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Abstract
Advances in differentiable numerical integrators
have enabled the use of gradient descent tech-
niques to learn ordinary differential equations
(ODEs), where a flexible function approxima-
tor (often a neural network) is used to estimate
the system dynamics, given as a time derivative.
However, these integrators can be unsatisfacto-
rily slow and unstable when learning systems of
ODEs from long sequences. We propose to learn
an ODE of interest from data by viewing its dy-
namics as a vector field related to another base
vector field via a diffeomorphism (i.e., a differ-
entiable bijection), represented by an invertible
neural network (INN). By learning both the INN
and the dynamics of the base ODE, we provide
an avenue to offload some of the complexity in
modeling the dynamics directly on to the INN.
Consequently, by restricting the base ODE to be
amenable to integration, we can speed up and
improve the robustness of integrating trajectories
from the learned system. We demonstrate the
efficacy of our method in training and evaluat-
ing benchmark ODE systems, as well as within
continuous-depth neural networks models. We
show that our approach attains speed-ups of up to
two orders of magnitude when integrating learned
ODEs.

1. Introduction
The problem of fitting an ordinary differential equation
(ODE) to observed data is ubiquitous throughout many disci-
plines of the natural sciences and engineering (Perko, 1991).
Although traditional approaches have focused on fixed-form
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Figure 1: Related vector fields can be thought of as a vector
field “morphed” into another. (Left) Five integral curves
(red) of a vector field of a Linear ODE, overlaid on grid
points (blue); (Right) Corresponding ”morphed” integrals
of the related vector field and grid.

system dynamics and inferring their parameters, here we
consider the more general problem of learning ODEs, when
their dynamics are completely unknown. This problem
arises, for example, in robot learning where ODEs are often
used to parameterize learned motion (Sindhwani et al., 2018;
Singh et al., 2020). In deep learning, this problem appears
within the context of Neural ODEs (Chen et al., 2018), a
family of continuous-depth models where the evolution of
hidden states is an ODE. Recent developments in learning
ODEs have allowed the use of differentiable adaptive step-
size numerical integrators to train neural network dynamics
via the adjoint method (Chen et al., 2018).

The learned ODE system allows us to integrate continuous
trajectories at different initial conditions. To roll out long
and complicated trajectories with a numerical integrator, the
neural network dynamics model is queried sequentially at
each step. This can be unsatisfactorily slow for time critical
applications, such as those in robot control, and is known
to suffer from numerical instabilities (Gholami et al., 2019;
Choromanski et al., 2020). With these challenges in mind,
we propose an alternative approach to learning ODEs: we
view the desired target ODE dynamics as a vector field that
is a “morphed” version of an alternative base vector field
via a diffeomorphism, i.e., a bijective mapping where both
the mapping and its inverse are differentiable. Thus, instead
of directly modeling the time derivative of the desired ODE
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with a neural network, we use an invertible neural network
(INN) to learn the diffeomorphism that relates the target
ODE to a base ODE. Crucially, by restricting the base ODE
to be less complex and more amenable to integration, we
can obtain a solution to the (more complex) target ODE by
integrating the simpler base ODE and passing its solution
through the bijection. Figure 1 shows an example of related
vector fields: the simple integral curves in the left figure are
passed through an INN to give corresponding complicated
curves in the right. Unlike rolling out a trajectory, evaluating
the INN needs not to be sequential, allowing for efficient
GPU computation.

We investigate restricting the flexibility of the base ODE
to improve integration efficiency, and offloading more of
the representation burden to the INN. Specifically, we as-
sume the dynamics of the base ODE to be: (1) linear or (2)
modelled by a neural network. Restricting the base ODE
to be linear allows the computation of closed-forms solu-
tions, providing major speed benefits. In this set-up we
can achieve significant speed-ups of up to two orders of
magnitude when employing GPUs, as compared against
differentiable integrators with standard settings. We can
also restrict the learned ODE to be provably asymptotically
stable by adding simple constraints to the linear base ODE.
Alternatively, when additional flexibility is required, we re-
move the restrictive assumption of a linear base ODE and
model the dynamics using a neural network. We show that
in this setting we can improve the performance of learning
challenging ODEs compared to existing differentiable inte-
grators, even when we use a simpler neural network for the
base ODE.

In summary, our main contributions are:

1. a novel paradigm to learn ODEs from data: invertible
neural networks are trained to “morph” the target ODE
to an alternative related base ODE, which can be more
tractably integrated;

2. analysis of the base as (i) a linear ODE and (ii) a non-
linear ODE with neural network dynamics. In the
linear case, we demonstrate how by restricting the flex-
ibility of the base ODE, we can obtain closed-form
integrals, providing significant speed-ups to integra-
tion. In the non-linear case, we demonstrate that by
learning ODEs as related vector fields, we can flexibly
learn challenging ODEs with simpler networks;

3. a principled method to enforce asymptotic stability of
learned ODEs, by adding restrictions to the base ODE.

Proofs and additional details can be found in the appendices.

2. Related Work
Learning of ODEs and Neural ODEs: Dynamical sys-
tems governed by ODEs can be found throughout many
disciplines of science and engineering. Earlier work on
approximating free-form dynamics of ODEs include gra-
dient matching (Ramsay et al., 2006) and using Gaussian
processes (Heinonen et al., 2018). Most recent work on
this problem model the unknown dynamics with a neural
network and leverage differentiable numerical integrators,
which use the adjoint method (Pontryagin et al., 1962) to
train in a memory-usage tractable manner (see, e.g., Chen
et al., 2018). Similar to our work, Koopman Operators
(Koopman, 1931) have been used to learn to linearize ODEs.
Recent work which try to learn a Koopman Operator with
neural networks include Lusch et al. (2018); Azencot et al.
(2020), where an autoencoder is applied to a discrete-time
dynamical system. Unlike these works, our method oper-
ates in the continuous dynamics setup, therefore capable of
handling irregularly time intervals.

A particular usage of ODE learning is within Neural ODEs,
which are neural network models that model the hidden
state as continuous ODEs rather than discrete layers (Chen
et al., 2018; Massaroli et al., 2020). Other continuous neu-
ral network models which incorporate an ODE, such as
latent ODEs (Rubanova et al., 2019) have found applica-
tion in time-series tasks. Subsequent strategies have been
introduced to improve the training of these models, includ-
ing augmenting the ODE state-space (Dupont et al., 2019),
hyper-network extensions (Choromanski et al., 2020), regu-
larisation techniques (Finlay et al., 2020; Pal et al., 2021),
and investigating integrator step-sizes (Ott et al., 2021). At
the core of all neural ODE models is the differentiable in-
tegrator used to learn the underlying ODE. Our proposed
approach improves the learning of the underlying ODE, and
is compatible with models that incorporate learnable ODEs.
We note that the term “neural ODE” has typically been used
in the literature to refer to neural networks that incorporate
ODEs, including the original work in Chen et al. (2018).
However, “neural ODE” has occasionally been used to refer
to an ODE with dynamics parameterized by a neural net-
work (Norcliffe et al., 2021). To disambiguate, throughout
our paper, we refrained from referring to the latter model as
“neural ODEs”, but rather as “ODEs with dynamics parame-
terized by a neural network”.

