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Abstract

We consider the problem of estimating a good
maximizer of a black-box function given noisy ex-
amples. We propose to fit a new type of function
called a global optimization network (GON), de-
fined as any composition of an invertible function
and a unimodal function, whose unique global
maximizer can be inferred in O(D) time, and
used as the estimate. As an example way to
construct GON functions, and interesting in its
own right, we give new results for specifying
multi-dimensional unimodal functions using lat-
tice models with linear inequality constraints. We
extend to conditional GONs that find a global
maximizer conditioned on specified inputs of
other dimensions. Experiments show the GON
maximizers are statistically significantly better
predictions than those produced by convex fits,
GPR, or DNNs, and form more reasonable predic-
tions for real-world problems.

1. Introduction
We consider the problem of predicting a maximizer x̂ for an
unknown function g(x) : RD → R, given only a fixed set
of N noisy input-output training pairs (xi, yi) for xi ∈ RD,
and yi = g(xi) + εi ∈ R, i = 1, . . . , N , where εi is zero-
mean noise. The predicted maximizer x̂ will be judged by
how close its predicted output g(x̂) is to the true global
maximum g(x∗) where x∗ ∈ arg maxx g(x).

For example, a coffee chain may wish to optimize where it
puts its next cafe given features like local population density
and distances to other cafes. Doctors want to optimize the
best dosages of a cocktail of medicines to give a patient.
Businesses want to optimize the features or their new prod-
ucts. In each of these cases, we assume we have some past
examples to learn from, and want to make one best guess.
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Figure 1. Toy Example: A concave piecewise-linear function
h(x;φ) was fit to N = 23 noisy training examples to minimize
mean squared error. The fitted function’s prediction of the global
maximizer is marked as x̂. Because the training data is known to
be noisy, it is reasonable that the prediction’s maximum is lower
than the training data maximum, and in a different place.

We leave as future work extending the proposed methodol-
ogy to the standard global optimization algorithm setting
where one is allowed to make a series of guesses (Horst
& Pardalos, 1995), that is, where one selects an x̂t and is
able to acquire the additional training label g(x̂t) + εt, for
t = 1, . . . , T . Here, we make only one guess x̂.

We take a machine-learning approach as illustrated in Fig.
1: we fit a function h(x;φ) with parameters φ to the N
training samples, and then take the global maximizer of the
fitted h(x;φ) as the estimate x̂.

A key question is which function class to use for h(x;φ).
Ideally h(x;φ) will have the right amount of model express-
ibility, and it will be easy to find its maximizer. Box &
Wilson (1951) proposed fitting a quadratic function as a sur-
rogate function whose maximizer can be easily found, but
for many real-world applications a quadratic function will be
too inflexible. At the other extreme, one can fit an arbitrarily
flexible function like a DNN (Gorissen et al., 2010), but that
may overfit, producing a noisy estimate of the maximizer.
In addition, even if we regularize DNN models well, they
may still have multiple local maximizers. Hence, with any
randomly chosen starting point, gradient descent is unlikely
to find DNN’s global maximizer. One may need to try many
starting points to improve the maximizers found by gradient
descent, which could become exponentially more expensive
with larger input dimension D, and there is no guarantee
that the global maximizer of the DNN is found.

We propose a new function class called a global optimiza-
tion network (GON) that generalizes unimodal functions.
GONs are more flexible than prior restricted surrogate func-
tions, but have a well-defined global maximizer. We also
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extend GONs to the conditional setting where some of the
inputs z ∈ RM are fixed, and define conditional global
optimization networks (CGONs) that infer the conditional
maximizer x∗ = arg maxx g(x, z).

GONs can be built with any function layers that satisfy
the required invertibility and unimodality constraints. We
show how to construct GONs using new constraints on deep
lattice networks (DLNs) (You et al., 2017), which are im-
plemented in the TensorFlow Lattice1 library. A key benefit
of the proposed DLN GON is that its D-dimensional global
maximizer can be found surprisingly efficiently in O(D)
time. Further, DLN GONs can be trained efficiently by
constrained empirical risk minimization with linear inequal-
ity constraints. Experiments show the favorable and more
intuitive results obtained by GONs on real problems and
statistically significant simulations.

2. Related Work
GONs lie at the intersection of two classic strategies: (i)
fit a function from a restricted function class to noisy data
and use the fitted models’ maximizer as the prediction of
the true maximizer, and (ii) define a function class by shape
constraints on the behavior of the function, such as requir-
ing the function to be monotonically increasing in some
directions. See the Supplemental for surveys of those two
strategies. Next, we detail the closest related work.

2.1. Convex Neural Networks As Surrogates

Amos et al. (2017) proposed using the shape constraint of
convexity on a deep neural network to form a surrogate
function, then predicting the global minimizer to be x∗ =
arg minx h(x). They constructed it as a multi-layer ReLU
net with the necessary monotonicity shape constraints to
produce an overall convex function. They called this ICNN
and sometimes FICNN, and partial-input convex neural
network (PICNN) when used for the conditional global
optimization problem x∗ = arg minx g(x, z).

Because both FICNN and PICNN are convex in x, the
fits can be minimized with gradient-based optimization al-
gorithms to find arg minx h(x;φ) and arg minx h(x, z;φ).
Others have found the ICNN strategy useful (Chen et al.,
2019; 2020). However, ReLU-activated ICNNs are neither
smooth nor strongly convex, which reduces the convergence
rate in finding the minimizer.

We found that convex functions were often still too inflexible
for even small problems, for examples see Fig. 3 and Fig. 4.

1https://www.tensorflow.org/lattice/overview

2.2. Lattice Networks

We will define GONs only by the shape constraints their
layers must satisfy, but our GON constructions will be ar-
chitected with calibrator layers (D separate piecewise linear
functions onD inputs) and lattice layers (functions resulting
from interpolating a multi-dimensional look-up table). The
basics of such functions are covered most clearly in Gupta
et al. (2016), but see You et al. (2017) for architecting deep
lattice networks that mix these and other layers. The regular
structure of lattice networks makes them well-suited for
satisfying shape constraints (see the Supplemental) while
maximizing flexibility.

2.3. Unimodal Shape Constraints

We will define GONs by using the shape constraint uni-
modality: a function is unimodal if it has a maximizer and
is non-increasing along any ray that starts at that maximizer
(for example, in Fig. 3 the GON, ICNN, and GPR fits are
all unimodal). A few papers have studied fitting 1D uni-
modal functions (Stout, 2008; Köllmann et al., 2014; Gunn
& Dunson, 2005; Chatterjee & Lafferty, 2019). This paper
goes beyond that prior work both in fitting 1D unimodal
functions without prior knowledge of the maximizer using
constrained empirical risk minimization, and in the ability
to fit multi-D unimodal functions with a known maximizer
(which will be sufficient to construct GONs).

Recently, Gupta et al. (2020) showed how to construct and
fit a subclass of multi-d unimodal functions by applying
linear inequality constraints on a lattice model. However,
their unimodality constraints were overly restrictive in that
they were separable by dimension, and hence were suffi-
cient but not necessary for multi-d unimodality. We will
give a new set of linear inequality constraints that are both
necessary and sufficient for a multi-d lattice function to be
unimodal. This paper also differs from Gupta et al. (2020)
in that we use unimodality to create surrogate functions for
global optimization, whereas their goal was to regularize
ML functions where there was domain knowledge that the
fit should be unimodal. Here we do not assume the true func-
tion is actually unimodal, we simply use a unimodal fit as a
regularization tool to efficiently predict a good maximizer.

2.4. Model-based Optimization

Model-based optimization (MBO) is a recent term used by
some in the ML community to describe the same problem
and set-up we attack here. Much of the MBO experiments
and motivation (e.g. (Kumar & Levine, 2020) and (Trabucco
et al., 2021)) has focused on problems with significant train-
test distribution shift.

The closest MBO work is that of Yu et al. (2021), which
claims that it is better than prior MBO approaches, and
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uses the classic strategy (as we do) of fitting a surrogate
f(x) to the train data and then maximizing it. Their work
differs in that they propose a specially smoothed DNN fit:
they perturb the inputs pre-training, and then locally smooth
post-training based on four smoothness hyperparameters.

Another difference to the prior MBO work is that in our
experiments we use a validation set to select the hyper-
parameters for each of the compared methods, where our
validation metric is the accuracy of the predicted maximizer
on the validation set.

3. Global Optimization Networks
We propose a new multi-layer function class that we call
global optimization networks (GONs) defined as a unimodal
function composed with an invertible function, and a condi-
tional variant we call CGONs.

3.1. Definition of Global Optimization Networks

We define a GON to be any multi-layer function h : RD →
R that can be expressed as h(x;φ) = u(c(x)), where c :
RD → SD is any invertible function whose image SD is a
convex subset of RD that contains 0 (, and u : SD → R is
any unimodal function such that it is non-increasing along
any ray that starts at 0.

Fig. 2 shows a 1D example of a c(x) and u(x), with the re-
sulting GON h(x) = u(c(x)) shown at the far-left of Fig. 3.
The role of the c(x) is to stretch, rotate, and shift where the
outputs of c land in u’s domain so that the GON maximizer
x̂ satisfies c(x̂) = 0, which the unimodal function u then
maps to the GON maximum.

Because the maximizer of u is constrained to be at 0,
the GON maximizer is x̂ ≡ arg maxx h(x;φ) = c−1(0),
where c is invertible because it was constrained to be a bijec-
tion. The maximizer c−1(0) will be efficient to find if c is
efficient to invert at 0. Further, suppose c(x) = s(c′(x)) for
some bijective c′ : RD → SD and bijective s : SD → SD
with s(0) = 0. The GON maximizer x̂ = c−1(0) =
c′−1(s−1(0)) = c′−1(0), thus only c′ must be computation-
ally easy to invert, and s can be quite flexible to increase the
expressiveness of c.

3.2. Relation of GONs to Other Function Classes

We show how GONs are related to other function classes.
All proofs for this paper are in the Supplemental.

First, note that the set of GONs includes unimodal functions
with an arbitrary maximizer:

Prop. 1: Let g : SD → R be a unimodal function with
global maximizer x∗ ∈ SD ⊆ RD. Then g can be expressed
as a GON.

Figure 2. The component c(x) and u(x) fit for the best GON for
the 1D Monarchs’ Reigns dataset detailed in Sec. 5.2. Left: The
first-layer c(x) is a piece-wise linear function (PLF) is defined by
five key-value pairs, and meets the invertibility requirement be-
cause it is strictly monotonically increasing. Middle: The second-
layer u(·) is a PLF defined by three key-value pairs, and was
constrained to be unimodal around 0 by making it monotonically
increasing up to 0 and monotonically decreasing after 0 and forc-
ing its middle knot to be at 0, and the other two knots were fixed
at −1 and 1 so the 2nd-layer PLF can be described as a 1D lat-
tice function. The resulting GON h(x;φ) = u(c(x)) is shown in
Fig. 3. As described in Sec. 4.9, the parameters of c and u were
trained jointly using constrained empirical risk minimization with
linear inequality constraints to ensure the needed monotonicity
constraints.

Next, note concave/convex functions are a special case
of unimodal functions (and thus GONs generalize ICNNs
(Amos et al., 2017)):

Prop. 2: Let g : SD → R be a concave function with
global maximizer x̂ ∈ SD ⊆ RD. Then g is unimodal with
maximizer x̂.

Surprisingly, continuous 1D GONs are always unimodal:

Prop. 3: Let u : S1 → R,S1 ⊆ R be a 1D unimodal
function with maximizer at 0. Let c : R→ S1 be continuous,
bijective, and have 0 in its image. Then h(x;φ) = u(c(x))
is unimodal.

