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Abstract
How to train deep neural networks (DNNs) to
generalize well is a central concern in deep learn-
ing, especially for severely overparameterized
networks nowadays. In this paper, we propose
an effective method to improve the model gen-
eralization by additionally penalizing the gradi-
ent norm of loss function during optimization.
We demonstrate that confining the gradient norm
of loss function could help lead the optimizers
towards finding flat minima. We leverage the
first-order approximation to efficiently implement
the corresponding gradient to fit well in the gra-
dient descent framework. In our experiments,
we confirm that when using our methods, gen-
eralization performance of various models could
be improved on different datasets. Also, we
show that the recent sharpness-aware minimiza-
tion method (Foret et al., 2021) is a special, but
not the best, case of our method, where the best
case of our method could give new state-of-art
performance on these tasks. Code is available at
https://github.com/zhaoyang-0204/gnp.

1. Introduction
Today’s powerful computation hardwares make it possi-
ble for training large-scale deep neural networks (DNNs)
(Goyal et al., 2017; Han et al., 2017; Dosovitskiy et al.,
2021). These DNNs typically have millions or even bil-
lions of parameters, completely far exceeding the amount
of training samples. Due to such heavy parametrization,
they are capable to provide larger hypothesis space with
normally better solutions. But in the meantime, such a huge
hypothesis space is also full of more minima with diverse
generalization ability (Neyshabur et al., 2017). This makes
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Figure 1. Toy example illustrating connections between the gradi-
ent norm of a function and the flatness of the function landscape.

it more challanging to train them to converge to optimal
minima at which models would generalize better. There-
fore, how to guide optimizers to find such optimal minima
becomes a more salient concern than ever.

Generally, even if the given training datasets have been fully
utilized, minimizing only the training loss gauging the gap
between the true labels and predicted labels still could not
ensure convergence to satisfactory minima. Regarding this,
implementing regularization would play a critical role in
modern training paradigm (Ioffe & Szegedy, 2015; Srivas-
tava et al., 2014). Regularization techniques may contribute
in various ways beyond datasets. In particular, regularizing
models to have certain ”good” properties could be one of
the most commonly used techniques, typically implemented
through penalty function methods (Smith et al., 1997).

In this paper, in addition to optimizing the common loss
function, we would further impose an extra penalty on a
specific property, the gradient norm of the loss function. The
motivation of penalizing the gradient norm of loss function
is to encourage the optimizer to find a minimum that lies in
a relatively flat neighborhood region, since such flat minima
have been demonstrated to be able to lead to better model
generalization than sharp ones (Hochreiter & Schmidhuber,
1997). Figure 1 gives a toy example that illustrates the
association between gradient norm and flatness of minima
intuitively, and we would further demonstrate this from the
perspective of Lipschitz continuity in Section 3.2.

https://github.com/zhaoyang-0204/gnp
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Unfortunately, for practical implementation, optimizing the
gradient norm in a straightforward way would involve the
full calculation of Hessian matrix, which is not feasible for
current hardwares. Here, by leveraging the approximation
techniques, we present a simple and efficient scheme for
computing the gradient of this gradient norm. The scheme
would avoid the computation of the second-order derivative,
and instead use basic algebraic operations between only the
first-order derivatives for approximation, thus it could be
implemented in practice easily. In particular, we find that the
sharpness-aware minimization (SAM) scheme (Foret et al.,
2021) is actually one special case of our scheme, where the
hyperparameters are set to specific values.

In our experiments, we apply extensive model architectures
on Cifar-{10, 100} datasets and ImageNet datasets, respec-
tively. These models would include both simple and com-
plex convolutional neural network architectures, as well as
the recent vision transformer architectures. We observe that
the model performance could be generally improved via our
optimization scheme, and such improvements could be up
to 70% greater than SAM’s improvements over the standard
training. Also, in some cases, training could be more sta-
ble when using our scheme compared to the SAM scheme.
Finally, we provide a guide on hyperparameter selection in
expectation to achieve the best improvements in practice.