Invertible neural networks and Normalizing Flows: In-
vertible neural networks (INNs) are a class of function ap-
proximators that learn bijections where the forward and
inverse mapping and their Jacobians can be efficiently com-
puted (Ardizzone et al., 2019). INNs are typically con-
structed by invertible building blocks, such as those intro-
duced in Kingma et al. (2016); Dinh et al. (2017); Durkan
et al. (2019). Advances in INNs are largely motivated by nor-
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malizing flows (Rezende & Mohamed, 2015; Papamakarios
et al., 2021), an approach to construct a flexible probability
distribution by finding a differentiable bijection between the
target distribution and a base distribution. Our approach
is similar in spirit to normalizing flows, as we analogously
aim to train an INN that relates the vector fields of the target
ODE and some base ODE. However, unlike normalizing
flows, we do not require the burdensome computation of
Jacobian determinants (Karami et al., 2019) to obtain tra-
jectories. A separate line of work, broadly characterized as
continuous normalizing flows, use ODEs to build invertible
approximators (Grathwohl et al., 2019; Chen et al., 2018).
Our work proposes the opposite where invertible approxi-
mators are used to learn ODEs.

3. Preliminaries
In this section we introduce the problem of learning ODE
dynamics with neural networks. We then describe the no-
tions of tangent spaces and pushforwards, which will be
used in section 4 to develop our method.

3.1. Learning ODEs with neural networks

Consider a dynamical system given by ordinary differential
equations of the form:

y′(t) = f(y(t), t), y(0) = y0, (1)

where t is time, y(t) are the states at time t, and f pro-
vides the dynamics. Unlike traditional approaches where
f is assumed known with only a few parameters to esti-
mate from data, here we consider the more general problem
where the dynamics are completely unknown. Thus, we
can use a flexible mapping fω as given by a neural network
with parameters ω. Henceforth, we will drop the explicit
dependence on time, and consider the autonomous ODEs
given by y′(t) = f(y(t)). Non-autonomous ODEs, which
explicitly depend on time, can be equivalently expressed
as autonomous ODEs by adding a dimension to the states
y (Davis et al., 2020). For an initial condition yt0 at start
t0, and some end time te, a solution of the ODE can be
evaluated by a numerical integrator (ODESolve), such as
Runge-Kutta methods (Butcher, 1987):

y(te) =yt0 +

∫ te

t0

fω(y(t))dt (2)

=ODESolve(fω,yt0 , te − t0). (3)

The learning problem involves estimating, with fω, the dy-
namics of the ODE, provided nt observations yobst1 . . .yobstnt
at specified times. We can learn the ODE by optimis-
ing the parameters ω to minimize a loss between the ob-
servations at the given times and the integrated ODE,
`(ω) = Loss({yobsti }

nt
i=1, {y(ti)}

nt
i=1), where {y(ti)}nti=1

are obtained by solving eq. (3). Advances in the neural
ODE literature have introduced differentiable numerical
integrators, which allow gradient-based techniques to be
used to optimize l(ω). Furthermore, by using the adjoint
sensitivity method as outlined in Chen et al. (2018), the
gradients of adaptive integrators can be obtained in a mem-
ory tractable manner, without differentiating through the
integrator operations.

Nevertheless, the flexibility of neural network dynamics for
ODE learning comes at the expense of a high-computational
cost and potential numerical instabilities, especially when
considering long trajectories. We will develop in section 4
an alternative method that transforms this problem into that
of learning a simpler ODE along with a diffeomorphism,
by treating the dynamics of the original (target) ODE and
simpler (base) ODE as related vector fields.

3.2. Tangent Spaces and Pushforwards

As mentioned above, we shall be analysing the system dy-
namics of ODEs as vector fields. Here we briefly introduce
the differential geometry notions of tangent spaces and push-
forwards, which will be used to define related vector fields,
a core concept underpinning our methodology.

Tangent Spaces: A manifold is a space that locally re-
sembles Euclidean space. Throughout this paper, all man-
ifolds will be assumed to be differentiable, with defined
tangent spaces. For an n-dimensional manifold M, at a
point p ∈M, the tangent space TpM is an n-dimensional
real vector space, where each element passes p tangentially
and is referred to as a tangent vector. The tangent space
provides a higher-dimensional analogue of a tangent plane
at a point on a surface. The collection of tangent spaces for
all points onM is known as the tangent bundle denoted by
TM.

Pushfoward: For a mapping F : M → N between
two manifolds,M and N , the pushforward by F is a lin-
ear mapping between the tangent spaces of the manifolds,
DpF : TpM → TF (p)N . Tangent vectors at p in the
domain M can be mapped to tangent vectors at the cor-
responding point F (p) in the codomain N via the push-
forward. This is computed by the matrix product of the
Jacobian of F at p, JF (p), and a tangent vector at p.

4. Methodology
We study the dynamics of ODEs, f , as vector fields, and
solutions as their integral curves. We model the desired
ODE dynamics as a target vector field that is related to
another base vector field. First, we introduce the concept
of related vector fields, outline how they can be learned,
and elaborate on the benefits of learning them. Then, we
describe possible choices of base vector field models.
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(a) If F maps points p ∈M to F (p) ∈ N , a single tangent vector
at p, Xp ∈ TpM, can be mapped to TF(p)N . However, an entire
vector field X onM cannot in general be mapped to a valid vector
field onN . The pushforward by a diffeomorphism is a special case
where a valid vector field can be obtained.

TM TN

M N

DF
X

F

F−1

Y

(b) If vector fields X and Y on manifoldsM andN respectively
are related by diffeomorphism F , then they are related via the
pushforward of F . If Y is unknown, we have another path to

evaluate Y byN F−1

−−−→M X−→ TM DF−−→ TN .

Figure 2: Vector fields can be related by a diffeomorphisms

4.1. Related Vector Fields for ODE Learning

A vector field X defined on manifoldM is a function that
assigns a tangent vector Xp ∈ TpM to each point p ∈
M. Intuitively, our aim is to construct a mapping F which
shapes the manifold where a base vector field X is defined,
such that the pushforward of X by F extrinsically appears
“morphed” to match the data.

What are the requirements of these mappings, for the
pushforward of vector fields to be valid?