3.3. Conditional Global Optimizaton Networks

Consider the conditional global optimization problem: x∗ =
arg maxx g(x, z) for z ∈ RM (Amos et al., 2017). For
example, conditioned on what percentage of a job is manual
labor z, predict the number of weekly work hours x∗ that
will maximize long-term output (Pencavel, 2015).

We extend the GON definition to a conditional global opti-
mization network (CGON). Let c, u, s and c′ be as defined
above, z ∈ RM be an M -dimensional feature vector of
conditional inputs, and r : RM → SD be any learnable
function. We define a CGON to be any function that can be
written as:

h(x, z;φ) = u

(
s

(
c′ (x) + r (z)

2

))
. (1)

Since the maximizer of u is fixed at 0, and s(0) = 0, it is
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Best GON Best DNN Best FICNN Best GPR

Figure 3. Illustrative Example: Best fits for four methods for the 1D Monarchs’ Reigns problem detailed in Sec. 5.2: the goal is to predict
the rank of the monarch in a dynasty that will rule longest. The predicted maximizer of the GON and DNN coincide at the 6th monarch,
though the DNN fit has many local maxima. The convex fit (FICNN) is too rigid. The GPR fit is smooth and provides a closer prediction.
The GON shown is the composition of the component functions c(x) and u(·) that are shown in Fig. 2.

easy to show the CGON maximizer is at x̂ = c′−1(−r(z)).
Note r is unrestricted, so the CGON can have arbitrary
dependence on the conditional input z, for example r can
be a DNN. Table 1 summarizes the requirements for GON
and CGON.

4. Constructing GONs and CGONs
GONs are defined by their shape constraints, but how do we
satisfy those constraints? Next, we describe one approach:
build GONs by using a calibrator layer of piecewise lin-
ear functions (PLFs), and a second layer of their multi-d
cousins, lattice functions. PLFs and lattice functions are
implemented in the TensorFlow Lattice2 library. The bene-
fits of using these function classes are their: (i) flexibility:
they are respectively universal approximators of continuous
bounded 1D and multi-D functions over convex domains;
(ii) efficiency: we show they enable finding the maximizers
of GONs and CGONs in O(D) time; and (iii) trainability:
we show they can be trained using constrained empirical
risk minimization with linear inequality constraints.

4.1. Constructing 1D GONs with PLFs

We first build intuition by showing how to construct efficient
two-layer 1D GONs using piecewise-linear functions (PLFs)
for both the invertible c() and unimodal u(), as in Fig. 2.
Recall that a PLF can be defined by a set of key-value pairs,
and then is evaluated at any point by linearly interpolating
the values of the surrounding two keypoints. Let c(x) be
defined by the K(c) key-value pairs (κ

(c)
k ∈ R, ν(c)k ∈ R)

for k = 1, . . . ,K(c). Then c(x) =

K(c)−1∑
i=1

(
ν
(c)
i +

x− κ(c)i
κ
(c)
i+1 − κ

(c)
i

(
ν
(c)
i+1 − ν

(c)
i

))
I
κ
(c)
i <x≤κ(c)

i+1

(2)

In our experiments, we fix the keys of c to be the two end-
points of the feasible input domain plus the K(c) − 2 quan-

2https://www.tensorflow.org/lattice/overview

tiles of the inputs in the train data, and only train the PLF
values {ν(c)k }.

Recall a 1D continuous invertible function on a closed inter-
val must be strictly monotonic. One can make a PLF mono-
tonically increasing(decreasing) by constraining its values
to be increasing(decreasing) (as done in isotonic regression
(Barlow et al., 1972)). In addition, we constrain the outputs
of c to lie within the input domain of the second-layer func-
tion u, which we set to be [−(K(u)−1)/2,−(K(u) +1)/2]

as explained below. Thus the parameters {ν(c)k } of the PLF
c are constrained to satisfy:

−K
(u) − 1

2
≤ ν(c)1 < . . . < ν

(c)

K(c) ≤
K(u) − 1

2
. (3)

To construct a unimodal PLF with maximizer at 0, use
an odd number of K(u) keypoints uniformly spaced in
S1 = [−(K(u) − 1)/2, (K(u) − 1)/2]. Hence, κi =
−(K(u) − 1)/2 + i − 1, i = 1, . . . ,K(u). K(u) is a hy-
perparameter, where a larger value of K(u) increases the
number of parameters of u and hence the flexibility of u.
Since K(u) must be odd, this makes 0 the middle keypoint
of u. We then constrain the PLF to be increasing up to 0, and
decreasing after 0. That is, a PLF with K(u) keypoints satis-
fies the unimodality constraints if their values ν(u)k satisfies
the following K(u) − 1 linear inequality constraints:

ν
(u)
1 < . . . < ν

(u)

(K(u)+1)/2
> . . . > ν

(u)

K(u) . (4)

Note that the domain of u is bounded by its first and last
keypoints, i.e., S1 = [−(K(u)−1)/2, (K(u)−1)/2], which
is why in (3) we constrained the outputs of c to land there.

All continuous 1D functions defined on a closed interval
can be approximated arbitrarily well by a PLF with enough
knots. It follows that g(x) can be approximated arbitrarily
well by a h(x;φ) constructed with PLFs as well. Thus, this
construction can approximate arbitrarily well all continuous
1D GON functions defined on closed intervals.
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Table 1. GON and CGON summaries for x ∈ RD and z ∈ RM .

GON CGON

FORMULATION h(x;φ) = u(c(x)) = u(s(c′(x))) h(x, z;φ) = u
(
s
(

c′(x)+r(z)
2

))
MAXIMIZER x̂ = c−1(0) = c′−1(0) x̂ = c′−1(−r(z))
REQUIREMENT ON c′ : RD → SD BIJECTIVE, EASY TO INVERT BIJECTIVE, EASY TO INVERT
REQUIREMENT ON s : SD → SD BIJECTIVE, s(0) = 0 BIJECTIVE, s(0) = 0
REQUIREMENT ON u : SD → R UNIMODAL, argmaxx u(x) = 0 UNIMODAL, argmaxx u(x) = 0
REQUIREMENT ON r : RM → SD - ANY FUNCTION

Given this PLF construction, to find the maximizer of h(x),
we only need to invert c(x) at 0. Since c is a monotonically
increasing PLF, inverting it is efficient and requires a con-
stant number of operations: first find c’s smallest keypoint
κ∗ that satisfies c(κ∗) ≥ 0, and then invert the linear seg-
ment between this keypoint and the keypoint to the left of it
to get x̂ = c−1(0). Note that such a κ∗ must exist since we
assume that 0 is in the image of c.

4.2. Multi-D GONs Using Lattice Layers

Our multi-D GON construction is a generalization of our
1D construction. For c, we simply use D monotonic PLFs,
one for each input, which is called a calibrator layer and is
commonly used as a first layer for lattice networks (Gupta
et al., 2016; Canini et al., 2016; You et al., 2017). We con-
strain their output ranges to the domain of u using linear
inequality constraints like (3). One can increase the GON’s
flexibility by setting s : SD → SD to be cascades of no-bias
hyperbolic-tangent-activated dense layers, or other invert-
ible models (Behrmann et al., 2019), but our experiments
simply use D PLFs for c. For u, we use a D-dimensional
lattice function (Garcia & Gupta, 2009), and we propose
new linear inequality constraints for a lattice that are both
sufficient and necessary to ensure the lattice is unimodal.

4.3. Lattice Function Review

Lattice functions are multi-D look-up tables that are inter-
polated to form piecewise multilinear polynomial functions;
see Gupta et al. (2016) and Garcia et al. (2012) for more
details. Let V ∈ ND be a hyperparameter vector where
V[d] is the number of keypoints (and hence flexibility) of
the lattice function over its dth input. The lattice is defined
by the set of

∏
dV[d] regularly-spaced keys or vertices,

MV =

{
−
⌊
V[1]− 1

2

⌋
, . . . ,

⌈
V[1]− 1

2

⌉}
× . . .×{

−
⌊
V[D]− 1

2

⌋
, . . . ,

⌈
V[D]− 1

2

⌉}
,

and corresponding
∏
dV[d] values, {θv : v ∈ MV},

where the keysMV are pre-determined and fixed, and the
values {θv} are trained. The domain of the lattice function

u is the “interior” ofMV given by

SD =

[
−
⌊
V[1]− 1

2

⌋
,

⌈
V[1]− 1

2

⌉]
× . . .×[

−
⌊
V[D]− 1

2

⌋
,

⌈
V[D]− 1

2

⌉]
⊂ RD. (5)

To evaluate the lattice function u(·), we find
the set of 2D vertices surrounding x given by
N (x)=

{
bx[1]c, bx[1]c+1

}
× . . . ×

{
bx[D]c, bx[D]c+1

}
and linearly interpolate their parameters using standard
multilinear interpolation, i.e.,

u(x) =
∑

v∈N (x)

θvΦv(x), (6)

where Φv(x) is the linear interpolation weight on vertex v
given by

Φv(x) =

D∏
d=1

(
1 + (x[d]− v[d])(−1)Iv[d]=bx[d]c

)
, (7)

and I is the standard indicator function.

4.4. Unimodal Lattice Functions

To make a unimodal lattice, we set the number of vertices in
each feature V[d] to be an odd number, and fix the center of
the lattice’s domain at 0. Then, we show one needs the fol-
lowing necessary and sufficient linear inequality constraints
on the lattice parameters for unimodality:

Lemma 1: Let u : SD → R be the function of a D-
dimensional lattice of size V ∈ ND. For d = 1, . . . , D,
denote by ed ∈ {0, 1}D the one-hot vector with ed[i] = 1
iff i = d, and for n ∈ N, denote by [n] the set {1, . . . , n}.
Let s ∈ [D]. Every restriction of u to a function with
s inputs obtained by fixing the last D − s inputs to con-
stants is unimodal with respect to the maximizer 0 ∈ Rs

iff for every v ∈ MV, δ1, . . . , δs ∈ {0, 1} such that
v + δded,v − (1 − δd)ed ∈ MV for all d ∈ [s] , it holds
that

s∑
d=1

(θv+δded
− θv−(1−δd)ed

)v[d] ≤ 0. (8)
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4.5. Finding The Maximizer

Recall that the maximizer of u is at 0 by construction, so
the maximizer of h(x;φ) = u(s(c′(x))) is x̂ = c′−1(0).
Because in our proposed lattice GON construction c′ is
D PLFs, the dth component of the maximizer is found by
simply inverting the dth PLF of c′, which takes O(D) time
overall.

4.6. GONs Generalize Unimodality

Unlike 1D GONs, multi-D GONS generalize unimodal func-
tions:

Prop. 4: Multi-dimensional GONs generalize unimodal
functions.

4.7. Higher-D GONs with Ensemble of Lattices

A single unimodal lattice must be defined on a regular grid
of at least three keypoints over each feature, thus it needs at
least 3D parameters. For better scaling in D, we use a layer
made up of an ensemble of T lattices for u (Canini et al.,
2016; You et al., 2017).

Let c : RD → SD be D 1D monotonic PLFs, with SD =
[−V, V ]D, for some uniform lattice side size 2V + 1 ∈ N.
We define the ensemble GON as

h(x;φ) = α0 +

T∑
t=1

atut(πt(c(x))), (9)

where each πt : SD → SQ for t = 1, . . . , T with
SQ = [−V, V ]Q, is a random projection given by πt(x) =
(x [it,1] ,x [it,2] , . . . ,x [it,Q]), and each ut(x) : SQ →
R,0 ∈ SQ ⊆ RQ is a unimodal lattice as described above
that acts on a (randomly selected) subset of Q entries of
x. The T and Q ≤ D are hyperparameters; larger T
and Q increases the flexibility of the fit. The α0 and
αt ≥ 0, t = 1, . . . , T are learned ensemble parameters.

