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Abstract

Recently, random feature attentions (RFAs) are
proposed to approximate the softmax attention in
linear time and space complexity by linearizing
the exponential kernel. In this paper, we first pro-
pose a novel perspective to understand the bias
in such approximation by recasting RFAs as self-
normalized importance samplers. This perspec-
tive further sheds light on an unbiased estimator
for the whole softmax attention, called random-
ized attention (RA). RA constructs positive ran-
dom features via query-specific distributions and
enjoys greatly improved approximation fidelity,
albeit exhibiting quadratic complexity. By com-
bining the expressiveness in RA and the efficiency
in RFA, we develop a novel linear complexity self-
attention mechanism called linear randomized at-
tention (LARA). Extensive experiments across
various domains demonstrate that RA and LARA
significantly improve the performance of RFAs
by a substantial margin.

1. Introduction
Transformers (Vaswani et al., 2017) are powerful neural net-
works for sequence modeling. They have been successfully
applied in various domains, such as natural language pro-
cessing (Vaswani et al., 2017; Dehghani et al., 2019; Devlin
et al., 2019; Raffel et al., 2020), computer vision (Carion
et al., 2020; Dosovitskiy et al., 2021; Liu et al., 2021), bioin-
formatics (Rives et al., 2021; Jumper et al., 2021) and rein-
forcement learning (Chen et al., 2021c). The core building
block of transformer models is the self-attention mecha-
nism, which captures complex interactions among sequence
elements (Vaswani et al., 2017).
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However, the computational complexity of attention mech-
anism is quadratic in the number of tokens, making it pro-
hibitive to process long sequences. In the past two years,
there has been a community effort towards developing ef-
ficient attention architectures with improved computation
complexity and memory usage (Tay et al., 2020b). Among
them, one prominent is to view the attention mechanism
through kernelization (Katharopoulos et al., 2020; Choro-
manski et al., 2021; Peng et al., 2021b, inter alia). In this
work, we focus on random feature attentions (RFAs) (Peng
et al., 2021b; Choromanski et al., 2021), which approximate
softmax attention by linearizing the exponential kernel into
a dot product of random feature maps. Despite achieving lin-
ear time and space complexity, this approximation is biased
to the softmax attention as a whole.1

In this work, we revisit RFA and show that it can be reinter-
preted as a self-normalized importance sampler to softmax
attention. This insight reveals that the source of the approxi-
mation bias in RFAs comes from the self-normalization in
estimation (Owen, 2013). We further show softmax atten-
tion can be written as an expectation of linearized attention
over an input-dependent mixture distribution. These find-
ings suggest that we can in principle construct an unbiased
estimator for the softmax attention as a whole, as opposed to
merely exponential kernels in previous work. We call such
unbiased estimation randomized attention or RA. To the best
of our knowledge, this is the first unbiased approximation
of the whole softmax attention via kernel linearization.

RA constructs positive random features via distributions
exclusive to each query. Since RFAs only employ an input-
agnostic standard Gaussian as the importance sampling
proposal, RA enables a finer-grained treatment for query-
specific information and greatly improves the approxima-
tion fidelity; however, it is as expensive as softmax attention
computationally with quadratic complexity, because the key-
value statistics are different for each query, unlike the ones
in RFAs.

1There are several variants of random feature maps that yield
an unbiased estimate of the exponential kernel (Peng et al., 2021b;
Choromanski et al., 2021). Nevertheless, RFAs still run a biased
approximation to the whole softmax attention, since the softmax
attention involves a ratio of these exponential kernels. Although
the estimator is still consistent, the bias in question is elusive and
might impair the approximation fidelity of random features.
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Based on the analysis, one question naturally arises: “Can
we combine the expressiveness in RA and the efficiency in
RFA to get the best of both worlds?” To achieve that, we
generalize the importance sampling formulation of RFA
by adopting multiple proposals, each of which depends on
different subsets of queries. We further apply multiple im-
portance sampling (Veach & Guibas, 1995) and put together
these proposals to approximate softmax attention adaptively
for different queries, retaining the query-specific property
of RA. Meanwhile, since these proposals are shared among
all queries, we inherit the efficient computation reuse in
RFA and achieve linear complexity. We refer to this effi-
cient attention mechanism as LineAr Randomized Attention
(LARA). Extensive experiments and analyses demonstrate
that RA, as well as its linear variant LARA, significantly
reduce the approximation error of RFAs. They improve
RFAs by a substantial margin across various tasks, includ-
ing image classification, video action recognition, machine
translation, and so on, while retaining computational effi-
ciency.

2. Background
2.1. Softmax Attention

Let Q ∈ RN×D, K ∈ RM×D and V ∈ RM×D denote the
sets of N query vectors, M key and value vectors respec-
tively. For each query qn, the softmax attention computes
the following quantity,2

SoftmaxAttn (qn,K,V) :=

M∑
m=1

exp
(
q⊤
nkm

)∑M
m′=1 exp(q

⊤
nkm′)

v⊤
m.

Intuitively, the softmax attention first computes the nor-
malized similarity between the query and each key, which
is then used to weight value vectors. In the case of self-
attention in Transformers (Vaswani et al., 2017), we have
N = M ; as a result, such mechanism suffers from quadratic
time and memory complexity due to the explicit computa-
tion of the similarity scores between all pairs of queries and
keys.

2.2. Random Feature Attention

To reduce the computational complexity of softmax atten-
tion, recent work (Choromanski et al., 2021; Peng et al.,
2021b) proposes to linearize exponential kernels via ran-
dom feature methods (Rahimi & Recht, 2008). According
to Bochner’s theorem (Bochner, 2020), they re-write the
exponential kernel exp

(
x⊤y

)
as the following expectation,

exp(x⊤y) = Eω∼N (ω;0,I)

[
ξ(x, ω)⊤ξ(y, ω)

]
, (1)

2We omit the commonly used scaling factor 1/
√
d for simplic-

ity as it can be merged into the computation of queries or keys.

where ξ(·, ·) : RD × RD → Rl, l ≥ 1, is the randomized
mapping transforming the input vector to a l-dimensional
vector via a randomly drawn ω ∼ N (ω; 0, I). A clas-
sical choice of randomized mapping is to let ξ(x, ω) =

exp
(
1
2∥x∥

2
) [

sin
(
ω⊤x

)
, cos

(
ω⊤x

)]⊤
(Rahimi & Recht,

2008; Peng et al., 2021b). In Performer (Choromanski
et al., 2021), a scalar-valued positive randomized map-
ping ξ(x, ω) = exp

(
ω⊤x− 1

2∥x∥
2
)

is used to improve the
training stability. We base our model on the latter choice;
other variants are discussed further in Appendix C. We use
the term RFA and Performer interchangeably to refer to
attention models with positive randomized mappings.

To estimate the expectation in Equation 1, we can draw
multiple Monte Carlo samples3 and compute the average
such that exp(x⊤y) ≈ 1

S

∑S
s=1 ξ(x, ωs)

⊤ξ(y, ωs). By
substituting such approximation into the softmax attention,
we obtain random feature attention (RFA; Choromanski
et al., 2021; Peng et al., 2021b):∑M

m=1 exp
(
q⊤
nkm

)
v⊤
m∑M

m′=1 exp (q
⊤
nkm′)

≈
∑M

m=1

∑S
s=1 ξ(qn, ωs)

⊤ξ(km, ωs)v
⊤
m∑M

m′=1

∑S
s=1 ξ(qn, ωs)⊤ξ(km′ , ωs)

=

∑S
s=1 ξ(qn, ωs)

⊤∑M
m=1 ξ(km, ωs)v

⊤
m∑S

s=1 ξ(qn, ωs)⊤
∑M

m′=1 ξ(km′ , ωs)
(2)

:= RFA (qn,K,V) .

Thanks to the linearized formulation, one can first
pre-compute the corresponding key-value statistics∑M

m=1 ξ(km, ωs)v
⊤
m and

∑M
m=1 ξ(km, ωs) once, and then

reuse them for each query. Consequently, it achieves linear
complexity in both time and memory with respect to the
sequence length.

2.3. Self-normalized Importance Sampling

Importance sampling (IS) is a general approach to approxi-
mating expectation Ep(ω) [f(ω)] when it is difficult to draw
samples directly from p(ω). By sampling from a tractable
proposal distribution q(ω) instead, IS forms the following
estimate to correct the sampling bias,

Ep(ω) [f(ω)] = Eq(ω)

[
p(ω)

q(ω)
f(ω)

]
≈ 1

S

S∑
s=1

p(ωs)

q(ωs)
f(ωs),

where p(ω)/q(ω) is often referred to as importance weights.
Given that q(ω) is positive whenever p(ω) ̸= 0, IS yields

3This sample average can also be written as ϕ(x,w)⊤ϕ(y,w)

with ϕ(x,w) := 1/
√
S[ξ(x, ω1), . . . , ξ(x, ωS)]

⊤ ∈ RlS . Here
ϕ(·, ·) are conventionally referred to as random features (Rahimi
& Recht, 2008). We spell out individual samples as it simplifies
the analysis later.
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an unbiased estimation. However, if the target density takes
the form p(ω) = p̃(ω)/Z and its normalizing constant is
difficult to compute, IS would be intractable since it requires
evaluating p(ω) explicitly. Self-normalized importance sam-
pling (SNIS), a variant of IS estimators, mitigates this issue
by taking the following form (Owen, 2013),

Ep(ω) [f(ω)] =
Eq(ω)

[
p(ω)
q(ω)f(ω)

]
Eq(ω)

[
p(ω)
q(ω)

]
≈

1
S

∑S
s=1

1
Z

p̃(ωs)
q(ωs)

f(ωs)

1
S

∑S
s=1

1
Z

p̃(ωs)
q(ωs)

=

∑S
s=1

p̃(ωs)
q(ωs)

f(ωs)∑S
s=1

p̃(ωs)
q(ωs)

. (3)

The name self-normalized comes from the fact that the im-
portance weights p(ω)/q(ω) are normalized. Albeit at the
cost of introducing a bias, this method cancels out the nor-
malizing constant Z at both nominator and denominator.
SNIS often works well in practice.

3. Randomized Attention
In this section, we present an alternative view of RFA, re-
vealing new insights of how RFA approximates the softmax
attention. In particular, we show that RFA can be recast as a
self-normalized importance sampler and its target expecta-
tion is exactly softmax attention (§3.1). This reformulation
allows us to construct an unbiased estimator for softmax
attention. We refer this unbiased estimation as randomized
attention (§3.2).

3.1. RFA as Self-normalized Importance Sampling

Note that the formulation of RFA (Equation 2) and SNIS
(§2.3) both take the form as a ratio of sample averages
drawing from a tractable distribution. This resemblance
motivates us to treat RFA as an SNIS estimator and reverse-
engineer the target expectation Ep(ω) [f(ω)] that RFA ap-
proximates. For this to hold, the nominator and denominator
in Equation 2 should define a regular importance sampling
estimator and a valid importance weight up to some constant
Z respectively. Formally, denoting q(ω) := N (ω; 0, I), for
any ωs ∼ q(ω) we have{

p(ωs)
q(ωs)

f(ωs) =
1
Z ξ(qn, ωs)

⊤∑M
m=1 ξ(km, ωs)v

⊤
m,

p(ωs)
q(ωs)

= 1
Z ξ(qn, ωs)

⊤∑M
m=1 ξ(km, ωs).

(4)

Solving this relation gives concise formulations for both
f(ω) and p(ω) (see Appendix A for the proof):

Proposition 3.1. Let q(ω) = N (ω; 0, I) be the proposal,
ξ(x, ω) = exp

(
ω⊤x− 1

2∥x∥
2
)

be the positive randomized
mapping in Choromanski et al. (2021) and Ep(ω) [f(ω)] be
the unknown target expectation. Given the relation specified
in Equation 4, the distribution p(ω) is a Gaussian mixture

with parametric component weights and means,

p(ω) =

M∑
m=1

πmN (ω;qn + km, I), (5)

where πm =
exp(q⊤

n km)∑M
m′=1

exp(q⊤
n km′ )

is the component weight.

Besides, f(ω) is an attention-like aggregation function over
value vectors, which computes the linearized similarity be-
tween queries and keys via randomized mappings,

f(ω) =
ξ(qn, ω)

⊤∑M
m=1 ξ(km, ω)v⊤

m

ξ(qn, ω)
⊤∑M

m′=1 ξ(km′ , ω)
. (6)

From this perspective, for each query qn, RFA uses
N (ω; 0, I) as the proposal to perform self-normalized im-
portance sampling for the following expectation,4

Epn(ω)[fn(ω)]=Epn(ω)

[
ξ(qn, ω)

⊤∑M
m=1 ξ(km, ω)v⊤

m

ξ(qn, ω)
⊤∑M

m′=1 ξ(km′ , ω)

]
.

