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Abstract

Stochastic high-order methods for finding first-
order stationary points in nonconvex finite-sum
optimization have witnessed increasing interest
in recent years, and various upper and lower
bounds of the oracle complexity have been proved.
However, under standard regularity assumptions,
existing complexity bounds are all dimension-
dependent (e.g., polylogarithmic dependence),
which contrasts with the dimension-free com-
plexity bounds for stochastic first-order methods
and deterministic high-order methods. In this
paper, we show that the polylogarithmic dimen-
sion dependence gap is not essential and can be
closed. More specifically, we propose stochas-
tic high-order algorithms with novel first-order
and high-order derivative estimators, which can
achieve dimension-free complexity bounds. With
the access to p-th order derivatives of the objec-
tive function, we prove that our algorithm finds ε-
stationary points with O(n(2p−1)/(2p)/ε(p+1)/p)
high-order oracle complexities, where n is the
number of individual functions. Our result strictly
improves the complexity bounds of existing high-
order deterministic methods with respect to the de-
pendence on n, and it is dimension-free compared
with existing stochastic high-order methods.

1. Introduction
We study the following nonconvex finite-sum optimization
problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1.1)
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where n is the number of individual functions and each
fi : Rd → R can possibly be a nonconvex function. Due to
the lack of convexity, it can, in the worst case, be NP-hard to
find the global minimum of (1.1) for some specific function
f (Hillar & Lim, 2013). Thus, our goal is to instead find an
ε-stationary point x, which is defined by

‖∇f(x)‖2 ≤ ε.

Understanding the complexity of finding stationary points
for nonconvex finite-sum optimization has been a central
problem in both the machine learning and the optimization
communities. Gradient descent, which is probably the most
basic algorithm for the above goal, can find ε-stationary
points within O(ε−2) number of iterations, or equivalently,
O(nε−2) number of gradient evaluations of the individual
functions. Starting from gradient descent and its complexity,
numerous algorithms have been proposed with improvement
from different aspects. The improvement can be mainly
summarized into three categories:

• Better dependence on ε with the help of high-order infor-
mation. By only gradient information, it is well-known
thatO(ε−2) is the optimal iteration complexity (Nesterov,
2013). To break the ε−2 barrier, high-order information
including Hessian and higher-order derivatives have to
be employed, and better dependence on ε−1 can indeed
be achieved. Representative algorithms include cubic
regularization (Nesterov & Polyak, 2006) with O(ε−3/2)
iteration complexity and high-order regularized method
(HR) (Birgin et al., 2017) with O(ε−(p+1)/p) iteration
complexity, where p is the order of derivatives being
used.

• Better dependence on n with the variance-reduction
technique. To improve the dependence on n, variance
reduction technique is often employed. More specifi-
cally, a semi-stochastic gradient estimator called variance-
reduced gradient has been firstly proposed for finite-sum
convex optimization (Roux et al., 2012; Johnson & Zhang,
2013) with a better gradient complexity. Latter on, a re-
cursive (Nguyen et al., 2017; Fang et al., 2018) and a
nested gradient estimator (Zhou et al., 2018c) have been
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Table 1. Comparisons of different methods to find ε-stationary points w.r.t. their oracle complexity

Algorithm Complexity Lipschitiz continuity assumption Dimension-free? Small batch size?

CR
(Nesterov & Polyak, 2006)

O
(
n
ε3/2

)
Second-order yes no

SVRC
(Zhou et al., 2018a) O

(
log d · n

4/5

ε3/2

)
Second-order no no

STR2
(Shen et al., 2019) O

(
log d · n

3/4

ε3/2

)
Second-order no no

HR
(Birgin et al., 2017)

O
(

n
ε(p+1)/p

)
p-th-order yes no

OP-TE
(Algorithm 2) O

(
n(3p−1)/(3p)

ε(p+1)/p

)
p-th-order yes no

TP-TE
(Algorithm 3) O

(
n(2p−1)/(2p)

ε(p+1)/p

)
p-th-order yes yes

Lower bound
(Emmenegger et al., 2021) Ω

(
n(p−1)/(2p)

ε(p+1)/p

)
p-th-order – –

proposed for the nonconvex setting with O(n1/2ε−2) gra-
dient complexity, which strictly improves that of gradient
descent by an O(n1/2) factor.

• Better dependence on n and ε at the price of dimen-
sion dependence. This line of works improve the depen-
dence both on n and ε by introducing variance-reduced
gradient and high-order derivative estimators. For in-
stance, under the standard Hessian Lipschitz assump-
tion, Zhou et al. (2018a) proposed an SVRC algorithm
with O(log d · n4/5/ε3/2) number of second-order ora-
cle calls. Shen et al. (2019) proposed an STR algorithm
with O(log d · n3/4/ε3/2) number of second-order oracle
calls. Due to the use of semi-stochastic Hessian, both of
these works have a logarithmic dependence on dimension
d, which makes them not fully dimension-free, unlike
gradient methods.1

Given these existing works, it is natural to ask:

Is it possible to design a dimension-free algorithm with
better dependence on n and ε?

In this work, we answer this question affirmatively by
proposing two algorithms, Single-Point Taylor Expansion
(OP-TE) and Two-Point Taylor Expansion (TP-TE). Both
of these two algorithms utilize p-th order information of
function f by constructing a stochastic Taylor series-based
derivative estimators. To find ε-stationary points, we show

1The only notable exception is the algorithm proposed by
Zhang et al. (2018). However, they made a uncommon Hessian
Lipschitz assumption in terms of the Frobenius norm rather than
the standard counterpart in terms of the operator norm. By bound-
ing the Frobenius norm with operator norm, their complexity result
yields an even worse polynomial dependence on d.

that OP-TE enjoys an O(n(3p−1)/(3p)/ε(p+1)/p) oracle
complexity and TP-TE enjoys an O(n(2p−1)/(2p)/ε(p+1)/p)
oracle complexity. It is worth noting that both complexity
results are independent of the dimension, and unlike previ-
ous approaches (Kohler & Lucchi, 2017; Zhou et al., 2018a),
the result of TP-TE can be attained without choosing a large
batch size (i.e., the batch size can be chosen as 1). Our result
is the first of its kind in stochastic high-order optimization
that is dimension-free and supports small batch size, while
achieving the state-of-the-art oracle complexity. We com-
pare our results with previous ones (including both upper
and lower bounds) in Table 1.