Prop. 5 shows that the ensemble function in (9) is still
unimodal with maximizer 0, and thus one can again find
its maximizer by simplying invert the first layer PLFs: x̂ =
c−1(0).

Prop. 5: Let I ⊆ R be an interval containing 0. For an
integer d > 0 denote by Sd the Cartesian product Id. Fix an
integer Q > 0, let ut : SQ → R, t = 1, . . . , T be unimodal
functions with maximizer 0 ∈ SQ and let πt : SD → SQ be
projections given by πt(x) = (x[it,1],x[it,2], . . . ,x[it,Q]).
Finally, let u : SD → R, be the ensemble function given
by u(x) = a0 +

∑T
t=1 atut(πt(x)), at ≥ 0. Then u(x) is

unimodal with maximizer 0 ∈ SD.

4.8. CGON Maximizer

Similarly, using the above constructions for the CGON lay-
ers with D PLFs for c′, the CGON global maximizer can
also be computed in O(D) time unless the evaluation of
r(z)) requires more than O(D).

4.9. Training PLF and Lattice GONs

Given a standard loss L and a training set {xi, yi} for
i = 1, . . . , N , collect the parameters of both c and u into
a parameter vector φ ∈ Rp, collect all the linear inequality
constraints to enforce the monotonicity of c and the uni-
modality of u into one matrix inequality ATφ ≥ 0, then
train by solving:

arg min
φ

N∑
i=1

L(h(xi;φ), yi) such that ATφ ≥ 0. (10)

Note that ATφ ≥ 0 in (10) only forces any monotonic
functions in c to be non-decreasing, so to force c to be
increasing for invertibility, if there are any flat segments in
any c, we simply treat the rightmost key’s parameter to be
larger.

To solve (10), we extended the TensorFlow Lattice library
(Milani Fard, 2020), which already provides PLF layers,
lattice layers, and monotonicity constraints, to also support
our new joint unimodality constraints, which are now in
the open-sourced TensorFlow Lattice library. As recom-
mended in Milani Fard (2020), we fixed the keypoints of c
at initialization based on the endpoints and quantiles of the
input data, did not train the keypoints of c, and we project
onto the linear inequality constraints in (10) after each batch
using 10 steps of Dykstra’s projection algorithm (Boyle &
Dykstra, 1986).

5. Experiments
We compare GONs to DNN’s, the convex neural networks
of Amos et al. (2017), and GPR at predicting the maxi-
mizer (or minimizer) given the same set of N noisy training
samples and only one guess. We start with three real-data
problems to build intuition. Then we provide statistically
significant comparisons for the problem of selecting the best
hyperparameters for image classifiers on five datasets, and
two popular global optimization benchmark simulations.
Table 2 summarizes the experiments.

5.1. Experimental Details

For each experiment and for each method, we train a set
of models with different hyperparameter choices, select the
best model according to a validation or cross-validation met-
ric (metric described below), then use the global maximizer
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Table 2. Summary of Experiments.

EXPERIMENT # OF FEATURES # TRAINING SAMPLES # TEST CANDIDATES FOR x∗

MONARCH 1 373 2 TO 28 FOR EACH OF 30 DYNASTIES
PUZZLE 2 36 27
WINE 61 84,642 24,185
HYPERPARAMETERS 7 25 PRACTICALLY INFINITE
GRIEWANK 4–16 100–10,000 INFINITE
ROSENBROCK 4–16 100–10,000 INFINITE

of a model trained on the selected hyperparameters as the
method’s predicted maximizer.

In practice, given a model h(x), one would predict
the maximizer over the entire input domain: x̂ =
arg maxx∈RD h(x), and that is what we do for our two
simulations. However, for our real-data experiments we
cannot judge arbitrary predictions, because we do not have
the true label for every x, so we limit the prediction to the
inputs seen in the test set: x̂ = arg maxx∈XTest h(x), where
XTest is the test set inputs for which we have labels.

For all experiments, we score each predicted maximizer x̂
by the test output corresponding to test input x̂.

GPR was trained with sklearn’s GPR function. GONs and
CGONs are trained with the TensorFlow Lattice library.
All other models were trained in TensorFlow with Keras
layers, and used ADAM (Kingma & Ba, 2015) with a de-
fault learning rate of .001 (preliminary experiments with
learning rates of 0.0003 as suggested in Liu et al. (2020)
yielded similar results). Batch size was N for N < 100,
1000 for the larger wine experiment in Sec 5.4, and 100
otherwise. FICNN and PICNN used the formulations in
(2) and (3) respectively, from Amos et al. (2017). For
a CGON with M -dimensional conditional inputs, we use
r(z)[j] =

∑M
i=1 PLF

j
i (z[i]), j = 1, . . . , D, where z[i] and

r(z)[i] denote the i-th entry of z and r(z). For simplicity
we use S(x) = x, i.e., the identity function. Hyperparam-
eter choices are detailed in the Appendix. For training,
labels were scaled to lie in [0, 1] to make it easier to spec-
ify hyperparameter options. All TensorFlow models were
trained to minimize MSE loss. Code for some experiments
can be found at https://github.com/google-research/google-
research/tree/master/gon.

5.2. Predict the Longest-Reigning Monarch

Do royal dynasties become more stable over time? Here we
predict the rank of the monarch in a dynasty that rules the
longest. Input x ∈ [1, 36] is the rank-order of a monarch,
and label y is how many years that monarch reigned. Fig.
3 shows the different validated functions given 373 such
training samples from 30 dynasties. The 1d GON model
is unimodal, with its peak at the 6th monarch. The DNN

model is less smooth with more peaks and valleys, but
agrees with the GON model that the global maxima should
be at the 6th monarch. The convex neural network (FICNN)
is over-regularized for this problem, and predicts the first
monarch will rule the longest. The GPR model predicts the
7th monarch will rule the longest. See the Supplemental for
more details and results.

5.3. Predict the Best Selling Jigsaw Puzzle

We partnered with the jigsaw puzzle company Artifact
Puzzles to predict what kind of jigsaw puzzle sells
best. This data has been made publicly available at
www.kaggle.com/senzhaogoogle/puzzlesales. Each puzzle
is characterized by D = 2 features: the number of pieces
in the puzzle in the range [79, 1121], and the century of the
artwork rounded to the nearest century from 1500 to 2000.
The non-IID train/validation/test sets had 36/32/27 puzzles
that were new in 2017/2018/2019, each puzzle’s label was
that puzzle’s sales that year during the holiday season.

We optimized over 8 different hyperparameter choices for
each model type (see the Supplemental for details), scor-
ing candidate hyperparameters by the actual sales of the
validation-set puzzle it predicted would sell best. Similarly,
the test metric was the actual sales of the test puzzle pre-
dicted to have the best sales by the optimized trained model.

Figure 4 shows the best model for each function class. Table
3 shows the GON predicted best seller from the test set
did have the highest actual sales. The sales of the DNN
and FICNN models are close, but if one did not restrict
the maximizer to the test set and instead took the global
maximizer over the feature space, the DNN and FICNN
models predicted sales would be maximized by a puzzle
with 0 pieces.

5.4. Predict the Highest-Rated Wine

Using Kaggle data from Wine Enthusiast Magazine3, we
predict which wine will have the highest quality rating in
[80, 100]. We take as given the wine’s real-valued price in
dollars, 21 Boolean features denoting the country of origin,

3www.kaggle.com/dbahri/wine-ratings
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Figure 4. Validated models for predicting best-selling puzzles as
a function of number of pieces and century of art. The global
arg max of the DNN and FICNN predicts the best-selling puzzle
would have 0 pieces! That bad extrapolation was fairly stable over
hyperparameters (see Supplemental).

Table 3. New Puzzle Sales: Metrics for the Trained Models With
Best Validation Scores. Bold is best. Train Root MSE and the
actual Test Sales (of the test puzzle the surrogate function predicts
will sell best) are puzzles sold (scaled). Global Arg Max is the
surrogate function’s exact global maximizer.

TRAIN TEST GLOBAL ARG MAX
RMSE SALES

DNN 78.2 173 0 PIECES, YEAR 2000
FICNN 78.8 173 0 PIECES, YEAR 2000
GPR 87.3 2 146 PIECES, YEAR 2000
GON 77.4 182 230 PIECES, YEAR 2000

and 39 Boolean features describing the wine by Wine En-
thusiast Magazine for a total of D = 61 features. There
are 84,642 train samples, 12,092 validation samples, and
24,185 test samples, all IID. We omit results for GPR for
this problem because we could not train GPR in sklearn
using our machines with 128GB of memory. We validated
each model over 15 hyperparameter choices (details in Ap-
pendix); the validation score was the actual quality of the
model’s highest quality prediction over the validation set.

Table 4 reports the validated models and their predicted
best wines. Consistent across hyperparameter choices, the
DNNs and FICNNs relied heavily on the price feature, and
the best DNN wrongly predicted that the most expensive
test wine would be the highest-quality. The GON achieved
the best test score by choosing a test wine with many refined

Table 4. Best Wine: Results for Models With Best Validation
Scores. Units are quality points from [80, 100]. Bold is best.

MODEL TRAIN TEST PREDICTED
RMSE PTS BEST TEST WINE

DNN 2.54 88 $3300, ACID, JUICY,
TANNIN, FRANCE

FICNN 2.20 94 $1100, COMPLEX, EARTH,
LEES, TIGHT, AUSTRIA

GON 2.28 97 $375, ACID, BRIGHT,
COMPLEX, ELEGANT,
REFINED, STRUCTURE,
TANNIN, ITALY

Boolean features known to correlate with higher-quality
wines.

We also compared the ability of CGON, PICNN, and DNN
models to predict the highest-quality wine conditioned on
six different price points. We used the same hyperparame-
ters for these models as for the unconditioned experiments.
The CGON won or tied 5 of the 6 experiments.

5.5. Image Classifier Hyperparameter Optimization

The next experiment predicts the best hyperparameters for
image classifiers as shown in Table 5. Note that the goal of
this experiment is not to produce another state-of-the-art im-
age classifier, but to demonstrate that GON is more effective
in selecting hyperparameters than other methods. Also note
that we focused on the problem of making one single best
guess of the maximizer. Other hyperparameter selection
methods generate a sequence of guesses for exploration,
such as bilevel optimization using iterative differentiation,
approximate implicit differentiation, and Bayesian optimiza-
tion. One can surely modify GON to generate a sequence
of guesses, but one would need to consider the exploration-
exploitation tradeoff and evolving training set, which is
beyond the scope of this paper.

We ran experiments on five benchmark datasets: CIFAR-
10/100 (Krizhevsky, 2009), Fashion MNIST (Xiao et al.,
2017), MNIST (LeCun et al., 2010) and cropped SVHN
(Netzer et al., 2011) datasets with their default train/test
splits, and use 10% of the train set as validation. We
use ReLU-activated image classifiers: Conv(f1, k) →
MaxPool(p) → Conv(f2, k) → MaxPool(p) →
Conv(f3, k) → Dense(u) → Dense(#classes), where
filters/units f1, f2, f3, u ∈ [8, 128], kernel/pool size k, p ∈
[2, 5] and training epochs e ∈ [1, 20] are treated as hyperpa-
rameters.

To train the optimizers, we randomly sampleN = 25 sets of
hyperparameters (f1, f2, f3, u, k, p, e), then train N = 25
image classifiers on each set of hyperparameters, and use
their N = 25 validation errors as the train labels to fit the
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Table 5. Mean Test Accuracy ± 95% error margin with predicted best hyperparameters. Bold is stat. sig. best or tied for best at 95% level.