This re-formulation offers alternative viewpoints to under-
stand the approximation quality of RFA. It is straightforward
to see that RFA is a biased (but consistent) estimator due to
the self-normalization (Owen, 2013). In addition, RFA may
exhibit large bias and variance since it only uses a standard
Gaussian proposal, which is far away from the underly-
ing input-dependent mixture pn(ω). These may explain
its inferior performance and slow convergence observed in
previous studies (Patrick et al., 2021; Tay et al., 2021b).

3.2. Randomized Attention

The analysis above further implies that the softmax attention
itself can be formulated as an expectation.

Proposition 3.2. Let pn(ω) and fn(ω) be defined by Equa-
tion 5 and Equation 6 respectively. Then for softmax atten-
tion we have

SoftmaxAttn(qn,K,V) = Epn(ω) [fn(ω)] . (7)

The detailed proof is in Appendix B. As a result, RFA can be
viewed as using importance sampling to estimate softmax
attention. Alternatively, one can directly sample from pn(ω)
to construct an unbiased estimate of the softmax attention,

SoftmaxAttn(qn,K,V)

≈ 1

S

S∑
s=1

ξ(qn, ωs)
⊤∑M

m=1 ξ(km, ωs)v
⊤
m

ξ(qn, ωs)⊤
∑M

m′=1 ξ(km′ , ωs)

:= RA (qn,K,V)

4Here we add the subscript to emphasize that both fn(ω) and
pn(ω) is specific to a particular query qn.
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with ω1, . . . , ωS ∼ pn(ω). To the best of our knowledge,
this is the first kernel linearization estimator that approx-
imates the whole softmax attention, instead of just expo-
nential kernels, in an unbiased manner. We refer to this
estimator as randomized attention (RA), since it computes
attention-like aggregations but via randomized mappings.

Intuitively, RA constructs the randomized mapping by sam-
pling from the contextual distribution pn(ω), which pro-
motes ω in the vicinity of the resultant of current queries
and keys. Aware of locations of query-key pairs, ω is likely
to describe their similarity better than input-agnostic ones
as in RFA. In addition, each query position n in RA induces
an exclusive distribution pn, which makes the randomized
mapping adaptive to each query. This allows the model to
process query information at a finer-grained level and thus
achieves higher approximation fidelity (see §5 for empirical
validation). Nevertheless, the use of query-specific model-
ing requires to draw a different set of samples for different
queries. As a result, the mapped key statistics ξ(km, ω) will
be different for different queries, which prevents reusing
the computation and results in O(MN) complexity, render-
ing it less applicable in approximating softmax attention in
practice.

This is in sharp contrast to RFA. RFA uses the same proposal
N (ω; 0, I) for all queries, and thus the modeling power is
greatly reduced since the standard Gaussian would capture
neither contextual information nor the inherent variations
among queries. The advantage of the shared proposal is that
it enables efficient computation reuse of key-value statistics
(Equation 2), as the same randomized mapping is reused
across queries. This property accounts for RFA’s linear
complexity.

4. Linear Complexity Randomized Attention
In this section, we propose an improved estimator of soft-
max attention to combine both the expressiveness of RA and
the efficiency of RFA. Motivated by the difference between
RA and RFA, we generalize the importance sampling formu-
lation of RFA by adopting multiple proposals. This strategy
not only captures query information at a finer-grained level,
but also allows the model to estimate softmax attention in a
query-specific manner (§4.1). We further show that compu-
tation reuse in RFA can be achieved, which leads to linear
complexity computation with the help of self-normalized
importance sampling (§4.2).

4.1. Importance Sampling with Multiple Proposals

As discussed in §3.2, both RA and RFA aim to estimate
the expectation Epn(ω) [fn(ω)] (Equation 7). The main dif-
ference between RA and RFA is that RA samples from a
distinct distribution for each query, while RFA uses the same

proposal distribution for all queries. To get the best of both
worlds, we propose to adopt a set of C (C ≪ N ) proposal
distributions {qc(ω)}Cc=1 for our estimation, each of which
depends on a subset of queries (see Appendix G.3.1 for the
detailed discussion on parameterizing these proposals).

This strategy not only enables a finer-grained treatment
for query information, but also allows the model to esti-
mate softmax attention in a query-specific way, which is
the key advantage of RA. To be specific, since there are
several proposals available for each query, and these propos-
als may provide complementary information to each other,
we could combine them by invoking multiple importance
sampling (MIS; Veach & Guibas, 1995). For each query,
the MIS estimate takes the following form,5

Epn(ω) [fn(ω)] ≈
C∑

c=1

αnc(ωc)
pn(ωc)

qc(ωc)
fn(ωc) (8)

where ωc ∼ qc(ω) for c = 1, . . . , C and {αnc(·)}Cc=1 are
weighting functions. The MIS estimator is unbiased (Veach
& Guibas, 1995) if

∑C
c=1 αnc(ω) = 1 for any ω (see the

proof in Appendix F).6 Intuitively, MIS first computes indi-
vidual importance sampling estimates with each proposal,
which are averaged together according to the query-specific
weighting functions.

Ideally, the n-th set of weighting functions {αnc(·)}Cc=1

should specialize in processing the n-th query. To accom-
plish this goal, we expect weighting functions to be optimal
(i.e., minimize the estimation variance) for the correspond-
ing query. Optimal weighting functions takes the following
form (detailed derivation can be found in Appendix D),

α∗
nc(ωc) =

qc(ωc)∑C
c′=1 qc′(ωc)

+

qc(ωc)

(
rnc(ωc)−

C∑
c=1

qc(ωc)∑C
c′=1 qc′(ωc)

rnc(ωc)

)
.

Here rnc(·) is roughly proportional to the closeness between
qc(·) and the query-specific optimal proposal. Intuitively,
the optimal weighting function consists of two terms. The
first term is query-agnostic and the second term is a query-
specific correction. The correction term is defined by the
difference between rnc(·) and its average weighted by qc(·);
consequently, if rnc(·) is large, the correction term will be
positive, driving the weight of the c-th proposal to be higher
and vice versa.

5Here we assume only one sample is drawn from each pro-
posal distribution. A more general treatment would allow arbitrary
numbers of samples to be drawn from each proposal.

6Strictly speaking, for the MIS estimator to be unbiased, we
additionally need the weighting functions to be zero for any ω such
that pn(ω) = 0, although this holds trivially in our setting.
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In most cases, it is intractable to apply optimal weighting
functions, since the closed form of rnc(·) is not available.
We therefore approximate the optimal weighting functions
by the following form,

αnc(ωc) =
qc(ωc)∑C

c′=1 qc′(ωc)
+ r′nc −

1

C

C∑
c=1

r′nc, (9)

where r′nc measures the degree of the proposal qc favoring
the n-th query. For tractability, we implement r′nc as the
normalized similarity between the n-th query and the rep-
resentation of the c-th query subset. We also decouple the
computation between proposal densities qc(ω) and r′nc, so
that contributions from query-agnostic and query-specific
terms can be independent of each other (see Appendix G.3.2
for more details and ablations). Note that Equation 9 still
ensures unbiasedness (or consistency) of MIS estimation
due to

∑C
c=1 αnc(ω) = 1.

4.2. Achieving Linear Time and Space Complexity

According to our MIS estimator (Equation 8), the key-value
statistics under each proposal can be pre-computed once and
then reused for all queries. This implies the computation
reuse in RFA is achievable and so as the linear complexity.

The only problem left now is that the MIS estimator still re-
quires explicitly evaluating the density pn(ω) for each query
(Equation 5), which exhibits quadratic complexity. This is
because pn(ω) is a Gaussian mixture with M components,
incurring O(NM) computations in total. We show that a
self-normalized version of MIS allows us to further reduce
the complexity to be linear. According to Proposition 3.1
(and Equation 15 in Appendix A), the mixture density pn(ω)
can be equivalently expressed as

pn(ω)=
N (ω; 0, I)ξ(qn, ω)

⊤∑M
m=1 ξ(km, ω)∑M

m′=1 exp (q
⊤
nkm′)

:=
p̃n(ω)

Zp
.

Our key observation is that now the numerator contains
a linearized dot product of randomized mappings, which
can be pre-computed and reused for all queries, while the
denominator is similar to the normalizing constant in regular
softmax attention and can only be computed in quadratic
time. Fortunately, the denominator can be canceled out if
we adopt the self-normalized estimator (see §2.3),

Epn(ω) [fn(ω)] ≈
∑C

c=1 αnc(ωc)
p̃n(ωc)
qc(ωc)

fn(ωc)∑C
c=1 αnc(ωc)

p̃n(ωc)
qc(ωc)

:= LARA (qn,K,V) . (10)

The resulting estimator is consistent and runs with linear
complexity, similar to RFA. We name it linear randomized
attention (LARA). See Algorithm 3 in Appendix G.3 for an
algorithmic sketch of LARA.

4.3. Discussion: RFA, RA, and LARA

LARA defines a flexible framework to bridge RFA and RA.
To delineate the connection between RFA and LARA, we
find LARA can be further rewritten as (see Appendix E for
the derivation)

LARA (qn,K,V)

=

∑C
c=1 α

′
nc(ωc)ξ(qn, ωc)

⊤∑M
m=1 ξ(km, ωc)v

⊤
m∑C

c=1 α
′
nc(ωc)ξ(qn, ωc)⊤

∑M
m=1 ξ(km, ωc)

,

where ωc ∼ qc(ω) for c = 1, . . . , C and α′
nc(ωc) :=

αnc(ωc)N (ωc; 0, I)/qc(ωc). Comparing to the formulation
of RFA (Equation 2), we see that RFA is a special case of
LARA if we set all proposals to N (ω; 0, I) and all αnc(·)
to constant functions. On the other hand, LARA is equiva-
lent to RA if we remove the use of self-normalization, set
αnc(ω) = δnc

7 and maintain N proposals, each of which
takes the same form of pn(ω) (Equation 5). With general
proposals and weighting functions, LARA approximates
softmax attention in a query-specific manner as in RA while
achieving linear complexity as in RFA, effectively combin-
ing the advantages of both estimators.

5. Experiments
In this section, we conduct extensive experiments across
various domains to verify the effectiveness of linear random-
ized attention. Firstly, we start with an experiment to assess
the approximation error of different random feature based
methods (§5.1). We then perform a number of experiments
on various data modalities, including image classification
(§5.2), video action recognition (§5.3), machine translation
(§5.4), and long sequence modeling on Long Range Arena
benchmark (Appendix I.2). Additional details as well as
ablation studies can be found in Appendices H and I. The
implementation details of RA, Performer (RFA) and LARA
are provided in Appendix G.

5.1. Experiments on the Approximation Quality

We conduct a preliminary experiment to assess the approxi-
mation fidelity of different random feature methods (details
are deferred to Appendix H.1). In particular, we consider
vision transformers (ViT; Dosovitskiy et al., 2021; Touvron
et al., 2021), keep Q,K and V the same across attention
variants, and compute the Mean Squared Error (MSE) be-
tween the outputs of true softmax attention and its approxi-
mations. We use the ImageNet1k validation set (see more
details in §5.2) as the input data and report MSE results aver-
aged over all images. Figure 1 shows the results with respect
to the number of random samples under different sequence

7That is, weighting functions now become the Kronecker delta
function, where αnc(ω) = 1 if n = c and 0 otherwise.
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Table 1. Classification results on ImageNet1k dataset with DeiT
architectures under different attention mechanisms. “*-8” denotes
the corresponding attention method with patch size 8, resulting in
longer sequence with length 784; N denotes the sequence length.

Model Complexity DeiT-Tiny DeiT-Small
# Param. Top-1 Acc. # Param. Top-1 Acc.

Performer O(N) 5.7M 65.92 22.0M 74.29
Performer-8 O(N) 5.7M 67.79 22.0M 74.57
LARA O(N) 5.8M 71.48 22.2M 79.48
LARA-8 O(N) 5.8M 74.16 22.2M 80.62
RA O(N2) 5.7M 71.86 22.0M 80.04

Softmax O(N2) 5.7M 72.20 22.0M 79.90

lengths. We observe that RFA (Performer) soon plateaus at
large approximation error and does not improve even with
more samples, possibly due to low sample efficiency. On
the other hand, LARA exhibits much lower MSE than Per-
former and the approximation error continually decreases
as the number of samples increases. As for RA, it achieves
the lowest MSE among these three methods. This clearly
indicates that increasing the model’s resolution over query
positions as in LARA and RA is more effective in improving
approximation quality, compared to simply increasing the
sample size from the same distribution (as in Performer).

