy among all methods without training group labels
on CMNIST⇤, Waterbirds, and CelebA, and near-SoTA worst-
group accuracy on CivilComments-WILDS.

While LfF, GEORGE, PGI, EIIL, and JTT similarly use a
trained ERM model to estimate groups, CNC uniquely uses
ERM predictions to learn desirable representations via con-
trastive learning. By contrasting positives and negatives, we
reason that CNC more strongly encourages ignoring spuri-
ous attributes compared to prior invariance, input transfor-
mation, or upweighting approaches. We include additional
support for this via GradCAM visualizations in Appendix G.

5.2. Detailed analysis of representation metrics
To shed light on CNC’s worst-group accuracy gains, we
study if models trained with CNC actually learn represen-
tations with higher alignment. Compared to ERM and JTT
(which obtained second highest worst-group accuracy on av-
erage), CNC learns representations with significantly higher
alignment (i.e., lower alignment loss) and lower mutual in-
formation with spurious attributes, while having comparable
mutual information with class labels (Fig. 5). This corre-
sponds to CNC models achieving the highest worst-group
accuracy on Waterbirds and CelebA. Further, while all meth-
ods produce representations with high mutual information
with class labels (Fig. 5b), compared to other methods, CNC
representations drastically reduce mutual information with
spurious attributes (Fig. 5c). In Fig. 6, we further illustrate
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Figure 5. Model alignment loss (a) and mutual information (b, c) after training with ERM, JTT, and CNC. CNC most effectively reduces
spurious attribute dependence and obtains smaller gaps for per-class worst-group versus average error (d), as supported by Theorem 3.1.

Figure 6. UMAPs of trained Waterbirds representations. ERM representations organize by both ground-truth Y and spurious A, with
greater separability by A. JTT leads to greater separability by Y , but still carries dependence on A. CNC best removes dependence on A.

Figure 7. Lalign & WG acc. on CMNIST⇤with increasing spurious
correlation strength. CNC’s higher acc. coincides w/lower Lalign.

this via UMAP visuals of the learned Waterbirds representa-
tions. All methods lead to class-separable representations.
However, ERM’s representations exhibit stronger separabil-
ity by spurious attributes, and JTT’s also have some spurious
attribute dependency. CNC uniquely learns representations
that strongly depict class-only dependence.

In addition, to study how this relation between represen-
tation metrics and worst-group accuracy scales with the
strength of the spurious correlation, we compute representa-
tion metrics with CNC, ERM, and JTT models trained on
increasingly spurious (" pcorr) CMNIST⇤ datasets (Fig. 7).
While CNC and JTT maintain high worst-group accuracy
where ERM fails, CNC also performs better in more spu-
rious settings (pcorr > 0.99). These improvements are re-
flected by lower alignment loss (averaged over classes);
CNC consistently achieves lowest such loss. We report
similar results for mutual information in Appendix C.2.

5.3. Ablation studies
We study the importance of each individual component
of our algorithm. We first study how CNC is affected by
how well the Stage 1 model predicts spurious attributes,
finding CNC more robust to noisy ERM predictions than

Table 2. CMNIST⇤ Stage 2 model accuracies with noisy Stage 1
“predictions”. CNC is more robust than JTT to increasing noise p.

Noise Probability (p) 0 0.01 0.1 0.25

WG Acc. JTT 78.4 (2.3) 70.2 (4.7) 53.8 (6.0) 43.6 (7.3)
CNC 80.6 (2.8) 76.5 (4.1) 61.3 (6.0) 53.2 (7.0)

Avg Acc. JTT 89.7 (0.9) 86.7 (1.3) 79.5 (1.6) 72.9 (1.4)
CNC 92.1 (0.5) 89.4 (1.4) 81.7 (2.0) 74.9 (2.0)

comparable methods. We next evaluate CNC with true
spurious labels, finding CNC to outperform GDRO with
this group information. We finally ablate CNC’s sampling
criteria, and find our hard sampling approach integral for
substantial worst-group accuracy gains. In Appendix C.1,
we compare other approaches for representation alignment,
and find the proposed contrastive approach achieves highest
worst-group accuracy.

Influence of Stage 1 predictions. ERM predictions can
still be noisy proxies for spurious attributes; we thus study
if a practical benefit of CNC’s contrastive approach is more
robustness to this noise compared to alternatives that also
use ERM predictions, e.g., JTT’s upsampling. We run CNC
and JTT with added noise to the same Stage 1 predictions,
where JTT upsamples the class-incorrect ones, and compare
robust model accuracies. On CMNIST⇤, starting with true
spurious attribute labels as oracle Stage 1 “predictions”, we
add noise by swapping each label randomly with probabil-
ity p. In Table 4, while both methods’ accuracies drop as
p increases (i.e., the “predictions” degrade), CNC consis-
tently achieves higher accuracy that also degrades less than
JTT. On real data, to work well CNC also does not require
spurious attributes to be perfectly inferred in Stage 1. For
Table 1 Waterbirds and CelebA results, the Stage 1 ERM
model predicts the spurious attribute with 94.7% and 84.0%
accuracy respectively.
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Table 3. Accuracy (%) and representation metrics (⇥10) for CNC sampling method ablations. Removing components of CNC’s sampling
criteria reduces worst-group (WG) acc., generally in line with higher Lalign, lower class dependence Î(Y ;Z), and higher spurious attribute
dependence Î(A;Z) than default CNC.

Waterbirds CelebA

Method Avg. Acc. WG Acc. Lalign [#] Î(Y ;Z) ["] Î(A;Z) [#] Avg. Acc. WG Acc. Lalign [#] Î(Y ;Z) ["] Î(A;Z) [#]
Neg. by diff. class 95.6 (0.1) 82.2 (1.0) 6.22 (0.12) 3.59 (0.05) 1.60 (0.13) 89.5 (0.1) 79.2 (0.4) 3.45 (0.04) 2.34 (0.03) 2.38 (0.06)

Neg. by same pred. 93.6 (0.5) 86.1 (0.5) 6.67 (0.13) 3.50 (0.13) 0.16 (0.09) 88.2 (1.3) 75.0 (5.9) 3.37 (0.59) 2.08 (0.04) 2.13 (0.53)

Pos. by same class 95.8 (0.3) 80.6 (0.7) 6.14 (0.20) 3.50 (0.14) 3.42 (0.16) 87.6 (1.0) 74.4 (0.6) 3.54 (0.46) 2.15 (0.03) 2.78 (0.11)

Pos. by diff. pred. 92.8 (3.0) 86.1 (0.3) 6.66 (0.29) 3.58 (0.07) 0.19 (0.03) 85.8 (0.2) 83.5 (0.3) 3.56 (0.30) 2.16 (0.02) 2.39 (0.20)

SupCon⇤ 96.8 (0.2) 62.3 (2.2) 6.93 (0.44) 3.59 (0.06) 4.84 (0.13) 90.4 (0.5) 61.5 (2.0) 3.83 (0.23) 2.29 (0.04) 3.22 (0.13)

CNC 90.9 (0.1) 88.5 (0.3) 6.02 (0.35) 3.56 (0.04) 0.02 (0.01) 89.9 (0.5) 88.8 (0.9) 3.00 (0.12) 2.44 (0.06) 1.45 (0.18)

Table 4. Accuracy (%) using spurious attribute train labels. CNC
obtains 0.9% higher worst-group accuracy than GDRO on average.

CMNIST* Waterbirds CelebA

Acc. WG Avg. WG Avg. WG Avg.

CNC* 80.6 (2.8) 92.4 (0.2) 90.1 (0.2) 92.4 (0.2) 89.2 (1.0) 92.6 (0.4)
GDRO 78.5 (4.5) 90.6 (0.1) 89.9 (0.6) 92.0 (0.2) 88.9 (1.3) 93.9 (0.1)

Training with spurious labels. We next study CNC’s per-
formance with true spurious attribute labels on additional
datasets. We replace the Stage 1 predictions with true group
labels (denoted CNC*), and compare with GDRO–the prior
oracle baseline which uses group labels–in Table 4. We find
CNC improves with spurious labels, now obtaining 0.9%
and 0.2% absolute lift in worst-group and average accuracy
over GDRO, suggesting that CNC’s contrastive approach
can also be beneficial in settings with group labels.

Alternate sampling strategies. We finally study the im-
portance of CNC’s sampling by ablating individual criteria.
Instead of the default approach that samples negatives from
samples with a different class label but same ERM predic-
tion as anchors (CNC), we try sampling negatives only with
different classes (Neg. by diff. class), or the same ERM
prediction (Neg. by same pred.) as the anchors, keeping
the positive sampling approach the same as default. We
also ablate the positive sampling approach by keeping the
negative sampling the same, and sampling positives from
samples only with the same class label (Pos. by same class)
or different ERM predictions (Pos. by diff. pred.). We fi-
nally try sampling both positives and negatives only by class,
similar to Khosla et al. (2020) (SupCon⇤). Without both
hard positive and negative sampling, we hypothesize naive
contrastive approaches could still learn spurious correlations
(e.g., pulling apart samples different in spurious attribute
and class by relying on spurious differences), resulting in
lower worst-group accuracy, higher alignment loss, and
sample representations with higher mutual information with
spurious attributes than default CNC. In Table 3, we find
these sampling ablations indeed result in lower worst-group
accuracy and less desirable representation metrics.

6. Related work
There is a growing literature on how to improve robustness
to spurious correlations, which is a key concern in many
settings due to dataset bias against smaller groups. If group
labels are known, prior works often design a method to bal-
ance groups of different sizes, whether via class balancing
(He & Garcia, 2009; Cui et al., 2019), importance weight-
ing (Shimodaira, 2000; Byrd & Lipton, 2019), or robust
optimization (Sagawa et al., 2019).

Our work is more related to methods that do not require
group labels during training. Such methods commonly first
train an initial ERM model, and use this model to train a
second robust model. GEORGE (Sohoni et al., 2020) runs
GDRO with groups formed by clustering ERM represen-
tations. LfF (Nam et al., 2020) and JTT (Liu et al., 2021)
train a robust model by upweighting or upsampling the mis-
classified points of an ERM model. EIIL (Creager et al.,
2021) and PGI (Ahmed et al., 2021) infer groups that maxi-
mally violate the invariant risk minimization (IRM) objec-
tive (Arjovsky & Bottou, 2017) for the ERM model. With
these groups EIIL trains a robust model with GDRO, while
PGI minimizes the KL divergence of softmaxed logits for
same-class samples across groups. CIM (Taghanaki et al.,
2021) instead trains a transformation network to remove
potentially spurious attributes from image input features.
While these approaches can also encourage alignment, our
approach more directly acts on a model’s representations
via contrastive learning. CNC thus leads to better alignment
empirically as measured by our representation metrics.