METHOD CIFAR-10 CIFAR-100 FASHION MNIST MNIST SVHN

GON 70.9% ± 0.4% 37.0% ± 0.4% 91.1% ± 0.1% 98.9% ± 0.1% 87.8% ± 0.3%
FICNN 67.7% ± 1.6% 34.5% ± 1.6% 91.0% ± 0.1% 99.0% ± 0.1% 88.3% ± 0.4%
DNN 67.8% ± 1.0% 33.6% ± 1.2% 90.7% ± 0.2% 99.0% ± 0.1% 86.1% ± 3.1%
GPR 66.0% ± 3.5% 34.9% ± 0.9% 90.7% ± 0.2% 98.9% ± 0.1% 85.6% ± 1.8%

CGON 69.7% ± 0.5% 35.5% ± 0.6% 91.3% ± 0.1% 98.9% ± 0.1% 87.8% ± 0.3%
PICNN 65.5% ± 3.5% 32.4% ± 1.0% 91.1% ± 0.1% 99.0% ± 0.1% 87.3% ± 2.8%
DNN 67.5% ± 1.1% 32.5% ± 1.7% 90.9% ± 0.2% 98.9% ± 0.1% 87.2% ± 1.4%
GPR 68.1% ± 2.1% 34.7% ± 0.8% 91.1% ± 0.1% 98.9% ± 0.1% 87.0% ± 1.9%

response surfaces over the D = 7 dimensional feature space
of hyperparameter choices. For the conditional models, we
conditioned on e = 10 training epochs.

For GON and CGON, we found the global maximizer of
the response surface over the D = 7 hyperparameter space
by inverting the PLFs. For FICNN and PICNN, we used
ADAM to find their global maximizers, taking advantage
of the fact that their response surfaces are concave, similar
to the original work of Zico et al. (Amos et al., 2017). For
DNN and GPR, we first randomly generated a candidate set
Xcandidates of 100,000 hyperparameter-sets from the D = 7-
dim domain, and set x̂ = arg maxx∈Xcandidates h(x;φ), and
use that predicted best hyperparameters to re-train the image
classifier and report the test error rates. For each of the 5
image classification problems, we ran the entire experiment
50 times, each with a different random draw of the N =
25 random hyperparameters set used to train the response
surface. See the Supplemental for details.

Table 5 shows that GON and CGON are statistically signifi-
cantly the best or tied for the best for all 5 image datasets.

5.6. Simulations on Benchmark Functions

We ran extensive simulations with two popular benchmark
functions: the banana-shaped Rosenbrock and pocked-
convex Griewank functions (Horst & Pardalos, 1995). Table
6 shows the results for increasing D, N and train noise
σ (Supplemental has full experimental details and results).
GON was statistically significantly the best predictor of
the global minimizer for all the simulation set-ups for both
Rosenbrock (6) and Griewank. CGON was also consistently
best for Rosenbrock. For Griewank, CGON was the best or
tied for the best in 6 slices, and PICNN, DNN and GPR were
the best or tied for the best in 0, 5 and 3 slices, respectively.

6. Conclusions
We defined GONs by the shape constraints they must obey:
invertible layers and unimodal layers. We showed they
provide better or comparable accuracy as DNNs, convex

Table 6. Rosenbrock simulation results with 95% conf. intervals.
Bold is stat. sig. best or tied for best.

D GON FICNN DNN GPR

4 213 ±24 833 ±92 2259 ±151 2310 ±186

8 492 ±37 2370 ±188 5019 ±209 4791 ±241

12 734 ±47 3575 ±278 7407 ±220 7022 ±257

16 1004 ±21 5750 ±128 9466 ±91 9133 ±107

σ GON FICNN DNN GPR

0.25 282 ±8 818 ±34 4064 ±110 6582 ±201

0.5 419 ±13 1273 ±52 5183 ±116 3830 ±117

1.0 557 ±16 2805 ±97 6216 ±113 5737 ±95

2.0 797 ±22 4382 ±118 7075 ±105 6445 ±77

4.0 999 ±26 6383 ±139 7651 ±105 6478 ±70

N GON FICNN DNN GPR

1e2 473 ±9 2983 ±78 6462 ±83 5820 ±90

1e3 897 ±19 4281 ±104 6237 ±87 5923 ±97

1e4 463 ±13 2133 ±71 5414 ±97 5700 ±103

functions, and GPR for predicting a maximizer. We focused
on using PLF and lattice layers because they are arbitrarily
flexible models and amenable to shape constraints, but other
invertible layers could be used (e.g. Behrmann et al. (2019)),
or other unimodal (or even convex) layers. Computationally,
we found the time to fit a GON was similar to ICNNs and
DNNs using Tensorflow for the same number of parameters,
but a DLN GON maximizer can be found exactly in O(D)
time.

We hypothesize that GONs will generally work well in
practice when there are large-scale trends that GON’s uni-
modality shape constraint can take advantage of. If the
true landscape has many separate local minima without a
larger-scale trend, then the GON shape may be less useful.

We focused on the set-up where only one guess is needed,
but an important open question is how to use GONs as
a response function as the core of a global optimization
algorithm that gets new labels and can make a series of
guesses.
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A. Broader Related Work
In the next two subsections, we review the broader set of related work for GONs: strategies in fitting functions for
optimization, and shape constraints.

A.1. Related Work in Fitting Functions for Optimization

The idea of fitting a function and then predicting the maximizer to be the maximizer of the fitted-function (see Fig. 1) dates
back to at least Box and Wilson’s 1951 paper (Box & Wilson, 1951), which considered fitting interpolating high-order
polynomials through all the data (but in practice restricted their experiments to linear and quadratic functions). Such fits are
often called response surfaces or surrogates. This strategy is also used as an intermediary step for convex optimization in
trust region methods that fit a quadratic function locally to a neighborhood, and then expand or contract the region over
which the quadratic is fitted (Nocedal & Wright, 2006). They also considered two issues we do not address in this paper.
First, they considered the selection of training examples that would lead to good estimates, e.g., by properly covering the
input space, whereas in this paper we take the training examples as given. Second, they noted that one might need to fit a
series of such surrogate functions over different subregions of the input space, and we leave this question of specifying a
good multi-pass global optimization algorithm open for future work.

Amos et al. (2017) proposed fitting flexible convex (or concave) functions to all the training data. They constructed convex
functions through a multi-layer ReLU-activated machine-learned model with the appropriate monotonicity shape constraints
to get the convexity. They proposed a fully-input convex neural network (referred to as FICNN or just ICNN) for solving the
global optimization problem x∗ = arg minx g(x), and a partial-input convex neural network (PICNN) for the conditional
global optimization problem x∗ = arg minx g(x, z). Because their machine-learned functions h(x;φ) and h(x, z;φ) are
convex in x, they can be minimized numerically to find arg minx h(x;φ) and arg minx h(x, z;φ). Others have found this
strategy useful (Chen et al., 2019; 2020). However, note that ReLU-activated ICNNs are neither smooth nor strongly convex,
which reduces the convergence rate in finding the minimizer of an ICNN.

For non-convex problems, (Jones, 2001) contended that fitting quadratics is “unreliable” because “the surface may not
sufficiently capture the shape of the function.” Arbitrary machine-learning models have been used as surrogate models
(Gorissen et al., 2010). However, for those methods, we cannot use gradient-based methodologies to find their maximizers,
and hence the second stage of finding the global optimizer of such models becomes computationally restrictive in high-
dimensions. In addition, using an arbitrary surrogate misses the chance to semantically regularize the fitted function to have
a shape with a unique global optimum.

A different flexible fitting strategy is kriging, also called Gaussian process regression (GPR) (Rasmussen & Williams, 2006).
GPR interpolates the training set (Jones, 2001). Computing GPR has complexity O(N3) for N training examples, and
finding its optimizer is problematic as the number of inputs D increases (Jones, 2001; Rasmussen & Williams, 2006).

Compared to the prior work, the proposed GON functions are more flexible than concave functions, but do have a unique
global maximizer. Further, the global maximizer of GONs can be specified analytically and found in O(D) time, without
the need for gradient-based algorithms. Further, unlike methods which use arbitrarily flexible fits like DNNs, the proposed
GONs use a semantically meaningful regularization strategy, which produces more interpretable and often more accurate
results, as shown in Sec. 5.

A.2. Related Work in Shape Constraints

Shape constraints define function classes by specifying their model shape properties (Groeneboom & Jongbloed, 2014;
Chetverikov et al., 2018). Fig. 5 shows examples of 1D functions that satisfy the shape constraints of monotonicity,
concavity, and unimodality.

The most common and popular shape constraint is monotonicity. For example, linear functions with positive slopes
are monotonically increasing. In general, a 1D function with x ∈ R, a function is monotonically increasing if f(x) is
non-decreasing as x increases, or monotonically decreasing if the opposite. Here we use the shorthand monotonic for either
direction. For differentiable functions, a function is monotonic if the first derivative is non-negative everywhere.

A popular flexible 1D function class for satisfying shape constraints is piecewise linear functions (PLF) (Barlow et al., 1972;
Howard & Jebara, 2008; Groeneboom & Jongbloed, 2014; Garcia et al., 2012; Gupta et al., 2016), as shown in Figure 5.
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Figure 5. Examples of piece-wise linear functions (PLFs) that satisfy different shape constraints. Each PLF is parameterized by the
key-value pairs marked by the black dots.

Figure 6. Arrows illustrate different unimodality constraints for a two-dimensional function, with the maximizer at the center of each
plot. Left: A function is defined to be unimodal if it has a maximizer and is non-increasing along all rays starting at the maximizer.
Middle: The arrows show the prior art: separable unimodality constraints given in (Gupta et al., 2020) on a 3× 3 grid of knots that is later
bilinearly-interpolated to form the lattice function. Each arrow signifies that the parameter value at the arrow tip must be smaller than or
equal to the parameter value at its tail. These separable constraints are sufficient but not necessary for unimodality, as they un-necessarily
enforce unimodality on every orthogonal slice of the function. Right: The joint unimodality constraints proposed in this paper in (15) for
a 3 × 3 lattice. The solid blue arrows indicate that the parameter value at the arrow tip must be smaller than or equal to the parameter
value at the arrow tail. The dashed purple arrows signify that the parameter value at the purple tip must be smaller than or equal to the
average of the two knot values at the diagonal corners. This set of constraints in (15) is shown to be both sufficient and necessary for a
lattice function to be unimodal.

Monotonicity constraints can also be applied to multi-d functions with x ∈ RD, where the usual def-
inition is that f(x) is increasing in the dth feature, x[d], if f(x) is non-decreasing as x[d] increases,
with all other features held fixed. A function can be monotonic with respect to a subset of its fea-
tures. Flexible multi-dimensional monotonic functions have been created by constraining neural networks,
(?)e.g.,][]Archer:93,Sill:98,ZhangZhang:1999,Daniels:2010,Minin:2010,QuHu:11, Zhu:2017,Cannon:2018,Louppe:2019,
support vector machines (Howard & Jebara, 2008), decision trees (?)e.g.,][]Qian:2015,PeiHu:2018, and lattices
(?)e.g.,][]GuptaEtAl:2016,canini:2016,You:2017, or by post-processing (?)e.g.,][]Chernozhukov:2010,Lafferty:2018.

Monotonicity shape constraints are usually imposed on machine-learned functions to incorporate domain knowledge that
the true function should be monotonic (Gupta et al., 2016), for example, if all else is equal, a house price should be
monotonically increasing if it has more square footage. Monotonicity shape constraints have also been used to impose
policies such as fairness on functions and provide guarantees the functions work in ways people want (Wang & Gupta,
2020).