5.2. Image Classification

For image classification, we conduct our experiment on
the ImageNet1k benchmark (Deng et al., 2009), which
consists of approximately 1,280K/50K images over 1,000
classes for training/validation splits respectively. We apply
our attention mechanism to different vision transformer
(ViT) architectures (Dosovitskiy et al., 2021), including
DeiT (Touvron et al., 2021) and pyramid vision transformers
v2 (PVTv2; Wang et al., 2021a;b). The former architecture
adopts standard transformer layers with regular softmax
attention and receives sequence with length 196 by default;
while the latter processes much longer image sequences,
which is therefore more suitable to evaluate the scalability
of various efficient attention. More model and training
details can be found in Appendix H.2.

Results on DeiT. The comparison among different ran-
dom feature based methods on DeiT model is demonstrated
in Table 1. Consistent with previous studies (Zheng et al.,
2021), Performer (RFA) incurs a significant performance
drop due to its limited modeling capacity. Its unbiased coun-
terpart, RA, performs much better than Performer and even
slightly outperforms exact softmax attention under larger
model sizes. This empirically validates the expressiveness
of unbiasedness in approximating softmax attention. LARA
achieves a good trade-off between Performer and RA. It
enjoys linear complexity as Performer but performs sub-
stantially better. On the other hand, we note that a linear

Table 2. Classification results on ImageNet1k dataset compared
with state-of-the-art model architectures.

Model # Param. FLOPs Top-1 Acc.

PVT-v1-T (Wang et al., 2021a) 13.2M 2.1G 75.1
SOFT-T (Lu et al., 2021) 13.1M 1.9G 79.3
RegionViT-T (Chen et al., 2021b) 13.8M 2.4G 80.4

PVT-v2-b1 (SRA) 14.0M 2.1G 78.7
PVT-v2-b1 + Performer 12.1M 2.5G 77.3
PVT-v2-b1 + LARA 13.7M 2.3G 79.6

PVT-v1-S (Wang et al., 2021a) 24.5M 3.8G 79.8
DeiT-S (Touvron et al., 2021) 22.1M 4.6G 79.9
RegNetY-4G (Radosavovic et al., 2020) 21.0M 4.0G 80.0
Swin-T (Liu et al., 2021) 28.3M 4.5G 81.3
CvT-13 (Wu et al., 2021) 20.0M 4.5G 81.6
Twins-SVT-S (Chu et al., 2021) 24.0M 2.8G 81.7
SOFT-S (Lu et al., 2021) 24.1M 3.3G 82.2
Focal-T (Yang et al., 2021) 29.1M 4.9G 82.2
ViL-S (Zhang et al., 2021) 24.6M 4.9G 82.4

PVT-v2-b2 (SRA) 25.4M 4.0G 82.1
PVT-v2-b2 + Performer 21.1M 4.9G 81.0
PVT-v2-b2 + LARA 22.4M 4.5G 82.6

PVTv1-M (Wang et al., 2021a) 44.2M 6.7G 81.2
RegNetY-8G (Radosavovic et al., 2020) 39.0M 8.0G 81.7
CvT-21 (Wu et al., 2021) 32.0M 7.1G 82.5
SOFT-M (Lu et al., 2021) 45.0M 7.2G 82.9
RegionViT-M (Chen et al., 2021b) 42.0M 7.9G 83.4
ViL-M (Zhang et al., 2021) 39.7M 9.1G 83.5

PVT-v2-b3 (SRA) 45.2M 6.9G 83.3
PVT-v2-b3 + Performer 36.0M 8.2G 82.4
PVT-v2-b3 + LARA 39.9M 7.7G 83.6

PVTv1-L (Wang et al., 2021a) 61.4M 9.8G 81.7
RegNetY-16G (Radosavovic et al., 2020) 84.0M 16.0G 82.9
Swin-S (Liu et al., 2021) 50.0M 8.7G 83.0
SOFT-L (Lu et al., 2021) 64.1M 11.0G 83.1
Focal-S (Yang et al., 2021) 51.1M 9.1G 83.5
ViL-B (Zhang et al., 2021) 55.7M 13.4G 83.7
RegionViT-B (Chen et al., 2021b) 73.8M 13.6G 83.8

PVT-v2-b4 (SRA) 62.6M 10.1G 83.6
PVT-v2-b4 + Performer 48.6M 11.9G 82.7
PVT-v2-b4 + LARA 54.5M 11.3G 84.0

complexity variant enables the transformer model to scale
to much longer sequences, which is often prohibitive for
traditional softmax attention but delivers better predictive
performance (El-Nouby et al., 2021). We thus train Per-
former and LARA with 8 × 8 image patches (resulting in
sequence length 784) with all other settings unchanged. As
shown in Table 1, increasing the sequence length (suffixed
with “-8”) consistently boosts model performance. However,
LARA benefits from longer sequences much more signifi-
cantly than Performer and outperforms softmax attention by
a large margin. This indicates the potential modeling power
of our framework for long sequences. Also see Appendix I.1
for additional experiments and ablations.

Results on PVTv2. We then apply our method to the
strong baseline PVTv2 and compare it against recent state-
of-the-art model architectures. As presented by Table 2,
we observe although replacing spatial reduction attention
(SRA; details in §H.2) with Performer leads to inferior per-
formance, LARA brings a consistent performance gain over
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Figure 1. Mean Squared Error (MSE) between the true softmax attention and different approximation methods under different numbers of
samples (lower is better). Results are evaluated on ViTs under typical settings of sequence length, including 196, 576 and 784. Note that
we only draw 1 sample in RA estimation so that the curve of RA is constant.

vanilla SRA with much fewer model parameters. In addi-
tion, PVTv2 with LARA even performs highly competitive
with state-of-the-art architectures across various model sizes,
without introducing other inductive biases (such as local-
ity). This implies the superior modeling capacity of LARA
compared to SRA and Performer.

5.3. Video Action Recognition

In this section, we test our method on video action recog-
nition with video transformers. We consider two standard
datasets: (1) Kinetics-400 (K400; Kay et al., 2017), which
contains 238,574 videos for training and 19,877 for evalua-
tion at the time of writing and (2) Something-something-v2
(SSv2; Goyal et al., 2017), consisting of around 168K/25K
videos of 174 classes for training/validation splits respec-
tively. We base our model on the Motionformer architecture
(Patrick et al., 2021) and follow their training and evaluation
protocol; more details can be found in Appendix H.3.

Table 3 reports the top-1 classification accuracy for both
K400 and SSv2 datasets. We see that RA still achieves
the best performance among attention approximations al-
beit falling behind the exact softmax attention. Since Mo-
tionformer is pretrained on images with softmax attention,
this gap is likely introduced by employing a different at-
tention mechanism during training the model further on
video datasets. Besides, LARA outperforms Performer and
Nyströmformer (Xiong et al., 2021) by a large margin on
both K400 and SSv2 datasets. Although achieving strong
performance, Orthoformer (Patrick et al., 2021) runs much
slower (roughly 3× or more) than other attention variants
due to its sequential nature. As a result, LARA achieves
better trade-offs than these baselines between predictive
accuracy and efficiency.

5.4. Machine Translation

In this section, we conduct experiments on WMT14 EN–
DE machine translation benchmark (Bojar et al., 2014) to

Table 3. Video action recognition accuracy on K400 and SSv2
datasets with different attention mechanisms. N denotes the spatial
sequence length.

Model Complexity Acc. (%) on K400 Acc. (%) on SSv2

Nyströmformer O(N) 76.5 61.7
Orthoformer O(N) 77.8 64.7
Performer O(N) 72.1 53.1
LARA O(N) 77.5 63.7
RA O(N2) 78.2 64.9

Exact Motionformer O(N2) 79.2 66.5

evaluate the performance of our model under various se-
quence lengths. We follow Vaswani et al. (2017) and Ott
et al. (2018) to preprocess this dataset, resulting in about
4.5M/3K/3K sentences pairs for training/validation/testing
splits respectively. We adopt the standard transformer base
architecture (Vaswani et al., 2017) and replace encoder self-
attention with efficient attention variants. More detailed
configurations are deferred to Appendix H.4.

Table 4 presents the test BLEU scores under different atten-
tion mechanisms. Since this dataset consists mostly of short
sentences, we set the number of samples to be relatively
smaller. However, the training of Performer is quite unsta-
ble and a larger number of samples is required to mitigate
this issue. Besides, we observe a similar trend that replacing
the standard softmax attention with Performer leads to a sig-
nificant performance drop, while increasing the number of
samples does not improve the translation quality. RA, on the
other hand, even outperforms softmax attention by over 0.3
BLEU score, clearly demonstrating the modeling capacity
of unbiased approximations. LARA reaches performance
close to softmax attention while runs with the same com-
plexity as Performer; compared to other attention variants,
LARA outperforms both Linformer (Wang et al., 2020) and
ABC (Peng et al., 2021a) while obtaining similar BLEU
scores to Nyströmformer (Xiong et al., 2021). This indi-
cates RA and LARA are also capable of modeling natural
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Table 4. Test BLEU scores on WMT14 EN-DE dataset under dif-
ferent attention mechanisms. For brevity, “# samples” denotes
either the number of samples or landmarks involved in different
attention variants; – indicates the model does not converge during
training; n.a. denotes not applicable.

Model # samples # Param. BLEU

Softmax n.a. 60.92M 27.5

ABC
16 60.93M 25.4
32 60.94M 25.6
64 60.95M 26.0

Linformer
16 60.92M 17.4
32 61.31M 23.0
64 61.70M 23.7

Nyströmformer
16 60.92M 25.1
32 60.92M 26.8
64 60.92M 26.8

Performer

64 60.92M –
128 60.92M 23.5
256 60.92M 23.7
512 60.92M 23.3

LARA
16 60.96M 26.4
32 60.96M 26.8
64 60.96M 27.0

RA n.a. 60.92M 27.8

language, which is typically hierarchically structured.

5.5. Analysis on Time and Memory Consumption

To evaluate the empirical efficiency of various attention
methods, we conduct a simulation on a standard transformer
architecture and report the running time and memory con-
sumption under different sequence lengths. The detailed
setup can be found in Appendix H.5. As shown in Figure 2
(and Table 6 in Appendix H.5 for exact statistics), we note
that RA runs twice (or more) as slow as ordinary softmax
attention with about 2.5× memory consumption. This is
as expected since RA needs to first compute full softmax
probabilities to sample from pn, and then compute fn, both
of which take a similar amount of computation to softmax
attention. Nevertheless, its efficient variant LARA runs as
fast as Performer with marginally increased memory usage.
As for another baseline Nyströmformer (Xiong et al., 2021),
which we found is a strong baseline and is used across exper-
iments, it runs much slower than other variants at relatively
short sequence lengths (e.g., less than 8192). Overall, the
comparison result validates that LARA achieves a good
balance between efficiency and expressiveness.

6. Related Work
Transformer models (Vaswani et al., 2017) are difficult to
scale to long sequences due to the quadratic time and space
complexity of self-attention mechanisms. Recently, a signif-
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Figure 2. Empirical memory consumption (left) and running time
(right) of different attention mechanisms under different sequence
lengths. Metrics are measured relative to the softmax attention.

icantly large number of approaches have been proposed to
improve the efficiency of attention mechanisms. A widely
adopted paradigm is to utilize sparse attention, where each
query is limited to only attend a subset of tokens. Such
sparse attentive patterns can be pre-defined, such as sliding
windows (Beltagy et al., 2020) or block-wise local chunks
(Liu* et al., 2018; Parmar et al., 2018; Child et al., 2019;
Ainslie et al., 2020; Zaheer et al., 2020; Liu et al., 2021);
alternatively, the model can adaptively select tokens to take
into account. This can be done via a trainable top-k se-
lecting operator (Pietruszka et al., 2020), learnable hash
functions (Kitaev et al., 2020; Daras et al., 2020), cluster-
ing with K-Means (Vyas et al., 2020; Roy et al., 2021) or
grouping tokens with a differentiable sorting module (Tay
et al., 2020a). More recently, Combiner (Ren et al., 2021)
is proposed to apply the sparse mechanism to factorize the
softmax probability distribution so that the resulting ap-
proximation runs with sub-quadratic time but achieves full
attention capacity.