2. Related Works
Reguralization techniques Regularization could widely
refer to techniques that in some way help improve the model
generalization, including penalty function methods (Smith
et al., 1997), data augmentation (Devries & Taylor, 2017;
Cubuk et al., 2018), dropout regularizations (Srivastava
et al., 2014; Wan et al., 2013), normalization techniques
(Ioffe & Szegedy, 2015; Ba et al., 2016; Wu & He, 2018)
and so on. For penalty function methods, extra terms would
be added and optimized along with the loss function, which
targets to impose constraint on specific property of mod-
els. In particular, the weight norm has been demonstrated
to be an important property related to the model capacity
(Neyshabur et al., 2017), and penalizing the weight L2-norm
(Krogh & Hertz, 1991; Loshchilov & Hutter, 2019) has be-
come, in a sense, the essential ingredient in modern training
recipes. Others like Yoshida & Miyato (2017) penalize the
spectral norm of weights for reducing the models’ sensitivity
to input perturbation.

Flat minima On the other hand, our work is also relevant
to the research of flat minima. In Hochreiter & Schmidhu-
ber (1997), the authors first point out that well generalized
models may have flat minima. Since then, the association
between flatness of minima and model generalization have
been studied from both empirical (Keskar et al., 2017) and

theoretical perspectives (Dinh et al., 2017; Neyshabur et al.,
2017). Although SGD optimizer and some of its variants
(such as momentum) could somehow serve as implicit regu-
larizations that favors flat minima (Goodfellow et al., 2016;
Wu et al., 2018; Xie et al., 2021), researchers also desire to
bias the optimizers in an explicit way in pursuit of smoother
surface and flatter minima to further improve model per-
formance, especially for modern scalable models. But in
practical optimization, explicitly finding flat minima is non-
trivial. Recently, Foret et al. (2021) treat it as a minimax
optimization problem, and solve it by introducing an effi-
cient procedure, called SAM. Model generalization could
be improved significantly compared to using vanilla SGD
optimizations. Further, based on Foret et al. (2021), Kwon
et al. (2021) propose the Adaptive SAM, where optimization
could keep invariant to a specific weight-rescaling operation
discussed in (Neyshabur et al., 2015; Dinh et al., 2017);
Zheng et al. (2021) perform gradient descent twice in one
step to solve the corresponding minimax problem, one for
the inner maximization optimization and the other for the
outer minimization optimization.

3. Method
3.1. Basic Setting

Given a training dataset S = {(xi,yi)}ni=0 drawn i.i.d from
the distribution D , a neural network f(·;θ) is trained to
learn this distribution. The neural network is parametrized
with parameters θ in weight space Θ, which would be opti-
mized via minimizing an empirical loss function LS(θ) =
1
N

∑N
i=1 l(ŷi,yi,θ) where ŷi = f(xi;θ) denoting the pre-

dicted label for input xi.

When imposing penalty on the gradient norm of the loss
function, a term with respect to it could be added on the loss
function LS(θ) simply,

L(θ) = LS(θ) + λ · ||∇θLS(θ)||p (1)

where || · ||p denotes the Lp-norm and λ is the penalty
coefficient and λ ∈ R+ (in the experiment section, we also
investigate the results where λ ∈ R−). And for clarity, we
would use L2-norm (p = 2) in the following demonstration
since it is the most commonly used metric in deep learning.

3.2. Gradient Norm and Lipschitz Continuity

Generally, penalizing the gradient norm of loss function
would motivate the loss function to have small Lipschitz
constant in local. If the loss function has a smaller Lipschitz
constant, it would indicate that the loss function landscape
is flatter, which in consequence could lead to better model
generalization.

Regarding the term ”flat minima”, it is a rather intuitive
concept. Based on the description in (Hochreiter & Schmid-
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huber, 1997), a flat minimum denotes ”a large connected
region in weight space where the error remains approxi-
mately constant”. However, the mathematical descriptions
may differ (Hochreiter & Schmidhuber, 1997; Neyshabur
et al., 2017; Dinh et al., 2017; Keskar et al., 2017; Chaud-
hari et al., 2017), although they may convey similar core
ideas. Here, we would only follow the basic concept in our
demonstration.