Notation Let xj denote the j-th entry of an vector x and
‖x‖2 denotes its Euclidean norm. Let [n] denote {1, . . . , n}.
A d-dimensional p-th order tensor J is a multilinear operator
(Rd)p → R, which is defined as

J(v1, . . . ,vp) :=

d∑
i1=1

· · ·
d∑

ip=1

vi1 . . . vipJi1,...,ip .

For any tensor J, we denote its Euclidean operator norm as
‖J‖op, which is

‖J‖op := sup
‖v1‖2≤1,...,‖vp‖2≤1

|J(v1, . . . ,vp)|.

For any two tensors J and I, let 〈J, I〉 denote their inner
product, which is

〈J, I〉 =
d∑

i1=1

· · ·
d∑

ip=1

Ji1,...,ipIi1,...,ip .

Let ⊗ be the Kronecker product. For any vector x, let x⊗k

denote x ⊗ · · · ⊗ x for k times. Let J be a d-dimensional
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p-th order tensor, x ∈ Rd, then for any j ≤ p, we use
〈J,x⊗j〉 to denote the (p − j)-th order tensor I such that
for any y ∈ Rd,

I(y, . . . ,y) = 〈J,x⊗j ⊗ y⊗(p−j)〉.

We call a tensor is symmetric if for any j1, . . . , jp which
is a permutation of i1, . . . , ip, we have Jj1,...,jp = Ji1,...,ip .
In this work we only consider symmetric tensors. For a
symmetric tensor J, Zhang et al. (2012) showed that its
operator norm can be defined by

‖J‖op = sup
‖v‖2=1

〈J,v⊗p〉.

For any p ≥ 1 and p-th order continuous differentiable
function f : Rd → R, let ∇pf(x) denote the tensor of p-th
order partial derivates of f at x, that is,

[∇pf(x)]i1,...,ip =
∂pf

∂xi1 · · · ∂xip
(x), i1, . . . , ip ∈ [d].

∇pf(x) is symmetric due to its continuous differentiable
property, that is, let j1, . . . , jp be a permutation of i1, . . . , ip,
we have [∇pf(x)]i1,...,ip = [∇pf(x)]j1,...,jp .

In this work, all index subsets are multiset. For any tensor
J that can be written as J = 1/n ·

∑n
i=1 Ji, we use JI(x)

to represent 1/|I| ·
∑
i∈I Ji(x). We use fn = O(gn) to

denote that fn ≤ Cgn for some constant C > 0 and use
fn = Õ(gn) to hide the logarithmic factors of gn.

2. Related Work
There is a series of works studying p-order optimization
with the special cases p = 1 or p = 2. Due to the space
limit, we do not provide a comprehensive review here. In-
stead, we mainly review related works on p-th order (p ≥ 2)
optimization and variance reduction techniques. The fol-
lowing works focus on finding either ε-stationary points,
(ε, εh)-second-order stationary points, or a q-th order (ε, δ)-
approximate local minimizer, which is defined as a point x
satisfying φδj(x) ≤ εδj/j! for all 1 ≤ j ≤ q, where φδj(x)
is the maximum value of the p-th order Taylor expansion
of f expanded at x. Such a notion is firstly proposed and
studied by Cartis et al. (2016).

Stochastic second-order optimization The most related
works are stochastic second-order optimization. The pi-
oneer work Nesterov & Polyak (2006) proposed the de-
terministic cubic-regularized Newton method and proved
that it finds (ε,

√
ε)-second-order stationary points within

O(ε−3/2) number of iterations. To extend it from deter-
ministic case to stochastic case, Kohler & Lucchi (2017);
Xu et al. (2017) proposed algorithms with subsampled gra-
dient and subsampled Hessian within Õ(nε−3/2 ∧ ε−7/2)

gradient complexity and Õ(nε−3/2 ∧ ε−5/2) Hessian com-
plexity. Zhou et al. (2018a) proposed a stochastic variance

reduced cubic regularization method (SVRC) for the finite-
sum setting that attains O(n4/5ε−3/2) second-order oracle
complexity. Zhou et al. (2018b); Wang et al. (2018b); Zhang
et al. (2018) used different gradient and Hessian estimators
and obtain a better Hessian complexity, i.e., O(n2/3ε−3/2).
Our work fits in these works by considering the special case
p = 2.

High-order optimization In recent years, high-order op-
timization has attracted most researchers’ attention. For
instance, Birgin et al. (2017) firstly proposed a regularized
minimization method that finds stationary points within
O(ε(p+1)/p) number of iterations. Cartis et al. (2020a) pro-
posed an algorithm with a sharp O(ε(p+1)/(p−q+1)) num-
ber of function valuations to find approximate local min-
imizer. Cartis et al. (2017) proposed an adaptive regu-
larized method that finds second-order stationary points
within O(ε(p+1)/p + ε

(p+1)/(p−1)
h ) number of iterations.

Cartis et al. (2020b) proposed deterministic but exact trust-
region methods that find approximate local minimizer within
O(ε−(q+1)) function evaluations. Bellavia et al. (2021) pro-
posed stochastic trust-region methods that find approximate
local minimizer within similar O(ε−(q+1)) number of func-
tion evaluations. Birgin et al. (2020) proposed a computa-
tional feasible fourth-order regularization method that finds
stationary points withinO(ε−4/3) number of iterations. Cor-
responding to above mentioned upper bound results, There
are another of line of works providing lower bounds of
complexity. For instance, Cartis et al. (2020a) provided a
hard instance that shows their proposed algorithm needs
at least O(ε(p+1)/(p−q+1)) number of function valuations
to find approximate local minimizer. Carmon et al. (2017)
constructed a hard instance that suggests any deterministic
or randomized algorithm needs at least O(ε(p+1)/p) number
of function evaluations to find stationary points. Arjevani
et al. (2020) suggested that any stochastic algorithm with
an access to the stochastic and Hessian-vector-product or-
acle needs at least O(ε−3) number of oracle calls to find
stationary points, and O(ε−3 + ε−5h ) number of oracle calls
to find second-order stationary points. Our work fits in this
line of works that studies the finite-sum setting with a best
O(n(2p−1)/(2p)/ε(p+1)/p) number of oracle calls.