Low-rank approximations to the softmax attention also re-
ceived considerable interest. For instance, the Nyström
method can be adopted to approximate the softmax atten-
tion map by a sub-sampled matrix (Xiong et al., 2021).
Another approach is the kernel linearization, which aims to
decompose the exponential kernel into a dot product of fea-
ture maps. Such feature maps can be randomized that yield
unbiased estimates of exponential kernels (Choromanski
et al., 2021; Peng et al., 2021b), or deterministic that enjoy
better training convergence (Katharopoulos et al., 2020; Ka-
sai et al., 2021b; Schlag et al., 2021). Alternatively, one can
use a learnable matrix (including Linformer (Wang et al.,
2020) and ABC (Peng et al., 2021a)) or other downsampling
operations (Dai et al., 2020; Wang et al., 2021a;b) to project
the key-value pairs into fixed-length sequences. Besides, a
set of auxiliary points can also be incorporated to cache the
information from the long sequence via an attention mech-
anism, which is adopted in LUNA (Ma et al., 2021), Set
transformer (Lee et al., 2019) and Perceiver (Jaegle et al.,
2021a;b). Our work falls into the category of kernel lin-
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earization methods, but in contrast to previous works, we
propose an unbiased estimation for the whole softmax at-
tention, which has not been explored and is orthogonal to
previous works.

Recent studies also consider combining both the sparse
and low-rank bias to achieve better approximation (Nguyen
et al., 2021; Zhu et al., 2021; Chen et al., 2021a), or replace
the softmax attention with other token-mixing mechanisms
(Lee-Thorp et al., 2021; Lu et al., 2021; Chen et al., 2021d;
Tay et al., 2021a). We refer readers to Tay et al. (2020b;
2021b); Lin et al. (2021) for a more detailed review on
advances in the topic of efficient attention.

7. Conclusion
In this paper, we revisit the recently proposed random fea-
ture methods for approximating the softmax attention. By
recasting RFA as self-normalized importance samplers, we
identify an elusive bias in its approximation process. Built
on this finding, we propose the unbiased estimation, called
randomized attention (RA), which constructs positive ran-
dom features via query-specific distributions. We then de-
velop a novel linear complexity self-attention mechanism
called linear randomized attention (LARA), which com-
bines the expressiveness in RA and the efficiency in RFA.
Extensive experiments demonstrate the effectiveness of RA
and LARA, across various domains.
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Appendices
A. Proof for Proposition 3.1
Assume q(ω) = N (ω; 0, I). Recall that we define

p(ω)

q(ω)
f(ω) =

1

Z

M∑
m=1

ξ(qn, ω)
⊤ξ(km, ω)v⊤

m, (11)

p(ω)

q(ω)
=

1

Z

M∑
m=1

ξ(qn, ω)
⊤ξ(km, ω). (12)

On solving f(ω). Substituting the second equality into the first one yields the form of f(ω):

f(ω) =

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 ξ(qn, ω)
⊤ξ(km′ , ω)

=
ξ(qn, ω)

⊤∑M
m=1 ξ(km, ω)v⊤

m

ξ(qn, ω)
⊤∑M

m′=1 ξ(km′ , ω)
. (13)

To more clearly illustrate the connection between RFA and RA, one can also manually verify this by rearranging terms in
Equation 2:

RFA (qn,K,V)

=

∑S
s=1

∑M
m=1 ξ(qn, ωs)

⊤ξ(km, ωs)v
⊤
m∑S

s=1

∑M
m′=1 ξ(qn, ωs)⊤ξ(km′ , ωs)

=

∑S
s=1

(∑M
m′=1 ξ(qn, ωs)

⊤ξ(km′ , ωs)
) ∑M

m=1 ξ(qn,ωs)
⊤ξ(km,ωs)v

⊤
m∑M

m′=1
ξ(qn,ωs)⊤ξ(km′ ,ωs)∑S

s=1

∑M
m′=1 ξ(qn, ωs)⊤ξ(km′ , ωs)

=

∑S
s=1

Zp(ωs)
q(ωs)

∑M
m=1 ξ(qn,ωs)

⊤ξ(km,ωs)v
⊤
m∑M

m′=1
ξ(qn,ωs)⊤ξ(km′ ,ωs)∑S

s=1
Zp(ωs)
q(ωs)

:=

∑S
s=1

Zp(ωs)
q(ωs)

f(ωs)∑S
s=1

Zp(ωs)
q(ωs)

.

On solving p(ω). According to Equation 12, we have

p(ω) =
q(ω)

[∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)
]

Z
,

where Z is the partition function. Recall that in Equation 1

Eω∼N (ω;0,I)

[
ξ(x, ω)⊤ξ(y, ω)

]
=

∫
ξ(x, ω)⊤ξ(y, ω)q(ω)dω = exp(x⊤y), (14)

which further implies

Z =

∫
q(ω)

[
M∑

m=1

ξ(qn, ω)
⊤ξ(km, ω)

]
dω =

M∑
m=1

∫
ξ(qn, ω)

⊤ξ(km, ω)q(ω)dω =

M∑
m=1

exp(q⊤
nkm).

Therefore,

p(ω) = q(ω)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)∑M
m′=1 exp(q

⊤
nkm′)

(15)

=

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

q(ω)ξ(qn, ω)
⊤ξ(km, ω)

exp(q⊤
nkm)

=

M∑
m=1

p(m)p(ω|m), (16)
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which is effectively a mixture distribution and each component is selected with probability proportional to the similarity of
queries and keys. As long as the randomized mapping is non-negative, p(ω|m) would be a valid probability distribution
since its density would be non-negative and integrate to 1, according to Equation 14.

In terms of the particular form of the distribution, we have the following lemma:

Lemma A.1. Assume ξ(x, ω) = exp
(
ω⊤x− ∥x∥2

2

)
and q(ω) = N (ω; 0, I). Given two vectors qn and km with the same

dimension as ω ∈ RD, if a density function g(ω) w.r.t. the random vector ω is defined as

g(ω) :=
q(ω)ξ(qn, ω)

⊤ξ(km, ω)

exp(q⊤
nkm)

,

Then ω ∼ N (ω;qn + km, I).

Proof. Note that q(ω) = N (ω; 0, I) = 1
(2π)d/2

exp
(
− 1

2ω
⊤ω
)
. Based on the “complete the square” technique, we have

g(ω) =
q(ω)ξ(qn, ω)

⊤ξ(km, ω)

exp(q⊤
nkm)

=
exp

(
− 1

2ω
⊤ω
)
exp

(
ω⊤qn −

∥qn∥
2

2

)
exp

(
ω⊤km − ∥km∥2

2

)
(2π)d/2 exp(q⊤

nkm)

=
exp

(
− 1

2ω
⊤ω + ω⊤ (qn + km)

)
exp

(
− 1

2∥km∥2 − 1
2∥qn∥2

)
(2π)d/2 exp(q⊤

nkm)

=
exp

(
− 1

2ω
⊤ω + ω⊤ (qn + km)− 1

2 (qn + km)
⊤
(qn + km)

)
exp

(
q⊤
nkm

)
(2π)d/2 exp(q⊤

nkm)

=
1

(2π)d/2
exp

(
−1

2
[ω − (qn + km)]

⊤
[ω − (qn + km)]

)
,

which is exactly the density function of a multivariate Gaussian with the mean qn + km and covariance I.

Following Lemma A.1, it is straightforward to obtain

p(ω) = q(ω)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)∑M
m′=1 exp(q

⊤
nkm′)

=
M∑

m=1

q(ω)ξ(qn, ω)
⊤ξ(km, ω)∑M

m′=1 exp(q
⊤
nkm′)

=

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

q(ω)ξ(qn, ω)
⊤ξ(km, ω)

exp(q⊤
nkm)

=

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

N (ω;qn + km, I)

:=

M∑
m=1

πmN (ω;qn + km, I).

where πm =
exp(q⊤

n km)∑M
m′=1

exp(q⊤
n km′ )

.

Discussion. Due to the dependence on the randomized mapping ξ(·, ·), different choices of feature maps would yield
distinct density forms. Here we mainly study the positive randomized mapping in Performer (Choromanski et al., 2021) and
leave other choices (such as trigonometric functions in Peng et al. (2021b)) as future work.
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B. Proof for Proposition 3.2
Since the vanilla random-feature-based attention estimation is consistent, softmax attention must be equal to expected
randomized attention. However, such equality can also be verified as follows. Assume q(ω) = N (ω; 0, I) and p(ω) =

q(ω)
∑M

m=1 ξ(qn,ω)⊤ξ(km,ω)∑M
m′=1

exp(q⊤
n km′ )

given by Proposition 1. Then we have

q(ω)

p(ω)
=

∑M
m′=1 exp(k

⊤
m′qn)∑M

m=1 ξ(qn, ω)
⊤ξ(km, ω)

. (17)

In addition, according to the definition of randomized mappings ξ(·, ·),

Eω∼N (ω;0,I)

[
ξ(x, ω)⊤ξ(y, ω)

]
=

∫
ξ(x, ω)⊤ξ(y, ω)q(ω)dω = exp(x⊤y). (18)

Equipped with these helpers, we are ready to derive the equality as follows:

E [RA(qn,K,V)]

= Ep(ω)

[∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 ξ(qn, ω)
⊤ξ(km′ , ω)

]

= Ep(ω)

[ ∑M
m′=1 exp(k

⊤
m′qn)∑M

m=1 ξ(qn, ω)
⊤ξ(km, ω)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 exp(k
⊤
m′qn)

]

= Ep(ω)

[
q(ω)

p(ω)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 exp(k
⊤
m′qn)

]
▷ Equation 17

= Eq(ω)

[∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 exp(k
⊤
m′qn)

]

=

∑M
m=1 Eq(ω)

[
ξ(qn, ω)

⊤ξ(km, ω)
]
v⊤
m∑M

m′=1 exp(k
⊤
m′qn)

▷ linearity of expectations

=

∑M
m=1 exp(k

⊤
mqn)v

⊤
m∑M

m′=1 exp(k
⊤
m′qn)

▷ Equation 18

= SoftmaxAttn(qn,K,V)

C. Discussion on Different Randomized Mappings
The randomized mapping ξ(·, ·) transforms the inputs to a l-dimensional vector. There are various choices of ξ(·, ·) for the
resulting estimator to become unbiased in the context of attention mechanisms, such as

• l = 1 and ξ(x, ω) = exp
(
ω⊤x− ∥x∥2

2

)
in Choromanski et al. (2021);

• l = 1 and ξ(x, ω) =
√
2 exp

(
∥x∥2

2

)
cos
(
ω⊤x+ b

)
with b ∼ Uniform(0, 2π) in Rahimi & Recht (2008);

• l = 2 and ξ(x, ω) =
[
exp

(
∥x∥2

2

)
sin
(
ω⊤x

)
, exp

(
∥x∥2

2

)
cos
(
ω⊤x

)]
in Rahimi & Recht (2008); Peng et al. (2021b);

• l = 2 and ξ(x, ω) =
[

1√
2
exp

(
ω⊤x− ∥x∥2

2

)
, 1√

2
exp

(
−ω⊤x− ∥x∥2

2

)]
in Choromanski et al. (2021).

In the main paper, we focus on the positive randomized mappings (Choromanski et al., 2021); for other positive randomized
mappings, it is also possible to derive a similar target expectation, such as the hyperbolic randomized mapping proposed in
Choromanski et al. (2021):
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Corollary C.1. Consider the hyperbolic randomized mapping

ξ(x, ω)=
1√
2
exp

(
−∥x∥

2

2

)[
exp
(
ω⊤x

)
, exp

(
−ω⊤x

)]⊤
.

It also implies an SNIS estimator of Ep(ω) [f(ω)], where the function f(ω) remains the same as Equation 6 and the density
p(ω) is also a Gaussian mixture as follows:

1

2

M∑
m=1

πm (N (ω;qn + km, I) +N (ω;−qn − km, I)) .

Proof. Consider the hyperbolic positive randomized mapping

ξ(x, ω) =
1√
2
exp

(
−∥x∥

2

2

)[
exp

(
ω⊤x

)
, exp

(
−ω⊤x

)]⊤
.