Our proposed algorithm draws inspiration from the litera-
ture on self-supervised contrastive learning. which works by
predicting whether two inputs are “similar” or “dissimilar”
(Le-Khac et al., 2020). This involves specifying batches
of anchor and positive datapoints similar to each other (as
different “views” of the same source or input), and negatives

depicting dissimilar points. In contrastive learning, “nega-
tives” are often sampled uniformly (Bachman et al., 2019),
while “positives” are different views of the same object, e.g.,
via data augmentation (Chen et al., 2020). In supervised
contrastive learning, negatives are different-class points and
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positives are same-class points (Khosla et al., 2020). Our ap-
proach treats same-class points with different ERM predic-
tions as positives, and different-class points with the same
ERM prediction as negatives. This naturally provides a form
of hard negative mining, a nontrivial component of recent
contrastive learning shown to improve performance (Robin-
son et al., 2021; Wu et al., 2021; Chuang et al., 2020). Our
approach is also partly inspired by Wang & Isola (2020),
who show that minimizing the contrastive loss improves
representation alignment between distinct “views.” For an
expanded discussion of related works, we refer the reader
to Appendix D.

7. Conclusion
We present CNC, a two-stage contrastive learning approach
to learn representations robust to spurious correlations. We
empirically observe and theoretically analyze the connection
between alignment and worst-group versus average error.
We use this connection to motivate CNC. We find CNC
improves the robustness of learned representations by mak-
ing them more class-dependent and less spurious-attribute-
dependent, and achieves SoTA or near-SoTA worst-group
accuracy across several benchmarks.

Reproducibility. We make our code publicly available at
https://github.com/HazyResearch/correct-n-contrast.

Acknowledgments
We thank Jared Dunnmon, Karan Goel, Khaled Saab, Sabri
Eyuboglu, Megan Leszczynski, Laurel Orr, and Sarah
Hooper for helpful discussions and feedback.

We gratefully acknowledge the support of NIH under No.
U54EB020405 (Mobilize), NSF under Nos. CCF1763315
(Beyond Sparsity), CCF1563078 (Volume to Velocity),
and 1937301 (RTML); ARL under No. W911NF-21-
2-0251 (Interactive Human-AI Teaming); ONR under
No. N000141712266 (Unifying Weak Supervision); ONR
N00014-20-1-2480: Understanding and Applying Non-
Euclidean Geometry in Machine Learning; N000142012275
(NEPTUNE); Apple, NXP, Xilinx, LETI-CEA, Intel, IBM,
Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF,
Accenture, Ericsson, Qualcomm, Analog Devices, Google
Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for
Research program, the Stanford Data Science Initiative
(SDSI), and members of the Stanford DAWN project: Face-
book, Google, and VMWare. The U.S. Government is autho-
rized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views, policies, or endorse-
ments, either expressed or implied, of NIH, ONR, or the
U.S. Government.

References
Ahmed, F., Bengio, Y., van Seijen, H., and Courville, A. C.

Systematic generalisation with group invariant predic-
tions. In ICLR, 2021.

Ahuja, K., Shanmugam, K., Varshney, K., and Dhurandhar,
A. Invariant risk minimization games. In International

Conference on Machine Learning, pp. 145–155. PMLR,
2020.

Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K.
Deep variational information bottleneck. arXiv preprint

arXiv:1612.00410, 2016.

Arjovsky, M. and Bottou, L. Towards principled methods for
training generative adversarial networks. arXiv preprint

arXiv:1701.04862, 2017.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-
Paz, D. Invariant risk minimization. arXiv preprint

arXiv:1907.02893, 2019.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning
representations by maximizing mutual information across
views. In Advances in Neural Information Processing

Systems, volume 32, 2019.

Balashankar, A., Lees, A., Welty, C., and Subramanian,
L. What is fair? exploring Pareto-efficiency for fairness
constrained classifiers. arXiv preprint arXiv:1910.14120,
2019.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In Proceedings of the European Conference

on Computer Vision (ECCV), pp. 456–473, 2018.

Ben-Tal, A., Den Hertog, D., De Waegenaere, A., Melen-
berg, B., and Rennen, G. Robust solutions of optimization
problems affected by uncertain probabilities. Manage-

ment Science, 59(2):341–357, 2013.

Blodgett, S. L., Green, L., and O’Connor, B. Demo-
graphic dialectal variation in social media: A case
study of African-American english. arXiv preprint

arXiv:1608.08868, 2016.

Borkan, D., Dixon, L., Sorensen, J., Thain, N., and Vasser-
man, L. Nuanced metrics for measuring unintended bias
with real data for text classification. In Companion pro-

ceedings of the 2019 world wide web conference, pp.
491–500, 2019.

Buolamwini, J. and Gebru, T. Gender shades: Intersec-
tional accuracy disparities in commercial gender classi-
fication. In Conference on fairness, accountability and

transparency, pp. 77–91. PMLR, 2018.

https://github.com/HazyResearch/correct-n-contrast


Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

Byrd, J. and Lipton, Z. What is the effect of importance
weighting in deep learning? In International Conference

on Machine Learning, pp. 872–881. PMLR, 2019.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine

learning, pp. 1597–1607. PMLR, 2020.

Chuang, C.-Y., Robinson, J., Lin, Y.-C., Torralba, A.,
and Jegelka, S. Debiased contrastive learning. In Ad-

vances in Neural Information Processing Systems, vol-
ume abs/2007.00224, 2020.

Combes, R. T. d., Pezeshki, M., Shabanian, S., Courville,
A., and Bengio, Y. On the learning dynamics of deep
neural networks. arXiv preprint arXiv:1809.06848, 2018.

Creager, E., Jacobsen, J.-H., and Zemel, R. Environment
inference for invariant learning. In International Con-

ference on Machine Learning, pp. 2189–2200. PMLR,
2021.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., and Belongie, S. Class-
balanced loss based on effective number of samples. In
Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 9268–9277, 2019.

Curi, S., Levy, K. Y., Jegelka, S., and Krause, A. Adaptive
sampling for stochastic risk-averse learning. In Advances

in Neural Information Processing Systems, volume 33,
pp. 1036–1047, 2020.

Duchi, J. and Namkoong, H. Variance-based regularization
with convex objectives. The Journal of Machine Learning

Research, 20(1):2450–2504, 2019.

Fang, C., Xu, Y., and Rockmore, D. N. Unbiased metric
learning: On the utilization of multiple datasets and web
images for softening bias. In Proceedings of the IEEE

International Conference on Computer Vision, pp. 1657–
1664, 2013.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The

journal of machine learning research, 17(1):2096–2030,
2016.

Goel, K., Gu, A., Li, Y., and Ré, C. Model patching: Closing
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A. Contrastive algorithm design details
In this section, we provide further details on the training setup and contrastive batch sampling, algorithmic pseudocode, and
additional components related to CNC’s implementation.

A.1. Training setup

In Fig. 8, we illustrate the two training stages of Correct-N-Contrast described in Sec. 4. In Stage 1, we first train an ERM
model with a cross-entropy loss. For consistency with Stage 2, we depict the output as a composition of the encoder and
linear classifier layers. Then in Stage 2, we train a new model with the same architecture using contrastive batches sampled
with the Stage 1 ERM model and a supervised contrastive loss (3) (which we compute after the depicted representations
are first normalized) to update the encoder layers. Note that unlike prior work in contrastive learning (Chen et al., 2020;
Khosla et al., 2020), as we have the class labels of the anchors, positives, and negatives, we also continue forward-passing
the unnormalized representations (encoder layer outputs) and compute a cross-entropy loss to update the classifier layers
while jointly training the encoder.
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Figure 8. The two stages of Correct-N-Contrast. In Stage 1, we train a model with standard ERM and a cross-entropy loss. Then in Stage
2, we train a new model with the same architecture, but specifically learn spurious-attribute-invariant representations with a contrastive
loss (3) and batches of anchors, positives, and negatives sampled with the ERM model’s predictions. We also update the full model jointly
with a cross-entropy loss on the classifier layer output and the input class labels. Dimensions for ResNet-50 and Waterbirds.

We also note that unlike prior work, we wish to learn invariances between anchors and positives that maximally reduce the
presence of features not needed for classification. We thus do not pass the representations through an additional projection

network (Chen et al., 2020). Instead, we use Eq. 3 to compute the supervised contrastive loss directly on the encoder outputs
z = fenc(x).

A.2. Two-sided contrastive batch implementation

We provide more details on our default contrastive batch sampling approach described in Sec. 4. To recall, for additional
contrastive signal per batch, we can double the pairwise comparisons in a training batch by switching the anchor and positive
roles. This is similar to the NT-Xent loss in prior contrastive learning work (Chen et al., 2020). We switch the role of
the anchor and first positive sampled in a contrastive batch, and sample additional positives and negatives using the same
guidelines but adjusting for the “new” anchor. We denote this as “two-sided” sampling in contrast with the “one-sided”
comparisons we get with just the original anchor, positives, and negatives.
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Algorithm 2 Sampling two-sided contrastive batches
Require: Number of positives M and number of negatives N to sample for each batch.

1: Initialize set of contrastive batches B = {}
2: for xi 2 {xi 2 X : ŷi = yi} do
3: Sample M � 1 additional “anchors” to obtain {xi}Mi=1 from {xi 2 X : ŷi = yi}
4: Sample M positives {x+

m}Mm=1 from {x�
m 2 X : ŷ�m = ŷi, y�m 6= yi}

5: Sample N negatives {x�
n }Nn=1 from {x�

n 2 X : ŷ�n = ŷi, y�n 6= yi}
6: Sample N negatives {x0�

n }Nn=1 from {x0�
n 2 X : ŷ0�n = ŷ+1 , y

0�
n 6= y+1 }

7: Update contrastive batch set: B  B [
⇣
{xi}Mi=1, {x+

m}Mm=1, {x�
n }Nn=1, {x0�

n }Nn=1

⌘

8: end for

Implementing this sampling procedure in practice is simple. First, recall our initial setup with trained ERM model f✓̂, its
predictions {ŷi}ni=1 on training data {(xi, yi)}ni=1 (where ŷi = f✓̂(xi)), and number of positives and negatives to sample M
and N . We then sample batches with Algorithm 2.

Because the initial anchors are the datapoints that the ERM model gets correct, under our heuristic we infer {xi}Mi=1 as
samples from the majority group. Similarly the M positives {x+

m}Mm=1 and N negatives {x�
n }Nn=1 that it gets incorrect are

inferred to belong to minority groups.

For one batch, we then compute the full contrastive loss with

L̂sup
con(fenc) = L̂sup

con
�
x1, {x+

m}Mm=1, {x�
n }Nn=1; fenc

�
+ L̂sup

con
�
x+
1 , {xi}Mi=1, {x0�

n }Nn=1; fenc
�

(8)

where L̂sup
con
�
x1, {x+

m}Mm=1, {x�
n }Nn=1; fenc

�
is given by:

� 1

M

MX

m=1

log
exp(z>1 z+m/⌧)

PM
m=1 exp(z

>
1 z+m/⌧) +

PN
n=1 exp(z

>
1 z+n /⌧)

(9)

and again let z be the normalized output fenc(x) for corresponding x. We compute the cross-entropy component of the full
loss for each x in the two-sided batch with its corresponding label y.