Other shape constraints that have been used in the statistics and machine-learning communities are diminishing returns (Pya
& Wood, 2015; Chen & Samworth, 2016; Gupta et al., 2018), complementary inputs (Gupta et al., 2020), and dominance
between inputs (Gupta et al., 2020).

Another overly-restrictive special case of unimodality is jointly concave functions. These have been produced by summing
jointly concave basis functions (Kim et al., 2004; Magnani & Boyd, 2009), or by DNN’s with ReLU activations that are
constrained to be jointly convex over a subset of features (Dugas et al., 2009; Amos et al., 2017). We show experimentally
that concave functions are generally too restrictive for finding and understanding global maximizers.

Shape constraints are often applied to lattice functions, as we do in this paper. Lattices are linearly-interpolated multidi-
mensional look-up tables (Garcia et al., 2012): in one-dimension a lattice is just a piecewise linear function with regular
knots. Lattices are arbitrarily flexible, just add more knots (parameters). Because the lattice is parameterized by a regular
grid of function values, many shape constraints turn into sparse linear inequality constraints, making training them easy
(?Gupta et al., 2018; 2020). Higher-dimensional lattice functions are achieved through ensembles (Canini et al., 2016) and
multi-layer models (You et al., 2017; Cotter et al., 2019). In the next section, we will show how to construct efficient GONs
using multi-layer lattice models with the appropriate shape constraints. Tensorflow Lattice provides an open source library
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...

xD

x2

x1

...

Monotonic PLF D (2)
R→ S1

Monotonic PLF 2 (2)
R→ S1

Monotonic PLF 1 (2)
R→ S1

...

Unimodal Lattice T (6)
SQ → R

Unimodal Lattice 2 (6)
SQ → R

Unimodal Lattice 1 (6)
SQ → R

Invertible s
s(0) = 0
SD → SD

Weighted Sum (9)
RT → R

h(x;φ)

Figure 7. Block diagram for the proposed multi-dim GON using a PLF layer for c(x) and an ensemble of weighted unimodal lattices for
u(·). Each unimodal lattice u(·) takes a subset of features as the input. The blue box denotes the invertible function and the green box
denotes the unimodal function.

for lattice functions (Milani Fard, 2020), we provide extensions to the Tensorflow Lattice library for GONs.

B. Block Diagrams for Ensemble GON and CGON Models
Fig. 7 gives a block diagram for a DLN GON using an ensemble of lattices as a layer (for more on lattice ensembles see
Canini et al. (2016), and for more on ensembles of lattices as a layer in a multi-layer model see You et al. (2017).

Fig. 8 gives a block diagram for a DLN CGON.

C. Puzzles Experiment More Details
To further build intuition, in Figure 9 we show the trained functions with the most flexible hyperparameter choices we
validated over. The most flexible GON model used 9 keypoints for the PLF for each of the two inputs for c, and then a 3× 3
lattice for u. It has a steep peak at 213 pieces and year 2000. The most flexible DNN, with 4 layers and 8 hidden nodes,
is a reasonable model with a peak at 353 pieces and art from year 2000. The GPR model with α = 1e − 6 overfit good
sales data for one of the largest puzzles. The most flexible ICNN model, with 4 layers and 8 hidden nodes, still advises the
company to make puzzles with zero pieces.

D. Proofs
Below are the proofs for all of the results in the paper. See Fig. 10 for a Venn diagram summarizing Propositions 1,2,3 and 4.

D.1. Unimodal Functions Are GONs

Prop. 1: Let g : SD → R be a unimodal function with global maximizer x∗ ∈ SD ⊆ RD. Then g can be expressed as a
GON.

Proof. All unimodal functions are GONs. This is because for any unimodal function g with maximizer x̂, we can
reparametrize it as g(x) = u(x+ x̂) for some u that is unimodal with arg maxx u(x) = 0. This can then be written u(c(x))
where c(x) = x + x̂ is invertible, thus forming a GON.

D.2. Concave Functions Are Unimodal

Prop. 2: Let g : SD → R be a concave function with global maximizer x̂ ∈ SD ⊆ RD. Then g is unimodal with maximizer
x̂.
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. . .

xD

x2

x1

. . .

Monotonic PLF D (2)
R→ S1

Monotonic PLF 2 (2)
R→ S1

Monotonic PLF 1 (2)
R→ S1

. . .

Average D
S2 → S1

Average 2
S2 → S1

Average 1
S2 → S1

Unimodal Function
SD → R

h(x, z;φ)

. . .

zM

z2

z1

Any Function
RM → SD

Invertible s
s(0) = 0
SD → SD

Figure 8. Block diagram of a CGON constructed with DLN layers. The blue box marks the invertible function, and the green box marks
the unimodal function and is identical to the green box in Figure 7. There are D inputs x to optimize over given values for the M
conditional inputs z. The model uses D one-dimensional monotonic PLFs to calibrate each of the D inputs x, and uses any function (e.g.
a DNN) to map the M conditional inputs z to D outputs. We add each of the D calibrated x to one of the D outputs of z, resulting in D
inputs s to the unimodal function. Note the whole model will be jointly trained, so the D outputs of r(z) will be optimized to be linearly
combined with the c′(x). Then the D outputs from s are separated into an ensemble of unimodal lattices as in (9), whose outputs are
linearly combined to get the final prediction.

Proof. Let r(t) = x̂ + tv, t ≥ 0, be a ray in RD originating at x̂. To prove concave g is unimodal, we need to show
that g(r(t)) is decreasing. Let r(t1), r(t2) be two points on the ray with 0 ≤ t1 ≤ t2. Then it’s easily verified that
r(t1) = ((t2 − t1)/t2)x̂ + (t1/t2)r(t2). Now by the concavity of g, we have

g (r (t1)) = g

(
t2 − t1
t2

x̂ +
t1
t2
r(t2)

)
≥ t2 − t1

t2
g (x̂) +

t1
t2
u (r (t2))

≥ t2 − t1
t2

g (r (t2)) +
t1
t2
g (r (t2))

= g(r(t2)),

where the last inequality follows since g(x̂) is the maximum of g.

D.3. One-Dimensional GONs With Monotonic c Are Unimodal

We show that for one-dimensional GONs because a continuous one-to-one function c defined on a convex set must be
monotonic, the GON is unimodal.

Prop. 3: Let u : S1 → R,S1 ⊆ R be a 1D unimodal function with maximizer at 0. Let c : R→ S1 be continuous, bijective,
and have 0 in its image. Then h(x;φ) = u(c(x)) is unimodal.

Proof. Let x∗ ∈ R be the pre-image of 0 under c. Consider any x1, x2 ∈ R such that x1 < x2 ≤ x∗. Note that to be
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Figure 9. The most flexible models considered when validating hyperparameters for the puzzle sales experiment.

Figure 10. Relationship of GONs to other function classes, summarizing Propositions 1, 2, 3, and 4. Left: In the special case of an
one-dimensional input, the class of continuous GONs and the class of unimodal functions are identical. Right: For multi-dimensional
input spaces, the set of GONs is more expressive than the set of unimodal functions, and unimodal functions more expressive than the set
of concave functions.

bijective, a continous one-dimensional c with a convex domain must be either monotonically increasing or monotonically
decreasing: otherwise, one can find 3 points x < y < z for which either f(x) < f(y) > f(x) or f(x) > f(y) < f(z)
and by the mean value theorem it follows that any point c in between f(x) and f(y) will have at least 2 distinct pre-
images, contradicting f being one-to-one. Without loss of generality, assume c is monotonically increasing. Then we have
c(x1) ≤ c(x2) ≤ c(x∗) = 0. Since u is unimodal w.r.t its input 0, we have u(c(x1)) ≤ u(c(x2)) ⇐⇒ h(x1) ≤ h(x2).
Therefore h is increasing for x ≤ x∗. An analogous argument shows that h is decreasing for x ≥ x∗. Thus h is unimodal
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with respect to x∗.

D.4. Proof for Linear Inequality Constraints To Make A Lattice Function Unimodal

Some visual intution for this lemma is given in Figure 6.

Throughout this section we use the following notation. For a function u : RD → R we denote its partial derivative with
respect to the ith input variable by ∂iu. If u is univariate we denote its derivative by u′. For n ∈ N we use [n] to denote the
set {1, 2, . . . , n} and for x ∈ RD, and d ∈ [D], we denote by x[d] the dth entry of x. Finally, we denote by ed ∈ [0, 1]D the
one-hot vector where ed[i] = 1 iff i = d.

Consider a lattice with dimension D, size vector V, and parameters {θv}v∈MV
. For x ∈ RD, we define the cell of x to be

the set of its 2D neighboring grid vertices given by N (x)=
{
bx[1]c, bx[1]c+1

}
× . . . ×

{
bx[D]c, bx[D]c+1

}
. Then the

lattice function u is given by
u(x) =

∑
v∈N (x)

θvΦv(x), (11)

where Φv(x) is the linear interpolation weight on vertex v given by:

Φv(x) =

D∏
d=1

(
1 + (x[d]− v[d])(−1)Iv[d]=bx[d]c

)
, (12)

and I is the standard indicator function. See (Gupta et al., 2016) for more details.

To prove Lemma 1, we’ll need the following supporting lemma (Lemma 2), which gives a formula for the partial derivative
of a lattice function.

Lemma 2: Let f : RD → R be a lattice function with dimension D, size vector V and parameters {θv}v∈MV
. Then for all

d ∈ [D], and x ∈Mv with x[d] 6∈ Z (i.e. x does not lie on the boundary of two adjacent lattice cells in the dth direction)

∂df(x) =
∑

v∈N (x)

Φv(x)(θdved,x − θbvcd,x),

where dved,x is v+ed, if v[d]=bx[d]c, or v, otherwise, and bvcd,x=dved,x−ed.

Proof. Let x satisfy the requirements of the lemma. By (11), ∂df(x)=
∑

v∈N (x) θv∂dΦv(x). Denoting by
λ(v, x)=1+(x−v)(−1)Iv=bxc , for x∈R and v∈N, we get

∂df(x) =
∑

v∈N (x)

θv∂d

D∏
i=1

λ(v[i],x[i])

=
∑

v∈N (x)

θv(−1)Iv[d]=bx[d]c
∏
i 6=d

λ(v[i],x[i]),

where we used the fact that for x ∈ R \ Z, ∂λ/∂x = (−1)Iv=bxc . Partitioning the set N (x) of size 2D into the 2D−1 pairs
{(v, dved,x) : v ∈ N (x),v = bvcd,x}, we may regroup the summands to obtain

∂df(x) =
∑

v∈N (x)
v=bvcd,x

(
θdved,x − θbvcd,x

)∏
i 6=d

λ(v[i],x[i]) (13)

Now, observe that 1 = λ(bx[d]c,x[d]) + λ(bx[d]c+1,x[d]). Thus, for v ∈ N (x) with v = bvcd,x, it holds that∏
i 6=d

λ(v[i],x[i]) =
(
λ(bx[d]c,x[d]) + λ(bx[d]c+1,x[d])

)
·

∏
i 6=d

λ(v[i],x[i])

= Φv(x) + Φdved,x(x). (14)
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Substituting (14) into (13), we get

∂df(x) =
∑

v∈N (x)
v=bvcd,x

(
θdved,x − θbvcd,x

)
(Φv(x) + Φdved,x(x))

=
∑

v∈N (x)

Φv(x)
(
θdved,x − θbvcd,x

)
.

We are now ready to prove Lemma 1.