According to proof of Proposition 3.1 in Appendix A, the density function p(ω) corresponding to the hyperbolic randomized
mapping should also be a mixture (Equation 16) with the following form

p(ω) =

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

q(ω)ξ(qn, ω)
⊤ξ(km, ω)

exp(q⊤
nkm)

:=

M∑
m=1

πmp(ω|m),

where πm :=
exp(q⊤

n km)∑M
m′=1

exp(q⊤
n km′ )

and p(ω|m) denotes the density of the m-th component distribution. By substituting the
hyperbolic randomized mapping into the equation above, we have

p(ω|m)

=
q(ω)ξ(qn, ω)

⊤ξ(km, ω)

exp(q⊤
nkm)

=
1

2

q(ω)
[
exp

(
ω⊤qn −

∥qn∥
2

2

)
exp

(
ω⊤km − ∥km∥2

2

)
+ exp

(
−ω⊤qn −

∥qn∥
2

2

)
exp

(
−ω⊤km − ∥km∥2

2

)]
exp(q⊤

nkm)

=
1

2

q(ω) exp
(
ω⊤qn −

∥qn∥
2

2

)
exp

(
ω⊤km − ∥km∥2

2

)
exp(q⊤

nkm)
+

1

2

q(ω) exp
(
−ω⊤qn −

∥qn∥
2

2

)
exp

(
−ω⊤km − ∥km∥2

2

)
exp(q⊤

nkm)

It is straightforward to recognize that this can be viewed as the sum of two densities. We then invoke Lemma A.1 for each of
them, which results in two Gaussians

p(ω|m) =
1

2
N (ω;qn + km, I) +

1

2
N (ω;−qn − km, I).

Therefore, the true density function p(ω) can be expressed as follows

p(ω) = πmp(ω|m) =
1

2

M∑
m=1

πm (N (ω;qn + km, I) +N (ω;−qn − km, I)) .

However, it is much more difficult to analyze the classical random Fourier mappings (Rahimi & Recht, 2008) since they
may involve a negative density. As a result, the formulation of RFA with these randomized mappings may not define a
valid self-normalized importance sampling estimate. We study positive randomized mappings through this paper and leave
investigation into other cases as future work.
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D. Analysis on the Optimal Weighting Function in Multiple Importance Sampling
In this section, we analyze the optimal weighting function in MIS, which is self-normalized in our setting (§4.2).

Given the set of N queries Q and the set of M key-value pairs K and V, the regular softmax attention can be expressed as
expected randomized attention according to Equation 7:∑M

m=1 exp(q
⊤
nkm)v⊤

m∑M
m′=1 exp(q

⊤
nkm′)

= Epn(ω)

[∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 ξ(qn, ω)
⊤ξ(km′ , ω)

]
:= Epn(ω) [fn(ω)] = µn,

where the distribution is defined in Proposition 3.1 as

pn(ω) = N (ω; 0, I)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)∑M
m′=1 exp(q

⊤
nkm′)

=

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

N (ω;qn + km, I).

The attention mechanism outputs a D-dimensional vector for each query. For brevity, we start with considering the d-th
dimension and denote fn,d(ω) as the d-th dimension of the function output at query position n. We then have

Epn(ω) [fn,d(ω)] = Epn(ω)

[∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)vm,d∑M
m′=1 ξ(qn, ω)

⊤ξ(km′ , ω)

]
=

∑M
m=1 exp(q

⊤
nkm)vm,d∑M

m′=1 exp(q
⊤
nkm′)

:= µn,d.

In our work, we estimate the expectation above by self-normalized multiple importance sampling (see §4.2). For the d-th
dimension of the output at query position n, we have

ĝn,d :=

∑C
c=1 Eqc(ω)

[
αnc(ω)

pn(ω)
qc(ω) fn,d(ω)

]
∑C

c=1 Eqc(ω)

[
αnc(ω)

pn(ω)
qc(ω)

] ≈
∑C

c=1 αnc(ωc)
pn(ωc)
qc(ωc)

fn,d(ωc)∑C
c=1 αnc(ωc)

pn(ωc)
qc(ωc)

:=
A

B
,

where ωc ∼ pc(ω) for c = 1, . . . , C. We also let A and B represent the nominator and denominator respectively. The
expectations of A and B are

µA :=

C∑
c=1

Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]
= Epn(ω) [fn,d(ω)] = µn,d;

µB :=

C∑
c=1

Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)

]
= Epn(ω) [1] = 1.

Unfortunately, the exact form of the variance of ĝn,d is mostly intractable to compute. To this end, we follow previous
practices (Owen, 2013) and approximate Var [ĝn,d] via the delta method. In particular, we apply the first-order Taylor
expansion approximation to the function g(A,B) := A/B around point (µA, µB), yielding

A

B
= g(A,B) ≈ g(µA, µB) +

∂g(A,B)

∂A

∣∣∣A=µA
B=µB

(A− µA) +
∂g(A,B)

∂B

∣∣∣A=µA
B=µB

(B − µB)

:= g(µA, µB) + gA(A− µA) + gB(B − µB), (19)

where we denote gA := ∂g(A,B)
∂A

∣∣∣A=µA
B=µB

and gB := ∂g(A,B)
∂B

∣∣∣A=µA
B=µB

similarly. Note that both gA and gB are constants with

respect to ω. According to Equation 19, the approximate expectation is the following

E [g(A,B)] ≈ E [g(µA, µB)] + E [gA(A− µA) + gB(B − µB)]

= g(µA, µB) + gAE [(A− µA)] + gBE [(B − µB)]

= g(µA, µB)

and its second moment is given by

E
[
g(A,B)2

]
= E

[
g(µA, µB)

2 + g2A(A− µA)
2 + g2B(B − µB)

2 + 2gAgB(A− µA)(B − µB)
]

= g(µA, µB)
2 + g2A Var [A] + g2B Var [B] + 2gAgB Cov (A,B) .
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It is straightforward to compute that

Var [A] =

C∑
c=1

Varqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]

=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
f2
n,d(ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]2

Var [B] =

C∑
c=1

Varqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)

]
=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)

]2

Cov (A,B) =

C∑
c=1

C∑
c′=1

Cov

(
αnc(ωc)

pn(ωc)

qc(ωc)
fn,d(ωc), αnc′(ωc′)

pn(ωc′)

qc′(ωc′)

)

=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
fn,d(ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]
Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)

]
.

g2A =
1

µ2
B

= 1,

g2B =
µ2
A

µ4
B

= µ2
n,d,

gAgB = −µA

µ3
B

= −µn,d.

The first three lines hold since ωc is independent of ωc′ for any c ̸= c′. Therefore, the approximate variance of our estimate
at the d-th dimension can be written as

Var [ĝn,d]

= Var [g(A,B)]

= E
[
g(A,B)2

]
− E [g(A,B)]

2

≈ g2A Var [A] + g2B Var [B] + 2gAgB Cov (A,B)

=

C∑
c=1

(
Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
f2
n,d(ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]2)
+

µ2
n,d

(
Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)

]2)
−

2µn,d

(
C∑

c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
fn,d(ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]
Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)

])

=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)

(
f2
n,d(ω)− 2fn,d(ω)µn,d + µ2

n,d

)]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]2
−

Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
µn,d

]2
+ 2Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]
Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
µn,d

]
=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
(fn,d(ω)− µn,d)

2

]
−
(
Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn,d(ω)

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
µn,d

])2

=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
(fn,d(ω)− µn,d)

2

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
(fn,d(ω)− µn,d)

]2
.

Since we are using the same proposal distribution to estimate the output for all dimensions, we are interested in the sum of
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variance over every dimension (i.e., the trace of the covariance matrix):

D∑
d=1

Var [ĝn,d] ≈
D∑

d=1

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
(fn,d(ω)− µn,d)

2

]
− Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
(fn,d(ω)− µn,d)

]2

=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)

D∑
d=1

(fn,d(ω)− µn,d)
2

]
−

D∑
d=1

Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
(fn,d(ω)− µn,d)

]2

=

C∑
c=1

Eqc(ω)

[
α2
nc(ω)

p2n(ω)

q2c (ω)
∥fn(ω)− µn∥2

]
−

D∑
d=1

Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
(fn,d(ω)− µn,d)

]2
. (20)

According to our design choice, αnc(·) is specific to each query position. Ideally, we hope these weighting functions can
minimize the sum of variance at each position. Formally, we have

minimize
{αnc}C

c=1

D∑
d=1

Var [ĝn,d] (21)

subject to
C∑

c=1

αnc(ω) = 1 for any ω.

Optimizing weighting functions to minimize the variance of ordinary MIS estimator has been studied by a recent work
(Kondapaneni et al., 2019). Our setting is different from it in that (1) we focus on self-normalized MIS and that (2) the
function f(·) is vector-valued instead of scalar-valued. These differences lead to a distinct objective (Equation 20). Here we
adapt the analysis (Kondapaneni et al., 2019) to solve this problem. In particular, we rely on the calculus of variations and
introduce the following Lagrangian

L(α, λ) =
D∑

d=1

Var [ĝn,d]−
∫

λ

(
C∑

c=1

αnc(ω)− 1

)
dω. (22)

Solving ∂L(α,λ)
∂αnc

= 0 and ∂L(α,λ)
∂λ = 0 respectively yields

2αnc(ω)
p2n(ω)

qc(ω)
∥fn(ω)− µn∥2 − 2

D∑
d=1

pn(ω) (fn,d(ω)− µn,d) rncd − λ = 0; (23)

C∑
c=1

αnc(ω) = 1. (24)

Here we denote rncd :=
∫
αnc(ω)pn(ω) (fn,d(ω)− µn,d) dω. We then rearrange Equation 23 to obtain

αnc(ω) =
qc(ω)

2p2n(ω)∥fn(ω)− µn∥2
λ+ qc(ω)

∑D
d=1 pn(ω) (fn,d(ω)− µn,d) rncd

p2n(ω)∥fn(ω)− µn∥2
. (25)

Substituting Equation 25 into Equation 24 gives

λ =
2p2n(ω)∥fn(ω)− µn∥2∑C

c=1 qc(ω)
− 2

∑C
c=1 qc(ω)

∑D
d=1 pn(ω) (fn,d(ω)− µn,d) rncd∑C

c′=1 qc′(ω)
. (26)
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Substituting Equation 26 back into Equation 25 yields

αnc(ω)

=
qc(ω)∑C
c=1 qc(ω)

(
1−

∑C
c=1 qc(ω)

∑D
d=1 pn(ω) (fn,d(ω)− µn,d) rncd

p2n(ω)∥fn(ω)− µn∥2

)
+ qc(ω)

∑D
d=1 pn(ω) (fn,d(ω)− µn,d) rncd

p2n(ω)∥fn(ω)− µn∥2

=
qc(ω)∑C
c=1 qc(ω)

(
1−

C∑
c=1

qc(ω)rnc(ω)

)
+ qc(ω)rnc(ω)

=
qc(ω)∑C

c′=1 qc′(ω)
+ qc(ω)

(
rnc(ω)−

C∑
c=1

qc(ω)∑C
c′=1 qc′(ω)

rnc(ω)

)
(27)

where we denote

rnc(ω) :=

∑D
d=1 pn(ω) (fn,d(ω)− µn,d) rncd

p2n(ω)∥fn(ω)− µn∥2
.

The characteristic of existence and uniqueness of the optimal weighting function is similar to Kondapaneni et al. (2019).
Intuitively, the optimal weighting functions can be obtained by first calculating a query-dependent correction term, which
sums to 0, and then adding such correction to the original balance heuristic weighting function. For large rnc, the correction
term will be positive, driving the weights for the c-th proposal to be higher; and vice versa. Such formulation introduces the
dependence between the current proposal index c and the target query position n, which allows the weighting functions αnc

(and thus the estimator) to specialize in the current query.

To obtain the exact form of rnc(ω), we need to solve rncd =
∫
αnc(ω)pn(ω) (fn,d(ω)− µn,d) dω. However, deriving a

closed form solution is mostly intractable given its complex structure, which not only involves an intractable integral but
also mixes together the effect from different dimensions. To further analyze this problem, we start with a simplified case
where D = 1. In this setting, we have the following:

C∑
c=1

rncD

∫
qc′(ω)qc(ω)∑C

c=1 qc(ω)
dω =

∫
qc′(ω)pn(ω)(fn,D(ω)− µn,D)∑C

c=1 qc(ω)
dω,

rnc(ω) :=
pn(ω) (fn,D(ω)− µn,D) rncD
p2n(ω)(fn,D(ω)− µn,D)2

.

for any c′ = 1, . . . , C. Although solving this linear system is intractable, it indicates that rncD roughly describes how qc(ω)
aligns with pn(ω)(fn,d(ω) − µn,d) under the expectation of different q′c. Therefore, rnc(ω) can be seen as an indicator
for the correlation between the current proposal qc(ω) and pn(ω)(fn,d(ω) − µn,d) that is normalized by the strength of
pn(ω) (fn,D(ω)− µn,D).

For larger D, such concise equality involving rncd is not available since the effect of different dimensions is mixed. We
thus seek an heuristic approximation that not only reflects the same intuition but also becomes tractable in practice (see
Appendix G.3.2 for practical implementations).