We would start from the Lipschitz continuous. Given
Ω ⊂ Rn, for function h : Ω → Rm, it is called Lips-
chitz continuous if there exists a constant K that satisfies,

||h(θ1)− h(θ2)||2 ≤ K · ‖θ1 − θ2||2 (2)

for ∀θ1,θ2 ∈ Ω. And the Lipschitz constant generally refers
to the smallest K of the function. Further, for ∀θ ∈ Ω, h is
locally Lipschitz continuous if θ has a neighborhood A that
h|A is Lipschitz continuous.

Intuitively, the Lipschitz constant describes the upper bound
on the output change in the input space Ω. In particular, for
h|A, it would indicate the supremum of output change in
the neighborhood A. In other words, for small Lipschitz
constants, given any two points in A, the gap between their
outputs is limited to a small range. In fact, this is essentially
a kind of description of ”flat minima”.

So for a minimum θi and the loss function L(θ), according
to the mean value theorem, the differentiability could lead
to that for ∀θ′

i ∈ A,

‖L(θ
′

i)− L(θi)‖2 = ‖∇L(ζ)(θ
′

i − θi)‖2 (3)

where ζ = cθi + (1 − c)θ′

i, c ∈ [0, 1]. And the Cauchy-
Schwarz inequality gives,

‖L(θ
′

i)− L(θi)‖2 ≤ ‖∇L(ζ)‖2‖(θ
′

i − θi)‖2 (4)

When θ
′

i → θ, the corresponding Lipschitz constant ap-
proximates to ‖∇L(θi)‖2. Therefore, we would expect to
reduce ‖∇L(θi)‖2 to give small Lipschitz constants such
that models could converge to flat minima.

Additionally, it should be especially discriminated that some
works (Yoshida & Miyato, 2017; Virmaux & Scaman, 2018)
try to regularize the Lipschitz constant of DNNs in the
input space such that models would be more stable to the
perturbation in the input space. This is not the same as
penalizing the gradient norm of loss function, which would
function in the weight space.

3.3. Gradient Calculation of Loss with Gradient Norm
Penalty

During practical optimization, we need to calculate the gra-
dient of current loss (Equation 1),

∇θL(θ) = ∇θLS(θ) +∇θ(λ · ||∇θLS(θ)||p) (5)

Based on the chain rule, Equation 5 could be simplified as,

∇θL(θ) = ∇θLS(θ) + λ · ∇2
θLS(θ)

∇θLS(θ)

||∇θLS(θ)||
(6)

In Appendix, we have provided detailed procedures for this
simplification from Equation 5 to Equation 6.

Apparently, Equation 6 involves the calculation of Hessian
matrix. For DNNs, it is infeasible to straightforwardly solve
such a Hessian matrix since the dimension in weight space
is too huge. Appropriate approximation method should be
implemented in this calculation.

In Equation 6, the Hessian matrix is essentially a linear
operatorH(·) that functions on the corresponding gradient
vector. Here, local Taylor expansion would be employed
to approximate the operation results between the Hessian
matrix and the gradient vector. From the Taylor expansion,
we have

∇θLS(θ+ ∆θ) = ∇θLS(θ) +H∆θ+O(||∆θ||2) (7)

When choosing ∆θ = rv where r is a small value and v is
a vector, Equation 7 would be,

Hv =
∇θLS(θ + rv)−∇θLS(θ)

r
+O(r) (8)

Further, assigning v = ∇θLS(θ)
||∇θLS(θ)|| ,

H
∇θLS(θ)

||∇θLS(θ)||
≈
∇θL(θ + r ∇θLS(θ)

||∇θLS(θ)|| )−∇θL(θ)

r
(9)

Now, based on Equation 9, Equation 6 would be,

∇θL(θ) = ∇θLS(θ)

+
λ

r
· (∇θLS(θ + r

∇θLS(θ)

||∇θLS(θ)||
)−∇θLS(θ))

= (1− α)∇θLS(θ)

+ α∇θLS(θ + r
∇θLS(θ)

||∇θLS(θ)||
)

(10)

where α = λ
r , and we would call α the balance coefficient.