�D��&RQWUDVWLYH�%DWFK �E��7ZR�VLGHG�8SGDWH

Figure 9. Illustration of two-sided contrastive batch sampling with Colored MNIST as an example. From a single batch (a), we can
train a contrastive model with two anchor-positive-negative pairings (b). Aside from increasing the number of “hard negatives” for each
anchor-positive pair, this intuitively “pushes” together anchors and positives from two different directions for greater class separation.
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A.3. Summary of CNC design choices and properties

No projection network. As we wish to learn data representations that maximize the alignment between anchor and positive
datapoints, we do not compute the contrastive loss with the outputs of an additional nonlinear projection network. This
is inspired by the logic justifying a projection head in prior contrastive learning, e.g. SimCLR (Chen et al., 2020), where
the head is included because the contrastive loss trains representations to be “invariant to data transformation” and may
encourage removing information “such as the color or orientation of objects”. In our case, we view inferred datapoints with
the same class but different spurious attributes as “transformations” of each other, and we hypothesize that removing these
differences can help us improve worst-group performance.

Two-sided contrastive sampling. To incorporate additional comparisons between datapoints that only differ in spurious
attribute during training, we employ “two-sided” contrastive batch sampling. This lets us equally incorporate instances
where the second contrastive model in CNC treats datapoints that the initial ERM model got incorrect and correct as anchors.

Additional intrinsic hard positive/negative mining. Because the new model corrects for potentially learned spurious
correlations by only comparing and contrasting datapoints that differ in class label or spurious attribute, but not both (as
dictated by the initial ERM model’s outputs), the contrastive batches naturally carry “hard” positives and negatives. Thus,
our approach provides a natural form of hard negative mining (in addition to the intrinsic hard positive / negative mining
at the gradient level with InfoNCE-style contrastive losses (Chen et al., 2020; Khosla et al., 2020)) while avoiding class
collisions, two nontrivial challenges in standard self-supervised contrastive learning (Robinson et al., 2021; Wu et al., 2021;
Chuang et al., 2020).

Joint training of encoder and classifier layers. CNC can train any standard classification model architecture; for any given
neural network we just apply different optimization objectives to the encoder and classifier layers. We train both the encoder
and classifier layers with a cross-entropy loss, and jointly train the encoder layer with a supervised contrastive loss. For the
encoder layers, we balance the two objectives with a hyperparameter � (c.f. Eq. 7).

B. Omitted Proofs from Section 3.2
In this section, we prove that within any class, the gap between the worst-group error and the average error can be upper
bounded by the alignment loss times the Lipschitz constant, plus another concentration error term.

Proof of Theorem 3.1. Consider two arbitrary groups, denoted by g1 = (y, a1) and g2 = (y, a2), whose class labels are
both y 2 Y , whose spurious attributes are a1 2 A and a2 2 A such that a1 6= a2. Let G1 and G2 be the subset of training
data that belong to groups g1 and g2, respectively. We note that both G1 and G2 are non-empty since we have assumed that
(in Section 2) there is at least one sample from each group in the training data set. Let ng1 = |G1| and ng2 = |G2| be the
size of these two groups, respectively. Recall that fenc denotes the mapping of the encoder layers of the full neural network
model f✓. Since the classification layer fcls is a linear layer, we have used W to denote the weight matrix of this layer. Our
definition of the cross-group alignment loss in equation (5), denoted as L̂align(f✓; y), implies that for g1 and g2,

1

ng1

1

ng2

X

(x,y,a1)2G1

X

(x0,y,a2)2G2

kfenc(x)� fenc(x
0)k2  L̂align(f✓; y). (10)

Next, let E(x,y,a1)⇠Pg1
[Lavg(Wfenc(x), y)] be the average loss conditioning on a data point being sampled from group g1

(and similarly for group g2). Let �(g1, g2) be the difference between the population average losses:

�(g1, g2) =

����� E
(x,y,a1)⇠Pg1

[Lavg(Wfenc(x), y]� E
(x,y,a2)⇠Pg2

[Lavg(Wfenc(x), y)]

�����.

Recall that Gy ✓ G is the set of groups that have class label y. Since the loss `(·) is bounded above by some fixed constant
C2 according to our assumption, and is at least zero, by the Hoeffding’s inequality, the following result holds with probability
at least 1� �, for all |Gy| groups g 2 Gy ,

������
E

(x,y,a)⇠Pg

[Lavg(Wfenc(x), y)]�
1

ng

X

(x,y)2(X,Y )

`(Wfenc(x), y)

������
 C2

s
2 log (|Gy| /�)

ng
. (11)
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Thus, with probability at least 1� �, the following holds for any g1 and g2 in class y (but having different spurious attributes)

�(g1, g2) 

������
1

ng1

X

(x,y,a1)2G1

Lavg(Wfenc(x), y)�
1

ng2

X

(x0,y,a2)2G2

Lavg(Wfenc(x
0), y)

������
(12)

+ C2

 s
2 log(|Gy| /�)

ng1

+

s
2 log(|Gy| /�)

ng2

!
.

Next, we focus on the RHS of equation (12). First, equation (12) is also equal to the following:
������
1

ng1

1

ng2

X

(x,y,a1)2G1

X

(x0,y,a2)2G2

`(Wfenc(x), y))�
1

ng1

1

ng2

X

(x,y,a1)2G1

X

(x0,y,a2)2G2

`(Wfenc(x
0), y))

������
.

Since we have also assumed that the loss function `(x, y) is C1-Lipschitz in x3, the above is at most:
������

1

ng1ng2

X

(x,y,a1)2G1

X

(x0,y,a2)2G2

|`(Wfenc(x), y)� `(Wfenc(x
0), y)|

������

 1

ng1ng2

X

(x,y,a1)2G1

X

(x0,y,a2)2G2

C1 · kWfenc(x)�Wfenc(x
0)k2 (since y is the same for x, x0)

 B

ng1ng2

X

(x,y,a1)2G1

X

(x0,y,a2)2G2

C1 · kfenc(x)� fenc(x
0)k2 (because kWk2  B as assumed)

B · C1 · L̂align(f✓; y). (because of equation (10))

Thus, we have shown that for any g1 and g2 within class y,

�(g1, g2)  B · L̂align(f✓; y) +

 s
2 log(|Gy| /�)

ng1

+

s
2 log(|Gy| /�)

ng2

!

 B · C1 · L̂align(f✓; y) + max
g2Gy

C2 ·

s
8 log(|Gy| /�)

ng
. (13)

Finally, we use the above result to bound the gap between the worst-group loss and the average loss. For every group g 2 G,
let pg denote the prior probability of observing a sample from P in this group. Let qy =

P
g02Gy

pg0 . Let h(g) be a short
hand notation for

h(g) = E
(x,y,a)⇠Pg

[Lavg(Wfenc(x), y)] .

The average loss among the groups with class label y is Lavg(f✓; y) =
P

g2Gy

pg

qy
h(g). The worst-group loss among the

groups with class label y is Lwg(f✓; y) = maxg2Gy h(g). Let g? be a group that incurs the highest loss among groups in Gy .
We have Lwg(f✓; y)� Lavg(f✓; y) is equal to

h(g?)�
X

g2Gy

pg
qy

h(g) =
X

g2Gy

pg
qy

(h(g?)� h(g)) (14)


X

g2Gy

pg
qy

�(g?, g) (15)

B · C1 · L̂align(f✓; y) + max
g2Gy

C2 ·

s
8 log(|G| /�)

ng
. (16)

The last step uses equation (13) on �(g?, g) and the fact that qy =
P

g02Gy
pg0 . Thus, we have shown that the gap between

the worst-group loss and the average loss among the groups with the same class label is bounded by the above equation. The
proof is now complete.

3In other words, we assume that |`(z, y)� `(z0, y)|  C1 · kz � z0k2, for any z, z0 and y.
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The astute reader will note that Theorem 3.1 focuses on comparing groups within the same class y, for any y 2 Y . A natural
follow-up question is what happens when comparing across groups with different labels. Let Lwg(f✓) = maxy2Y Lwg(f✓; y)
be the worst-group loss across all the labels. Recall that Lavg(f✓) is the average loss for the entire population of data. We
generalize Theorem 3.1 to this setting in the following result.
Corollary B.1 (Extension of Theorem 3.1 to compare across different classes). In the setting of Theorem 3.1, let qy =P

g2Gy
pg be the prior probability of observing a sample drawn from P with label y, for any y 2 Y . We have that with

probability at least 1� �, the following holds:

Lwg(f✓) 
⇣
min
y2Y

qy
⌘�1

Lavg(f✓) +B · C1 ·max
y2Y

L̂align(f✓; y) + max
g2G

C2 ·

s
8 log(|G| /�)

ng
. (17)

Proof. We generalize the argument in the previous result to compare across different labels. The worst-group loss across
different labels is

max
y2Y

max
g2Gy

h(g)

max
y2Y

0

@
X

g2Gy

pg
qy

h(g) +B · C1L̂align(f✓; y) + max
g2Gy

C2

s
8 log(|Gy| /�)

ng

1

A (because of equation (16))

 1
miny2Y qy

X

g2G

pgh(g) +B · C1 max
y2Y

L̂align(f✓; y) + max
g2G

C2

s
8 log(|G| /�)

ng
.

Since
P

g2G pgh(g) = Lavg(f✓), we thus conclude that

Lwg(f✓) 
⇣
min
y2Y

qy
⌘�1

Lavg(f✓) +B · C1 max
y2Y

L̂align(f✓; y) + max
g2G

C2

s
8 log(|G| /�)

ng
.

The proof is now complete.

An example showing that Corollary B.1 is tight. We describe a simple example in which the factor
⇣
miny2Y qy

⌘�1
in

equation (17) is tight (asymptotically). Suppose there are k perfectly balanced classes so that qy = 1/k, for every y 2 Y .
There is one data point from each class, with loss equal to 0 for all except one of them. The worst-group loss is 1 whereas
the average loss is 1/k. Thus, there is a factor of k between the worst-group loss and the average loss. For equation (17), the
factor ⇣

min
y2Y

qy
⌘�1

= k,

since qy = 1/k for every y 2 Y in this example. Thus, this factor matches the (multiplicative) factor between the
worst-group loss and the average loss in this example.

C. Additional empirical comparisons and ablations
In this section, we include further experiments comparing CNC against additional related methods and ablations to study
the importance of CNC’s presented design choices. We first consider an alternative representation alignment procedure
by minimizing the presented alignment loss directly as opposed to using contrastive learning in Appendix C.1. We next
report additional mutual information metrics from our experiments in Section 5.2, where we study the relation between
these representation metrics and worst-group accuracy on datasets with increasingly strong spurious correlations. We then
summarize and empirically ablate various other design choices for CNC in Appendix C.3. In Appendix C.6, we finally
compare CNC against related work in representation learning for unsupervised domain adapation—a problem setting that
similarly involves overcoming group-specific dependencies—once properly adapted for our spurious correlations setting, .