Variance reduction Variance reduction technique is firstly
proposed for first-order convex finite-sum optimization
(Roux et al., 2012; Johnson & Zhang, 2013; Xiao & Zhang,
2014; Defazio et al., 2014; Nguyen et al., 2017). For non-
convex finite-sum optimization, to find stationary points,
Reddi et al. (2016); Allen-Zhu & Hazan (2016) showed
an O(n2/3/ε2) gradient complexity. Later on, the recur-
sive/nested gradient estimators have been studied (Fang
et al., 2018; Zhou et al., 2018c; Wang et al., 2018a; Nguyen
et al., 2019; Cutkosky & Orabona, 2019) and further im-
proved the gradient complexity to O(n1/2/ε2). Such a com-
plexity has been shown to be near-optimal (Fang et al.,
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2018; Zhou & Gu, 2019). Our work extends this direction
by proposing stochastic high-order Taylor expansion-based
estimators.

3. Preliminaries and Assumptions
In this work, we assume our algorithms have access to the
following incremental high-order oracle (IHO), which has
been introduced in Emmenegger et al. (2021).

Definition 3.1. Given a function f = 1/n ·
∑n
i=1 fi, the

incremental high-order oracle (IHO) O(x, i) returns the
following tuple of tensors:

O(x, i) := [∇fi(x),∇2fi(x), . . . ,∇pfi(x)].

Clearly, IHO is the extension of the existing oracles incre-
mental first-order oracle (Agarwal & Bottou, 2015) and
second-order oracle (Zhou et al., 2018a). For any tensor
function g : Rd → (Rd)p, we call it L Lipschitz continuous
if for any x1,x2 ∈ X , ‖g(x1)− g(x2)‖op ≤ L‖x− y‖2.

Next lemma is useful to control the difference between a
tensor function and its Taylor series.

Lemma 3.2. For any function g : Rd → R, if ∇pg exists
and∇pg isLp-Lipschitz continuous, then for any y,h ∈ Rd,
then for any 0 ≤ s ≤ p, we have∥∥∥∥∇sg(y + h)−∇sg(y)−

p−s∑
j=1

1

j!
〈∇s+jg(y),h⊗j〉

∥∥∥∥
op

≤ Lp
(p− s+ 1)!

‖h‖p−s+1.

Proof. See Appendix A.

Lemma 3.2 has many special forms. For instance, when we
take s = 0, p = 1, we have the function smooth property
used in first-order optimization. When we take s = p = 2,
we have the Hessian smoothness property used in second-
order optimization. Next we introduce our assumptions used
in this work.

Assumption 3.3. For any i ∈ [n], ∇pfi exists, and it is
Lp-Lipschitz continuous.

Clearly, due to the triangle inequality, we conclude ∇pf
exists and is also Lp-Lipschitz continuous.

Assumption 3.4. Let the algorithm start at iteration x0,
then we have f(x0)− infx∈Rd f(x) ≤ ∆f .

Finally, given the access to up to p-th-order derivatives
of the function f , we restate the high-order regularized
method (HR) proposed by Birgin et al. (2017) here, with
their convergence guarantee. Starting from x0, at iteration t,
HR calculates the tuple of derivatives at iteration xt, which

is (∇f(xt), . . . ,∇pf(xt)). Then HR updates xt+1 ← xt+
ht, where ht can be set as global minimizer of the following
p-th order regularized Taylor expansion of f at xt:

mt(h) :=

p∑
j=1

1

j!
〈∇jf(xt),h

⊗j〉+
M

(p+ 1)!
‖h‖p+1

2 ,

where M is the regularization parameter. The following
theorem suggests that HR only takes O(ε−(p+1)/p) number
of iterations to find a stationary point.

Theorem 3.5 (Theorem 2.5, Birgin et al. 2017). By prop-
erly setting M , HR outputs xT satisfying ‖∇f(xT )‖2 ≤ ε,
where T = O(∆fL

1/p
p /ε(p+1)/p). Hence, HR finds ε-

stationary points within nT = O(nL
1/p
p /ε(p+1)/p) number

of IHO calls.

4. Warm-up: Inexact Regularized p-th Order
Optimization

Before proposing our main algorithms, we introduce a gen-
eral inexact high-order optimization method in this section.
We propose our algorithm as Algorithm 1. In general, Algo-
rithm 1 runs an inexact, constrained high-order regularized
method. At iteration t, Algorithm 1 computes estimators
J
(j)
t , j = 1, . . . , p to approximate its derivatives ∇jf(xt)

at current iteration t. Then Algorithm 1 computes ht as
the minimizer of the regularized Taylor expansion mt (4.1),
within the ball ‖h‖2 ≤ r, where r is the constraint radius.
Algorithm 1 updates its iteration xt+1 ← xt + ht. Now,
Algorithm 1 either proceeds to next iteration or returns xt+1,
if the norm of ht is strictly less than the radius r. Note that
similar constrained regularized approach has been applied
for the p = 2 case in HVP-RVR (Arjevani et al., 2020). To
better understand why Algorithm 1 needs such a ball con-
strain, and returns iterations based on ‖ht‖2, we propose
the following two lemmas and their proofs.

Lemma 4.1. Let t be the iteration where Algorithm 1 does
not end. Then we have ‖ht‖2 = r and

f(xt+1)

≤ f(xt)−
M

2(p+ 1)!
rp+1 +

p∑
j=1

1

j!
‖∇jf(xt)− J

(j)
t ‖opr

j .

Proof. First, since ht is the minimizer of mt over ‖h‖2 ≤
r, we have mt(ht) = inf‖h‖2≤rmt(h) ≤ mt(0) = 0.
Meanwhile, since Algorithm 1 does not end at t-th iteration,
we have ‖ht‖2 = r. Then due to Lemma 3.2, we have

f(xt+1)− f(xt)

≤
p∑
j=1

1

j!
〈∇jf(xt),h

⊗j
t 〉+

Lp
(p+ 1)!