Provided a mapping between manifolds F :M→N , we
can push a single vector, Xp ∈ TpM, to the tangent space
of N at F (p), TF (p)N , via the pushforward, DpF (Xp).
Figure 2a sketches out an example of the pushforward of
a tangent vector between tangent spaces. However, this
notion does not extend in general to vector fields. If F is
injective and non-surjective, the pushforward of X outside
the image of F is not defined. If F is surjective and non-
injective, there may be multiple differing pushforwards for
a point. In special cases when the pushforward by F defines
a valid vector field on the codomain N , the vector field and
its pushforward are known to be F -related. Latent ODEs,
as described in (Rubanova et al., 2019), which use an auto-
encoder to map input data to a latent space, where an ODE
is learned is similar in spirit to our method. Latent ODEs,
however, do not define a valid vector field in the input space.

Definition 4.1 (Related vector fields). Let F :M→N be
a smooth mapping of manifolds. A vector field X onM and
a vector field Y on N are related by F , or F -related, if for
all p ∈M,

DpF (Xp) = YF (p). (4)

Related vector fields arise in particular when F is a dif-
feomorphism, i.e. a bijective mapping, where both the
mapping itself and its inverse are differentiable.

Proposition 4.1 (Proposition 8.19 in (Lee, 2012)). Suppose
F : M → N is a diffeomorphism between smooth man-
ifolds M, N . For every vector field X on M, there is a
unique vector field Y on N that is F -related to X .

By considering the F -related properties of vector fields,
we have a pathway to define unknown vector fields us-
ing the pushforward of F , as shown in fig. 2b. If vec-
tor field X onM is F -related to some vector field Y on
N , instead of directly evaluating the vector field Y , we
can instead obtain tangent values for any q ∈ N , via

N F−1

−−−→ M X−→ TM DF−−→ TN . Therefore, the vector
attached for each q ∈ N is, Yq = DF−1(q)F (XF−1(q)) =
JF (F

−1(q))XF−1(q), where JF is the Jacobian of F .

4.2. Diffeomorphism learning via Invertible Neural
Networks

The machinery to learn invertible mappings has seen exten-
sive development with the progress of normalizing flows
for estimating probability distributions. Invertible neural
networks (INNs, Ardizzone et al., 2019) are function ap-
proximators which learn differentiable bijections. INNs can
be trained on a forward mapping, and get the inverse with
no additional work, by the definition of their architecture. In
this paper, we use INNs of the type described in Dinh et al.
(2017). The basic unit is a reversible block, where inputs
are split into two halves, u1 and u2. The outputs v1 and v2

are:

v1 = u1 � exp(s2(u2)) + t2(u2), (5)
v2 = u2 � exp(s1(v1)) + t1(v1), (6)

where � indicates element-wise multiplication, and t1, t2
and s1, s2 are functions modelled by fully-connected neural
networks with non-linear activations. These expressions are
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clearly invertible:

u1 = (v1 − t2(u2))� exp(−s2(u2)), (7)
u2 = (v2 − t1(v1))� exp(−s1(v1)). (8)

Note that the functions t1, t2 and s1, s2 themselves are not
required to be invertible.

4.3. ODE Solutions as Integral Curves of Related
Vector Fields

Why would it be beneficial to construct a desired vector
field Y indirectly, by way of a related X?

We shall answer this by considering integral curves on Y ,
which represent solutions to the ODE associated with Y . An
integral curve of Y on N is a differentiable curve y : R→
N , whose velocity at each point is equal to the value of Y at
that point, i.e. y′(t) = Yy(t) ∈ Ty(t)N , for all t ∈ R. The
integral curves of F -related vector fields are also linked by
F : integral curves on one vector field are uniquely mapped
to the other via a single pass through F , and the Jacobian
JF is not required.

Proposition 4.2 (Proposition 9.6 in (Lee, 2012)). Suppose
X and Y are vector fields on manifoldsM and N respec-
tively. X and Y are related by mapping F : M → N if
and only if for each integral curve x : R→M, y = F (x)
is an integral curve of Y .

In the ODE learning problem outlined in section 3.1, we
denote Y to be the vector field associated with the target
ODE. During both training and inference, we need to obtain
integral curves y of Y either by numerical integration, or
by y = F (x), where x denotes the corresponding integral
curve of X , related to Y via the diffeomorphism F . Criti-
cally, the Jacobian of F does not need to be evaluated when
we are working with the integral curves.

If integral curves of X can be found in a more efficient, or
less error-prone manner, than by numerically integrating
curves of Y , we can leverage the relationship y = F (x)
for ODE learning. This can be done by an INN, Fθ, with
parameters θ. We denote the base ODE as x′(t) = gϕ(x(t)),
where ϕ are parameters. We can then use the target ODE
within some learning problem, minimising a loss over target
ODE trajectories and observations:

`(θ, ϕ) = (9)

Loss
({

yobsti
}nt
i=1

,
{
Fθ(F

−1
θ (y0) +

∫ ti

0

gϕ(x(t))dt)
}nt
i=1

)
,

(10)

where there are nt data time points, y0 is an initial condition
for the system, and yobsti are observed data points at times
ti. After training, the dynamics of the target ODE is given

Algorithm 1 Efficient integration of learned ODEs

Input: Fθ, gϕ, y0, t1, . . . , tend
Output: y(t1), . . . ,y(tend)
x0 ← F−1θ (y0)

x(ti)← x0 +
∫ ti
0
gϕ(x(t))dt, for i = 1, . . . , end

The integral is easier to solve.
y(t1), . . . ,y(tend)← Fθ(x(t1), . . . ,x(tend))
Batched pass through INN can be efficiently computed on
GPUs.

by y′(t) = JFθ (F
−1
θ (y(t)))gϕ(F

−1
θ (y(t))) and the ODE

solutions (integrals) are obtained with:

y(t) = Fθ(F
−1
θ (y0) +

∫ t

0

gϕ(x(t))dt). (11)

In practice, we are often required to evaluate an entire trajec-
tory, i.e., y(t) at multiple times t1, . . . , tend with one initial
y0, as outlined in Algorithm 1. This allows us to batch up
the pass through Fθ, which makes this highly efficient when
executed on a GPU. The benefits of our method are apparent
when it is advantageous to integrate the base ODE and then
pass the solution through the diffeomorphism, Fθ, rather
than numerically integrate the target ODE.

Next, we investigate restricting the flexibility of the base
ODE, so that it is more amenable to integration, offloading
the complexity of learning to the diffeomorphism. We con-
sider two choices of base ODEs: (1) Linear ODE; (2) ODE
with neural network dynamics.