Lemma 1: Let u : SD → R be the function of a D-dimensional lattice of size V ∈ ND. For d = 1, . . . , D, denote by
ed ∈ {0, 1}D the one-hot vector with ed[i] = 1 iff i = d, and for n ∈ N, denote by [n] the set {1, . . . , n}. Let s ∈ [D].
Every restriction of u to a function with s inputs obtained by fixing the last D − s inputs to constants is unimodal with
respect to the maximizer 0 ∈ Rs iff for every v ∈MV, δ1, . . . , δs ∈ {0, 1} such that v + δded,v− (1− δd)ed ∈MV for
all d ∈ [s] , it holds that

s∑
d=1

(θv+δded
− θv−(1−δd)ed

)v[d] ≤ 0. (15)

Proof. Every restriction obtained from u by fixing the last D− s features to constants is unimodal w.r.t 0 if and only if every
such restriction is decreasing along rays originating in 0. The latter statement can be equivalently restated as: for each x ∈
RD, the function fx : [0, 1]→ R, given by fx(t) = u(rx(t)), with rx(t) = (tx[1], . . . , tx[s],x[s+ 1],x[s+ 2], . . . ,x[D]),
is decreasing. Since each such fx is continuous and piecewise-differentiable with finitely many pieces, the last condition is
equivalent to requiring that f ′x(t) ≤ 0 for all t ∈ ]0, 1] where the derivative is defined. Observe that it’s sufficient to require
that for all x ∈ RD, f ′x(1) ≤ 0, when it’s defined, since f ′x(t) = f ′rx(t)(1)/t. Therefore, statement 1 of the lemma holds if
and only if

∀x ∈ RD, f ′x(1) ≤ 0 (16)

By the chain rule, f ′x(1)=
∑s
d=1 ∂du(x)·x[d] and hence using Lemma ?? we have

f ′x(1) =
∑

d∈[s],v∈N (x)

Φv(x)(θdved,x − θbvcd,x)x[d]

=
∑
d,v

Φv(x)(θdved,x−θbvcd,x)(x[d]−bx[d]c)

+
∑
d,v

Φv(x)(θdved,x−θbvcd,x)bx[d]c,

where to get the last equality we added to and subtracted from each summand the quantity Φv(x)(θdved,x − θbvcd,x)bx[d]c.

Next, for a fixed d ∈ [D], partitioning the set N (x) of size 2D into the 2D−1 pairs {(v, bvcd,x) : v ∈ N (x),v = dved,x},
we regroup the terms in the summation and get

f ′x(1) =
∑

d,v:v=dved,x

(
(Φv(x)+Φbvcd,x(x))(x[d]−bx[d]c)

× (θdved,x−θbvcd,x)
)

(17)

+
∑
d,v

Φv(x)(θdved,x−θbvcd,x)bx[d]c. (18)
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Now, using (12) and defining λ(v, x)=1+(x−v)(−1)Iv=bxc for x∈R and v∈N, we have for each v ∈ N (x), with v=dved,x(
Φv(x) + Φbvcd,x(x)

)
(x[d]− bx[d]c)

= (x[d]− bx[d]c)
∑

w∈{v,bvcd,x}

D∏
i=1

λ(w[i],x[i])

= (x[d]− bx[d]c)
(∏
i 6=d

λ(v[i],x[i])
)
·

(
λ(bx[d]c+1,x[d]) + λ(bx[d]c,x[d])

)
,

where to get the last equality, observe that for i 6= d, the ith entry of v and bvcd,x is the same. Noting that λ(bx[d]c+1,x[d])+
λ(bx[d]c,x[d]) = 1 and that x[d]− bx[d]c = λ(x[d],v[d]), we get(

Φv(x) + Φbvcd,x(x)
)

(x[d]− bx[d]c) =

D∏
i=1

λ(v[i],x[i])

= Φv(x) (19)

Plugging (19) into (17), we get

f ′x(1) =
∑

d,v:v=dved,x

Φv(x)(θdved,x−θbvcd,x)

+
∑
d,v

Φv(x)(θdved,x−θbvcd,x)bx[d]c

=
∑
d,v

(
Φv(x)(θdved,x−θbvcd,x) · (Iv=dved,x+bx[d]c)

)
=
∑

v∈N (x)

Φv(x)

s∑
d=1

(θdved,x−θbvcd,x)v[d],

where the last equality holds since, for each v∈N (x), Iv=dved,x+bx[d]c=v[d].

Hence f ′x(1) is a multi-linear interpolation of the values {
∑s
d=1(θdved,x−θbvcd,x)v[d]}v on N (x). Thus requiring that it

would be nonpositive for all x ∈ RD is equivalent to requiring that

s∑
d=1

(θdved,x−θbvcd,x)v[d] ≤ 0, ∀N (x),v∈N (x).

It’s easy to verify that these are precisely the inequalities in Statement 2.

D.5. Unimodal Lattice Not Sufficient For a GON To Be Unimodal

Prop. 4: Multi-dimensional GONs generalize unimodal functions.

Proof. Our proof is by counterexample. Let f be the function of the 2D lattice with size (3, 3) and vertex values:
θ(0,0) = 3, θ(−1,0) = θ(1,0) = 2, θ(0,−1) = θ(0,1) = 0, θ(−1,−1) = θ(1,−1) = θ(−1,1) = θ(1,1) = 1. It’s easy to verify that
equation (15) of Lemma 1 holds for s=2. Thus f satisfies the unimodality shape constraint with maximizer (0, 0). Now, let
c1 : [0, 3]→ [−1, 1] and c2 : [0, 3]→ [−1, 1] be the PLFs given by:

c1(x) =

{
x− 1 if 0 ≤ x < 1
(x− 1)/2 if 1 ≤ x ≤ 3

,

and

c2(x) =

{
x− 1 if 0 ≤ x < 2
1 if 2 ≤ x ≤ 3

.
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Figure 11. Illustrated counterexample for Prop. 4 with two-dimensional functions f and g shown over the domain [−1, 1]2. The function
f is unimodal, but the resulting GON function g is not, for example the shown ray starts at the global minimum but the function along that
ray is only monotonically decreasing for the green part, the function is decreasing along the red part.

Let g(x, y) = f(c1(x), c2(y)). Then it can be easily verified that the global maximizer of g is at (1, 1) and it is unique.
Thus for g to satisfy the unimodal shape constraint, it must do so with maximizer (1, 1). However g is not decreasing along
the ray r(t) = (1, 1) + t(1, 1), since g(r(1)) = g(2, 2) = f(1/2, 1) = (θ(1,1) + θ(0,1))/2 = 1/2 and g(r(2)) = g(3, 3) =
f(1, 1) = θ(1,1) = 1.

See Figure 11 for the illustration of the f and g functions.

D.6. Ensemble of Unimodal Functions is Unimodal

Prop. 5: Let I ⊆ R be an interval containing 0. For an integer d > 0 denote by Sd the Cartesian product Id. Fix an
integer Q > 0, let ut : SQ → R, t = 1, . . . , T be unimodal functions with maximizer 0 ∈ SQ and let πt : SD → SQ be
projections given by πt(x) = (x[it,1],x[it,2], . . . ,x[it,Q]). Finally, let u : SD → R, be the ensemble function given by
u(x) = a0 +

∑T
t=1 atut(πt(x)), at ≥ 0. Then u(x) is unimodal with maximizer 0 ∈ SD.

Proof. Let z(r) = rv, r ≥ 0 be a ray in ID originating in 0 for some v ∈ RD. We need to show that u(z(r)) =
a0 +

∑
t atut(πt(z(r))) is decreasing for r ≥ 0. Since πt(z(r)) = rπt(v), r ≥ 0 is a ray in RQ in direction πt(v)

originating in 0 ⊆ SQ, it follows by the unimodality of each ut that ut(πt(z(r))) is decreasing for r ≥ 0. The result now
follows from the fact that a conical sum of decreasing functions is decreasing.

E. Details for Monarchs’ Reigns Experiments
We provide more details on the data and experimental results.

E.1. Data Details for Monarchs’ Reigns Experiments

The data can be downloaded at www.kaggle.com/senzhaogoogle/kingsreign.

All fifty dynasties were sampled from across the globe and from ancient to modern times. The original Monarchs’ Reigns
dataset (Feldman et al., 2014) (also known as Kings’ Reigns, but some of the monarchs were queens or had other titles)
consists of 30 royal dynasties, for example the 36 monarchs of the Ottoman Empire from 1299-1922, the 15 monarchs of the
Kings of Larsa from 1961 BC to 1674 BC, and the 4 monarchs of the Zulu Dynasty of 1816-1879. We added a test set of 20
additional royal dynasties using the same methodology used for the original dataset based on conversations with the original
dataset creator Kyle Stewart (based on conversations about methodology). Example test set dynasties are the 5 monarchs
of the 18th century Hotak dynasty in Afghanistan, and the 27 monarch Joseon dynasty of Korea that ended in 1910. All
information came from Wikipedia. We will provide a Kaggle notebook for the complete train and test datasets.

The train and test datasets have the following known sampling biases:
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Table 7. Longest Reign: Models With Best Validation Scores. Units are years. Bold is best.

Model Train Set: Test Set: Mean Actual Global
Root MSE Reign of Model’s Arg Max’s Arg Max

DNN 14.67 15.05 6th monarch
FICNN 14.89 14.75 1st monarch
GPR 15.54 16.40 7th monarch
GON 14.80 16.95 6th monarch

• Dynasties for which there were more complete and well-organized records on Wikipedia were more likely to be
sampled. This likely caused under-sampling of pre-Columbian American dynasties, for example.

• An effort was made to sample geographically diverse dynasties, which may have caused under-sampling of some
regions and over-sampling of other regions with regards to population.

• An effort was made to sample dynasties across time, which may have caused under-sampling of some timeframes and
over-sampling of others with regards to population.

• Current dynasties where the last monarch is still reigning were not sampled.

We note that our use of this data simplifies a number of potentially important factors about the stability of dynasties. For
example, in monogamous cultures, it was more difficult to ensure a direct heir than in polygamous cultures (Duindam, 2015).
A second issue is simply the definition of dynastic boundaries: what counts as a new dynasty, and has that criteria been
sufficiently uniformly applied to the diverse dynasties in this dataset? A third issue is we treated the dynasties as though they
were samples drawn IID from the same distribution, but the general reduction in violence over documented history (Pinker,
2011) might imply a shifting distribution towards more stable dynasties, given that many change-overs were due to violence.

E.2. Experimental Details for Monarchs’ Reigns

The train set had N = 30 dynasties, and the test set had 20 dynasties. For each method, we cross-validated over 18 choices
of hyperparameters by leave-one-out cross-validation: we left out one-dynasty at a time and trained a model with each
choice of hyperparameters on the other 29 dynasties. For each trained model and left-out dynasty, the predicted maximizer
was computed as: x̂ = arg maxx∈XLeft-out h(x), and we scored x̂ by the actual number of years reigned by that monarch in
the left-out dynasty. Averaging those scores over the 30 rounds of one-dynasty-left-out formed the overall validation score
for that hyperparameter choice. Tables in the Appendix list the 18 hyperparameter choices and corresponding validation
scores for each method.

The test metric is the same as the cross-validation metric: for each trained model and each test dynasty, the predicted
maximizer was computed as: x̂ = arg maxx∈XTest h(x), and we scored x̂ by the actual number of years reigned by that
monarch in that test dynasty. Averaging those scores over the 20 test dynasties formed the overall test score for that method.

Table 7 shows that the GON model achieved the best test score, followed by the GPR. Note that while both DNN and GON
predict a 6th monarch will rule longest, their test scores differ because they made different predictions for the maximizer for
test dynasties that have fewer than 6 monarchs, as can be seen in Figure 3.

E.3. Cross-Validation Scores For Different Hyperparameters

The complete cross-validation scores are shown for all the tried hyperparameters in Tables 8, 9 and 10.