‖ht‖p+1
2
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Algorithm 1 High-order Meta Algorithm
Require: Regularization parameter M , constraint radius r

1: for t = 0, . . . , T − 1 do
2: Compute J

(j)
t , j = 1, . . . , p following Algorithm 2 or 3.

3: Let ht be defined as follows:

ht ← argmin
‖h‖2≤r

mt(h) :=

p∑
j=1

1

j!
〈J(j)
t ,h⊗j〉+

M

(p+ 1)!
‖h‖p+1

2 . (4.1)

4: Set xt+1 ← xt + ht
5: if ‖ht‖2 < r then return xt+1

6: end for

= mt(ht) +

p∑
j=1

1

j!
〈∇jf(xt)− J

(j)
t ,h⊗jt 〉

− M − Lp
(p+ 1)!

‖ht‖p+1
2

≤ − M

2(p+ 1)!
‖ht‖p+1

2 +

p∑
j=1

1

j!
‖∇jf(xt)− J

(j)
t ‖op‖ht‖j2

= − M

2(p+ 1)!
rp+1 +

p∑
j=1

1

j!
‖∇jf(xt)− J

(j)
t ‖opr

j ,

where the second inequality holds due to the factsmt(ht) ≤
0 and M ≥ 2Lp. That ends our proof.

Lemma 4.2. Suppose that Algorithm 1 ends at t-th iteration.
Then we have

‖∇f(xt+1)‖2

≤ 2M

p!
rp +

p∑
j=1

1

(j − 1)!
‖∇jf(xt)− J

(j)
t ‖opr

j−1.

Proof. Let L(h, λ) be the Lagrangian function of the con-
strained minimization problem minmt(h) with the con-
straint ‖h‖2 − r ≤ 0, where λ is the dual variable. Then
there exists a λt > 0, together with ht satisfy the KKT
condition, where

λt(‖ht‖2 − r) = 0, (Complementary slackness) (4.2)
0 = ∇mt(ht) + λt∇(‖h‖2 − r)|h=ht , (Stationarity).

(4.3)

Since Algorithm 1 ends at iteration t, then due to the design
of the algorithm we have ‖h‖2 < r. Then by (4.2), we have
λt = 0. Substituting it to (4.3), we have 0 = ∇mt(ht),
which leads to∥∥∥∥ p∑

j=1

1

(j − 1)!
〈J(j)
t ,h

⊗(j−1)
t 〉

∥∥∥∥
2

=
M

p!
‖ht‖p2.

Furthermore, due to Lemma 3.2, we have∥∥∥∥∇f(xt+1)−
p∑
j=1

1

(j − 1)!
〈∇jf(xt),h

⊗(j−1)
t 〉

∥∥∥∥
2

≤ Lp
p!
‖ht‖p2.

Then by triangle inequality, we have

‖∇f(xt+1)‖2

≤
∥∥∥∥∇f(xt+1)−

p∑
j=1

1

(j − 1)!
〈∇jf(xt),h

⊗(j−1)
t 〉

∥∥∥∥
2

+

∥∥∥∥ p∑
j=1

1

(j − 1)!
〈J(j)
t −∇jf(xt),h

⊗(j−1)
t 〉

∥∥∥∥
2

+

∥∥∥∥ p∑
j=1

1

(j − 1)!
〈J(j)
t ,h

⊗(j−1)
t 〉

∥∥∥∥
2

≤ M + Lp
p!

‖ht‖p2

+

p∑
j=1

1

(j − 1)!
‖∇jf(xt)− J

(j)
t ‖op‖ht‖j−12

≤ 2M

p!
rp +

p∑
j=1

1

(j − 1)!
‖∇jf(xt)− J

(j)
t ‖opr

j−1,

where the last inequality holds since ‖ht‖2 ≤ r and M ≥
Lp.

Lemmas 4.1 and 4.2 show the power of applying a ball
constraint over ht to HR. Assume that the derivative esti-
mation error J(j)

t −∇jf(xt) is small enough. Lemma 4.1
suggests that the function value f(x) will decrease at least
O(Mrp+1) per step. On the other hand, Lemma 4.2 sug-
gests that the norm of the gradient of the final output xT+1

is of order O(Mrp). Thus, Algorithm 1 will end within
O(∆f/(Mrp+1)) number of iterations to find an O(Mrp)-
stationary point. By setting Mrp ∼ ε would guarantee the
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finding of ε-stationary points. Without such a constrain,
we can not guarantee that the final output iteration is an
ε-stationary point.

Difference between Algorithm 1 and Cartis et al.
(2020a) Cartis et al. (2020b) Cartis et al. (2017) Here we
highlight the difference between our Algorithm 1 and sev-
eral related works. Compared with Cartis et al. (2017), our
Algorithm 1 introduces an additional constraint ‖h‖2 ≤ r,
which guarantees that the approximation error of our gradi-
ent estimator can be well-controlled. Compared with Cartis
et al. (2020a), Algorithm 1 allows the inexact derivative
estimators. Compared with Cartis et al. (2020b), our algo-
rithm uses a regularized version of the high-order Taylor
expansion of f .

Implementation of Algorithm 1 for p = 1, 2 We discuss
how to solve (4.1) for p = 1, 2 cases, and we leave to solve
the general p > 2 cases as future work. For the p = 1 case,
(4.1) becomes a standard stochastic gradient descent step
which can be computed in O(d) time. For the p = 2 case,
we solve (4.1) by the method of Lagrange multipliers. By
the proof of Lemma 4.2, we know that ht satisfies ‖ht‖2 ≤
r, (4.2) and (4.3). Therefore, if ‖ht‖2 = r, then by (4.3)
we have

J1
t + J2

tht +
M

2
‖ht‖2ht + λt

ht
‖ht‖

= 0

⇒ ht = ut(λt) := −(J2
t +Mr/2I + λt/rI)

†J1
t ,

where A† denotes the pseudoinverse of A. Since ‖ht‖2 =
r, we have ‖ut(λt)‖2 = r. Therefore, based on whether
the equation ‖ut(λ)‖2 = r has a nonnegative solution, (4.1)
can be solved as follows:

• If ‖ut(λ)‖2 = r has a positive solution λ∗ > 0, we set
λt = λ∗ and ht = ut(λt). Such a calculation can be
done by computing the product between a matrix inverse
and a vector with O(d2) complexity.