E. Derivation for the Formulation of LARA
In this section, we give the detailed derivation for the final expression of our estimator LARA:

LARA (qn,K,V)

=

∑C
c=1 α

′
nc(ωc)ξ(qn, ωc)

⊤∑M
m=1 ξ(km, ωc)v

⊤
m∑C

c=1 α
′
nc(ωc)ξ(qn, ωc)⊤

∑M
m=1 ξ(km, ωc)

, (28)

First, recall that

pn(ω) =
N (ω; 0, I)

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)∑M
m′=1 exp (q

⊤
nkm′)

:=
p̃n(ω)

Zp
;

fn(ω) =

∑M
m=1 ξ(qn, ω)

⊤ξ(km, ω)v⊤
m∑M

m′=1 ξ(qn, ω)
⊤ξ(km′ , ω)

,
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The formulation (Equation 28) is obtained by substituting the equations above into the self-normalized estimator:∑C
c=1 αnc(ωc)

p̃n(ωc)
qc(ωc)

fn(ωc)∑C
c=1 αnc(ωc)

p̃n(ωc)
qc(ωc)

=

∑C
c=1 αnc(ωc)

N (ωc;0,I)
∑M

m=1 ξ(qn,ωc)
⊤ξ(km,ωc)

qc(ωc)

∑M
m=1 ξ(qn,ωc)

⊤ξ(km,ωc)v
⊤
m∑M

m′=1
ξ(qn,ωc)⊤ξ(km′ ,ωc)∑C

c=1 αnc(ωc)
N (ωc;0,I)

∑M
m=1 ξ(qn,ωc)⊤ξ(km,ωc)

qc(ωc)

=

∑C
c=1 αnc(ωc)

N (ωc;0,I)
∑M

m=1 ξ(qn,ωc)
⊤ξ(km,ωc)v

⊤
m

qc(ωc)∑C
c=1 αnc(ωc)

N (ωc;0,I)
∑M

m=1 ξ(qn,ωc)⊤ξ(km,ωc)

qc(ωc)

=

∑C
c=1 αnc(ωc)

N (ωc;0,I)
qc(ωc)

∑M
m=1 ξ(qn, ωc)

⊤ξ(km, ωc)v
⊤
m∑C

c=1 αnc(ωc)
N (ωc;0,I)
qc(ωc)

∑M
m=1 ξ(qn, ωc)⊤ξ(km, ωc)

:=

∑C
c=1 α

′
nc(ωc)

∑M
m=1 ξ(qn, ωc)

⊤ξ(km, ωc)v
⊤
m∑C

c=1 α
′
nc(ωc)

∑M
m=1 ξ(qn, ωc)⊤ξ(km′ , ωc)

= LARA (qn,K,V) .

Note that we define α′
nc(ωc) := αnc(ωc)

N (ωc;0,I)
qc(ωc)

.

F. Proof for the Unbiasedness of Multiple Importance Sampling
As in §4.1, suppose our MIS estimator takes the following form

ĝn =

C∑
c=1

αnc(ωc)
pn(ωc)

qc(ωc)
fn(ωc), ωc ∼ qc(ω).

If
∑C

c=1 αnc(ω) = 1, it can be shown that (Veach & Guibas, 1995)

E [ĝn] =

C∑
c=1

Eqc(ω)

[
αnc(ω)

pn(ω)

qc(ω)
fn(ω)

]
=

C∑
c=1

∫
αnc(ω)pn(ω)fn(ω)dω

=

∫ C∑
c=1

αnc(ω)pn(ω)fn(ω)dω =

∫
pn(ω)fn(ω)dω = Epn(ω) [fn(ω)] .

G. Details of RA, RFA and LARA
G.1. Sepcifics of Random Feature Attention

Some implementations of RFA (including Performer (Choromanski et al., 2021)) defines a sample-redrawing schedule, where
the involved samples ω are periodically redrawn according to a hand-crafted strategy. However, this requires a task-specific
specification and we found tuning redrawing strategies only brings marginal performance gain over the simplest method
that redraws samples at each training iteration (we use the same sample set during the entire evaluation phase). Therefore,
we adopt this method to train Performer for all tasks. We also do not use orthogonal random samples as in Choromanski
et al. (2021), as we found it does not improve empirical performance but increases the training time. Algorithm 2 provides a
algorithm sketch for random feature attention and linear randomized attention, respectively. Note that every loop involved in
all provided pseudo-codes (Algorithm 1, Algorithm 2 and Algorithm 3) can be trivially executed in parallel.

G.2. Specifics of Randomized Attention

In this section, we describe the details of RA approximation for softmax attention. Recall in Proposition 3.1 the RA sampling
distribution is a Gaussian mixture

pn(ω) =

M∑
m=1

exp(q⊤
nkm)∑M

m′=1 exp(q
⊤
nkm′)

N (ω;qn + km, I) :=

M∑
m=1

πnmN (ω;µµµnm, I) (29)

with πnm =
exp(q⊤

n km)∑M
m′=1

exp(q⊤
n km′ )

and µnm = qn + km. To sample from this Gaussian mixture distribution, we first sample

zn ∼ Categorical(z;πn) with πn being the probability masses at M possible outcomes and then let an := [an1, . . . , anM ]
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be an M -dimensional one-hot vector with anzn = 1. The discrete random variable an defines which distribution component
is selected. Since all components are Gaussian, we leverage reparameterization trick (Kingma & Welling, 2013; Rezende
et al., 2014; Titsias & Lázaro-Gredilla, 2014) to draw independent ϵ ∼ N (ω; 0, I) and add it to the selected mean, resulting
in the final mixture sample. Formally, we express the sample ωn from the Gaussian mixture as follows:

ωn =

M∑
m=1

anmµnm + ϵ =

M∑
m=1

anm(qn + km) + ϵ = Kan + qn + ϵ, ϵ ∼ N (ϵ; 0, I), (30)

which is then used to compute fn(ωn) to obtain the RA estimation (see Algorithm 1 for a algorithm sketch). Assuming
the number of samples is S and the sequence length is N , the overall time/space complexity for RA is O(SN2). Through
experiments we take S = 1 sample in our randomized attention unless specified otherwise. We found this choice suffices to
achieve good performance and increasing S does not greatly improve the performance but introduces significant time/memory
overheads.

Algorithm 1 Randomized Attention (RA)

Input: the randomized mapping ξ(·, ·), queries Q := {qn}Nn=1, keys K := {km}Mm=1, values V := {vm}Mm=1 and the
number of samples S;
Output: attention output Y := {yn}Nn=1;
for n = 1 to N do

for m = 1 to M do
Compute πnm ← exp(q⊤

n km)∑M
m′=1

exp(q⊤
n km′ )

;
end for
for s = 1 to S do

Sample ans ∼ Categorical(πn);
Sample ϵs ∼ N (ϵ; 0, I);
Compute ωns ← Kans + qn + ϵs;
Compute Nns ← ξ(qn, ωns)

∑M
m=1 ξ(km, ωns)v

⊤
m;

Compute Dns ← ξ(qn, ωns)
∑M

m=1 ξ(km, ωns);
end for
Compute yn ← 1

S

∑S
s=1 Nns/Dns;

end for
Return Y := [y1, . . . ,yN ].

A biased variant of randomized attention. Exact sampling from the mixture distribution requires us to first select a
discrete component index a from the mixture distribution and then sample from the corresponding component. Although
such randomness might bring additional regularization effect, randomly selecting an index could lead to large variance and
slow down training. To accelerate convergence, we also develop a biased sampling strategy from the Gaussian mixture.
According to Equation 30, the sampled one-hot vector an can be approximated by its expected value πn:

ω′
n = Kπn + qn + ϵ, ϵ ∼ N (ω; 0, I).

This introduces a non-negligible sampling bias in estimating the softmax attention; however, it eliminates the need to
randomly draw discrete indexing vectors an and reduces the variance, especially in the case of long sequences. In fact, this
biased sample can be equivalently viewed as drawn from a Gaussian:

ω′ ∼ N (ω;Kπn + qn, I). (31)

Another advantage is that this formulation allows us to maintain fully deterministic during the evaluation mode, while not
introducing large discrepancies from training time. Specifically, during evaluation we only pass the expectation Kπn + qn

as the “sample”, which is a standard practice similar to the usage of Dropout (Srivastava et al., 2014). This is in contrast
to unbiased RA sampling, which has to draw random indices even during evaluation (otherwise, replacing both random
variables with their expected values would lead to larger discrepancies between training and testing, resulting in inferior
performance). Same as the case of RFA, we also redraw random samples at every training iteration. Note that this can not be
transferred to Performer since the expectation of ω in RFA is 0, which leads to degeneration.
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Table 5. Experimental results with exact or biased randomized attention mechanisms.

Model Complexity
Image Video Language

Top-1 Acc. on ImageNet1k
w/ DeiT-Tiny

Top-1 Acc. on ImageNet1k
w/ DeiT-Small Top-1 Acc. on K400 Top-1 Acc. on SSv2 BLEU on WMT

RA-unbiased Quadratic 71.86 80.04 78.2 64.9 27.8
RA-biased Quadratic 72.98 80.49 79.0 65.9 27.3

Softmax Quadratic 72.20 79.90 79.2 66.5 27.5

As a proof-of-concept experiment, we run randomized attention with biased sampling strategy on image classification with
ImageNet1k dataset, video recognition with K400 and SSv2 datasets and machine translation with WMT dataset. From
Table 5, we note that biased RA performs better than both its unbiased counterpart for visual tasks, which usually deal
with longer sequences (196 for images and 1568 for videos); but it performs worse in machine translation, where either the
source or target sentence only consist of dozens of tokens. On the other hand, RA outperforms softmax attention on both
image and language tasks, indicating that the proposed estimation methods for softmax attention may enjoy better modeling
capacity. This may shed light on some latent mechanism in such approximation that deviates from the standard softmax
attention but does better in modeling the sequence representations. We leave detailed investigation in future work.

G.3. Specifics of Linear Randomized Attention

In this section, we provide more implementation details of linear randomized attention.

G.3.1. ON THE FORMULATION OF PROPOSAL DISTRIBUTIONS

As mentioned in §4.1, each proposal qc(ω) is defined to depend on some subset of queries; and their union covers the whole
set of queries. Since our goal is let these proposals behave similarly to the true RA distribution pn(ω), a straightforward
choice is to specify qc as the same formulation of pn(ω) (Equation 29):

qc(ω) =

M∑
m=1

exp(q̃⊤
c km)∑M

m′=1 exp(q̃
⊤
c km′)

N (ω; q̃c + km, I). (32)

Here we divide the input query sequence {qn}Nn=1 into C segments and compute the average (called landmarks, the number
of which is equal to the number of samples) over queries {q̃c}Cc=1 within the same segment. In particular, supposing N is
divisible by C and T := N/C is the segment length, each segment landmark can be expressed as

q̃c =
1

T

T∑
t=1

q(c−1)T+t.

We then use each of these proposals to estimate the target expectation for the n-th query and combine their results into the
final estimation. However, this choice involves CM distributions in total (C proposals are maintained, each of which is
again a Gaussian mixture with M components) and sampling from these distributions may introduce large noise. Motivated
by the discussion of biased sampling in RA (Equation 31 in Appendix G.2), we explore an alternative parameterization by
defining each proposal as a Gaussian:

qc(ω) = N (ω;Kπc + q̃c, I) = N

(
ω; q̃c +

M∑
m=1

exp(q̃⊤
c km)∑M

m′=1 exp(q̃
⊤
c km′)

km, I

)
. (33)

We find this choice performs better than the mixture formulation (Equation 32) empirically. Intuitively, this strategy
aggregates the information from all keys based on the correlation between the query landmarks and each individual key.
However, this introduces additional O(CM) computational costs.

In practice, we observe that for proposal landmark q̃c, keys belonging to the same segment c often contribute the most to the
Gaussian mean. As a result, we develop another variant that also computes the key landmarks,

k̃c =
1

T

T∑
t=1

k(c−1)T+t,
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and then simply let
qc(ω) = N (ω; q̃c + k̃c, I). (34)

We observe this formulation works equally well; such parameterization is thus used throughout our experiments by default.