Accordingly, we need to set two basic parameters λ and r to
perform gradient norm penalty. For λ, it denotes the penalty
coefficient, which controls the degree of the regularization
on the gradient norm. However, the connections between
weight norm, gradient norm and model generalization is sub-
tle during training. Currently, how much the gradient norm
should be penalized in practical training still requires some
further tuning effort. As for r, it is used for appropriating
the Hessian multiplication operation (Equation 8). Notably,
r should be set carefully here since it would directly affect
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Algorithm 1 Optimization Scheme of Penalizing Gradient
Norm
Input: Training set S = {(xi,yi)}Ni=0; loss function L(·);
batch size B; learning rate η; total step T ; balance coeffi-
cient α; approximation scalar r.
Parameter: Model parameters θ
Output: Optimized weight θ̂

1: Parameter initialization θ0.
2: for step t = 1 to T do
3: Get batch data pairs B = {(xi,yi)}Bi=0 sampled

from training set S.
4: Calculate the gradient g1 = ∇θLS(θ) based on the

batch samples.
5: Add r ∇θLS(θ)

||∇θLS(θ)|| on the current parameter θt, which

makes θt′ = θt + r ∇θLS(θ)
||∇θLS(θ)|| .

6: Calculate the gradient g2 = ∇θLS(θ) at θ = θt
′.

7: Calculate the final gradient g = (1− α)g1 + αg2.
8: (SGD optimizer) Update parameter with final gradi-

ent, θk+1 = θk − η · g.
9: end for

10: return Final optimization θ̂.

the approximation precision (Pearlmutter, 1994). On the
one hand, r is expected to be small enough such that the
termO(r) in approximation could be safely ignored. But on
the other hand, as r becomes smaller, the perturbed weight
θ + rv will gradually weaken the effect of v and approach
the reference weight θ, which makes ∇θLS(θ + rv) and
∇θLS(θ) too close when appropriating Hv. Therefore,
we should also avoid setting r too small to provide enough
precision of v.

In practice, we would further take an approximation for
computing the second term in Equation 10 to avoid the
Hessian computation caused by the chain rule,

∇θLS(θ + r
∇θLS(θ)

||∇θLS(θ)||
) ≈ ∇θLS(θ)|

θ=θ+r
∇θLS (θ)

||∇θLS (θ)||

(11)

In summary, Algorithm 1 gives the full procedures of our
optimization scheme. It should be mentioned that Algo-
rithm 1 only shows our scheme when using SGD optimizer.
For other optimizers or update strategies (such as Adam),
one could add specific operations before step 8.

Particularly, if α = 1, it is actually the SAM optimization
(Foret et al., 2021). This indicates that SAM is a special im-
plementation of penalizing gradient norm, where the penalty
coefficient λ is always set equal to r. However, given the
distinct roles of the two parameters, we can not anticipate
that models would achieve best performance every time at
λ = r. Such a binding deployment, while reducing one pa-
rameter, also limits our tuning. We would further show that

SAM could not be the best implementation in the following
experiment section.

4. Experiments
We would demonstrate the effectiveness of our proposed
scheme by investigating performance on image classifica-
tion tasks. In all our experiments, we would compare our
scheme with two other training schemes, one is the stan-
dard training scheme and the other one is the SAM training
scheme. Besides, all the experiments are deployed using the
JAX framework on the NVIDIA DGX Station A100.

4.1. Cifar10 and Cifar100

In this section, we would use Cifar10 and Cifar100 as our
experimental datasets, and would separately apply the con-
volutional neural network (CNN) architectures and the vi-
sion transformer (ViT) architecture for the corresponding
benchmark performance tests.

Convolutional neural network For CNN architectures,
five different architectures would be involved, including
relatively simple architectures (VGG16 (Simonyan & Zis-
serman, 2015)) and complex architectures (WideResNet
(Zagoruyko & Komodakis, 2016) and PyramidNet (Han
et al., 2017)).

For training datasets, we would employ two kinds of aug-
mentations. The first one is the basic augmentation, where
samples are padded with additional four pixels on each
boundary, randomly flipped in horizontal and then cropped
randomly to size 32 × 32. The second one is the cutout
augmentation, where cutout regularization (Devries & Tay-
lor, 2017) would be implemented moreover based on the
basic augmentation. Specifically, cutout regularization is a
common data augmentation technique for CNNs, which ran-
domly masks out a square region in the input with a given
mask value (generally zero).