• If ‖ut(λ)‖2 = r does not have a positive solution, we
must have ‖ht‖2 < r, then (4.1) becomes the standard
cubic regularization subproblem, which can be solved
with O(d3) complexity (Nesterov & Polyak, 2006).

5. Stochastic High-order Derivative Estimator
In Section 4 we have proposed Algorithm 1 as a general
framework which can be applied with any inexact derivative
estimators. In this section we propose two algorithms that
provide different construction of the derivative estimators.

5.1. One-point Taylor Expansion Estimator

We propose our first algorithm in Algorithm 2. Algorithm 2
adapts the two-layer-loop framework which has been widely

Algorithm 2 OP-TE
Require: Reference point update frequency m, batch size

B.
1: if t = 0 mod m then
2: J

(j)
t ← ∇jf(xt),∀1 ≤ j ≤ p, x̃← xt

3: else
4: Sample St ∈ [n], |St| = B

5: We set J(1)
t as

J
(1)
t ← ∇fSt(xt)−∇fSt(x̃) +∇f(x̃)

+

p−1∑
s=1

1

s!
〈∇s+1f(x̃)−∇s+1fSt(x̃), (xt − x̃)⊗s〉.

For 2 ≤ j ≤ p, we set

J
(j)
t ← ∇jf(x̃) +

p−j∑
s=1

1

s!
〈∇j+sf(x̃), (xt − x̃)⊗s〉.

6: end if

used in variance reduction-based algorithms (Johnson &
Zhang, 2013). Specifically, Algorithm 2 maintains a refer-
ence point denoted by x̃, which is repeatedly updated as
the current iteration xt with frequency m. The following
lemma suggests at any iteration, the distance between the
current iteration and the last reference point will be upper
bounded by both the frequency and the constraint radius.

Lemma 5.1. For any t, let x̃ be the reference point at t-th
iteration, then we have ‖x̃− xt‖2 ≤ mr.

Proof. By the definition of x̃ we know that there exists an
q such that x̃ = xq and q ≤ t ≤ q +m. Using the fact that
x̃− xt =

∑t−1
i=q(xi − xi+1) =

∑t−1
i=q hi, then we have

‖x̃− xt‖2 ≤ (t− q)r ≤ mr,

where the first inequality holds due to triangle inequality,
the second one holds since ‖hi‖2 ≤ r and the last one holds
since 0 ≤ t− q ≤ m.

When the reference point is updated, Algorithm 2 computes
and stores derivatives of function f from order 1 to p by call-
ing IHO n times. After that, at each iteration, Algorithm 2
samples an index subset St with cardinality |St| = B. Then
Algorithm 2 sets the derivative estimator J(j)

t for j = 1 and
j ≥ 2 separately. Case I: j ≥ 2. Algorithm 2 constructs
J
(j)
t as the (p− j)-th order Taylor series of derivative func-

tion∇jf at point x̃. There are a few key points needs to be
noticed for our construction. First, such estimators do not
use any information of the derivatives at current iteration
xt, since it only uses the stored derivatives∇j+sf(x̃) at x̃.
Second, such estimators are deterministic but biased, since
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it does not involve any randomness. In a sharp contrast, ex-
isting estimators such as stochastic Hessian in SVRC (Zhou
et al., 2018a) or STR (Shen et al., 2019) for the setting p = 2,
use information at current iteration to build their stochastic
estimators. It seems that our estimators may be inferior than
previous estimators. However, the following lemma charac-
terizes the estimation error of our estimators and suggests
that our estimators have been “accurate enough”.

Lemma 5.2. For 2 ≤ j ≤ p and any t, we have

‖J(j)
t −∇jf(xt)‖op ≤

Lpm
p−j+1rp−j+1

(p− j + 1)!
.

Proof. By Lemma 3.2, we have

‖J(j)
t −∇

jf(xt)‖op

=

∥∥∥∥∇jf(x̃) +

p−j∑
s=1

1

s!
〈∇j+sf(x̃), (xt − x̃)⊗s〉 − ∇jf(xt)

∥∥∥∥
op

≤ Lp

(p− j + 1)!
‖x̃− xt‖p−j+1

2

≤ Lpm
p−j+1rp−j+1

(p− j + 1)!
, (5.1)

where the last inequality holds due to Lemma 5.1.

Existing high-order estimators such as SVRC are stochas-
tic. To prove the estimation error, existing works need the
concentration inequality for matrices (Chen et al., 2012;
Tropp, 2016; Zhou et al., 2018a) or tensors (Vershynin,
2020), which depend on the dimension d. Such a depen-
dence is even unavoidable for the case where the stochastic
matrices are Gaussian series (Sec 4.1.2, Tropp et al. 2015).
To contrast with, our estimators enjoy a dimension-free error
bound, which leads to a dimension-free complexity result
for our algorithm in the later analysis.

Case II: j = 1. We now come to the gradient estimator
case where j = 1. Algorithm 2 constructs its gradient
estimator in a different way. Intuitively speaking, Algorithm
2 estimates∇f(xt) by firstly taking the following difference
decomposition:

∇f(xt) = ∇fSt(xt) +∇f(x̃)−∇fSt(x̃)

− (∇fSt(xt)−∇fSt(x̃))︸ ︷︷ ︸
I1

+∇f(xt)−∇f(x̃)︸ ︷︷ ︸
I2

,

then Algorithm 2 estimates I1 with the Taylor series of
∇fSt(x) expanded at x̃, I2 with the Taylor series of∇f(x)
expanded at x̃, that is,

I1 ≈
p−j∑
s=1

1

s!
〈∇j+sfSt(x̃), (xt − x̃)⊗s〉

I2 ≈
p−j∑
s=1

1

s!
〈∇j+sf(x̃), (xt − x̃)⊗s〉.

Algorithm 3 TP-TE
Require: Reference point update frequency m,

1: if t = 0 mod m then
2: J

(j)
t ← ∇jf(xt),∀1 ≤ j ≤ p, x̃← xt

3: else
4: Sample St ∈ [n], |St| = B

5: We set J(j)
t as

J
(1)
t ← J

(1)
t−1 +∇fSt(xt)−∇fSt(xt−1)

+

p−1∑
s=1

1

s!
〈H(s)

t , (xt − xt−1)⊗s〉,

H
(s)
t =

p−1−s∑
i=0

1

i!
〈∇s+i+1f(x̃)−∇s+i+1fSt(x̃),

(xt−1 − x̃)⊗i〉.