4.4. Linear ODE as Base: Fast Integration and
Straightforward Asymptotic Stability

We can speed-up integration significantly by modeling the
base as a Linear ODE, of the form x′(t) = Ax(t), where
x(t) ∈ Rn are n-dimensional variables, and A ∈ Rn×n.
Linear ODEs can be solved very efficiently as they admit
closed-form solutions. Provided an initial solution x0, the
matrix exponential solution of x(t) and that of the target
ODE y(t) are: x(t) =

∑n
k=1(lk · x0)rk exp(λkt), and

y(t) = Fθ(x(t)), where lk, rk and λk are the correspond-
ing left, right eigenvectors and eigenvalues of matrix A,
respectively. We learn the eigenvalues and eigenvectors of
matrix A jointly with diffeomorphism Fθ.

Linear ODEs are also interesting because their long-term
behavior, which is determined by their eigenvalues, is easy
to analyse. We shall see how this property allows us to
craft the long-term behavior of the target ODE. In partic-
ular, in many applications, consideration is given to the
asymptotic properties of ODEs, namely what happens to the
solutions after a long period of time. Will they converge to
equilibrium points, periodic orbits, or diverge and fly off?



ODE learning with INNs

Our method provides a straightforward way to restrict the
learned ODE to be asymptotically stable. In robot motion
generation problems, such as that in (Sindhwani et al., 2018),
we aim to learn an asymptotically stable ODE. We begin by
defining equilibrium points and asymptotic stability of first
order ODEs.

Definition 4.2 (Equilibrium point). An equilibrium point
y∗ of an ODE y′(t) = f(y(t)), is a point where f(y∗) = 0.

Definition 4.3 (Asymptotic stability). An ODE y′(t) =
f(y(t), t) is asymptotically stable if for every solution y(t),
there exists a δ > 0, such that whenever ||y(t0)− y∗||< δ,
then y(t)→ y∗ as t→∞, where y∗ is some equilibrium
point.

Intuitively, asymptotically stable systems of ODEs will al-
ways settle at some equilibrium points after a long period of
time. In the context of vector fields related by a diffeomor-
phism, the asymptotic stability properties of the ODEs are
shared.

Theorem 4.1. Suppose two ODEs x′(t) = g(x(t)),
y′(t) = f(y(t)) are related via y(t) = F (x(t)), where
F is a diffeomorphism. If the former ODE is asymptotically
stable with ne equilibrium points x∗1, . . . ,x

∗
ne , then the lat-

ter is also asymptotically stable, with equilibrium points
F (x∗1), . . . , F (x

∗
ne).

Therefore, if we can restrict the base ODE to be asymptot-
ically stable, then the target ODE learned by our method
is also asymptotically stable. When the base is an n di-
mensional linear ODE, we can restrict it to be asymptot-
ically stable by directly learning the eigenvalues, λi for
i = 1, . . . , n, and constraining them to be negative. This
can be done by setting λi = −(sλi)2− ε, where ε is a small
positive constant, and learning sλi instead of learning the
eigenvalues.

4.5. Neural Network ODE as Base: Improved
Robustness for ‘Difficult’ ODEs

Using linear systems as base ODEs provides a dramatic
increase in speed at the cost of flexibility. We observe that
the computation overhead of a single backward pass F−1θ

and a batched single forward pass Fθ is minimal when com-
pared with numerical integration which requires sequential
querying. When the ODE is difficult to learn, we can also
parameterize the dynamics of the base ODE using a neu-
ral network. This is particularly appealing for ODEs that
are considered stiff, with rapid varying of the solution in
time in one dimension, while the other dimensions remain
largely unchanged. Existing differentiable integrators often
struggle to directly learn these ODEs. Directly learning the
target ODE will require exceedingly small step-sizes (Hairer
et al., 1993). Although by simply scaling the data before
training, we can lessen the stiffness of the ODE to learn,

the relatively rapid changes isolated in a single dimension
can still result in the ODE being hard to learn. To tackle
this, we learn a neural network dynamics of the base ODE
jointly with the invertible network. The burden of accurately
representing the stiff dynamics is shared by Fθ, providing
additional flexibility. The INN can learn to relate the target
ODE to a base that is amenable to integration. This allows
us to more accurately learn challenging ODEs, with a much
smaller neural network model of the base ODE, than that
used to directly learn the target ODE. As passes of the INN
are inexpensive, we gain a speed-up during integration.

5. Experimental Results
We empirically evaluate the ability of our method to speed
up the integration of learned ODEs, along with the robust-
ness of integration when learning difficult ODE systems.
Throughout this section, we compare the error and inte-
gration times of our method against a variety of solvers.
We include fixed step-size solvers: Euler’s, midpoint, and
Runge-Kutta 45 (RK4), and the adaptive step-size solvers
Dormand–Prince 5 (DOPRI5) and Dormand–Prince 8 (DO-
PRI8). Unless specified otherwise, for fixed step-size
solvers, we set the step-size equal to the smallest time in-
crement of outputs. For adaptive step-size solvers, we set
absolute and relative tolerances to 10−5. We augment the
ODE states for all the systems in accordance to Dupont et al.
(2019) in all of the ODEs trained during the experiments,
except when recreating latent ODE results from Rubanova
et al. (2019), where we use the original implementation
provided by the authors. The differentiable solvers are im-
plemented in the torchdiffeq library. Details on experiments
available in the appendices. Code can be found in https:
//github.com/wzhi/ODElearning_INN.

5.1. Integration Speed-ups by Learning with a Linear
ODE Base

We test our hypothesis that the availability of a closed-form
expression for the integral, when using a linear base ODE,
can provide significant integration speed-ups. We evaluate
on learning synthetic ODE systems, real-world robot demon-
strations, and within continuous deep learning models. Here,
we report test error/accuracy and integration times. Training
times can be found in the appendices.

Learning 3D Lotka-Volterra: We train and evaluate mod-
els on data from the 3D Lokta-Volterra system, which mod-
els the dynamics of predator-prey populations. The data is
corrupted by white noise with standard deviation of 0.05.
We train our model using a linear base ODE, and assess the
capability of our model in interpolating the data points at
10x the data resolution, and generalizing to 16 hidden test
initial conditions to integrate trajectories, also at 10x the
data resolution. We report the integration time for gener-

https://github.com/wzhi/ODElearning_INN
https://github.com/wzhi/ODElearning_INN
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3D Lotka-Volterra Imitation S Imitation cube pick Imitation C
MSE (I) MSE (G) Time (ms) MSE (G) Time (ms) MSE (G) Time (ms) MSE (G) Time (ms)