C.1. Comparison to minimizing the alignment loss directly

In Sec. 5.1 and Sec. 5.2, we empirically showed that CNC’s contrastive loss and hard positive and negative sampling lead
to improved worst-group accuracy and greater representation alignment. While the analysis in Wang & Isola (2020) also
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discusses how contrastive learning supports alignment between anchor and positives, we also investigate how CNC performs
if instead of the contrastive loss, we train the Stage 2 model to minimize Lalign directly as a training objective. With this
objective, we aim to minimize the Euclidean distance between samples in different inferred groups but the same class.
While CNC is motivated by improving alignment, we hypothesize that one advantage of the contrastive loss lies in not
only aligning anchors and positives, but also pulling apart hard negatives, improving class-separability. We keep all other
components consistent, and apply Lalign to the anchor and positive samples in each contrastive batch. We report results on
Waterbirds and CelebA in Table 5.

Table 5. Accuracy (%) and representation metrics (⇥10) comparing CNC as proposed vs. Lalign as the training objective. While the latter
results in lower alignment, it does not encourage separating hard negatives from anchors. This results in representations with lower mutual
information with class labels and higher mutual information with spurious attributes, and lower worst-group and average accuracies.

Waterbirds CelebA

Method Avg. Acc. WG Acc. Lalign [#] Î(Y ;Z) ["] Î(A;Z) [#] Avg. Acc. WG Acc. Lalign [#] Î(Y ;Z) ["] Î(A;Z) [#]
CNC (Lalign) 82.3 (0.1) 88.9 (0.0) 2.16 (0.01) 2.52 (0.06) 3.27 (0.02) 82.3 (1.6) 85.9 (0.8) 2.59 (0.20) 2.00 (0.03) 1.59 (0.30)

CNC 90.9 (0.1) 88.5 (0.3) 6.02 (0.35) 3.56 (0.04) 0.02 (0.01) 89.9 (0.5) 88.8 (0.9) 3.00 (0.12) 2.44 (0.06) 1.45 (0.18)

We find that CNC with the default contrastive loss outperforms CNC with the alignment loss in both worst-group and
average accuracy, and that this indeed corresponds with representations that exhibit lower mutual information with class
labels. We reason that the additional pushing apart of hard negative samples (with different class labels but similar spurious
features) provides additional signal for improving separation between the different classes. The robust model thus only
learns to rely on class-specific features for discriminating between datapoints. On the other hand, the Lalignment objective
does not incorporate these hard negatives.

C.2. Extended analysis of representation metrics over increasing spurious correlations

In Section 5.2, we found that CNC’s improved worst-group accuracy on popular spurious correlations benchmarks coincided
with representations with lower alignment loss, higher mutual information with ground-truth classes, and lower mutual
information with spurious attributes. To study how this relation between representation metrics and worst-group accuracy
scaled with the strength of the spurious correlation, we also computed representation metrics over increasingly spurious
CMNIST⇤ datasets for CNC, ERM, and JTT. Below in Fig. 10 we reproduce Fig. 7 with added mutual information metrics.

�E� �F��D�
Figure 10. Alignment loss and mutual information metrics with worst-group accuracy on increasingly spurious CMNIST⇤. CNC’s highest
worst-group accuracy in spuriously correlated datasets (a) coincides with learning representations with better alignment (b), and a more
desirable ratio of mutual information dependence on the ground-truth class labels vs the spurious attribute (c).

Fig. 10(c) shows that CNC’s learned representations maintain a more favorable balance of mutual information between the
class label and spurious attribute than JTT. While JTT models exhibit slightly higher estimated Î(Y ;Z) than CNC models,
CNC models exhibit much lower dependence on the spurious attribute. In the regime where 99.9% of digits are spuriously
correlated with a specific color, CNC uniquely learns representations with higher mutual information on class labels than
spurious attributes.
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C.3. Additional design choice ablations

To validate the additional algorithmic components of CNC, we report how CNC performs on the Waterbirds dataset when
modifying the individual design components. We use the same hyperparameters as in the main results, and report accuracies
as the average over three training runs for the following ablations. Table 6 summarizes that across these design ablations,
default CNC as presented consistently outperforms these alternative implementations.
Table 6. Ablation over CNC algorithmic components on Waterbirds. Default choices achieve highest worst-group and average accuracy.

Method CNC (Default) Projection Head One-sided Contrasting Train + Finetune

WG Acc. (%) 88.5 (0.3) 82.4 (1.8) 85.2 (3.6) 84.0 (1.7)
Avg. Acc. (%) 90.9 (0.1) 88.7 (0.6) 90.1 (1.6) 87.7 (1.1)

No projection head. We incorporate a nonlinear projection head as is typical in prior contrastive learning works (Chen
et al., 2020), that maps the encoder output to lower-dimensional representations (from 2048 to 128 in our case). We then
update the encoder layers and the projection head jointly by computing the contrastive loss on the projection head’s output,
still passing the encoder layer’s direct outputs to the classifier to compute the cross-entropy loss. We note that using the
projection head decreases worst-group accuracy substantially. We reason that as previously discussed, while using the
projection head in prior work can allow the model to retain more information in its actual hidden layers (Chen et al., 2020),
in our case to remove dependencies on spurious attributes we actually want to encourage learning invariant representations
when we model the differences between anchor and positive datapoints as due to spurious attributes.

Two-sided contrastive batches. Instead of “two-sided” contrasting where we allow both sampled anchors and positives to
take on the anchor role, for each batch we only compute contrastive updates by comparing original positives and negatives
with the original anchor. When keeping everything else the same, we find that just doing these one-sided comparisons also
leads to a drop in performance for worst-group accuracy. This suggests that the increased number of comparisons where we
swap the roles of anchors and positives introduces greater contrastive learning signal.

Joint training of encoder and classifier layers. Instead of training the full model jointly, we first only train the encoder
layers with the contrastive loss in CNC, before freezing these layers and finetuning the classifier layers with the cross-entropy
loss. With this implementation, we also obtain noticeable drop in performance. While we leave further analysis for the joint
cross-entropy and contrastive optimization for future work, one conjecture is that the cross-entropy loss may aid in learning
separable representations while also training the full model to keep the average error small.

This also follows prior work, where updating the entire model and finetuning all model parameters instead of freezing the
encoder layers leads to higher accuracy (Chen et al., 2020). However, we found that with an initial encoder-only training
stage, if we did not freeze the trained layers the fine-tuning on a dataset with spurious correlations would “revert” the
contrastive training, resulting in a large gap between worst-group and average error similar to ERM.

Contrastive loss balancing hyperparameter. We also ablate the balancing hyperparameter � of CNC on CMNIST⇤. In
Table 7 we find that CNC consistently achieves high worst-group accuracy across a wide range of � 2 [0.4, 0.9]. For
reference, the next best methods GEORGE and JTT obtain 76.4% and 74.5% worst-group accuracy.
Table 7. Ablation over � to balance cross-entropy and contrastive loss on CMNIST⇤. CNC obtains high performance across a range of �.

CNC � 0.2 0.4 0.6 0.8 0.9

Robust Acc. 70.4 (2.9) 74.2 (2.6) 75.3 (1.7) 77.4 (2.5) 75.8 (1.2)
Average Acc. 89.0 (0.1) 88.0 (0.7) 88.3 (0.6) 89.9 (0.4) 88.4 (0.1)

C.4. Comparison to recent class-balancing baselines for improving worst-group accuracy

In Table 8, we compare CNC and ERM with reported worst-group accuracies with recent robustness baselines from Idrissi
et al. (2021) that do not require training group labels. These involve subsampling large classes (SUBY) and reweighting
classes to balance classes per minibatch in expectation (RWY). These baselines improve worst-group accuracy over ERM,
but CNC achieves significantly higher worst-group accuracy across reported dataset results.

C.5. Comparison to model selection by average accuracy

As in prior work (Sagawa et al., 2019), for our main results we select models with early stopping based on best worst-group
validation accuracy. This involves using validation set group labels, which may not always be available. In Table 9, we
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Table 8. Worst-group accuracy (%) of CNC (mean and standard deviation over three seeds) and reported baselines from Idrissi et al.
(2021) (same metrics, over five seeds), which subsample (SUBY) or reweight (RWY) samples to balance classes during training.

Waterbirds CelebA CivilComments-WILDS

ERM 62.6 (0.3) 47.7 (2.1) 58.6 (1.7)
SUBY 82.4 (1.7) 79.9 (3.3) 51.2 (3.0)
RWY 86.1 (0.7) 82.9 (2.2) 67.5 (0.6)
CNC 88.5 (0.3) 88.8 (0.9) 68.9 (2.1)

report how CNC performs when we do model selection with early stopping based on best average validation accuracy. We
compare report the differences between model selection for both worst-group and average accuracy. Without any group
labels, CNC’s worst-group accuracy drops, but CNC is still obtains much higher worst-group accuracy over ERM.

Table 9. Worst-group accuracy (%) of CNC (mean and standard deviation over three seeds) for CNC models selected based on best
validation worst-group accuracy (as in prior work) compared to CNC models based on best validation average accuracy.

Waterbirds CelebA
Worst-group Average Worst-group Average

Best Val Worst-group Acc. 88.5 (0.3) 90.9 (0.1) 88.8 (0.9) 89.9 (0.5)
Best Val Average Acc. 85.0 (1.8) 94.7 (0.2) 87.6 (0.6) 90.8 (0.4)
Difference �3.5 +3.8 �1.2 +0.9

C.6. Comparison to representation learning methods for domain generalization

While our main results in Table 1 compare against methods designed to tackle the spurious correlations setting presented in
Section 5.1, we also note that CNC bears some similarity to methods proposed for unsupervised domain adaptation (UDA).
At a high level, a popular approach is to learn similar representations for datapoints with the same class but sampled from
different domains, e.g., via adversarial training to prevent another model from classifying representations’ source domains
correctly (Ganin et al., 2016), or minimizing representation differences via metrics such as maximum mean discrepancy

(MMD) (Li et al., 2018), to generalize to a desired target domain. While UDA carries distinct problem settings and
assumptions from our spurious correlations setting (c.f. Appendix D.4), we aim to understand if UDA methods can that also
try to optimize a model’s representations can train models robust to spurious correlations, and compare their performance
with CNC. We first explain our protocol for fair evaluation, and then discuss results reported in Table 10.

We carry out our evaluation with domain-adversarial neural networks (DANN) (Ganin et al., 2016), a seminal DG method
that aims to learn aligned representations across two domains. To do so, DANN jointly trains a model to classify samples
from a “source” domain while preventing a separate “domain classifier” module from correctly classifying the domain for
datapoints sampled from both domains. For fair comparison, we use the same ResNet-50 backbone as in CNC, and make
several adjustments to the typical DANN and UDA procedure:

1. While UDA assumes that the data is organized into “source” and “target” domains, we do not have domain labels. We
thus infer domains using the predictions of an initial ERM model as in CNC.

2. The notion of a domain may also be ambiguous with respect to the groups defined in Section 2. For example, domains
may be defined by spurious attributes (e.g., for the Waterbirds dataset, we may consider the “water background”
domain and the “land background” domain). Domains may alternatively be defined by whether samples carry dominant
spurious correlations or not (e.g., the “majority group” domain and the “minority group” domain). We train and
evaluate separate DANN models for both interpretations. We infer the former by the predicted class of the initial ERM
model. We infer the latter by whether the initial ERM model is correct or not.