Our investigation would focus on the comparisons between
three different training schemes, namely the standard SGD
scheme, SAM scheme and our scheme. Considering the con-
nections between these three training schemes, we would
adopt a ”greedy” strategy to reduce tuning cost during im-
plementation,

1. We would first train models using the standard training
scheme (λ = 0 in our scheme), and record the common
training hyperparameters (such as learning rate, weight
decay) that could give the best model performance.

2. Based on the best hyperparameters recorded in Step
1, we would then set the balance coefficient α = 1
to train the same models using the SAM scheme, and
perform a grid search on the parameter r.
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Table 1. Testing error rate of CNN models on Cifar10 and Cifar100 when implementing the three training schemes.

Cifar10 Cifar100

VGG16 Basic Cutout Basic Cutout

Standard 7.07 5.31 28.78 26.98
SAM 6.91 6.17 28.62 27.13
Ours 6.72 5.19 28.48 27.07

VGG16-BN Basic Cutout Basic Cutout

Standard 5.74±0.09 4.39±0.07 25.22±0.31 24.69±0.25
SAM 5.24±0.08 4.16±0.11 24.23±0.29 23.35±0.33
Ours 4.88±0.12 4.02±0.08 24.04±0.18 23.07±0.26

WideResNet-28-10 Basic Cutout Basic Cutout

Standard 3.53±0.10 2.81±0.07 18.99±0.12 16.92±0.10
SAM 2.78±0.07 2.43±0.13 16.53±0.13 14.87±0.16
Ours 2.52±0.09 2.16±0.11 16.02±0.19 14.28±0.16

WideResNet-SS 2×96 Basic Cutout Basic Cutout

Standard 2.82±0.05 2.39±0.06 17.19±0.19 15.85±0.14
SAM 2.37±0.09 2.11±0.13 15.22±0.19 14.32±0.15
Ours 2.28±0.13 2.01±0.10 14.93±0.10 14.03±0.17

PyramidNet-SD Auto Aug + Cutmix Auto Aug + Cutmix

Standard 1.66±0.11 10.83±0.14
SAM 1.41±0.08 10.33±0.13
Ours 1.30±0.07 10.12±0.17

3. Finally, based on the previous information, we would
further perform a grid search on the balance coefficient
α to adjust the penalty coefficient.

Basically, the involved model architectures have been ex-
tensively studied for the standard training scheme. It is not
necessary to perform a heavy grid search, and we could
just follow the common hyperparameters used in the related
literatures. Next, we would perform a grid search on the
scaler r over the set {0.01, 0.02, 0.05, 0.1, 0.2}. This set-
ting is actually the same as it in (Foret et al., 2021). And
for a fair comparison, we would train the models to reach
at comparable results as reported in their paper. After deter-
mining the best value of r, we would moreover perform a
grid search on the balance coefficient α in the range 0.1 to
0.9 at an interval of 0.1.

For each model, we would train with five different random
seeds, and record the convergence model performance on
testing sets during training. And then we would report the
mean value and the standard deviation, as shown in Table 1.

In table 1, totally five model cases are involved: the origi-
nal VGG16 architecture and that with batch normalization
regularization, the WideResNet-28-10 architecture and that

with Shake-Shake regularization (Gastaldi, 2017), and the
PyramidNet-270 architecture with Shake-Drop regulariza-
tion (Yamada et al., 2019). We could see that for our training
scheme, the model performance could be improved to some
extent compared to the other two schemes.

For the original VGG16 model, training could frequently fail
with relatively large learning rate, sometimes all five trials
may fail especially for the SAM scheme. However, small
learning rate may not lead to the best performance. Here, we
would simply report the best training case (possibly trained
more than five times and not following the greed strategy
strictly).