Ours (Lin) 0.14± 0.1 1.5± 0.1 9.3± 0.4 6.1±1.2 6.6± 0.2 18.6± 6.2 7.1 ± 1.6 8.1± 1.6 7.5± 0.8
Euler 4.5± 0.3 4.6± 0.1 385.6± 14.4 10.3±2.9 724.7± 8.3 14.9± 1.4 728.4± 9.5 7.3± 2.0 753.9± 1.4
Midpoint 0.38± 0.05 5.51± 0.1 670.4± 31.3 10.9±3.3 581.6± 13.3 12.9± 1.3 1267.2± 13.6 6.9± 2.2 1305.4± 14.7
RK4 0.35± 0.005 5.6± 0.2 1316.1± 30.8 10.3±3.0 2501.7± 18.9 15.9± 0.9 2522.8± 23.1 7.6± 2.7 1292.3± 22.0
DOPRI5 0.93± 0.05 5.19± 0.5 264.7± 17.0 10.8±2.8 1277.7± 14.3 14.9± 0.9 504.0± 12.3 7.1± 1.9 623.4± 15.6

Table 1: The mean squared error for interpolation, MSE (I), and generalization, MSE (G), and mean execution times (in ms,
± 1 standard deviation) on the 3D Lotka-Volterra system and the time critical motion generation for our method with a linear
base ODE and competing augmented ODE models, with neural network dynamics, with various numerical integrators. Our
method, with a linear base ODE, provides comparable or better accuracy, with significant integration speed-ups.

Periodic 100 Periodic 1000 Human Activity ECG Image Seq.
MSE Int. time MSE Int. time Acc. Int. time Acc. Int. time MSE Int. time

Ours (Lin) 0.030 2.7± 0.6 0.008 2.8± 0.8 0.864 4.2± 1.8 0.966 7.6± 2.5 0.028 5.7 ± 1.3
Euler 0.040 33.7± 2.6 0.043 326.6± 9.5 0.815 67.9± 2.9 0.963 100.0± 2.8 0.028 103.3±2.5
Midpoint 0.032 54.5± 1.8 0.074 510.1± 15.5 0.865 114.2± 2.4 0.963 169.7± 3.8 0.026 187.9±6.8
RK4 0.039 95.6± 1.6 0.052 1020.0± 60.0 0.857 221.2± 4.2 0.963 325.5± 4.8 0.027 401.2±9.1
DOPRI5 0.045 83.4± 2.2 0.050 264.7± 4.6 0.869 67.9± 5.0 0.963 123.3± 2.6 0.025 194.5± 9.2
DOPRI8 0.041 99.6± 2.3 0.049 282.7± 6.4 0.724 94.8± 1.6 0.963 171.6± 3.6 0.026 399±28.4

Table 2: The mean squared error, accuracy and mean integration times (in ms, ± 1 standard deviation) when using latent
ODEs on the tasks of periodic curve reconstruction using 100 and 1000 time-steps, the classification problems of human
activity and ECG, and the image sequence generation with our method using a linear base ODE and competing integrators.

Ground truth
Pred.
init. cond.

Figure 3: Learning the 3D Lotka–Volterra. (Left) Interpolat-
ing (red) data (blue); (Right) Generating trajectories (red) at
hidden test initial conditions and the ground truth (blue).

alization. Figure 3 shows interpolation results and newly
generated trajectories, where we see that our model is able
to capture the dynamics of the system. Furthermore, table 1
provides a quantitative evaluation, where we see that our
method is significantly faster than competing approaches
using numerical integrators with speed-ups of more than
two orders of magnitude, while achieving comparable or
better accuracy.

A Time Critical Application—Robot Motion Genera-
tion as Stable ODE Learning: The ability to quickly
roll-out trajectories is crucial in motion robotics settings.
We consider the application of generating robot manipula-
tor motion trajectories from provided demonstrations. In
particular, (Sindhwani et al., 2018) showed that modeling

Figure 4: We model latent dynamics of rotating MNIST
“3” characters, as an ODE. We learn the ODE via a INN
and a linear base ODE. Given an unseen test “3” character,
we efficiently generate a image sequence of rotating “3”s
(illustrated here, from upper left to lower right).

the motion as trajectories of a stable ODE is critical for
generalizing and being robust to perturbations in initial con-
ditions. The goal is to learn an ODE system where trajecto-
ries integrated at different starting points mimic the shown
demonstrations. We use three sets of real-world data from
(Khansari-Zadeh & Billard, 2011) of trajectories: drawing
“S” shapes; placing a cube on a shelf; drawing out large “C”
shapes. We use 70% of the data for training, and test our
generalization on the remaining demonstrations. In these
datasets, the motions are known to converge to equilibrium
points. Hence, we constrain the learned ODE to be asymp-
totically stable. We report the performance and run-times
of generalizing to new starting points in table 1. We see
that our approach is competitive in the quality of general-
ized trajectories, while achieving speed-ups of more than
two-orders of magnitude.

ODE Learning for Continuous Deep Learning Models:
We evaluate our method as a component of Latent ODEs
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(Rubanova et al., 2019), a continuous deep learning model.
Latent ODEs embed the time series observations as hidden
states via an encoder-decoder. An ODE, with dynamics
parameterized by a neural network, is fit on the hidden
states which allows for irregularly sampled series. In these
experiments, our method is applied with a linear ODE base
to learn the dynamics governing the hidden states.

We report results for the periodic curves and the human ac-
tivity classification problem used in the original latent ODE
paper (Rubanova et al., 2019), as well as for ECG classifi-
cation and image sequence generation. The periodic curves
problem requires us to reconstruct trajectories at different
resolutions, with 100 and 1000 time-steps. The human ac-
tivity classification dataset contains readings over the body
of subjects over time, and the problem has a sequence-to-
sequence setup, requiring us to predict the human activity
at each time point. The ECG problem is a sequence clas-
sification problem, where the sequences are ECG signals.
In the image sequence generation problem, we train on 100
sequences of rotating “3” characters, similar to that in Yildiz
et al. (2019), learning a high-dimensional ODE which gov-
erns a latent representation of the image rotation over time.
We test on 100 unseen “3” characters and report results at
10x training resolution.

The performance and times spent on integrating the hid-
den state dynamics are reported in table 2. We observe
that by leveraging the closed-form expression of integrals
of the base ODEs, we achieve ODE integration times that
are hundreds of times faster, while achieving competitive
performances against compared differentiable integrators.
We note that the main cost of the integral in our method is
the pass through the invertible neural network. GPUs allow
us to batch the pass at practically constant cost, whereas
the sequential nature of integrators give linear increases in
run-time. A qualitative evaluation of our method on the
image sequence problem is shown in fig. 4. We observe
the structure of the rotated “3” character remains consistent
with the test initial image. Our approach, when restricted to
a linear base ODE, is able to learn high-dimensional ODEs
which can be integrated significantly faster, without com-
promising performance. Additionally, wwe also observe,
for the long periodic sequences, that our method is able to
converge faster, as the trajectory is able to quickly align
with the data, while NODEs have a tendency to be stuck in
the average.