3. Finally, UDA aims to train with a class-labeled “source” domain and an unlabeled “target” domain such that a model
performs well on unseen samples from the specified “target” domain (Ganin et al., 2016). However, our benchmarks
have class labels for all training points, and do not have a notion of “source” and “target” domains (we aim to obtain
high worst-group accuracy, which could fall under any domain). We thus assume access to labels for all domains.
During training, the goal for our DANN models is to correctly classify samples from both domains, while learning
representations such that a jointly trained domain classifier module cannot determine the samples’ domains from their
representations alone. At test-time, we evaluate the DANN model on the entire test set for each benchmark, and report
the worst-group and average accuracies.
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In Table 10, we report the worst-group and average accuracies of DANN on the Waterbirds and CelebA datasets across
three seeds along with the CNC results. Our results suggest that the domain alignment in DANN is not sufficient to improve
worst-group accuracy. We hypothesize this is due to adversarial training with the domain classifier aligning representations
without regard to different classes within each domain. Due to the propensity of samples exhibiting spurious correlations,
DANN models may thus still learn to rely on these correlations.

Table 10. CNC achieves higher worst-group and average accuracies on spuriously correlated benchmarks than DANN, a prior representa-
tion alignment method designed for domain adaptation

Method Waterbirds CelebA
Accuracy (%) Worst-group Average Worst-group Average

DANN (domains by spurious attribute) 37.4 (3.8) 87.6 (2.2) 28.1 (3.1) 94.6 (0.3)
DANN (domains by majority vs minority group) 67.3 (0.8) 83.6 (0.2) 47.2 (3.1) 88.7 (1.8)
CNC 88.5 (0.3) 90.9 (0.1) 88.8 (0.9) 89.9 (0.5)

D. Further related work discussion
We provide additional discussion of related work and connections to our work below.

D.1. Improving robustness to spurious correlations

Our core objective is to improve model robustness to group or subpopulation distribution shifts that arise from the presence
of spurious correlations, specifically for classification tasks. Because these learnable correlations hold for some but not
all samples in a dataset, standard training with ERM may result in highly variable performance: a model that classifies
datapoints based on spurious correlations does well for some subsets or “groups” of the data but not others. To improve
model robustness and avoid learning spurious correlations, prior work introduces the goal to maximize worst-group accuracy
(Sagawa et al., 2019). Related works broadly fall under two categories:

Improving robustness with group information. If information such as spurious attribute labels is provided, one can divide
the data into explicit groups as defined in Sec. 2, and then train to directly minimize the worst group-level error among these
groups. This is done in group DRO (GDRO) (Sagawa et al., 2019), where the authors propose an online training algorithm
that focuses training updates over datapoints from higher-loss groups. Goel et al. (2020) also adopt this approach with their
method CycleGAN Augmented Model Patching (CAMEL). However, similar to our motivation, they argue that a stronger
modeling goal should be placed on preventing a model from learning group-specific features. Their approach involves first
training a CycleCAN (Zhu et al., 2017) to learn the data transformations from datapoints in one group to another that share
the same class label. They then apply these transformations as data augmentations to different samples, intuitively generating
new versions of the original samples that take on group-specific features. Finally they train a new model with a consistency
regularization objective to learn invariant features between transformed samples and their sources. Unlike their consistency
loss, we accomplish a similar objective to learn group-invariant features with contrastive learning. Our first training stage is
also less expensive. Instead of training a CycleGAN and then using it to augment datapoints, we train a relatively simple
standard ERM classification model, sometimes with only a few number of epochs, and use its predictions to identify pairs of
datapoints to serve a similar purpose. Finally, unlike both CAMEL and GDRO, we do not require spurious attribute or group
labels for each training datapoints. We can then apply CNC in less restrictive settings where such information is not known.

Related to GDRO are methods that aim to optimize a “Pareto-fair” objective, more general than simply the worst-case group
performance. Notable examples are the works of Balashankar et al. (2019) and Martinez et al. (2020). However, these
approaches similarly do not directly optimize for good representation alignment, which is a focus of our work.

Improving robustness without training group information. More similar to our approach are methods that do not assume
group information at training time, and only require validation set spurious attribute labels for fine-tuning. As validation sets
are typically much smaller in size than training sets, an advantage of CNC and comparable methods is that we can improve
the accessibility of robust training methods to a wider set of problems. One popular line of work is distributionally robust
optimization (DRO), which trains models to minimize the worst loss within a ball centered around the observed distribution
(Ben-Tal et al., 2013; Wiesemann et al., 2014; Duchi & Namkoong, 2019; Levy et al., 2020; Curi et al., 2020; Oren et al.,
2019). However, prior work has shown that these approaches may be too pessimistic, optimizing not just for worst-group
accuracy but worst possible accuracy within the distribution balls (Sagawa et al., 2019), or too undirected, optimizing for



Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

too many subpopulations, e.g. by first upweighting minority points but then upweighting majority points in later stages of
training (Liu et al., 2021). Pezeshki et al. (2020) instead suggest that gradient starvation (GS), where neural networks only
learn to capture statistically dominant features in the data (Combes et al., 2018), is the main culprit behind learning spurious
correlations, and introduce a “spectral decoupling” regularizer to alleviate GS. However this does not directly prevent
models from learning dependencies on spurious attributes. Similar to CAMEL, (Taghanaki et al., 2021) propose Contrastive
Input Morphing (CIM), an image dataset-specific method that aims to learn input feature transformations that remove the
effects of spurious or task-irrelevant attributes. They do so without group labels, training a transformation network with a
triplet loss to transform input images such that a given transformed image’s structural similarity metric (based on luminance,
contrast, and structure (Wang et al., 2003)) is more similar to a “positive” image from the same class than a “negative” image
from a different class. They then train a classifier on top of these representations. Instead of pixel-level similarity metrics,
CNC enforces similarity in a neural network’s hidden-layer representations, allowing CNC to apply to non-image modalities.
Additionally, we sample positives and negatives not just based on class label, but also the learned spurious correlations of an
ERM model (via its trained predictions). We hypothesize that our sampling scheme, which intuitively provides ”harder”
positive and negative examples, allows CNC to more strongly overcome spurious correlations.

Most similar to our approach are methods that first train an initial ERM model with the class labels as a way to identify data
points belonging to minority groups, and subsequently train an additional model with greater emphasis on the estimated
minority groups. Sohoni et al. (2020) demonstrate that even when only trained on the class labels, neural networks learn
feature representations that can be clustered into groups of data exhibiting different spurious attributes. They use the resulting
cluster labels as estimated group labels before running GDRO on these estimated groups. Meanwhile, Nam et al. (2020)
train a pair of models, where one model minimizes a generalized cross-entropy loss (Zhang & Sabuncu, 2018), such that
the datapoints this model classifies incorrectly largely correspond to those in the minority group. They then train the other
model on the same data but upweight the minority-group-estimated points. While they interweave training of the biased and
robust model, Liu et al. (2021) instead train one model first with a shortened training time (but the standard cross-entropy
objective), and show that then upsampling the incorrect data points and training another model with ERM can yield higher
worst-group accuracy. Creager et al. (2021) propose Environment Inference for Invariant Learning (EIIL), which first trains
an ERM model, and then softly assign the training data into groups under which the initial trained ERM model would
maximally violate the invariant risk minimization (IRM) objective. In particular, the IRM objective is maximally satisfied if
a model’s optimal classifier is the same across groups (Arjovsky et al., 2019), and EIIL groups are inferred such that the
initial ERM model’s representations exhibit maximum variance within each group. Creager et al. (2021) then runs GDRO
with these groups. Finally, Nagarajan et al. (2020) provides a theoretical understanding of how ERM picks up spurious
features under data set imbalance. They consider a setting involve a single spurious feature that is correlated with the class
label and analyze the max-margin classifier in the presence of this spurious feature.

In our work, we demonstrate that the ERM model’s predictions can be leveraged to not only estimate groups and train a new
model with supervised learning but with different weightings. Instead, we can specifically identify pairs of points that a
contrastive model can then learn invariant features between. Our core contribution comes from rethinking the objective with
a contrastive loss that more directly reduces the model’s ability to learning spurious correlations.

D.2. Contrastive learning

Our method also uses contrastive learning, a simple yet powerful framework for both self-supervised (Chen et al., 2020;
Oord et al., 2018; Tian et al., 2019; Song & Ermon, 2020; Sermanet et al., 2018; Hassani & Khasahmadi, 2020; Robinson
et al., 2021) and supervised (Khosla et al., 2020; Gunel et al., 2021) representation learning. The core idea is to learn data
representations that maximize the similarity between a given input “anchor” and distinct different views of the same input
(“positives”). Frequently this also involves contrasting positives with “negative” data samples without any assumed relation
to the anchor (Bachman et al., 2019). Core components then include some way to source multiple views, e.g. with data
transformations (Chen et al., 2020), and training objectives similar to noise contrastive estimation (Gutmann & Hyvärinen,
2010; Mnih & Kavukcuoglu, 2013).

An important component of contrastive learning is the method by which appropriate positives and negatives are gathered.
For sampling positives, Chen et al. (2020) show that certain data augmentations (e.g. crops and cutouts) may be more
beneficial than others (e.g. Gaussian noise and Sobel filtering) when generating anchors and positives for unsupervised
contrastive learning. (von Kügelgen et al., 2021) theoretically study how data augmentations help contrastive models learn
core content attributes which are invariant to different observed “style changes”. They propose a latent variable model for
self-supervised learning. Tian et al. (2020) further study what makes good views for contrastive learning. They propose an
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“InfoMin principle”, where anchors and positives should share the least information necessary for the contrastive model
to do well on the downstream task. For sampling negatives, Robinson et al. (2021) show that contrastive learning also
benefits from using “hard” negatives, which (1) are actually a different class from the anchor (which they approximate in the
unsupervised setting) and (2) embed closest to the anchor under the encoder’s current data representation. Both of these
approaches capture the principle that if positives are always too similar to the anchor and negatives are always too different,
then contrastive learning may be inefficient at learning generalizable representations of the underlying classes.

In our work, we incorporate this principle by sampling data points with the same class label but different ERM predic-
tions–presumably because of spurious attribute differences–as anchor and positive views, while sampling negatives from data
points with different class labels but the same ERM prediction as the anchor. The anchors and positives are different enough
that a trained ERM model predicted them differently, while the anchors and negatives are similar enough that the trained
ERM model predicted them the same. Contrasting the above then allows us to exploit both “hard” positive and negative
criteria for our downstream classification task. In Section 5.3, we show that removing this ERM-guided sampling (i.e. only
sampling positives and negatives based on class information), as well as trying different negative sampling procedures, leads
to substantially lower worst-group accuracy with CNC.

One limitation of our current theoretical analysis regarding the alignment loss (cf. Section 3.2) is that we require knowing the
group labels to compute the RHS of equation (6) (in particular, the alignment loss). An interesting question for future work
is to provide a better theoretical understanding of the alignment induced by CNC in the context of spurious correlations.