Basically, the results are quite close when using the three
training schemes. But it should be highly noted about the re-
sults when implementing cutout augmentation. On Cifar10,
the performance using SAM scheme may be much worse
than that using standard scheme. This is because that for the
optimal common training hyperparameters in the standard
scheme, all of the values in our grid search on approxima-
tion scalar r fail to train from the start using SAM scheme.
We have to lower the learning rate to stabilize the training.
In contrast, by setting appropriate balance coefficient α, our
scheme could utilize the optimal common training hyper-
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parameters, which could improve the performance slightly.
However, on Cifar100, the standard training would yield the
best performance.

When applying the batch normalization regularization on the
VGG model, such training failures would be largely allevi-
ated, although they may still happen in few trials. We would
see that with batch normalization, VGG16 could receive
significantly performance gains. The best performances
are achieved via our scheme, which could be as low as 4%
testing error rate on Cifar10.

As for the WideResNet architecture, we could find that
our scheme could significantly improve the performance
by 1% on Cifar10 and near 3% on Cifar100 compared to
the standard training scheme. Our improvements could be
38% on average and up to remarkable 70% (on Cifar10
with cutout, ours is 0.65 while SAM’s is 0.38, which is
0.65 = (1 + 71%)× 0.38) more than the SAM’s improve-
ments over the standard training scheme. This confirms the
effectiveness of our scheme, and further demonstrates that
SAM is not the best case in our scheme.

Regarding the WideResNet with Shake-Shake regularization
(WideResNet-SS in the table), our improvements could not
be as significant as that on the WideResNet architecture, but
still give about 20% improvement compared to the SAM’s
improvement over the standard training scheme.

Finally, we would investigate the PyramidNet architecture
with the Shake-Drop regularization (PyramidNet-SD in
the table). We would adopt the auto-augmentation policy
(Cubuk et al., 2018) and the cutmix regularization (Yun et al.,
2019) for data augmentation. Here, only three random seeds
are used for training. We could see that our scheme again
improves the performance on both Cifar10 and Cifar100.

Vision transformer We would like to investigate the ef-
fectiveness of our scheme on the recent vision transformer
architectures (Dosovitskiy et al., 2021). Our investigation
would focus on the ViT-TI16 and ViT-S16 architectures
introduced in their paper.

Here, we would adopt the same greedy search strategy as
in the previous section for the three training schemes. Like-
wise, five random seeds are used for each model. But for
data augmentation, we would not use cutout augmentation
here since we find such augmentation would not boost the
model performance. Intuitively, the vision transformer archi-
tecture would cut the image into small patches, and utilize
the relationship between these patches to make decisions.
In this way, the cutout regularization may not be helpful for
models to learn the relationship between patches. Here, we
would replace the cutout augmentation with a heavy aug-
mentation, considering that vision transformer architectures
are generally data hungry models. In the heavy augmenta-

Table 2. Testing error rate of ViT models on Cifar10 dataset when
implementing the three training schemes.

Cifar10

ViT-TI16 Basic Heavy

Standard 15.92±0.17 14.68±0.14
SAM 15.33±0.18 13.77±0.12
Ours 14.75±0.17 13.52±0.21

ViT-S16 Basic Heavy

Standard 14.55±0.14 13.31±0.11
SAM 13.91±0.18 12.63±0.09
Ours 13.66±0.16 12.29±0.19

Table 3. Testing error rate of ViT models on Cifar100 dataset when
implementing the three training schemes.

Cifar100

ViT-TI16 Basic Heavy

Standard 40.21±0.20 38.93±0.28
SAM 38.89±0.23 37.61±0.19
Ours 38.58±0.27 37.15±0.21

ViT-S16 Basic Heavy

Standard 38.43±0.19 37.58±0.22
SAM 37.98±0.23 36.77±0.25
Ours 37.32±0.28 36.59±0.22

tion, we would perform a series of operations, including re-
sizing to 72×72, random flipping, random rotating, random
zooming, random cropping and finally resizing to 48× 48.
We would adopt the 4× 4 patch size in both the basic aug-
mentation and the heavy augmentation. Models would be
trained much longer using heavy augmentation than those
using basic augmentation (1200 v.s 300 epochs). In addi-
tion, we would use extra operations like label smoothing
and drop path as used in (Dosovitskiy et al., 2021) when
using the heavy augmentation.