5.2. Robust Integration by Learning with a Non-Linear
Neural Network Base

We test our hypothesis that using a neural network base
ODE allows us to learn ODEs that are difficult to integrate.
We learn and evaluate models trained on the chaotic Lorenz
system, and the stiff Robertson’s system (ROBER, Robert-

1e-6 1e-4 1e-2 1 1e2 1e4 1e6
Time

0

1

2

3

1e 5 ROBER system y2(t)
GT data
Dopri5
Ours

Lorenz ROBER
MAE Time(ms) MAE Time(ms)

Ours 0.20 230±9 0.01 157±8
Euler 10.99 456± 13 0.22 201±6
Midpoint 6.60 805± 43 0.044 340±11
RK4 6.81 1761± 206 0.041 660±18
DOPRI5 7.55 632± 83 0.039 189±7

Figure 5: Results on chaotic (Lorenz) and stiff (ROBER)
systems. Top: A trajectory from the learned Lorentz system
in red, with data in blue. Middle: The second dimension of
the ROBER system, against time in logscale. Our method
is much capable at capturing the sudden variation. Bottom:
Quantitative evaluation of our method with a non-linear base
ODE and competing integrators on augmented ODEs with
neural network dynamics.

son, 1966). We use a DOPRI5 adaptive step-size integrator
to learn our base ODE, generate trajectories at 10x data
resolution. Figure 5 (top) illustrates a generated trajectory
from the Lorenz system, which closely resembles the data
points (blue). We can see that both the initial large and small
variations, indicated by the small dense spiral at the end, are
captured. Additional figures for the Lorenz system can be
found in appendix E. Figure 5 (center) illustrates the par-
ticular rapidly changing second dimension of the ROBER
system. We see that the added flexibility of the INN allows
us to better capture the rapid variations over time, while
the directly learned ODE struggles to handle the sudden
increase. Following the equation rescaling described in Kim
et al. (2021), before we train on our method and compar-
isons, we rescale our data by the maximum training value
in each dimension and operate in logscale time. Figure 5
(bottom) provides the performance and integration times of
learning with our method and baseline integrators, where
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NN-dynamics parameter count 2256 8106 17556 30606 47256 67506 83006
MAE 10.95 10.94 10.94 8.04 7.35 7.06 7.08

Table 3: The MAE of interpolating trajectories from the
Lorenz system, with ODEs using neural networks of various
sizes.

Number of INN Layers 0 1 2 3 4 5 6 7
MAE 10.95 2.9 2.53 0.76 0.45 0.21 0.38 0.29

Table 4: The MAE of interpolating trajectories from the
Lorenz system, with a small base ODE with 2256 parame-
ters and an increasing number of invertible layers.

we see that our method is more accurate than competing
approaches while also requiring shorter integration times,
due to having a simpler network modeling the dynamics.

5.3. Ablations: Representation Load of the INN

In the setup of using a non-linear neural network base ODE,
both the INN and neural network dynamics are trained
jointly. We empirically investigate the representation burden
on the invertible neural network, when using a non-linear
neural network base ODE. We train, for 5000 epochs, aug-
mented ODEs with neural network dynamics models of
different parameter sizes, without the diffeomorphism, on
the Lorentz system and report the MAE values of integrat-
ing with the dopri5 integrator with the same setup as the
Lorentz experiments in Section 5.2. We then compare take
the neural network dynamics model with the smallest num-
ber of parameters (with a parameter count of 2256), and add
INNs with an increasing number of invertible layers. The
results of the ODE with neural network parameters only,
with increasing parameter counts, are tabulated in table 3,
while the results of the neural networks with an increasing
number of invertible layers are tabulated in table 4.

Each invertible layer contains 15090 parameters. We note
here that the querying the INN (and thereby having a large
INN) adds negligible integration time, as during the entire
integration we only need one forward and one inverse pass
of the INN, while the system dynamics needs to be queried
sequentially. We see that, in general, adding parameters
to the system dynamics of a learned ODE and to the dif-
feomorphism adds to the representation power of our ODE
models. However, we clearly see that the addition of an INN
improves performance, and additional layers to the INN, up
to around 5 invertible layers, improves performance. We see
that the model with 5 invertible layers and a base ODE of
2256 parameters greatly outperforms the ODE model with
only a neural network dynamics of 83006, while the two
models are similar in parameter count. This indicates that
the invertible neural network plays a large role in represent-
ing the learned ODE.

6. Conclusions
We have proposed a novel approach to learning ODEs with
unknown dynamics, which uses invertible neural networks
to learn a diffeomorphism relating a desired target ODE
to a base ODE that is often easier to integrate. We have
investigated using a base ODE that is linear or parameter-
ized by a neural network. By leveraging the closed form
solution of linear ODEs, our method provides significant
speed-ups and allows for asymptotic property constraints
on the learned ODEs. Alternatively, by using a base ODE
parameterized by a neural network, our approach can learn
“difficult” ODEs, with simpler networks modeling their dy-
namics. We have validated our method by learning ODEs on
synthetic and real-world data, on robotic learning problems
and within continuous-depth neural network models. Future
work could explore more on how to balance offloading the
burden of learning to the invertible neural network and the
base ODE.
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The following sections contain the supplementary text which
gives additional results, additional details about the experi-
ments, and proofs.

A. Additional Results: Training times
We present the training times for directly learning ODEs
with our method, using a linear base ODE. These include
the training times on the 3D Lotka-Volterra, and the robot
imitation datasets, outlined in Sections 5.1.1 and 5.1.2 of
the main paper. We run training for 1000 iterations, where
in each iteration the batch includes the entire training set.
We see that, by leveraging the closed-form solution of linear
ODEs, our method is able to also drastically speed up train-
ing. Additionally the parallel nature of passing through the
invertible neural network allows more consistent training
times across datasets.

3D Lotka-Volterra Imitation S Imitation cube pick Imitation C
Per iter (s) Total (s) Per iter (s) Total (s) Per iter (s) Total (s) Per iter (s) Total (s)

Ours 0.030± 0.002 29.57 0.029± 0.002 29.35 0.031± 0.007 31.34 0.030± 0.004 29.78
Euler 0.131±0.003 130.94 1.740± 0.017 1740.43 1.713± 0.016 1712.53 1.704± 0.010 1703.85
Midpoint 0.235±0.006 235.07 3.228± 0.027 3227.51 3.177± 0.028 3177.37 3.207± 0.025 3206.92
RK4 0.469±0.005 468.52 6.671± 0.048 6671.44 6.388± 0.046 6388.10 6.441± 0.057 6440.61
Dopri5 0.408±0.037 408.36 1.413± 0.034 1413.34 1.246± 0.023 1245.65 1.247± 0.022 1246.67

Table 5: The training times in seconds with standard devi-
ations, for 1000 iterations. By leveraging the closed-form
solution of linear ODEs, training time with our method
is consistently orders of magnitude faster than by using a
differentiable numerical integrator.