D.3. Invariant learning

Our work also shares some similarities in motivation with Invariant Risk Minimization (IRM) (Arjovsky et al., 2019),
Predictive Group Invariance (PGI) (Ahmed et al., 2021), and other related works in domain-invariant learning (Krueger
et al., 2020; Parascandolo et al., 2020; Ahuja et al., 2020; Creager et al., 2021). These methods aim to train models that learn
a single invariant representation that is consistently optimal (e.g. with respect to classifying data) across different domains
or environments. These environments can be thought of as data groups, and while traditionally methods such as IRM require
that environment labels are known, recent approaches such as Environment Inference for Invariant Learning (EIIL) (Creager
et al., 2021) and Predictive Group Invariance (PGI) (Ahmed et al., 2021) similarly aim to infer environments with an initial
ERM model. As discussed in Appendix D.1, in EIIL, Creager et al. (2021) next train a more robust model with an invariant
learning objective, similarly selecting models based on the worst-group error on the validation set. However, they train
this model using IRM for Colored MNIST and GDRO for Waterbirds and CivilComments-WILDS, using the inferred
environments as group labels. PGI uses EIIL to infer environments, but trains a more robust model by minimizing the KL
divergence of the predicted probabilities for samples in the same class, but different groups, using the inferred environments
as group labels. Thus, these approaches may similarly seek to learn similar representations for samples across groups, but
do so via GDRO’s reweighting, or the outputs of the model’s classification layer. In contrast, CNC trains a more robust
model by using contrastive learning to affect its representations more directly. In our main evaluation (c.f. Section 5.1) we
show that CNC’s proposed contrastive loss objective and hard sampling strategy lead to higher worst-group accuracy.

D.4. Learning representations for unsupervised domain adaptation

CNC’s approach to improve model robustness via a model’s hidden-layer representations bears similarity to some prior
unsupervised domain adaptation (UDA) methods. In UDA, the goal is to use the source and target features, and the source
labels, to transfer to the specific target domain. As introduced in Appendix C.6, to generalize beyond a single domain, one
promising direction is to learn similar representations for samples from different domains. However, UDA methods assume
knowledge of training sample domains or spurious attributes, whereas CNC and our other comparable methods do not. UDA
methods also assume a fundamentally different data setup; the training data is divided into source and target domains, and
only the source domain has labels. In our setting, we do have class labels for all samples available during training, but do not

have any natural definition of source and target domains (and thus no training data domain labels). Applying UDA methods
requires additional reintepretation of this setup.

Considering methods to learn desirable representations, one popular UDA approach is domain adversarial neural networks
(DANN) (Ganin et al., 2016). DANN accomplishes alignment by adversarially training a model’s encoder layers (the
“feature extractor”) to learn representations such that a separate domain classifier module cannot distinguish samples’
domains from the learned representations. To preserve class information, they train a classifier module on top of the feature
extractor jointly with a cross-entropy loss. CNC’s process for aligning representations is more simple. We do not rely on
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training separate modules with conflicting objectives to accomplish alignment; instead the supervised contrastive loss with
CNC’s sampling procedure encourages learning representations that are both separable across classes and aligned within
each class. We thus avoid additional training parameters and optimization issues associated with minimax-based adversarial
training (Arjovsky & Bottou, 2017). Instead of relying on a the domain classifier’s output, we can train single model to align
representations by minimizing the cosine similarity between anchor and positive samples.

D.5. Learning representations for domain generalization

CNC also bears some similarity to representation learning methods for domain generalization (DG), which also try to learn
representations that generalize beyond individual groups. However, in contrast to the spurious correlations problem, DG
settings often assume access to multiple “source” domains and knowledge (labels) of which group or domain each sample
belongs to. They aim to generalize to a specific unseen “target” domain not present during training. Unlike the spurious
correlations presented in our evaluated datasets, class distributions within domains are also not canonically as skewed in
standard benchmarks such as Office (Saenko et al., 2010) and VLCS (Fang et al., 2013). The distribution shift presented
in these benchmarks is also distinct from the shift encountered with spurious correlations benchmarks. With spuriously
correlated data, a model may learn to rely on spurious features themselves to obtain high average classification accuracy
on the training set (e.g., solely relying on background features to classify bird type). At test time, the model may make
confident predictions solely based on the absence or presence of these spurious features. In contrast, in DG (and UDA)
settings, the domain-specific features themselves do not correlate with classes. A model may learn to rely on domain-specific
“style” features in conjunction with other “content-based” features to classify images during training. The absence of the
former style features in new domains may decrease performance, but not because the model has latched on specific spurious
features to dictate its predictions. The two tasks thus differ via different model behaviors and failure modes.

Methods to tackle DG via representation alignment include the invariant learning methods discussed in Appendix D.3.
Additionally, (Li et al., 2018) propose maximum mean discrepancy MMD adversarial autoencoder (MMD-AAE). To align
representations between domains, MMD-AAE (1) trains an autoencoder, (2) uses MMD maximum applied at the bottleneck
hidden-layer to match representations across domains, and (3) applies an adversarial discriminator network to match these
representations with a Laplace distribution (to encourage more sparse hidden representations). This matching is also not
conditioned on the sample classes; an additional classifier head is applied to preserve class-specific information. CNC is also
simpler than MMD-AAE, only using the normalized dot product of a single classifier’s last hidden-layer representations.
Via contrastive learning, CNC also critically also aims to only align representations with the same class but different
ERM-inferred groups, while pushing apart samples with different classes but the same ERM-inferred groups. By paying
attention to the classes, we directly encourage a model to ignore group-specific information which confused the initial ERM
model but that does not discriminate between classes.

E. Additional experimental details
We first further describe our evaluation benchmarks in Appendix E.1. We next provide further details on how we calculate
the reported metrics and the experimental hyperparameters of our main results in Appendix E.1. For all methods, following
prior work (Liu et al., 2021; Sohoni et al., 2020; Nam et al., 2020; Sagawa et al., 2019; Creager et al., 2021) we report the
test set worst-group and average accuracies from models selected through hyperparameter tuning for the best validation
set worst-group accuracy. While different methods have different numbers of tunable hyperparameters, we try to keep the
number of validation queries as close as possible while tuning for fair comparison.

E.1. Dataset details

Colored MNIST (CMNIST⇤). We evaluate with a version of the Colored MNIST dataset proposed in Arjovsky et al. (2019).
The goal is to classify MNIST digits belonging to one of 5 classes Y = {(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)}, and treat color
as the spurious attribute. In the training data, we color pcorr of each class’s datapoints with an associated color a, and color
the rest randomly. If pcorr is high, trained ERM models fail to classify digits that are not the associated color. We pick a
from uniformly interspersed intervals of the hsv colormap, e.g. 0 and 1 digits may be spurious correlated with the color
red (#ff0000), while 8 and 9 digits may be spuriously correlated with purple (#ff0018). The full set of colors in class
order are A = {#ff0000,#85ff00,#00fff3,#6e00ff,#ff0018} (see Fig. 2). For validation and test data, we
color each datapoint randomly with a color a 2 A. We use the default test set from MNIST, and allocate 80%-20% of the
default MNIST training set to the training and validation sets. For main results, we set pcorr = 0.995.
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Waterbirds. We evaluate with the Waterbirds dataset, which was introduced as a standard spurious correlations benchmark
in Sagawa et al. (2019). In this dataset, masked out images of birds from the CUB dataset (Wah et al., 2011) are pasted
on backgrounds from the Places dataset (Zhou et al., 2017). Bird images are labeled either as waterbirds or landbirds;
background either depicts water or land. From CUB, waterbirds consist of seabirds (ablatross, auklet, cormorant, frigatebird,
fulmar, gull, jaeger, kittiwake, pelican, puffin, tern) and waterfowl (gadwell, grebe, mallard, merganser, guillemot, Pacific
loon). All other birds are landbirds. From Places, water backgrounds consist of ocean and natural lake classes, while land
backgrounds consist of bamboo forest and broadleaf forest classes.

The goal is to classify the foreground bird as Y = {waterbird, landbird}, where there is spurious background attribute
A = {water background, land background}. We use the default training, validation, and test splits (Sagawa et al., 2019),
where in the training data 95% of waterbirds appear with water backgrounds and 95% of landbirds appear with land
backgrounds. Trained ERM models then have trouble classifying waterbirds with land backgrounds and landbirds with water
backgrounds. For validation and test sets, water and land backgrounds are evenly split among landbirds and waterbirds.

CelebA. We evaluate with the CelebA spurious correlations benchmark introduced in Sagawa et al. (2019). The goal is
to classify celebrities’ hair color Y = {blond, not blond}, which is spuriously correlated with the celebrity’s identified
gender A = {male, female}. We use the same training, validation, test splits as in Sagawa et al. (2019). Only 6% of blond
celebrities are male; trained ERM models perform poorly on this group.

CivilComments-WILDS. We evaluate with the CivilComments-WILDS dataset from Koh et al. (2021), derived from
the Jigsaw dataset from Borkan et al. (2019). Each datapoint is a real online comment curated from the Civil Comments
platform, a commenting plugin for independent news sites. For classes, each comment is labeled as either toxic or not toxic.
For spurious attributes, each comment is also labeled with the demographic identities {male, female, LGBTQ, Christian,
Muslim, other religions, Black, White} mentioned; multiple identities may be mentioned per comment.

The goal is to classify the comment Y = {toxic, not toxic}. As in Koh et al. (2021), we evaluate with A = {male, female,
LGBTQ, Christian, Muslim, other religions, Black, White}. There are then 16 total groups corresponding to (toxic, identity)
and (not toxic, identity) for each identity. Groups may overlap; a datapoint falls in a group if it mentions the identity. We use
the default data splits (Koh et al., 2021). In Table 11, we list the percentage of toxic comments for each identity based on the
groups. Trained ERM models in particular perform less well on the rarer toxic groups.

Table 11. Percent of toxic comments for each identity in the CivilComments-WILDS training set.

Identity male female LGBTQ Christian Muslim other religions Black White

% toxic 14.9 13.7 26.9 9.1 22.4 15.3 31.4 28.0

E.2. Implementation details

E.2.1. REPORTED METRICS

Main results. For the CMNIST⇤, Waterbirds, and CelebA datasets, we run CNC with three different seeds, and report the
average worst-group accuracy over these three trials in Table 1. As we use the same baselines and comparable methods as
Liu et al. (2021), we referenced their main results for the reported numbers, which did not have standard deviations or error
bars reported. For CivilComments-WILDS, due to time and compute constraints we only reported one run. We note that
CMNIST⇤ here is extremely challenging, as minority groups together only make up 0.5% of the training set. This severe
imbalance explains the very poor worst-group performance of ERM (and other methods that fail to sufficiently remediate
the issue).