Table 2 & 3 presents the corresponding testing error rate.
We could see that even if using heavy augmentation, the
performances of vision transformer architectures would be
much worse than those of CNN architectures. And in the ta-
ble, we could find that the performances could be improved
via implementing our scheme. This further confirms the
broad applicability of our scheme.

Parameter study Further, we would investigate the im-
pact on model performance as choosing different balance co-
efficients α and approximation scalars r in our optimization
scheme, which we would illustrate using the WideResNet-
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Figure 2. Testing error rate when trained with different hyperparameter r and α. The upper row denotes the error rate on Cifar10 while the
lower row denotes the error rate on Cifar100, and the left column denotes r = 0.05 while the right column denotes r = 0.1. The points
colored green are results using the standard scheme, and the points colored orange are results using the SAM scheme.

28-10 model architecture.

When performing the grid search on approximate value r
in the SAM training experiments, we observe that models
would have relatively better performances when setting r =
0.05 and r = 0.1. This observation is the same as that
in (Foret et al., 2021). Then, the grid search over balance
coefficient α is performed moreover based on r = 0.05 and
0.1. Figure 2 shows the results. In Figure 2, rows denote
results on Cifar10 and Cifar100, respectively, and blue lines
in the plots denote adopting basic data augmentation while
red lines denote adopting cutout data augmentation. As we
would see in the figure, from the standard training scheme
(α = 0) to the SAM training scheme (α = 1), each curve
may experience a decrease and then an increase in the testing
error rate. Based on the figure, we could find that these
models would achieve best performance when the balance
coefficient α is set around 0.7 or 0.8.

In addition to the basic set in the previous deployment
of α, we would like to further investigate cases where
α /∈ [0, 1]. Extra deployments would be implemented
over two other sets, Ba = {−0.1,−0.2,−0.5} and Bb =
{1.1, 1.2, 1.3, 1.5, 2.0}.

For Ba, since its values are all negative, this causes that the
penalty coefficient of gradient norm in Equation 1 becomes
negative, which makes it a reward as increasing the gradient
norm during optimization. Generally, if λ ≤ 0, the opti-
mization would not be fully ensured, since we are adding a
negative term on the loss. And in all of our trials, no matter
trained on Cifar10 or Cifar100 datasets, the models com-
pletely fail to converge even if gradient clip regularization
is adopted. The gradient would be unstable, and may even
explode immediately after the training start. But this instead
shows the effectiveness of our penalty scheme.

As for Bb, since the values in it are all greater than 1.0,
the penalty on the gradient norm becomes larger, and the
operation relationship in Equation 10 shifts from addition
to subtraction. This may somehow be harmful to training,
as shown in figure 3. In the figure, the left plot denotes the
gradient norm of loss function with respect to the training
epochs, while the right plot denotes the testing error rate on
Cifar10 datasets.

We could find that these large coefficients indeed impose
much heavier penalties on the gradient norm of loss func-
tion. The gradient norm would drop faster and faster as
α increases from 1.1 to 2.0. For α = 2.0, the gradient
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Figure 3. Evolutions of gradient norm of loss function (left) and testing error rate on Cifar10. Purple curves represent the results where
α ∈ Bb, while the red curve represents the optimal results where α = 0.8.

norm would drop to near zero immediately after the train-
ing start. As for other values in Bb, although the gradient
norm would keep stable for a while, it would suddenly drop
rapidly within only several epochs. As soon as the gradient
norm begins to drop rapidly, the testing error rate would
increase immediately. When the gradient norms reach near
zero, the testing error rates become stable. Interestingly, the
final convergence error rates may be different even though
the corresponding gradient norms are all near zero.

In summary, one should impose the penalty on the gradi-
ent norm with appropriate parameters in practice, where
α = 0.8 and r ∈ {0.05, 0.1} are highly recommended for
achieving the best performance. Based on our observation,
this deployment could also give the best performance for
most of our training, not just the WideResNet-28-10 archi-
tecture.