B. Additional Results: Ablation Study
We study the effects of the number of layers in the invert-
ible neural network and number of parameters in the sub-
network, which are the main hyper-parameters of the invert-
ible neural networks used. To this end, we conduct ablation
studies of the speed and performance of our method on the
real-world datasets outlined in section 5.1.2 of the paper.
Our basic model uses an invertible neural network with 5
layers and sub-networks in the invertible network had 1500
hidden dimension size. We alter the number of layers to
be: 2, 3, 4, 5, 6, 7, 8, and hidden dimensions of the sub-
networks within the invertible network to be: 500, 1000,
1500, 2000, 2500. The results are presented below:

Imitation S Imitation cube pick Imitation C
No. Layers Sub-Net Hid. Dim. Size Int. time (ms) MSE Int. time (ms) MSE Int. time (ms) MSE

2 1500 3.551± 0.585 122.40 2.993±0.103 41.51 2.914±0.049 20.69
3 1500 4.589± 1.193 130.49 4.026±0.129 15.00 5.150±1.407 26.20
4 1500 5.418± 0.746 24.54 6.294±0.939 26.18 5.374±0.382 10.33
5 1500 6.461± 0.686 4.40 7.401±1.531 26.56 7.463±1.929 13.16
6 1500 7.529± 0.698 8.17 8.993±2.212 17.16 8.994±2.781 18.27
7 1500 9.426± 1.664 4.91 9.858±1.828 20.39 9.669±1.240 25.76
8 1500 10.636± 2.541 5.62 10.732±2.111 14.56 10.958±2.518 6.57
5 500 7.159± 1.475 5.62 8.018±2.109 19.37 7.315±1.483 6.22
5 1000 6.972± 1.247 6.04 6.376±0.203 11.02 7.297±1.311 6.37
5 1500 7.031± 1.289 4.40 7.321±1.236 26.56 6.901±0.802 13.16
5 2000 7.787± 1.363 6.23 7.443±1.457 14.05 7.776±2.514 9.48
5 2500 7.208± 1.628 10.92 6.521±0.082 11.66 7.611±1.687 5.59

Table 6: Ablation study results of different configurations
for the invertible neural network model.

We see that as we increase the number of invertible net-
work layers, the integration times increase, while the hidden
dimension size of the sub-networks within the invertible
network does not visibly affect the integration times. Over-
all, the generalisation performance improves as the number
of invertible layers are used, up to some number of lay-
ers. Beyond this number of layers, adding layers does not
vary performance significantly. Additionally, the hidden
dimension sizes, for the values tested do not greatly vary
the generalisation performance.

C. Proofs
Proofs for Propositions 4.1 and 4.2 can be found in (Lee,
2012) as Propositions 8.19 and 9.6.

Theorem 4.1. Suppose two ODEs x′(t) = g(x(t)),
y′(t) = f(y(t)) are related via y(t) = F (x(t)), where
F is a diffeomorphism. If the former ODE is asymptotically
stable with ne equilibrium points x∗1, . . . ,x

∗
ne , then the lat-

ter ODE is also asymptotically stable, with equilibrium
points F (x∗1), . . . , F (x

∗
ne).

Proof. First we show F (x∗1), . . . , F (x
∗
ne) are equilibrium

points of ODE y′(t) = f(y(t)). By y(t) = F (x(t)), we
can write the time derivatives y′ at F (x) as

y′(t) = f(F (x(t))) =
dF (x(t))

dt
= JF (x(t))g(x(t)),

(12)
where JF (x(t)) is the Jacobian of F . F is a diffeomor-
phism and hence invertible over its domain. By the in-
verse function theorem (Dontchev & Rockafellar, 2009),
the Jacobian JF (x(t)) is invertible, and furthermore, by
the invertible matrix theorem (Horn & Johnson, 2012), it
has a null-space containing only the zero vector. There-
fore, y′(t) = f(F (x(t))) = JF (x(t))g(x(t)) = 0 if
and only if g(x(t)) = 0. As g(x∗(t)) = 0 for x∗ ∈
{x∗1 . . .x∗ne}, then we also have f(F (x∗(t))) = 0, hence
y∗ ∈ {F (x∗1), . . . , F (x∗ne)} gives equilibrium points for
y′(t) = f(y(t)).

We now show asymptotically stability of y′(t) = f(y(t)),
by the existence of a Lyapunov function (Lefschetz &
Alverson, 1962), Vy : Rn → R, where n is the di-
mension of y, such that ∂Vy(y)

∂t < 0 for all y ∈
Rn \ {F (x∗1), . . . , F (x∗ne)}, and ∂Vy(y

∗)
∂t = 0 for y∗ ∈

{F (x∗1), . . . , F (x∗ne)}. The existence of such a Lyapunov
function is a necessary and sufficient condition for stability.
We assume the candidate function to be Vy = Vx(F

−1(y)),
where Vx is a valid Lyapunov function of the asymptotically
stable x′(t) = g(x(t)), with ∂Vx(x)

∂t < 0 for x ∈ Rb \
{x∗1, . . . ,x∗ne} and ∂Vx(x

∗)
∂t = 0 for x∗ ∈ {x∗1, . . . ,x∗ne}.

Consider the time derivative of the candidate function:
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∂Vy(y)

∂t
=
∂Vy
∂y

∂y

∂t
=
∂Vy
∂y

f(y) (13)

=
(∂Vx
∂x

∂F−1

∂y

∂F

∂x
g(x)

)
x=F−1(y)
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)
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.

(16)

Equation (15) by the inverse function theorem (Dontchev &
Rockafellar, 2009). Therefore, our candidate Vy is a valid
Lyapunov function for y′(t) = f(y(t)). Thus, the system
y′(t) = f(y(t)) is asymptotically stable.

D. Additional Implementation details
We run all of our experiments on a machine with an
Intel i7-3770k 3.50GHz processor, 32GB RAM and
an NVIDIA GTX1080 GPU, with 8GB vRAM. For
all of our experiments, we use the optimizer ADAM
with step-size 10−4, except for the experiments in
the Latent ODE, which where we use the standard
set-up from the Latent-ODE repository (Rubanova
et al., 2019). The dynamics models of compared ODEs
have the architecture: Input->dense(Input dimensions,
150)->tanh()->dense(150,150)->tanh()->dense(150,150)-
>tanh()->dense(150,150)->tanh()->dense(150,150)-
>tanh()->dense(150,output dimensions)->output. Except
for the Latent-ODE comparisons where settings from the
original repository (Rubanova et al., 2019) is used. For all
of the experiments, except latent ODE experiments where
we follow the original set-up, we train for 5000 iterations in
total.