An improved proposal parameterization for vision transformers. Comparing Equation 33 and Equation 34, we observe
that for the former it only biases the Gaussian mean towards the direction of the current query landmark; while for the latter
it only promotes information from key vectors that are in the same segment as q̃c and ignores the global information of keys.
Noticing these differences, we further propose a variant bridging these two formulations:

qc(ω) = N

(
ω; q̃c +

C∑
c′=1

exp(k̃
⊤
c k̃c′)∑M

c′=1 exp(k̃
⊤
c k̃c′)

k̃c, I

)
. (35)

Intuitively, this performs an attention-like aggregation operation over key landmarks. The aggregation procedure not only
computes the correlation between key vectors, which alleviates the bias of being closer to query landmarks, but also collects
global information while still favoring local segments. In addition, it runs withO(C2), which is much cheaper thanO(CM).
We find this yields better predictive performance in vision transformers, but improves marginally for other tasks. We
hypothesize that this is because the attention-like operation smooths the Gaussian mean, which aligns with that ViT tends
to produce smoothed patch representations. We leave in-depth investigation as future work. In summary, we adopt this
parameterization only through experiments on image classification (§5.2).

See Algorithm 3 for a algorithm sketch of LARA.

Algorithm 2 Random Feature Attention (RFA)

Input: the randomized mapping ξ(·, ·), queries Q :=
{qn}Nn=1, keys K := {km}Mm=1, values V :=
{vm}Mm=1 and the number of samples S;
Output: attention output Y := {yn}Nn=1;

for s = 1 to S do

Sample ωs ∼ N (ω; 0, I);
Compute Ns ←

∑M
m=1 ξ(km, ωs)v

⊤
m;

Compute Ds ←
∑M

m=1 ξ(km, ωs);
end for
for n = 1 to N do

Compute N ←
∑S

s=1 ξ(qn, ωs)Ns;
Compute D ←

∑S
s=1 ξ(qn, ωs)Ds;

Compute yn ← N/D;
end for
Return Y := [y1, . . . ,yN ].

Algorithm 3 Linear Randomized Attention (LARA)

Input: the randomized mapping ξ(·, ·), queries Q :=
{qn}Nn=1, keys K := {km}Mm=1, values V :=
{vm}Mm=1 and the number of samples C;
Output: attention output Y := {yn}Nn=1;
Compute proposal parameters {µc}Cc=1;
for c = 1 to C do

Let qc(ω)← N (ω;µc, I);
Sample ωc ∼ qc(ω);
Compute Nc ←

∑M
m=1 ξ(km, ωc)v

⊤
m;

Compute Dc ←
∑M

m=1 ξ(km, ωc);
end for
for n = 1 to N do

Compute αnc(ωc) according to Equation 9;
Compute α′

nc(ωc)← αnc(ωc)N (ωc; 0, I/qc(ωc);
Compute N ←

∑C
c=1 α

′
nc(ωc)ξ(qn, ωc)Nc;

Compute D ←
∑C

c=1 α
′
nc(ωc)ξ(qn, ωc)Dc;

Compute yn ← N/D;
end for
Return Y := [y1, . . . ,yN ].

G.3.2. ON THE PARAMETERIZATION OF WEIGHTING FUNCTIONS

Our MIS estimating strategy introduces a set of weighting functions α(·) for each proposal. A common choice of weighting
functions in MIS (Owen, 2013) is the balance heuristic strategy

αc(ωc) =
qc(ωc)∑C

c′=1 qc′(ωc)
, (36)

which is nearly optimal in that any other weighting schemes will not exhibit significantly smaller variance (Veach & Guibas,
1995). However, this strategy only considers the relative strengths of proposals and ignores contextual information from
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each query. As a result, a naı̈ve application of MIS would disregard the inherent variation among different queries and fails
to describe the specialized target distribution pn(ω).

Instead of balance heuristics, we adopt query-specific weighting functions that are inspired by query-optimal analysis. In
our MIS scheme (Equation 9), the optimal weighting functions take the following form

α∗
nc(ωc) =

qc(ωc)∑C
c′=1 qc′(ωc)︸ ︷︷ ︸

balance heuristic

+ qc(ωc)

(
rnc(ωc)−

C∑
c=1

qc(ωc)∑C
c′=1 qc′(ωc)

rnc(ωc)

)
︸ ︷︷ ︸

query-specific correction

Note that it sums to 1 over all c’s and is a valid weighting function:

C∑
c=1

α∗
nc(ωc) =

C∑
c=1

qc(ωc)∑C
c′=1 qc′(ωc)

+

C∑
c=1

qc(ωc)

rnc(ωc)−
C∑

c′′=1

qc′′ (ωc′′ )∑C
c′=1 qc′(ωc)

rnc′′ (ωc′′ )


= 1 +

 C∑
c=1

qc(ωc)rnc(ωc)−

(
C∑

c=1

qc(ωc)

)
C∑

c′′=1

qc′′ (ωc′′ )∑C
c′=1 qc′(ωc)

rnc′′ (ωc′′ )


= 1 +

[
C∑

c=1

qc(ωc)rnc(ωc)−
C∑

c=1

qc(ωc)rnc(ωc)

]
= 1 + 0 = 1.

In particular, we observe the first term is the ordinary balance heuristic weighting function, while the second term is a
query-specific correction that sums to 0.

As mentioned in Appendix D, the exact form of rnc(·) is mostly intractable to compute in practice. To this end, we introduce
a heuristic yet tractable r′nc to roughly align with the intuition of original rnc(·):

αnc(ωc) =
qc(ωc)∑C

c′=1 qc′(ωc)︸ ︷︷ ︸
balance heuristic

+ qc(ωc)

(
r′nc −

C∑
c=1

qc(ωc)∑C
c′=1 qc′(ωc)

r′nc

)
︸ ︷︷ ︸

query-specific correction

(37)

r′nc =
exp (q⊤

n q̃c)∑N
n=1 exp (q

⊤
n q̃c′)

,

Intuitively, we implement r′nc as the normalized similarity between the n-th query and the c-th segment-averaged query
vector. In addition, we note that the query-specific information r′nc is influenced by the query-agnostic density qc, which
may be incorrectly suppressed or amplified if the drawn sample lies in a low-density region. Base on this, we further propose
a simplified formulation:

αnc(ωc) =
qc(ωc)∑C

c′=1 qc′(ωc)︸ ︷︷ ︸
balance heuristic

+ r′nc −
1

C

C∑
c=1

r′nc︸ ︷︷ ︸
query-specific correction

. (38)

where we decouple the computation between proposal densities qc(·) and r′nc. In this way, query-dependent and query-
agnostic information will be independent of each other.

We also notice that the query-specific information can be explicitly controlled by introducing a coefficient β such that

αnc(ωc) =
qc(ωc)∑C

c′=1 qc′(ωc)︸ ︷︷ ︸
balance heuristic

+ β

(
r′nc −

1

C

C∑
c=1

r′nc

)
︸ ︷︷ ︸

correction

.

This weighting function remains valid since the correction term still sums to 0. By setting β > 1, the mechanism tends
to favor the query-specific information over the balance heuristic. We tried several choices of β and found β = 2 slightly
improves the performance. As reflected in our ablation study, we demonstrate the superior performance of query-specific
weighting functions over vanilla balance heuristics (Veach & Guibas, 1995).
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G.3.3. TRAINING AND EVALUATION DETAILS

LARA redraws samples from proposal sets at every training iteration; during evaluation, we simply pass corresponding
expected values instead of drawing samples, in a similar way to dropout (Srivastava et al., 2014).

G.3.4. COMPLEXITY ANALYSIS

Recall there are N queries and M key-value pairs. Like RFA, the involved computation of our LARA estimator includes (1)
computing the proposal distribution, which may take O(C) or O(C2) time (Appendix G.3.1); (2) a pre-computing step
over all key-value statistics, which takes O(CM) time and space; and (3) applying pre-computed statistics to all queries,
taking O(CN) complexity. These steps result in overall O(CM + CN) complexity given C ≪ min(M,N). Note that C
is analogous to the number of samples S (often referred to as random feature dimension (Choromanski et al., 2021)) in RFA.
Therefore, LARA does not incur a heavy computational overhead compared to RFA, as also reflected in §5.5.

H. Additional Experimental Details
H.1. Preliminary Experiments on Approximation Quality

We conduct the preliminary experiment on vision transformers (ViT), which first split input images into small patches,
serialize them as a 1D sequence and then processes the sequence through a transformer model. To be specific, we replace
the standard softmax attention in vision transformers (ViT; Dosovitskiy et al., 2021; Touvron et al., 2021) with different
approximation variants. The MSE is evaluated under three different sequence lengths N by varying the image resolution and
patch size: (a) resolution 224 x 224 with patch size 16 (N = 196), (b) resolution 384 x 384 with patch size 16 (N = 576)
and (c) resolution 224 x 224 with patch size 8 (N = 784). To achieve a fair comparison, we use pretrained ViTs whose
weights are trained under corresponding sequence lengths with standard softmax attention. The sequence length is selected
according to whether the ViT weights pretrained by softmax attention are available. Since there are multiple attention blocks
in ViT architecture, for each input image we average the attention MSE over all attention heads and transformer layers.

H.2. Image Classification

For image classification, we consider two vision transformer architectures: vanilla ViT (Dosovitskiy et al., 2021) and PVTv2
(Wang et al., 2021b). We refer to ViT as DeiT (Touvron et al., 2021) through this work, since DeiT follows the same model
architecture as ViT but adopts greatly improved training protocols.

Details of applying LARA to DeiT. We do not use the distillation technique as in DeiT (Touvron et al., 2021). We
following the same procedure to train DeiT on ImageNet1k dataset as in Touvron et al. (2021). In particular, we use
AdamW optimizer (Loshchilov & Hutter, 2019) for 300 epochs, where we set the batch size to 1024 and the learning rate
to 0.001 with cosine learning rate decay (Loshchilov & Hutter, 2016). The number of warm-up epochs is set to 10 for
all models instead of 5, since we find it often stabilizes training and leads to better results. For data augmentation, we
follow Touvron et al. (2021) and use random clipping, cropping, rand-augment (Cubuk et al., 2020) and random erasing
(Zhong et al., 2020). We remove repeated augmentation (Hoffer et al., 2020) as it often slows down convergence, as also
observed in previous studies (Berman et al., 2019; Xiao et al., 2021). For regularization, we employ stochastic depth (Huang
et al., 2016), Mixup (Zhang et al., 2017), Cutmix (Yun et al., 2019), label smoothing and weight decay, all of which are
set to default settings in DeiT (Touvron et al., 2021). Unless otherwise specified, the input image size is set to 224× 224
with patch size 16, resulting in 14× 14 = 196 non-overlapping patch tokens. For LARA in DeiT models, we additionally
transform the average query/key vector of each segment through a fully connected layer followed by a layer-norm operation.
This corresponds to importance sampling with adaptive proposals (Owen, 2013), which improves the expressiveness of
the proposal distributions. Note that the linear transformation is shared among all attention heads, which results in only
marginal additional computational overheads.

Details of applying LARA to PVTv2. Pyramid Vision Transformers v2 (PVTv2; Wang et al., 2021b) is a strong vision
transformer baseline with pyramidal architectures that processes much longer token sequences. It first patchifies input
images into a 56× 56 token sequence, which is then processed by 4 successive stages. Each stage consists of a stack of
transformer layers and processes the input sequence from the previous stage by reducing both the height and width of patch
tokens to the half and increasing the embedding dimension by a factor of 2. The detailed configuration for all model sizes
follows Table 1 of Wang et al. (2021b). In such architecture, the sequence at early stages is too long to be handled by
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regular softmax attention. To address this issue, PVTv2 proposes an efficient variant Spatial Reduction Attention (SRA) and
uses SRA for all attention blocks in the first three stages and ordinary softmax attention for the last stage due to reduced
resolution. For each SRA module, it use a convolutional layer to reduce the length of input sequence to 49, which is then
projected to key and value vectors correspondingly. The query set maintains the same resolution and performs attention over
the shortened key-value sequence to obtain globally contextualized representations.

To evaluate our method on PVTv2, we replace all SRA modules with either Performer or LARA. For PVTv2 with Performer,
we use 128 samples since it fails to converge with fewer samples. In terms of PVTv2 with LARA, we do not use convolutional
blocks and simply use 2D average pooling (the same as segments) followed by a linear projection to obtain query and key
landmarks, the number of which is set to 49 as in SRA. Since we do not use the convolutional block, Both Performer and
LARA use much fewer model parameters than vanilla PVTv2.

In addition, vanilla PVTv2 model uses 1,2,5 and 8 attention heads for its 4 processing stages respectively in its original
implementation; however, we found using 2× more heads consistently improves predictive performance for all methods
(including baseline SRA, Performer and LARA) while introducing affordable overheads. Therefore, we use 2,4,10 and 16
heads for all PVTv2-based models across our experiments. We mostly follow the training protocol as Wang et al. (2021b)
to train all PVTv2-based models, except that we increase the number of warm-up epochs from 5 to 10. We find a slightly
longer warm-up schedule is helpful to improve the model performance.