4.2. ImageNet

Next, we would check the effectiveness of our scheme on
the large-scale dataset, namely ImageNet. For model archi-
tectures, we would adopt the VGG16-BN, ResNet50 and
ResNet101 in our investigation. Likewise, we would still
adopt the three training schemes for comparisons. How-
ever, unlike using the greedy strategy for hyperparameter
searching in the previous section, we would directly set
r = 0.05 according to (Foret et al., 2021) and perform
only a slight grid search on α over {0.7, 0.8} based on our
parameter study. For data augmentation, we just follow
the prior works (He et al., 2016; Simonyan & Zisserman,
2015). Here, we would train each model with three different
random seeds. Besides, all models are trained within 100
epochs with a cosine learning rate schedule.

Table 4 reports top-1 and top-5 testing error rates for dif-
ferent models. As we could see in the table, the model
generalization could be improved when using our scheme
compared to the other two schemes. Again, this confirms

Table 4. Testing error rate of models on ImageNet dataset when
implementing the three training schemes.

ImageNet

VGG16-BN Top-1 Accuracy Top-5 Accuracy

Standard 26.89±0.12 8.88±0.06
SAM 26.41±0.13 8.60±0.05
Ours 26.12±0.16 8.44±0.06

ResNet50 Top-1 Accuracy Top-5 Accuracy

Standard 23.64±0.17 7.01±0.09
SAM 23.16±0.11 6.72±0.06
Ours 22.87±0.15 6.59±0.11

ResNet101 Top-1 Accuracy Top-5 Accuracy

Standard 21.97±0.09 6.11±0.07
SAM 21.02±0.10 5.31±0.09
Ours 20.53±0.13 5.18±0.08

the effectiveness of our scheme for practical training.

5. Conclusion
In this paper, we introduce an effective scheme for penaliz-
ing the gradient norm of loss function during training opti-
mization. In our scheme, no Hessian computation would be
involved, making it efficient to be implemented in practical
optimization. We confirm the effectiveness of our training
scheme via image classification experiments which involve
extensive model architecture on commonly used datasets.
By comparing with two baselines (the standard training
scheme and SAM scheme) on Cifar and ImageNet dataset,
we show the superiority of our scheme, where several new
state-of-art performances are achieved. Remarkably, the im-
provement of using our scheme may be at most 70% greater
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than that of using the SAM scheme. Also, we perform a
parameter study to guide the setting of optimal hyperparam-
eters in practice. It is shown that one should carefully set
the parameters, in case of losing precision of approximation
during penalty.
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A. Simplification Process of Equation 6
The Equation 6 is,

∇θL(θ) = ∇θLS(θ) +∇θ(λ · ||∇θLS(θ)||p) (12)

where would like to simply the second term∇θ(λ · ||∇θLS(θ)||2).

For θ = [θ1, θ2, · · · , θn]ᵀ, the 2-norm function is,

g(θ) := ||θ||2 =
√
θ21 + θ22 + · · ·+ θ2n (13)

The partial derivative of g(θ) with respect to θi denotes,

∂g(θ)

∂θi
=

θi√
θ21 + θ22 + · · ·+ θ2n

=
θi
||θ||2

=
θi
g(θ)

(14)

Therefore,

∇θg(θ) = [
θ1
g(θ)

,
θ2
g(θ)

, · · · , θn
g(θ)

]ᵀ (15)

The gradient of θ denotes h(θ) := ∇θL(θ). And the term∇θ(||∇θL(θ)||2) could be simplified as,

∇θ(||∇θL(θ)||2) = ∇θ(g ◦ h)(θ)

= (∇θg(ζ)|ζ=h(θ)) · (∇θh(θ))

= (
ζ

g(ζ)
|ζ=h(θ)) · (∇θh(θ))

= (
∇θL(θ)

||∇θL(θ)||2
) · (∇2L(θ))

=
1

||∇θL(θ)||2
· ∇2L(θ) · ∇θL(θ)

(16)

Back to Equation 6, the equation could be simplified based on Equation 16,

∇θL(θ) = ∇θLS(θ) +∇θ(λ · ||∇θLS(θ)||p)

= ∇θLS(θ) + λ · ∇2LS(θ) · ∇θLS(θ)

||∇θLS(θ)||2
(17)