For all the experiments where we directly learn a dy-
namical system, we use an invertible neural network
with 5 invertible layers, and sub-networks with one
hidden layer of 1500 units. For non-linear base ODEs
parameterized with a simple neural networks, we use
the architecture: Input->dense(Input dimensions,30)-
>tanh()->dense(30,30)->tanh()->dense(30,30)->tanh()-
>dense(30,Output dimensions)->Outputs. Additionally, all
learned dynamics, both with ours and compared methods,
excepted when adhering to the original Latent-ODE set-up,
were augmented with the same number of additional zeros
as original state dimensions, for example 3 dimensional
systems were augmented to 6 dimensions. An exception to
this is the high-dimensional image rotation problem, where
we found that adding half as many augmented states as the
original state dimensions was sufficient.

The Lotka-Volterra system used has the dynamics:

x′(t) = x(t)(0.75− 0.75y(t)) (17)
y′(t) = y(t)(−0.75 + 0.75x(t)− 0.75z(t)) (18)
z′(t) = z(t)(−0.75 + 0.75y(t)) (19)

for t ∈ [0, 7] with initial conditions
{(5, 5, 1), (2, 6, 6), (3, 1, 4), (7, 1, 2), (6, 2, 4),
(3, 3, 1), (2, 2, 2), (4, 4, 3), (3, 3, 4), (1, 1, 5)}.

The Lorenz system used has the dynamics:

x′(t) = 10(y(t)− x(t)) (20)
y′(t) = x(t)(28− y(t))− x(t) (21)

z′(t) = x(t)y(t)− 8

3
z(t) (22)

for t ∈ [0, 2] with the initial conditions (0.15, 0.15, 0.15).

The Robertson’s system used has the dynamics:

x′(t) = −0.04x(t) + 3× 104y(t)z(t) (23)

y′(t) = 0.04x(t)− 3× 104y(t)2 − 104y(t)z(t) (24)

z′(t) = 3× 104y(t)2 (25)

for t ∈ [0, 120] with the initial conditions (1, 0, 0). During
training and evaluation, we rescale the data dimensions, and
roll out the ODE in log-space.

In the latent-ODE problem setup, an observable time-
series is assumed to have latent variables which follow
some ODE dynamics, and uses an Encoder -> ODE ->
Decoder architecture where an ODE is used to model the
hidden latent dimensions between the Encoder and Decoder.
Note that a valid ODE is not guaranteed in the space of
observable data, but only in the latent dimensions. Our set-
up follows the repository given by (Rubanova et al., 2019),
with the training settings for the Encoder and Decoder ar-
chitecture as below:

Periodic 100: We train the entire model for 500 epochs
with Adamax optimizer and an initial learning rate of 10−2.
We sub-sample 5% of the original time points and the size
of the latent state is 10. The noise weight is set as 0.01 and
the total number of time points is 100. For the Neural ODE
architectures, there is one layer in the recognition ODE and
one layer in the generative ODE, and 100 unit per layers.
For the GRU unit there exists 100 units per layer for the
GRU update network. All the above settings are exactly the
same as the configuration given in repository (Rubanova
et al., 2019).

Periodic 1000: Settings are the same as Periodic 100, ex-
cept that the total number of time points is set as 1000 to
predict for finer time steps.

Human Activity: The model is trained for 200 epochs, with
a dimensionality of 15 in the latent state. There are 4 layers



ODE learning with INNs

in the recognition ODE and 2 layers in the generative ODE,
and 500 units per layer. The GRU unit has exists 50 units
per layer.

ECG: Settings are the same as the classification task of
Human Activity, except that we use the ECG Heartbeat data
available at Dataset (2018), removing the ‘0’ class.

Rotating Image Sequence: We use the first 100 MNIST
“3” characters as training and the next “3” characters as test.
We create a sequence of 44 images for each initial character
until we rotate the initial image by 180 degrees. During
testing, we integrate to obtain a sequence of 440, at 10x
data resolution. We obtain latent representations of each
image by training a convolutional autoencoder to obtain a
64 dimension latent vector. We fit the ODE on these latent
dimensions, with an ADAM optimizer with learning rate
5× 10−4.

ODE dimensions and sequence lengths: The following
table contains details on the dimensions of the ODE models.
For latent ODE models, these are the dimensions of the
latent state. We also provide the lengths of the integrated
trajectories of the ODEs during inference.

Dimensions of ODE to Learn Time points in Trajectory
3d-LV 3 700
Imitate S 2 1000
Pick cube 3 1000
Imitate C 3 1000
Periodic 100 10 100
Periodic 1000 10 1000
Human Activity 15 157
ECG 15 188
Rotating MNIST 64 440
Lorenz 3 800
Robertson 3 500

E. Additional Figures
We provide figures for learning an additional Lorenz sys-
tem for t ∈ [0, 5], with trajectory at initial condition
(−3.1,−1.15, 8.15). We see that our method, with a base
ODE parameterized by a neural network, can generate tra-
jectories that closely match the ground truth:

Figure 6: A learned Lorenz system with the generated tra-
jectory, at 10x data resolution, and ground truth.
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Figure 7: A learned Lorenz system with the generated tra-
jectory, at 10x data resolution, and ground truth, rolled out
in time
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Figure 8: The corresponding plot showing the coordinates
over the time interval of a learned Lorenz system over t ∈
[0, 2], at 10x data resolution, which corresponds to the 3d
figure shown as fig 5 (left).

We provide additional plots of trajectories, at different start
points, from a learned Lotka-Volterra system. The ground
truth data is in blue, while generated trajectory, of 10x data
resolution, is in red.

Figure 9: We see that trajectories from the learned Lotka-
Volterra system, in red, closely matches the ground truth, in
blue.

We provide an additional figure for trajectories generated at
unseen starting points after being trained on the “imitation
C” training data. The four generated trajectories are in
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red, while the ground truths are in blue. Our generated
trajectories match the ground truth, and accurately capture
the motion of drawing a “C” character.

Figure 10: Robot motion trajectories in red, that imitate
drawing a “C” character. The ground truth is given in blue.

F. Licenses for Packages
Common scientific packages used in our code include: (i)
Numpy (Harris et al., 2020) (BSD license), for general linear
algebra and miscellaneous math operations (ii) Matplotlib
(Hunter, 2007) (BSD compatible custom license), for plot-
ting figures.

More specialized packages used include (i) FrEIA (Ardiz-
zone et al., 2019) (MIT license), for invertible neural net-
works; (ii) TorchDiffEq (Chen et al., 2018) (MIT license),
for differentiable numerical integrators; (iii) Pytorch (Paszke
et al., 2019) (BSD license), for optimisation and automatic
differentiation; (iv) Latent-ODE (Rubanova et al., 2019)
(MIT license), for latent ODE implementation.
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