F. Details for Puzzles Experiments
The hyperparameter choices were designed to give a range of flexibility. For the FICNN and DNN models, choices were
either 3 or 4 layers (3 layers being the default in (Amos et al., 2017)), and either {2, 4, 6, 8} hidden nodes. The GPR
hyperparameter was the sklearn standard covariance matrix additive smoothing parameter α, ranging from 1e− 6 to 10 in
steps of 10. All GON models used a unimodal 3× 3 lattice layer for f(x), and varied the number of keypoints in c(x)’s
PLFs from K = 2 to K = 9. Because the first and last PLF keypoint are fixed to map to the lattice layer’s input domain, the
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Table 8. Monarchs’ Reigns: GON Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type.

Model Number Keypoints in f Number Keypoints in c Validation Score

GON 3 2 21.23
GON 3 3 20.97
GON 3 5 25.30
GON 3 7 25.26
GON 3 9 26.00
GON 3 11 23.8
GON 5 2 22.97
GON 5 3 18.33
GON 5 5 25.27
GON 5 7 20.06
GON 5 9 22.80
GON 5 11 20.93
GON 7 2 22.47
GON 7 3 22.46
GON 7 5 18.33
GON 7 7 18.50
GON 7 9 20.77
GON 7 11 18.73
GON 9 2 22.46
GON 9 3 18.30
GON 9 5 19.73
GON 9 7 19.20
GON 9 9 21.13
GON 9 11 22.10

K = 2 case is equivalent to not having a first layer. Any ties were decided in favor of the hyperparameters corresponding to
a more-regularized model.

Table 12 and 13 reports actual sales of the highest-predicted validation and test puzzles. The GON was most accurate in
predicting the best-selling test puzzle, followed by the DNN and GON. The GPR model chose a test puzzle that was actually
a terrible seller.

Our test metric was limited to the test set of puzzles for which there was 2019 sales numbers. In practice though, the business
would like to use such a model for guidance as to which new puzzles they should create. For such use, we should ask if the
global maximizer is reasonable. As seen in Figure 4, the FICNN and DNN models extrapolated poorly from a popular small
puzzle in the train set, leading those models to predict that the global optimizer would be a jigsaw puzzle with zero pieces,
which is not reasonable guidance. We questioned whether this was simply bad luck in selecting the hyperparameters, but in
fact, 5 of the 8 FICNN models trained predicted the argmax at 0 pieces (see Table 12 in the Appendix). The DNN also only
gave reasonable answers for the global maximizer for 3 of its 8 hyperparameter choices.

The five most-flexible GON models consistently predicted a global optimizer would be a puzzle with 190-230 pieces and
artwork from around the year 2000. Partners at Artifact said that based on their ten years of sales experience, such puzzles
do tend to sell best.

We also note the GON models also generally predicted the best year for art was 2000, which is at the edge of the input
domain, which confirms the proposed unimodal shape constraints do not block fitting models with their maximizer on the
edge of the input domain.
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Table 9. Monarchs’ Reigns: FICNN Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type.

Model Number Layers Number Hidden Nodes Validation Score

FICNN 3 2 22.47
FICNN 3 4 22.47
FICNN 3 8 22.20
FICNN 3 16 22.00
FICNN 3 32 21.20
FICNN 3 64 20.70
FICNN 4 2 22.93
FICNN 4 4 23.17
FICNN 4 8 21.83
FICNN 4 16 21.63
FICNN 4 32 21.20
FICNN 4 64 20.50
FICNN 5 2 20.36
FICNN 5 4 22.30
FICNN 5 8 20.70
FICNN 5 16 20.96
FICNN 5 32 19.40
FICNN 5 64 20.70
FICNN 6 2 22.06
FICNN 6 4 20.77
FICNN 6 8 21.83
FICNN 6 16 19.73
FICNN 6 32 21.50
FICNN 6 64 19.73

Figure 12. Quality of the predicted highest-quality wine conditioned on price. The oracle marks the true best wine from the test set for
each price point.

G. Details for Wine Experiments
Tables 14-16 summarize the validation scores of DNN, FICNN and GON over hyperparameters.

Figure 12 shows the results for the experiments conditioned on price.

H. Details for Hyperparameter Optimization for Image Classifiers
As mentioned in the main paper, image classifers shown in the main paper are trained for e ∈ [1, 20] epochs. We use ADAM
with the default learning rate of 0.001 with a batch size of 128 to train the classifiers.

For GON and CGON, we use an ensemble of D unimodal lattices. All methods are trained for 250 epochs.

Hyperparameters for the optimizers are validated based on 5-fold MSE, which are summarized in Table 17 below.
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Table 10. Monarchs’ Reigns: DNN Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type.

Model Number Layers Number Hidden Nodes Validation Score

DNN 3 2 21.87
DNN 3 4 18.03
DNN 3 8 17.53
DNN 3 16 19.73
DNN 3 32 21.26
DNN 3 64 22.4
DNN 4 2 19.97
DNN 4 4 20.26
DNN 4 8 20.43
DNN 4 16 19.4
DNN 4 32 20.4
DNN 4 64 21.20
DNN 5 2 22.46
DNN 5 4 18.76
DNN 5 8 22.16
DNN 5 16 21.03
DNN 5 32 22.47
DNN 5 64 24.13
DNN 6 2 22.46
DNN 6 4 19.76
DNN 6 8 21.80
DNN 6 16 24.13
DNN 6 32 24.70
DNN 6 64 24.20

I. Details for Simulations with Standard Global Optimization Functions
We ran simulations on two standard benchmark functions, the banana-shaped Rosenbrock function, and the pocked-convex
Griewank function, to compare GON against FICNN, DNN, GPR and sample best. For conditional global optimization
problems, we compared CGON against PICNN, DNN and GPR.

The multi-dimensional Rosenbrock function has the formula:

g(x) =

D−1∑
i=1

(
100

(
xi+1 − x2i

)2
+ (1− xi)2

)
. (20)

The multi-dimensional Griewank function has the formula:

g(x) = 1 +
1

4000

D∑
i=1

(xi − 1)
2 −

D∏
i=1

cos

(
xi − 1√

i

)
. (21)

See Figure 13 for a visulization of 2-dimensional Rosenbrock and Griewank functions. For both functions, the true global
minimizer is at x∗ = 1.

For each function, we randomly generated 50 training sets for each of 60 different experimental set-ups: D ∈ {4, 8, 12, 16}
inputs × N ∈ {100, 1000, 10000} training examples × σ ∈ {0.25, 0.5, 1.0, 2.0, 4.0} noise levels where the training label
is y = g(x) + ε for x ∼ Unif(−2, 2)D, ε ∼ N (0, σg(x)). For the conditional global optimization problem, we aim to find
x∗ = arg minx g(x, z = 0), where x is the first 3D/4 inputs and z is the last D/4 inputs. Once FICNN/PICNN fit their
convex/conditionally-convex functions, their minimizers are found using ADAM with learning rate .001 and 10k steps with
projections onto the input domain [−2, 2]D. Details on hyperparameter validation for all methods are in the Appendix.
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Table 11. Monarchs’ Reigns: GPR Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type.

Model α Validation Score

GPR α = 1e− 12 18.97
GPR α = 1e− 11 17.83
GPR α = 1e− 10 17.46
GPR α = 1e− 9 16.83
GPR α = 1e− 8 18.13
GPR α = 1e− 7 20.7
GPR α = 1e− 6 21.43
GPR α = 1e− 5 21.6
GPR α = 1e− 4 14.93
GPR α = 1e− 3 18.97
GPR α = 1e− 2 21.7
GPR α = 1e− 1 22.47
GPR α = 1 22.47
GPR α = 10 22.47
GPR α = 100 23.27
GPR α = 1e3 19.63
GPR α = 1e4 19.70
GPR α = 1e5 19.70
GPR α = 1e6 19.70
GPR α = 1e7 19.70
GPR α = 1e8 19.70
GPR α = 1e9 19.70
GPR α = 1e10 19.70
GPR α = 1e11 19.70
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Figure 13. Visualization of 2-dimensional Rosenbrock and Griewank functions.

We found the global maximizer of each response surface as in experiment in Section 5.5. That is, for GON and CGON, we
found the global maximizer of the response surface by inverting the PLFs. For FICNN and PICNN, we used ADAM to find
their global maximizers. For DNN and GPR, we first generated a finite random set Xcandidates of 100,000 inputs across the
domain of and set x̂ = arg maxx∈Xcandidates h(x).

Table 18 shows that GON is consistently the best method for all twelve different simulation set-ups. CGON is also
consistently best for Rosenbrock. For the globally convex Griewank, CGON is the best or tied for the best in 6 slices,
whereas PICNN, DNN and GPR are the best or tied for the best in 0, 5 and 3 slices, respectively. GON and CGON performed
especially well in the more challenging cases of large D and high noise σ and few training samples N .

Note that the performance of sample best deteriorates with more training samples, as there is more risk it will overfit a
particularly noisy training sample. In fact, in general the performance of the different response surface methods did not
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Table 12. New Puzzle Sales: Results for Different Hyperparameters for DNN and FICNN. As marked, the DNN model sometimes came
out “flat”, that is, it predicted the same sales for all inputs. Ties broken in favor of the smaller/smoother model.

Model Actual Sales of Actual Sales of Global Arg Max
Highest-Scored Highest-Scored
Validation Puzzle Test Puzzle

DNN 3 layers, 2 hid. flat model – –
DNN 3 layers, 4 hid. 21 30 1200 pieces, year 2000
DNN 3 layers, 6 hid. 74 182 192 pieces, year 2000
DNN 3 layers, 8 hid. 88 173 0 pieces, year 2000
DNN 4 layers, 2 hid. flat model – –
DNN 4 layers, 4 hid. 0 7 0 pieces, year 1500
DNN 4 layers, 6 hid. 10 30 192 pieces, year 2000
DNN 4 layers, 8 hid. 16 164 353 pieces, year 2000

FICNN 3 layers, 2 hid. 43 173 0 pieces, year 2000
FICNN 3 layers, 4 hid. 88 173 0 pieces, year 2000
FICNN 3 layers, 6 hid. 88 173 0 pieces, year 2000
FICNN 3 layers, 8 hid. 74 182 192 pieces, year 2000
FICNN 4 layers, 2 hid. 88 173 0 pieces, year 2000
FICNN 4 layers, 4 hid. 74 13 0 pieces, year 2000
FICNN 4 layers, 6 hid. 74 182 0 pieces, year 2000
FICNN 4 layers, 8 hid. 88 173 0 pieces, year 2000

Table 13. New Puzzle Sales: Results for Different Hyperparameters for GPR and GON. Ties broken in favor of the smaller/smoother
model.

Model Actual Sales of Actual Sales of Global Arg Max
Highest-Scored Highest-Scored
Validation Puzzle Test Puzzle

GPR α = 1e− 6 21 3 168 pieces, year 1500
GPR α = 1e− 5 21 182 242 pieces, year 2000
GPR α = 1e− 4 74 182 242 pieces, year 2000
GPR α = 1e− 3 74 182 242 pieces, year 2000
GPR α = 1e− 2 88 173 68 pieces, year 2000
GPR α = 1e− 1 43 173 68 pieces, year 2000
GPR α = 1 43 173 68 pieces, year 2000
GPR α = 10 88 2 146 pieces, year 2000

GON 2kp 43 1 600 pieces, year 1700
GON 3kp 31 21 502 pieces, year 1400
GON 4kp 76 182 230 pieces, year 2000
GON 5kp 74 182 190 pieces, year 2000
GON 6kp 13 182 212 pieces, year 2000
GON 7kp 74 182 191 pieces, year 2000
GON 8kp 74 182 194 pieces, year 2000
GON 9kp 74 182 213 pieces, year 2000

necessarily get better with more training samples N , which we suspect is due to the fact that as N increases, there is a
greater chance of more very noisy samples that confuses the response surface placement of its maximizer.
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Table 14. Best Wine: DNN Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type, with ties
broken in favor of the smallest model with that validation score. Surprisingly, the DNN consistently chose the same poor test wine as its
predicted best. Analysis showed that the DNN’s were extrapolating poorly in the high price part of the feature space and putting too much
faith in high price as a signal of quality, and that the DNN’s prediction is the most expensive test wine.