H.3. Video Action Recognition

Our implementation is based on the PySlowFast (Fan et al., 2020) codebase and we follow the training protocol in
Motionformer (Patrick et al., 2021). In particular, Motionformer adopts the vision transformer base (ViT/B) (Dosovitskiy
et al., 2021) architecture which has 12 transformer encoder layers with 12 attention heads and 768-dimensional hidden
representations. For K400 dataset, its parameter weights are pretrained on ImageNet21k dataset with regular softmax
attention; while for SSv2 dataset, we use the trained weights on K400 with the corresponding attention variant. The model
operates on videos with size 16× 224× 224, which is then split into 8× 14× 14 tubes with separate space-time positional
embedding. Motionformer introduces the trajectory attention, which first computes spatial attention to obtain probabilistic
trajectories, which are then aggregated temporally. We use the trajectory attention module (Patrick et al., 2021) and replace
the involved softmax attention with different attention approximation methods. Besides Performer (Choromanski et al.,
2021), Nyströmformer (Xiong et al., 2021) and full trajectory attention, our baselines also include Orthoformer (Patrick
et al., 2021), another strong baseline for video transformers that constructs a low-rank approximation of attention matrix via
sequentially selecting orthogonal query landmarks. For all efficient attention variants, we set both the number of samples (in
LARA and Performer) or the number of landmarks (in Nyströmformer and Orthoformer) to 128 for a fair comparison. For
data augmentation, we also follow Patrick et al. (2021), adopting random scale jittering, random horizontal flips and color
jittering for all datasets; and additionally rand-augment (Cubuk et al., 2020) for SSv2 dataset.

We use the AdamW (Loshchilov & Hutter, 2019) optimizer to train LARA for 40 epochs with weight decay 0.05, label
smoothing rate 0.2 and total batch size 256. A slightly longer training schedule (compared to 35) is adopted since our
method involves additional randomness and we found training for a longer time improves convergence. The initial learning
rate is set to 0.0001 and gets decayed by a ratio of 10 at epochs 25 and 35 respectively. During training, the video clips are
randomly sampled with cropped resolution 224× 224; while for testing, we sample 10 uniform temporal clips per video
with 3 spatial crops per clip and average scores for these crops to obtain the final prediction.

H.4. Machine Translation

We use the Transformer-base architecture as specified in Vaswani et al. (2017) for our machine translation experiments. The
model contains a transformer encoder and decoder, both of which consist of 6 layers with hidden size and number of heads
being 512 and 8, respectively. The vocabulary is shared between source and target language, consisting of around 32K byte
pair encoding (BPE; Sennrich et al., 2016) types. The hidden dimension of feed forward networks is set to 2048. The rate of
dropout is set to 0.1. As mentioned in the main paper, we only replace encoder self-attention in transformer models with
efficient attention variants. Since LARA does not support causal attention mode in its current version, this setting allows
us to directly assess the ability of different attention mechanisms to learn contextualized representations. Recent studies
also indicate that in neural machine translation the transformer encoder seems playing a more important role in extracting
representations (Kasai et al., 2021a). Besides Performer, we also compare our method against other baselines including (1)
Linformer (Wang et al., 2020), which is widely adopted in the context of NLP, (2) ABC (Peng et al., 2021a), a recently
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Table 6. Empirical running time and memory consumption for different attention mechanisms. We report the absolute time in millisecond
and memory usage in GB; the relative time/memory cost to the softmax attention is also reported in brackets.

Models Running Time (ms) Peak Memory Usage (GB)
1024 2048 3072 4096 8192 1024 2048 3072 4096 8192

Full softmax 9.44 (1.00×) 19.96 (1.00×) 42.45 (1.00×) 69.25 (1.00×) 271.12 (1.00×) 0.11 (1.00×) 0.33 (1.00×) 0.68 (1.00×) 1.18 (1.00×) 4.58 (1.00×)
Nyströmformer 37.51 (3.98×) 36.90 (1.85×) 37.44 (0.88×) 37.21 (0.54×) 38.36 (0.14×) 0.05 (0.45×) 0.06 (0.20×) 0.08 (0.12×) 0.10 (0.08×) 0.16 (0.03×)
Linformer 12.85 (1.36×) 12.57 (0.63×) 12.57 (0.30×) 12.62 (0.18×) 19.14 (0.07×) 0.05 (0.46×) 0.07 (0.20×) 0.08 (0.12×) 0.10 (0.09×) 0.17 (0.04×)
Performer 18.74 (1.99×) 18.80 (0.94×) 19.04 (0.45×) 18.89 (0.27×) 33.00 (0.12×) 0.05 (0.44×) 0.06 (0.19×) 0.08 (0.11×) 0.09 (0.08×) 0.15 (0.03×)

LARA 19.91 (2.11×) 19.82 (0.99×) 19.87 (0.47×) 19.91 (0.29×) 31.81 (0.12×) 0.06 (0.51×) 0.08 (0.24×) 0.10 (0.15×) 0.12 (0.10×) 0.19 (0.04×)
RA 17.09 (1.81×) 53.56 (2.68×) 108.17 (2.55×) 183.03 (2.64×) 756.72 (2.79×) 0.23 (2.10×) 0.80 (2.45×) 1.74 (2.55×) 3.06 (2.59×) 12.10 (2.64×)

proposed unified framework of most low-rank attention approximations and (3) Nyströmformer (Xiong et al., 2021), which
we find is a strong low-rank baseline across our experiments.

For training, we follow the same setup as in Vaswani et al. (2017). In particular, we use the Adam optimizer (Kingma & Ba,
2014) with learning rate 0.0007, label smoothing rate 0.1, inverse square root learning rate scheduler and 4000 warm-up
steps. During decoding, we set beam size to 4, length penalty to 0.6, average last 10 checkpoints and apply a compound split
post-processing to facilitate comparison.

H.5. Efficiency Analysis

For the simulation experiment conducted in §5.5, the same transformer architecture is used for all attention methods, which
consists of 8 encoder layers with 192 embedding dimension and 3 attention heads. The use of smaller-size transformer
model allows us to run longer lengths for softmax attention and randomized attention. The detailed running time (in ms) and
memory consumption is listed in Table 6. For Nyströmformer (Xiong et al., 2021) and Linformer (Wang et al., 2020), the
number of landmarks is set to 16; for Performer and LARA, the number of samples is set to 16 as well.

I. Additional Experimental Results
I.1. Additional Experiments on Image Classification

We conduct additional experiments to evaluate the performance of our proposed method at various aspects. First, we vary
the number of random samples to investigate the effect of sample size on the performance for ImageNet1k dataset. As
presented in Table 7, although both Performer and LARA improves predictive accuracy as the number of samples increases,
LARA benefits much more than Performer, and finally outperforms softmax attention with 196 samples, which is equal to
the sequence length.

In addition, we also compare LARA against different efficient attention mechanisms, as shown in Table 8. We note that
LARA outperforms most efficient attention mechanisms by a large margin, and slightly outperforms Nyströmformer (Xiong
et al., 2021), which we found is a strong baseline across various domains.

Table 7. Top-1 accuracy (%) on ImageNet1k valida-
tion set for Performer and Lara at different numbers of
samples on DeiT-Small.

Model # Samples
25 49 100 196

Performer 73.37 73.63 74.15 74.44

LARA 78.29 79.48 79.89 80.57

RA 80.04

Softmax 79.90

Table 8. Top-1 accuracy (%) on ImageNet1k validation set with
DeiT-Small under different attention mechanisms.

Model Top-1 Acc.

Performer (Choromanski et al., 2021) 74.3
SRA (Convolutional) (Wang et al., 2021a;b) 74.4
Linformer (Wang et al., 2020) 76.0
XCIT (El-Nouby et al., 2021) 77.9
Nyströmformer (Xiong et al., 2021) 79.3
LARA 79.5

Softmax attention 79.9

I.2. Additional Experiments on Long Range Arena Benchmark

We also evaluate our model on the Long Range Arena (LRA) benchmark (Tay et al., 2021b), which is designed to test
the ability to process long sequences and generalize over diverse tasks. In particular, LRA is a suite of tasks including



Linear Complexity Randomized Self-attention Mechanism

Table 9. Top-1 classification accuracy results (%) on LRA benchmark with different attention mechanisms.

Model ListOps Text Retrieval Image Pathfinder Avg.

Softmax 38.76 64.90 80.54 39.90 71.29 59.08
Nyströmformer 38.26 64.00 80.57 40.07 68.47 58.27
Linformer 37.40 59.10 78.04 38.25 60.09 54.58
Reformer 37.60 64.15 79.18 43.57 66.44 58.19
BigBird 38.81 64.02 80.73 38.56 71.60 58.74
Performer 37.20 64.73 79.91 37.64 68.68 57.63

LARA 39.21 64.77 81.18 38.40 72.02 59.12
RA 38.56 65.02 80.93 40.76 71.22 59.30

Table 10. Ablation study of LARA, evaluated on ImageNet1k validation set with DeiT-Tiny model.

Components Variants Top-1 Acc.

Performer 65.92

Single or multiple proposals Single proposal 68.42
Multiple proposals 71.48

Weighting functions
Balance heuristic 70.78
Approx. optimal (coupled; Equation 37) 71.02
Approx. optimal (decoupled; Equation 38) 71.48

Parameterization of each proposal

Gaussian mixture (Equation 32) 70.22
Gaussian (Equation 33) 71.22
Gaussian (Equation 34) 71.19
Gaussian (Equation 35) 71.48

Listops output prediction (Nangia & Bowman, 2018), byte-level text classification on IMDb (Maas et al., 2011), byte-level
document retrieval on AAN (Radev et al., 2013), pixel-level image recognition on CIFAR-10 (Krizhevsky et al., 2009) and
Pathfinder (Linsley et al., 2018). We follow the experimental setup in Xiong et al. (2021); Chen et al. (2021d) and adopt the
same hyper-parameter setting across all attention variants to ensure a fair comparison. In particular, all tasks use a 2-layer
Transformer model with 64 embedding dimension, 128 hidden dimension in feed forward neural networks and 2 attention
heads. The transformer output is then aggregated by mean pooling (instead of class tokens) for task-specific prediction. The
training details for each task are the same for all attention methods as in Xiong et al. (2021). For baselines, we compare our
model against the standard softmax attention and Performer (Choromanski et al., 2021) as well as other efficient attention
mechanisms, including Nyströmformer (Xiong et al., 2021), Linformer (Wang et al., 2020), Reformer (Kitaev et al., 2020)
and BigBird (Zaheer et al., 2020).

As shown in Table 9, we see that RA performs better than softmax attention on 3 out of 5 tasks and obtains a higher averaged
accuracy. Furthermore, its linear-complexity counterpart LARA also performs competitively with or slightly outperforms
softmax attention except the image task. Both RA and LARA yield better performance than Performer and other baselines
on all of 5 tasks, indicating the improved expressiveness of our proposed method. As the sequence length considered
in this suite of tasks is typically longer, these results also validates the ability of RA and LARA to capture longer-term
dependencies.

I.3. Ablation Study

In this section, we conduct an ablation study on vision transformers with ImageNet1k dataset to investigate the effect of
component design in LARA. The main component design choices in LARA consist of the estimation framework (single
proposal versus multiple proposals), the parameterization of proposal distributions (Gaussian mixtures versus Gaussian)
and the weighting functions. The results are shown in Table 10. For the estimation framework, we compare our choice,
which uses multiple proposal distributions, against a single proposal. This proposal is a Gaussian mixture with the similar
formulation of true RA density (Equation 5) except that it only depends on the average of all queries. We see that an
individual yet contextual proposal improves the performance of Performer, while generalizing the importance sampling in
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RFA to multiple proposals further boosts performance to be close to softmax attention. With multiple proposal distributions,
even using a simple strategy (balance heuristic (Veach & Guibas, 1995)) to combine their estimates yields reasonable
performance, which is improved further by adopting query-specific combinations. In addition, we validate the effectiveness
of decoupling the effect of query-dependent and query-agnostic information inside the weighting function, which improves
the coupled version by over 0.4 accuracy. In terms of the parameterization of each proposal distribution, we consider both
the cases where each proposal is a Gaussian mixture and a Gaussian. As specified in Appendix G.3, we train the transformer
model with various parameterization choices (defined by Equation 32 for Gaussian mixtures and Equations 33 to 35 for
Gaussians). The results are consistent with the analysis in Appendix G.3, where a simple parameterization suffices to yield
good performance.