For 2 ≤ j ≤ p, we set

J
(j)
t ← ∇jf(x̃) +

p−j∑
s=1

1

s!
〈∇j+sf(x̃), (xt − x̃)⊗s〉.

6: end if

Such a construction strategy has also appeared in SVRG
(Johnson & Zhang, 2013) for the setting p = 1 or semi-
stochastic gradient in SVRC for the setting p = 2. The
following lemma suggests that, due to the use of stochastic
batch St, the estimator error of the J(1)

t is smaller by a factor
of
√
B, compared with the previous high-order estimators.

Lemma 5.3. Let J(1)
t be the estimate generated by Algo-

rithm 2. Then with probability at least 1− Tδ, we have

‖J(1)
t −∇f(xt)‖2 ≤ 4

√
log(4/δ)

Lpm
prp√

Bp!
.

Based on Lemma 5.2 and 5.3, we propose our complexity
analysis for Algorithm 1 equipeed with estimators from
Algorithm 2.

Theorem 5.4. There exist functions gi, i = 1 . . . 4 that only
depend on p such that, by setting m,B,M, r as follows:

m =
g1(p)n1/3

log1/3(4/δ)
, B = g2(p) log2/3(4/δ)n2/3,

M =
g3(p)n

p−1
3 Lp

log
p−1
3 (4/δ)

, r =
g4(p) log(p−1)/(3p)(4/δ)ε1/p

L
1/p
p n(p−1)/(3p)

,

and set

T = ∆f/

(
M

4(p+ 1)!
rp+1

)
,
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then with probability at least 1 − Tδ, Algorithm 1 with
Algorithm 2 ends in T steps and outputs an ε-stationary
point. Meanwhile, there exists a function g that only depends
on p such that the number of total IHO calls is bounded as

g(p) · log(p+1)/(3p)(4/δ) · ∆fL
1/p
p n(3p−1)/(3p)

ε(p+1)/p
.

Remark 5.5. Regarding p, δ,∆f , Lp as constants, Theorem
5.4 suggests an O(n(3p−1)/(3p)/ε(p+1)/p) dimension-free
oracle complexity for Algorithm 2. Compared with HR
(Birgin et al., 2017), our result matches its dependence on
ε, which is optimal (Carmon et al., 2017). Meanwhile,
our result improves HR’s dependence on n by a factor of
n1/(3p).
Remark 5.6. When p = 1, our algorithm reduces to SVRG
with an O(n2/3/ε2) gradient complexity, which matches
results in Allen-Zhu & Hazan (2016); Reddi et al. (2016).

5.2. Two-point Taylor Expansion Estimator

We propose our second algorithm in Algorithm 3. Algorithm
3 also adapts a two-layer-loop framework as Algorithm 2,
and maintains a reference point x̃ with a m-step update fre-
quency. Algorithm 3 only computes the full derivative∇jf
when updating the reference points. At other iterations, it
utilizes function information fi, i ∈ St where |St| = B is a
subset of [n]. Algorithm 3 constructs the high-order deriva-
tive estimators the same as Algorithm 2, and constructs its
gradient estimator in a different way. The intuition of its
gradient estimator is demonstrated in the following equa-
tion:

∇f(xt)

= ∇f(xt−1) +∇fSt(xt)−∇fSt(xt−1)

− (∇fSt(xt)−∇fSt(xt−1)) +∇f(xt)−∇f(xt−1).

Based on above decomposition, Algorithm 3 constructs
the gradient estimator by replacing ∇f(xt) with J

(1)
t and

∇f(xt−1) with J
(1)
t−1, which gives us the following update

rule:

J
(1)
t

← J
(1)
t−1 +∇fSt(xt)−∇fSt(xt−1)

− (∇fSt(xt)−∇fSt(xt−1))︸ ︷︷ ︸
I1

+∇f(xt)−∇f(xt−1)︸ ︷︷ ︸
I2

.

To estimate I1 and I2, a natural way is to replace them
with the Taylor series of∇fSt(x) and∇f(x) at point xt−1.
Since xt−1 is ‘closer’ to the current iteration xt compared
with x̃, thus intuitively speaking, it should provide a preciser
estimation than Algorithm 2. However, we can not directly
use above Taylor series since they require to compute the full
derivatives∇jf(xt−1). To work around this issue, instead

of using ∇jf(xt−1), Algorithm 3 computes its (p− j)-th
order Taylor series expanded at x̃ as a replacement, that is,

∇jf(xt−1) ≈ ∇jf(x̃) +

p−j∑
i=1

1

i!
〈∇j+if(x̃), (xt − x̃)⊗i〉.

Next lemma provides the estimation error of J(1)
t .

Lemma 5.7. Let J(1)
t be the estimate generated by Algo-

rithm 3. Then with probability at least 1 − Tδ, for all
1 ≤ t ≤ T , we have

‖J(1)
t −∇f(xt)‖2 ≤ 6

√
log(4/δ)

2pmp−1/2Lpr
p

p!
√
B

.

Compared with Lemma 5.3, the error bound in Lemma 5.7 is
improved by a factor of

√
m. Next we propose the theorem

for Algorithm 3.

Theorem 5.8. There exist functions gi, i = 1 . . . 2 that only
depend on p such that, by setting m,B,M, r as follows: let
m ≥ p

√
n and

B = n/m, M = g1(p)

√
log(4/δ)Lpm

p

√
n

,

r = g2(p)
n1/(2p)ε1/p

log1/(2p)(4/δ)mL
1/p
p

,

and set

T = ∆f/

(
M

4(p+ 1)!
rp+1

)
,

then with probability at least 1 − Tδ, Algorithm 1 with
Algorithm 2 ends in T steps and outputs an ε-stationary
point. Meanwhile, there exists a function g that only depends
on p such that the number of total IHO calls is bounded as

g(p) · log1/(2p)(4/δ) · ∆fL
1/p
p n(2p−1)/(2p)

ε(p+1)/p
.