Estimated mutual information. We give further details for calculating the representation metric introduced in Sec. 3.
As a reminder, we report both alignment and estimated mutual information metrics to quantify how dependent a model’s
learned representations are on the class labels versus the spurious attributes, and compute both metrics on the representations
Z = {fenc(x)} over all test set data points x. Then to supplement the alignment loss calculation in Sec. 3, we also estimate
I(Y ;Z) and I(A;Z), the mutual information between the model’s data representations and the class labels and spurious
attribute labels respectively.

To first estimate mutual information with Y , we first approximate p(y | z) by fitting a multinomial logistic regression model
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over all representations Z to classify y. With the empirical class label distribution p(y), we compute:

Î(Y ;Z) =
1

|Z|
X

z2Z

X

y2Y

p(y | z) log p(y | z)
p(y)

(18)

We do the same but substitute the spurious attributes a for y to compute Î(A;Z).

E.2.2. STAGE 1 ERM TRAINING DETAILS

We describe the model selection criterion, architecture, and training hyperparameters for the initial ERM model in our
method. To select this model, recall that we first train an ERM model to predict the class labels, as the model may also
learn dependencies on the spurious attributes. Because we then use the model’s predictions on the training data to infer
samples with different spurious attribute values but the same class label, we prefer an initial ERM model that better learns
this spurious dependency, and importantly also does not overfit to the training data. Inspired by the results in prior work
(Sohoni et al., 2020; Liu et al., 2021), we then explored using either a standard ERM model, one with high `-2 regularization
(weight decay = 1), or one only trained on a few number of epochs. To select among these, because the validation
data has both class labels and spurious attributes, we choose the model with the largest gap between worst-group and average
accuracy on the validation set. . We detail the ERM architecture and hyperparameters for each dataset below:

Colored MNIST. We use the LeNet-5 CNN architecture in the pytorch image classification tutorial. We train with SGD,
few epochs E = 5, SGD, learning rate 1e-3, batch size 32, default weight decay 5e-4, and momentum 0.9.

Waterbirds. We use the torchvision implementation of ResNet-50 with pretrained weights from ImageNet as in
Sagawa et al. (2019). Also as in (Sagawa et al., 2019), we train with SGD, default epochs E = 300, learning rate 1e-3, batch
size 128, and momentum 0.9. However we use high weight decay 1.0.

CelebA. We also use the torchvision ImageNet-pretrained ResNet-50 and default hyperparameters from Sagawa
et al. (2019) but with high weight decay: we train with SGD, default epochs E = 50, learning rate 1e-4, batch size 128,
momentum 0.9, and high weight decay 0.1.

CivilComments-WILDS. We use the HuggingFace (pytorch-transformers) implementation of BERT with pre-
trained weights and number of tokens capped at 300 as in Koh et al. (2021). As in Liu et al. (2021), with other hyperparameters
set to their defaults (Koh et al., 2021) we tune between using the AdamW optimizer with learning rate 1e-5 and SGD
with learning rate 1e-5, momentum 0.9, and the PyTorch ReduceLROnPlateau learning rate scheduler. Based on our
criterion, we use SGD, few number of epochs E = 2, learning rate 1e-5, batch size 16, default weight decay 1e-2, and
momentum 0.9.

E.2.3. CONTRASTIVE BATCH SAMPLING DETAILS

We provide further details related to collecting predictions from the trained ERM models, and the number of positives and
negatives that determine the contrastive batch size.

ERM model prediction. To collect trained ERM model predictions on the training data, we explored two approaches: (1)
using the actual predictions, i.e. the argmax for each classifier layer output vector, and (2) clustering the representations, or
the last hidden-layer outputs, and assigning a cluster-specific label to each data point in one cluster. This latter approach is
inspired by Sohoni et al. (2020), and we similarly note that ERM models trained to predict class labels in spuriously correlated
data may learn data representations that are clusterable by spurious attribute. As a viable alternative to collecting the “actual”
predictions of the trained ERM model on the training data, with C classes, we can then cluster these representations into C
clusters, assign the same class label only to each data point in the same cluster, and choose the label-cluster assignment
that leads to the highest accuracy on the training data. We also follow their procedure to first apply UMAP dimensionality
reduction to 2 UMAP components, before clustering with K-means or GMM (Sohoni et al., 2020). To choose between all
approaches, we selected the procedure that lead to highest worst-group accuracy on the validation data after the second-stage
of training. While this cluster-based prediction approach was chosen as a computationally efficient heuristic, we found
that in practice it either lead to comparable or better final worst-group accuracy on the validation set. To better understand
this, as a preliminary result we found that when visualizing the validation set predictions with the Waterbirds dataset, the
cluster-based predictions captured the actual spurious attributes better than the classifier layer predictions (Fig. 11). We
defer additional discussion to Sohoni et al. (2020) and leave further analysis to future work.



Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

&RORU�E\�(50�RXWSXW�SUHGLFWLRQ &RORU�E\�VSXULRXV�DWWULEXWH &RORU�E\�(50�FOXVWHU�SUHGLFWLRQ

Figure 11. UMAP visualization of ERM data representations for the Waterbirds training data. We visualize the last hidden layer outputs for
a trained ERM ResNet-50 model given training samples from Waterbirds, coloring by either the ERM model’s “standard” predictions, the
actual spurious attribute values (included here just for analysis), and predictions computed by clustering the representations as described
above. Clustering-based predictions more closely align with the actual spurious attributes than the ERM model outputs.

Number of positives and negatives per batch. One additional difference between our work and prior contrastive learning
methods (Chen et al., 2020; Khosla et al., 2020) is that we specifically construct our contrastive batches by sampling anchors,
positives, and negatives first. This is different from the standard procedure of randomly dividing the training data into
batches first, and then assigning the anchor, positive, and negative roles to each datapoint in a given batch. As a result, we
introduce the number of positives M and the number of negatives N as two hyperparameters that primarily influence the size
of each contrastive batch (with number of additional anchors and negatives also following M and N with two-sided batches).
To maximize the number of positive and negative comparisons, as a default we set M and N to be the maximum number of
positives and negatives that fit the sampling criteria specified under Algorithm 2 that fit in memory. In Appendix E.2.4, for
each dataset we detail the ERM prediction method and number of positives and negatives sampled in each batch.

E.2.4. STAGE 2 CONTRASTIVE MODEL TRAINING DETAILS

In this section we describe the model architectures and training hyperparameters used for training the second model of our
procedure, corresponding the reported worst-group and average test set results in Table 1. In this second stage, we train a
new model with the same architecture as the initial ERM model, but now with a contrastive loss and batches sampled based
on the initial ERM model’s predictions. We report test set worst-group and average accuracies from models selected with
hyperparameter tuning and early stopping based on the highest validation set worst-group accuracy. For all datasets, we
sample contrastive batches using the clustering-based predictions of the initial ERM model. Each batch size specified here is
also a direct function of the number of positives and negatives: 2M + 2N .

Colored MNIST. We train a LeNet-5 CNN. For CNC, we use M = 32, N = 32, batch size 128, temperature ⌧ = 0.05,
contrastive weight � = 0.75, SGD optimizer, learning rate 1e-3, momentum 0.9, and weight decay 1e-4. We train for 3
epochs, and use gradient accumulation to update model parameters every 32 batches.

Waterbirds. We train a ResNet-50 CNN with pretrained ImageNet weights. For CNC, we use M = 17, N = 17, batch size
68, temperature ⌧ = 0.1, contrastive weight � = 0.75, SGD optimizer, learning rate 1e-4, momentum 0.9, weight decay
1e-3. We train for 5 epochs, and use gradient accumulation to update model parameters every 32 batches.

CelebA. We train a ResNet-50 CNN with pretrained ImageNet weights. For CNC, we use M = 64, N = 64, batch size
256, temperature ⌧ = 0.05, contrastive weight � = 0.75, SGD optimizer, learning rate 1e-5, momentum 0.9, and weight
decay 1e-1. We train for 15 epochs, and use gradient accumulation to update model parameters every 32 batches.

CivilComments-WILDS. We train a BERT model with pretrained weights and max number of tokens 300. For CNC, we
use M = 16, N = 16, batch size 64, temperature ⌧ = 0.1, contrastive weight � = 0.75, AdamW optimizer, learning rate
1e-4, weight decay 1e-2, and clipped gradient norms. We train for 10 epochs, and use gradient accumulation to update
weights every 128 batches.
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E.2.5. COMPARISON METHOD TRAINING DETAILS

As reported in the main results (Table 1) we compare CNC with the ERM and Group DRO baselines, as well as robust
training methods that do not require spurious attribute labels for the training data: GEORGE (Levy et al., 2020), Learning
from Failure (LfF) (Levy et al., 2020), Predictive Group Invariance (PGI) (Ahmed et al., 2021), Contrastive Input Morphing
(CIM) (Taghanaki et al., 2021), Environment Inference for Invariant Learning (EIIL) (Creager et al., 2021), and Just Train
Twice (JTT) (Liu et al., 2021). For each dataset, we use the same model architecture for all methods. For the Waterbirds,
CelebA, and CivilComments-WILDS datasets, we report the worst-group and average accuracies reported in Liu et al.
(2021) for ERM, LfF, and JTT. For GEORGE, we report the accuracies reported in Sohoni et al. (2020). For CIM, we report
results from Waterbirds and CelebA from (Taghanaki et al., 2021) using the CIM + variational information bottleneck
implementation (Alemi et al., 2016), which achieves the best worst-group performance in their results. For EIIL, we report
results from Waterbirds and CivilComments-WILDS from (Creager et al., 2021). For these hyperparameters, we defer to the
original papers. For GDRO, we reproduce the results with the same optimal hyperparameters over three seeds. For PGI, we
used our own implementation for all results, with details specified below. For Colored MNIST, we run implementations for
GEORGE, CIM, EIIL, LfF, JTT, and GDRO, using code from their authors respectively. We include training details for our
own implementations below:

Colored MNIST (CMNIST⇤). We run all methods for 20 epochs, reporting test set accuracies with early stopping. For
JTT, we train with SGD, learning rate 1e-3, momentum 0.9, weight decay 5e-4, batch size 32. We use the same initial
ERM model as CNC, with hyperparameters described in Appendix E.2.2. For upsampling we first tried constant factors
{10, 100, 1000}. We also tried a resampling strategy where for all the datapoints with the same initial ERM model prediction,
we upsample the incorrect points such that they equal the correct points in frequency, and found this worked the best. With
pcorr = 0.995, this upsamples each incorrect point by roughly 1100. We also use this approach for the results in Fig. 7. For
GDRO we use the same training hyperparameters as JTT, but without the upsampling and instead set group adjustment
parameter C = 0. For LfF, we use the same hyperparameters as JTT, but instead of upsampling gridsearched the q parameter
2 {0.1, 0.3, 0.5, 0.7, 0.9}, using q = 0.7. For GEORGE we train with SGD, learning rate 1e-3, momentum 0.9, weight
decay 5e-4. For CIM, we use the CIM + VIB implementation. We train with SGD, learning rate 1e-3, weight decay 5e-4, �
parameter 10, and � parameter 1e-5. For EIIL, for environment inference we use the same initial ERM model as CNC and
JTT, and update the soft environment assignment distribution with Adam optimizer, learning rate 1e-3, and 10000 steps.
Following (Creager et al., 2021)’s own colored MNIST experiment, we train the second model with IRM, using learning
rate 1e-2, weight decay 1e-3, penalty weight 100, and penalty annealing parameter 80.