Model Val Train Test Test Maximizer
Score MSE Score

DNN: 2 layers, 2 nodes 97 2.54 88 $3300, acid, juicy, tannin, France
DNN: 2 layers, 4 nodes 97 2.53 88 $3300, acid, juicy, tannin, France
DNN: 2 layers, 8 nodes 97 2.54 88 $3300, acid, juicy, tannin, France
DNN: 2 layers, 16 nodes 97 2.47 88 $3300, acid, juicy, tannin, France
DNN: 2 layers, 32 nodes 97 2.30 88 $3300, acid, juicy, tannin, France
DNN: 2 layers, 64 nodes 92 2.24 94 $1100, complex, earth, lees, tight, Austria
DNN: 3 layers, 2 nodes 97 2.55 88 $3300, acid, juicy, tannin, France
DNN: 3 layers, 4 nodes 97 2.55 88 $3300, acid, juicy, tannin, France
DNN: 3 layers, 8 nodes 97 2.55 88 $3300, acid, juicy, tannin, France
DNN: 3 layers, 16 nodes 97 2.27 88 $3300, acid, juicy, tannin, France
DNN: 3 layers, 32 nodes 97 2.23 88 $3300, acid, juicy, tannin, France
DNN: 3 layers, 64 nodes 97 2.24 88 $3300, acid, juicy, tannin, France
DNN: 4 layers, 2 nodes 97 2.54 88 $3300, acid, juicy, tannin, France
DNN: 4 layers, 4 nodes 97 2.53 88 $3300, acid, juicy, tannin, France
DNN: 4 layers, 8 nodes 97 2.27 88 $3300, acid, juicy, tannin, France
DNN: 4 layers, 16 nodes 97 2.23 88 $3300, acid, juicy, tannin, France
DNN: 4 layers, 32 nodes 97 2.23 88 $3300, acid, juicy, tannin, France
DNN: 4 layers, 64 nodes 97 2.17 88 $3300, acid, juicy, tannin, France

The multi-dimensional Rosenbrock function has formula:

g(x) =

D−1∑
i=1

(
100

(
xi+1 − x2i

)2
+ (1− xi)2

)
. (22)

The multi-dimensional Griewank function has formula:

g(x) = 1 +
1

4000

D∑
i=1

(xi − 1)
2 −

D∏
i=1

cos

(
xi − 1√

i

)
. (23)

For both functions, the true global minimizer is at x∗ = (1.0, 1.0, . . . , 1.0).

For both GON and CGON, we first use D PLFs with K keypoints to calibrate the D inputs for optimization. The unimodal
function consists of an enesemble of D unimodal lattices, each fuses 3 inputs with V keypoints. For CGON, we let
r : RM → SD be r(z)[j] =

∑M
i=1 PLF

j
i (z[i]), j = 1, . . . , D, where z[i] and r(z)[i] denote the i-th entry of z and r(z).

For FICNN and PICNN, we use the formulations in (2) (Figure 1) and (3) (Figure 2), respectively, in Amos, et al. (Amos
et al., 2017). All the hidden layers are constructed to have the same hidden dimensions, whenever possible. For DNN, we
use fully connected hidden layers with a constant number of hidden nodes across layers. The number of hidden layers and
the number of hidden nodes are treated as hyperparameters.

For GPR, we use RBF kernel with σ = 1, which is the default in the sklearn package. The White Kernel α is treated as a
hyperparameter.

For each of the Rosenbrock and Griewank functions, we used grid search to choose hyperparameters for each method that
minimize the average g(x̂) over the 600 runs for each function (5σ × 4D × 3N × 10 repetitions with random seeds), where
g denotes the ground truth function. After choosing hyperparameters, we reran the simulation with 50 repetitions, and report
the average-50 result in Table 5.6. The hyperprameters of each method are summarized in Table 19.
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Table 15. Best Wine: FICNN Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type, with ties
broken in favor of the smallest model with that validation score. Like the DNN, analysis showed the FICNN tended to overfit high price
as a sign of quality and often chose the most expensive test wine, which actually did not have high points.

Model Val Train Test Test Maximizer
Score MSE Score

FICNN: 2 layers, 2 nodes 97 2.52 88 $3300, acid, juicy, tannin, France
FICNN: 2 layers, 4 nodes 97 2.29 88 $3300, acid, juicy, tannin, France
FICNN: 2 layers, 8 nodes 91 2.33 95 $412, jam, opulent, France
FICNN: 2 layers, 16 nodes 92 2.27 100 $848, acid, hint of, opulent, toast, France
FICNN: 2 layers, 32 nodes 98 2.20 94 $1100, complex, earth, lees, tight, Austria
FICNN: 2 layers, 64 nodes 96 2.19 94 $1100, complex, earth, lees, tight, Austria
FICNN: 3 layers, 2 nodes 97 2.53 88 $3300, acid, juicy, tannin, France
FICNN: 3 layers, 4 nodes 96 2.30 94 $1100, complex, earth, lees, tight, Austria
FICNN: 3 layers, 8 nodes 96 2.25 94 $1100, complex, earth, lees, tight, Austria
FICNN: 3 layers, 16 nodes 96 2.23 94 $1100, complex, earth, lees, tight, Austria
FICNN: 3 layers, 32 nodes 91 2.24 96 $351 oak, tannin, tight, toast, Spain
FICNN: 3 layers, 64 nodes 92 2.30 94 $1100, complex, earth, lees, tight, Austria
FICNN: 4 layers, 2 nodes 97 2.40 94 $1100, complex, earth, lees, tight, Austria
FICNN: 4 layers, 4 nodes 97 2.24 94 $900, elegant, Italy
FICNN: 4 layers, 8 nodes 97 2.26 85 $320, acid, crisp, Romania
FICNN: 4 layers, 16 nodes 97 2.28 88 $3300, acid, juicy, tannin, France
FICNN: 4 layers, 32 nodes 97 2.47 88 $3300, acid, juicy, tannin, France
FICNN: 4 layers, 64 nodes 97 2.47 88 $3300, acid, juicy, tannin, France

J. Some Open Questions
We defined GONs (and CGONs) by the shape constraints they must obey: a composition of invertible layers and unimodal
layers. We showed how to construct such models using the piece-wise linear functions and lattice layers of DLNs, which are
arbitrarily flexible models that are particularly amenable to shape constraints (Gupta et al., 2020; Cotter et al., 2019), but
other functions could be used for the invertible layers (Behrmann et al., 2019), and one could use convex networks for the
needed unimodal layers (at the cost of some flexibility) (Amos et al., 2017).

Another open question is the choice of loss function when training GONs or other flexible response surfaces. In our
experiments, all models were fit using standard mean-squared error. Since the goal of fitting the GON is to predict the
maximizer only, it seems intuitive that one should worry more about fitting the examples closer to the (unknown) maximizer.
We experimented with loss functions that up-weighted training examples with bigger label values, but, perhaps due to the
flexibility of the GONs, did not find they helped much, and eschewed their extra complexity and hyperparameters.

We focused here on the setting where one makes only one prediction. However GONs could also be used as a response
surface function within a global optimization algorithm that is able to make a series of guesses. In such a context it might
make sense to evolve the neighborhood fit by the GON, or fit many GONs in parallel to different evolving neighborhoods
for a multi-agent search like particle-swarm optimization (Kennedy & Eberhart, 1995; Shi & Eberhart, 1998).

Lastly, this work is part of a recent wave of research into shape constraints showing that shape constraints can provide
sensible regularization while not hurting useful expressability of AI models (e.g. (Pya & Wood, 2015; Chen & Samworth,
2016; Gupta et al., 2016; Cannon, 2018; Chetverikov et al., 2018; Cotter et al., 2019; Wehenkel & Louppe, 2019; Gasthaus
et al., 2019; Wang & Gupta, 2020)). We hope this work will inspire other useful shape constraint regularization strategies
for AI.
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Table 16. Best Wine: GON Validation Scores Over Hyperparameters. Bold is the highest validation score for this model type, with ties
broken in favor of the smallest model with that validation score.

Model Val Train Test Test Maximizer
Score MSE Score

GON 100 2D lattices, 5kp 92 2.31 95 $100 acid, cassis, complex, refined
structure, tannin, velvet, US

GON 100 2D lattices, 9kp 93 2.29 97 $375, acid, bright, complex, elegant,
refined, structure, tannin, Italy

GON 100 2D lattices, 13kp 93 2.31 97 $375, acid, bright, complex, elegant
refined, structure, tannin, Italy

GON 200 2D lattices, 5kp 97 2.30 97 $165 acid, cassis, complex, mineral
oak, refined, structure, tannin, US

GON 200 2D lattices, 9kp 98 2.28 97 $375, acid, bright, complex, elegant
refined, structure, tannin, Italy

GON 200 2D lattices, 13kp 98 2.26 97 $375, acid, bright, complex, elegant
refined, structure, tannin, Italy

GON 400 2D lattices, 5kp 96 2.32 95 $100, acid, cassis, complex
refined, structure, tannin, velvet, US

GON 400 2D lattices, 9kp 97 2.27 97 $375, acid, bright, complex, elegant
refined, structure, tannin, Italy

GON 400 2D lattices, 13kp 97 2.25 94 $1100, complex, earth, lees
tight, Austria

GON 800 2D lattices, 5kp 97 2.28 97 $375, acid, bright, complex, elegant
refined, structure, tannin, Italy

GON 800 2D lattices, 9kp 98 2.26 94 $1100, complex, earth, lees
tight, Austria

GON 800 2D lattices, 13kp 93 2.24 97 $375, acid, bright, complex, elegant
refined, structure, tannin, Italy

GON 1600 2D lattices, 5kp 97 2.26 96 $180 butter, complex, lees,
mineral US

GON 1600 2D lattices, 9kp 97 2.37 94 $1100, complex, earth, lees
tight, Austria

GON 1600 2D lattices, 13kp 94 2.22 96 $450, cream, dense, mineral
tight, France

Table 17. Hyperparameters of optimizers.

Global Optimization Conditional Global Optimization

Rosenbrock GON FICNN DNN GPR CGON PICNN DNN GPR

PLF kps per input K 5 - - - 5 - - -
Lattice kps per input V 3 - - - 3 - - -
Inputs each lattice fuses 2 - - - 2 - - -
Num hidden layers - 1 1 - - 1 1 -
Num hidden nodes - 256 32 - - 32 32 -
α in GPR - - - 0.01 - - - 0.01
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Global Optimization Networks

Table 19. Simulation: hyperparameters.

Global Optimization Conditional Global Optimization

Rosenbrock GON FICNN DNN GPR CGON PICNN DNN GPR

PLF kps per input K 10 - - - 10 - - -
Lattice kps per input V 3 - - - 3 - - -
Num hidden layers - 2 2 - - 2 2 -
Num hidden nodes - 16 32 - - 16 16 -
α in GPR - - - 1.0 - - - 1.0

Griewank GON FICNN DNN GPR CGON PICNN DNN GPR

PLF kps per input K 10 - - - 10 - - -
Lattice kps per input V 3 - - - 3 - - -
Num hidden layers - 4 2 - - 2 2 -
Num hidden nodes - 32 16 - - 16 16 -
α in GPR - - - 1.0 - - - 1.0