Remark 5.9. Regarding p, δ,∆f , Lp as constants, Theorem
5.8 suggests an O(n(2p−1)/(2p)/ε(p+1)/p) oracle complex-
ity for Algorithm 3. Compared with Algorithm 2, the com-
plexity of Algorithm 3 also has an optimal dependence on ε.
Meanwhile, it improves the dependence on n by a factor of
n1/(6p).
Remark 5.10. When p = 1, Algorithm 2 reduces to SPIDER
with an O(n1/2/ε2) gradient complexity, which matches
the result in Fang et al. (2018). When p = 2, the gradi-
ent estimator reduces to that of STR with an O(n3/4/ε3/2)
second-order oracle complexity, and the overall complexity
matches that in Shen et al. (2019).
Remark 5.11. The IHO complexity of our Algorithm 3 is
dimension-free, unlike previous result which depends on d
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logarithmically (p = 2, Shen et al. 2019). Meanwhile, note
that Algorithm 3 allows a free selection of m. By selecting
m = n, the batch size B is set to 1, which further suggests
that Algorithm 3 supports the use of a small batch size. This
is the first result in stochastic high-order optimization that
does not need to access a large batch size, unlike all previous
works.

Optimal oracle complexity? We briefly discuss the opti-
mality of Theorem 5.8. Emmenegger et al. (2021) proposed
an Ω(n(p−1)/(2p)/ε(p+1)/p) lower bound of IHO complex-
ity for any algorithm finding ε-stationary points, and there
exists a

√
n gap between this lower bound and our upper

bound. We believe such a gap is caused by our Assumption
3.3 and can be potentially fixed by considering a proper
function class. For instance, when p = 1, our upper bound
keeps unchanged under a slightly larger function class called
average-smooth function class (Fang et al., 2018; Zhou
et al., 2018c), where Assumption 3.3 is replaced by the
average-smoothness assumption, Ei‖∇fi(x)−∇fi(y)‖22 ≤
L2
2‖x− y‖22. Meanwhile, the lower bound can be substan-

tially improved to Ω(n1/2/ε2) that matches our upper bound.
We leave to fix such a gap as future work.

6. Conclusion
In this work, we study the stochastic high-order methods
for finite-sum nonconvex optimization problems. We pro-
pose two algorithms OP-TE and TP-TE, where TP-TE finds
ε-stationary points within O(n(2p−1)/(2p)/ε(p+1)/p) oracle
complexity. Our algorithm is the first one that strictly im-
proves the deterministic high-order optimization algorithm,
and it is also the first algorithm that enjoys a dimension-free
oracle complexity without using a large batch size.
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A. Proof of Lemma 3.2
Suppose the claim holds for s+ 1. For s, let h(λ) := ∇sf(y + λh). Then we have

∇sf(y + h)−∇sf(y)−
p−s∑
j=1

1

j!
〈∇s+jf(y),h⊗j〉

=

∫ 1

0

〈∇s+1f(y + λh),h〉dλ− 〈∇s+1f(y),h〉 −
p−s−1∑
j=1

1

(j + 1)!
〈∇s+1+jf(y),h⊗(j+1)〉

=

〈
h,

∫ 1

0

∇s+1f(y + λh)dλ−∇s+1f(y)−
p−s−1∑
j=1

1

(j + 1)!
〈∇s+1+jf(y),h⊗j〉

〉

=

〈
h,

∫ 1

0

(
∇s+1f(y + λh)−∇s+1f(y)−

p−s−1∑
j=1

1

j!
〈∇s+1+jf(y), (λh)⊗j〉

)
dλ

〉
,

where the last line we use the fact that
∫ 1

0
λj = 1/(j + 1). Therefore, by applying Cauchy-Schwarz inequality we have

∥∥∥∥∇sf(y + h)−∇sf(y)−
p−s∑
j=1

1

j!
〈∇s+jf(y),h⊗j〉

∥∥∥∥
op

≤ ‖h‖2
∫ 1

0

∥∥∥∥∇s+1f(y + λh)−∇s+1f(y)−
p−s−1∑
j=1

1

j!
〈∇s+1+jf(y), (λh)⊗j〉

)∥∥∥∥
op
dλ

≤ ‖h‖2
∫ 1

0

Lpλ
p−s

(p− s)!
‖h‖p−sdλ

=
Lp

(p− s+ 1)!
‖h‖p−s+1.

That ends our proof by applying the induction from s = p to 0.

B. Proof of results in Section 5
In this section we prove lemmas and theorems in Section 5. We need the following lemma.

Lemma B.1 (Theorem 3.5, Pinelis 1994). Let ε1:k ∈ Rd be a vector-valued martingale difference sequence with respect to
Fk, i.e., for each k ∈ [K], E[εk|Fk] = 0 and ‖εk‖2 ≤ Bk, then we have given δ ∈ (0, 1), w.p. 1− δ,

∥∥∥∥ K∑
i=1

εk

∥∥∥∥2
2

≤ 4 log(4/δ)

K∑
i=1

B2
k.

B.1. Proof of Lemma 5.3

Proof of Lemma 5.3. We bound the difference between J
(1)
t and ∇f(xt). First, we decompose J

(1)
t −∇f(xt) as follows:

J
(1)
t −∇f(xt)

= ∇fSt(xt)−∇fSt(x̃) +∇f(x̃)−∇f(xt) +

p−1∑
s=1

1

s!
〈∇s+1f(x̃)−∇s+1fSt(x̃), (xt − x̃)⊗s〉

=
1

|St|
∑
i∈St

[
∇fi(xt)−∇fi(x̃) +∇f(x̃)−∇f(xt) +

p−1∑
s=1

1

s!
〈∇s+1f(x̃)−∇s+1fi(x̃), (xt − x̃)⊗s〉︸ ︷︷ ︸

Ii

]
. (B.1)
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On the one hand, since St is sampled from [n] i.i.d., then we have Ei[Ii] = 0. On the other hand, Ii has the following upper
bound:

‖Ii‖2 ≤
∥∥∥∥∇fi(xt)−∇fi(x̃)−

p−1∑
s=1

1

s!
〈∇s+1fi(x̃), (xt − x̃)⊗s〉

∥∥∥∥
2

+

∥∥∥∥∇f(xt)−∇f(x̃)−
p−1∑
s=1

1

s!
〈∇s+1f(x̃), (xt − x̃)⊗s〉

∥∥∥∥
2

≤ 2Lp
p!
‖xt − x̃‖p2

≤ 2Lpm
prp

p!
, (B.2)

where the first inequality holds due to triangle inequality, the second one holds due to Lemma 3.2 and the last one holds due
to Lemma 5.1. Therefore, by Lemma B.1, for each t, with probability at least 1− δ,

‖J(1)
t −∇f(xt)‖2 ≤

1

B
· 4
√

log(4/δ)
Lpm

prp

p!
·
√
B = 4

√
log(4/δ)

Lpm
prp√

Bp!
.