CelebA. We also tune EIIL for CelebA. We again use the same initial ERM model as CNC, and update the soft environment
assignment distribution with Adam optimizer, learning rate 1e-3, and 10000 steps. We train the second model with GDRO,
using SGD, 50 epochs, learning rate 1e-5, batch size 128, weight decay 0.1, and group adjustment parameter 3.

PGI. To compare against PGI, we tried two implementations. First, we followed the PGI algorithm to first infer environments
via the same mechanism as in EIIL [2], and trained a second model with the PGI objective using standard shuffled minibatches
(aiming to minimize the KL divergence for samples with the same class but different inferred environment labels per batch).
However, despite ample hyperparameter tuning (trying loss weighting component � 2 {0.1, 0.5, 10, 100}, we could not get
PGI to work well (on Waterbirds, we obtained 51.0± 4.9% worst-group accuracy and 79.6± 2.6% average accuracy). We
hypothesize this is due to the strong spurious correlations in our datasets: while (Ahmed et al., 2021) only considers datasets
where 20% of the training samples do not exhibit a dominant correlation and fall under minority groups. Our evaluation
benchmarks are more difficult due to stronger spurious correlations, e.g., in Waterbirds only 5% of samples do not exhibit
the dominant correlation; similarly only 7% of training samples lie in the smallest group in CelebA.

We then tried a more balanced batch variation. Instead of using randomly shuffled minibatches, we used the PGI environment
inference labels to sample batches similarly to how CNC uses the stage 1 ERM model predictions to sample batches. We
construct batches by specifying the same number of “anchors”, “positives”, and “negatives” as in CNC, and sample batches
where anchors and positives are samples with the same class, but different inferred environments. Anchors and negatives are
samples in the same inferred environment, but with different classes. We then trained a second model with the PGI criterion
with these modified batches.

In Section E.2.6, we include our sweeps for both the method-specific and general hyperparameters.

Comparison limitations. One limitation of our comparison is that because for each dataset we sample new contrastive
batches which could repeat certain datapoints, the number of total batches per epoch changes. For example, 50 epochs
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training the second model in CNC does not necessarily lead to the same total number of training batches as 50 epochs
training with ERM, even if they use the same batch size. However, we note that the numbers we compare against from Liu
et al. (2021) are reported with early stopping. In this sense we are comparing the best possible worst-group accuracies
obtained by the methods, not the highest worst-group accuracy achieved within a limited number of training batches. We
also found that although in general the time to complete one epoch takes much longer with CNC, CNC requires fewer
overall training epochs for all but the CivilComments-WILDS dataset to obtain the highest reported accuracy.

E.2.6. HYPERPARAMETER SWEEPS

To fairly compare with previous methods (Liu et al., 2021; Creager et al., 2021; Taghanaki et al., 2021), we use the
same evaluation scheme (selecting models based on worst-group validation error), and sweep over a consistent number of
hyperparameters, i.e. number of validation set queries. We set this number for CNC to be a comparable number of queries
that is reported in prior works. We break this down into method-specific (e.g. contrastive temperature in CNC, upweighting
factor in JTT), and shared (e.g. learning rate) hyperparameter categories.

Method-specific. For CNC, we tune three method-specific hyperparameters: contrastive loss temperature (Eq. 3), contrastive
weight (Eq. 7), and gradient accumulation steps values as in Table 12.

Table 12. Method-specific hyperparameters for CNC.

Hyperparameter Dataset Values

Temperature (⌧ ) All {0.05, 0.1}
Contrastive Weight (�) All {0.5, 0.75}

Gradient Accumulation Steps CMNIST⇤, Waterbirds, CelebA {32, 64}
CivilComments-WILDS {32, 64, 128}

For JTT, the reported results and our CMNIST⇤ implementation are tuned over the following hyperparameters in Table 13.

Table 13. Method-specific hyperparameters for JTT.

Hyperparameter Dataset Values

Stage 1 Training Epochs Waterbirds {40, 50, 60}
CMNIST⇤, CelebA, CivilComments-WILDS {1, 2}

Upweighting Factor
CMNIST⇤ {10, 100, 1000, 1100}

Waterbirds, CelebA {20, 50, 100}
CivilComments-WILDS {4, 5, 6}

For EIIL, our CMNIST⇤ and CelebA implementations are tuned over hyperparameters reported in Table 14. (Creager et al.,
2021) report that they allow up to 20 evaluations with different hyperparameters for Waterbirds and CivilComments-WILDS.
When using GDRO as the second stage model, they also report using the same hyperparameters as the GDRO baseline for
Waterbirds. We do the same for our evaluation on CelebA. This amounts to primarily tuning the first stage environment
inference learning rate and number of updating steps for CMNIST⇤ and CelebA, and the penalty annealing iterations and
penalty weight for the IRM second stage model for CMNIST⇤.

Table 14. Method-specific hyperparameters for EIIL.

Hyperparameter Dataset Values

Environment Inference Learning Rate CMNIST⇤, CelebA {1e-1, 1e-2, 1e-3}
Environment Inference Update Steps CMNIST⇤, CelebA {10000, 20000}

IRM Penalty Weight CMNIST⇤ {0.1, 10, 1000, 1e5}
IRM Penalty Annealing Iterations CMNIST⇤ {10, 50, 80}

GDRO Group Adjustment CelebA {0, 2, 3}
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For CIM, our CMNIST⇤ implementation uses CIM + VIB, and is tuned over the � VIB parameter (Alemi et al., 2016) and
contrastive weighting parameter � for CIM in Table 15. (Taghanaki et al., 2021) report tuning over a range of values within
[1e-5, 1] for � on the CelebA and Waterbirds datasets.

Table 15. Method-specific hyperparameters for CIM.

Hyperparameter Dataset Values

CIM � CMNIST⇤ {0.01, 0.05, 0.1}
VIB � CMNIST⇤ {1e-5, 1e-3, 1e-1, 10}

For PGI, we tune � with the same environment inference parameters as used in EIIL (Table 14). Fixing these parameters to
infer environments, we tuned the � component for training the robust model across � 2 {0.1, 0.5, 10, 100}.

Shared. For all datasets, we use the same optimizer and momentum (if applicable) as reported in the JTT paper. Table 16
contains the data-specific shared hyperparameter values tried.

Table 16. Shared hyperparameters

CMNIST⇤ Waterbirds CelebA CivilComments-WILDS

Learning Rate {1e-4, 1e-3, 1e-2} {1e-4, 1e-3} {1e-5, 1e-4} {1e-5, 1e-4}
Weight Decay {1e-4, 5e-4} {1e-4, 1e-3} {1e-2, 1e-1} {1e-2}

E.3. CNC compute resources and training time

All experiments for CMNIST⇤, Waterbirds, and CelebA were run on a machine with 14 CPU cores and a single NVIDIA
Tesla P100 GPU. Experiments for CivilComments-WILDS were run on an Amazon EC2 instance with eight CPUs and one
NVIDIA Tesla V100 GPU.

Regarding runtime, one limitation with the current implementation of CNC is its comparatively longer training time
compared to methods such as standard ERM. This is both a result of training an initial ERM model in the first stage, and
training another model with contrastive learning in the second stage. In Table 17 we report both how long it takes to train
the initial ERM model and long it takes to complete one contrastive training epoch on each dataset. We observe that while in
some cases training the initial ERM model is negligible, especially if we employ training with only a few epochs to prevent
memorization (for Colored MNIST it takes roughly two minutes to obtain a sufficient initial ERM model), it takes roughly
1.5 and 3 hours to train the high regularization initial models used for Waterbirds and CelebA. While these hurdles are
shared by all methods that train an initial ERM model, we find that the second stage of CNC occupies the bulk of training
time. Prior work has shown that contrastive learning typically requires longer training times and converges more slowly than
supervised learning (Chen et al., 2020). We also observe this in our work.

We note however that because we sample batches based on the ERM model’s predictions, the contrastive training duration is
limited by how many datapoints the initial ERM model predicts incorrectly. In moderately sized datasets with very few
datapoints in minority groups, (e.g. Waterbirds, which has roughly 4794 training points and only 56 datapoints in its smallest
group), the total time it takes to train CNC is on par with ERM. Additionally, other methods such as additional hard negative
mining (Robinson et al., 2021) have been shown to improve the efficiency of contrastive learning, and we can incorporate
these components to speed up training time as well.

Table 17. CNC Average total training time for first and second stages of CNC

Dataset CMNIST⇤ Waterbirds CelebA CivilComments-WILDS

Stage 1 ERM train time 2 min. 1.5 hrs 3 hrs 3.1 hrs
Stage 2 CNC train time 1.2 hrs 1.8 hrs 32.2 hrs 37.6 hrs
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F. Visualization of learned data representations
As in Fig. 6, we visualize and compare the learned representations of test set samples from models trained with ERM,
JTT, and CNC in Fig. 12. Compared to ERM models, both JTT and CNC models learn representations that better depict
dependencies on the class labels. However, especially with the Waterbirds and CelebA datasets, CNC model representations
more clearly depict dependencies only on the class label, as opposed to JTT models which also show some organization by
the spurious attribute still.

�D�

�E�

�F�

Figure 12. UMAP visualizations of learned representations for Colored MNIST (a), Waterbirds (b), and CelebA (c). We color data points
based on the class label (left) and spurious attribute (right). Most consistently across datasets, CNC representations exhibit dependence
and separability by the class label but not the spurious attribute, suggesting that they best learn features which only help classify class
labels.

G. Additional GradCAM visualizations
On the next two pages, we include additional GradCAM visualizations depicting saliency maps for samples from each
group in the Waterbirds and CelebA datasets. Warmer colors denote higher saliency, suggesting that the model considered
these pixels more important in making the final classification as measured by gradient activations. For both datasets, we
compare maps from models trained with ERM, the next most competitive method for worst-group accuracy JTT, and CNC.
CNC models most consistently measure highest saliency with pixels directly associated with class labels and not spurious
attributes.



Correct-N-Contrast: A Contrastive Approach for Improving Robustness to Spurious Correlations

/D
QG
EL
UG
��

/D
QG
�E
DF
NJ
UR
XQ
G

/D
QG
EL
UG
��

:
DW
HU
�E
DF
NJ
UR
XQ
G

:
DW
HU
EL
UG
��

/D
QG
�E
DF
NJ
UR
XQ
G

:
DW
HU
EL
UG
��

:
DW
HU
�E
DF
NJ
UR
XQ
G

,QSXW (50 -77 &1&��2XUV�

Figure 13. Additional GradCAM visualizations for the Waterbirds dataset. We use GradCAM to visualize the “salient” observed features
used to classify images by bird type for models trained with ERM, JTT, and CNC. ERM models output higher salience for spurious
background attribute pixels, sometimes almost exclusively. JTT and CNC models correct for this, with CNC better exclusively focusing
on bird pixels.
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