Taking union bound over T steps ends our proof.

B.2. Proof of Lemma 5.7

Proof of Lemma 5.7. We bound the difference. Similar to Lemma 5.3, we decompose the difference as follows.

J
(1)
t −∇f(xt)− (J

(1)
t−1 −∇f(xt−1))

= ∇fSt(xt)−∇f(xt)−∇fSt(xt−1) +∇f(xt−1)

+

p−1∑
s=1

1

s!

〈 p−1−s∑
i=0

1

i!
〈∇s+i+1f(x̃)−∇s+i+1fSt(x̃), (xt−1 − x̃)⊗i〉, (xt − xt−1)⊗s

〉
=

1

|St|
∑
j∈St

[It(fj)− It(f)], (B.3)

where It(g) is defined as follows:

It(g) := ∇g(xt)−∇g(xt−1)−
p−1∑
s=1

1

s!

〈 p−1−s∑
i=0

1

i!
〈∇s+i+1g(x̃), (xt−1 − x̃)⊗i〉, (xt − xt−1)⊗s

〉
.

We now show an upper bound for I(g) if∇pg is Lp Lipschitz continuous. We have

‖It(g)‖2 ≤
∥∥∥∥ p−1∑
s=1

1

s!

〈
∇s+1g(xt−1)−

p−1−s∑
i=0

1

i!
〈∇s+i+1g(x̃), (xt−1 − x̃)⊗i〉, (xt − xt−1)⊗s

〉∥∥∥∥
2︸ ︷︷ ︸

J1

+

∥∥∥∥∇g(xt)−∇g(xt−1)−
p−1∑
s=1

1

s!
〈∇s+1g(xt−1), (xt − xt−1)⊗s〉

∥∥∥∥
2︸ ︷︷ ︸

J2

,

For the term J1, we can bound it as follows:

J1 ≤
p−1∑
s=1

1

s!

∥∥∥∥∇s+1g(xt−1)−
p−1−s∑
i=0

1

i!
〈∇s+i+1g(x̃), (xt−1 − x̃)⊗i〉

∥∥∥∥
op
‖xt − xt−1‖s2

≤
p−1∑
s=1

Lp‖xt−1 − x̃‖p−s2

s!(p− s)!
· ‖xt − xt−1‖s2
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≤
p−1∑
s=1

Lpm
p−srp

s!(p− s)!
, (B.4)

where the first inequality holds due to the definition of operator norm, the second one holds due to Lemma 3.2, the last one
holds due to Lemma 5.1 and the fact that ‖xt − xt−1‖2 = ‖ht−1‖2 ≤ r. To further bound (B.4), we have

p−1∑
s=1

Lpm
p−srp

s!(p− s)!
≤ Lpmp−1rp

p−1∑
s=1

1

s!(p− s)!
≤ Lpmp−1rp

p∑
s=0

1

s!(p− s)!
=

2pLpm
p−1rp

p!
. (B.5)

Substituting (B.5) into (B.4) we obtain the upper bound of J1. The upper bound of J2 can be directly obtained by using
Lemma 3.2, which is

J2 ≤
Lp
p!
‖xt − xt−1‖p2 ≤

Lp
p!
rp.

With the upper bounds for J1 and J2, we have

‖It(g)‖2 ≤
Lpr

p

p!
(2(2m)p−1 + 1) ≤ 3(2m)p−1Lpr

p

p!
. (B.6)

Now we head back to bound J
(1)
t − ∇f(xt). Let q be the index such that q ≤ t < q + m and x̃ = xq. Then taking

summation of (B.3) from t′ = q + 1 to t, we have

J
(1)
t −∇f(xt) =

t∑
t′=q+1

[J
(1)
t −∇f(xt)− (J

(1)
t−1 −∇f(xt−1))] =

1

B

t∑
t′=q+1

∑
j∈St′

[It′(fj)− It′(f)].

On the one hand, we have Ej [I(fj)− I(f)] = 0 since St is sampled i.i.d. and I(g) is a linear functional of g. On the other
hand, since both ∇pfj and ∇pf are Lp Lipschitz continuous, then by (B.6) we have

‖I(fj)− I(f)‖2 ≤
6(2m)p−1Lpr

p

p!
.

Therefore, by Lemma B.1, for each t, with probability at least 1− δ,

‖J(1)
t −∇f(xt)‖2 ≤

1

B
· 2
√

log(4/δ) ·
√

(t− q)B · 6(2m)p−1Lpr
p

p!
≤ 6
√

log(4/δ)
2pmp−1/2Lpr

p

p!
√
B

.

Taking union bound from t = 1 to T ends our proof.

Now we begin to prove our main theorems.

B.3. Proof of Theorem 5.4

Proof of Theorem 5.4. We set our parameters as follows.

m = c1

(
4pn

p2 log(4/δ)

)1/3

, B = c2
p2/3 log2/3(4/δ)n2/3

4p/3
,

M = c3
2

2p2+p
3 n

p−1
3 Lp

p
2p−5

3 log
p−1
3 (4/δ)

, r = c4
[(p− 1)!]1/pp(2p−2)/(3p) log(p−1)/(3p)(4/δ)ε1/p

L
1/p
p 4p/3n(p−1)/(3p)

, (B.7)

where ci are positive constants. Then it is easy to see there exist ci to let these parameters satisfy the following conditions:

m ·B = n, (B.8)

M

8(p+ 1)!
rp+1 = 4

√
log(4/δ)

Lpm
prp+1

√
Bp!

,
M

8(p+ 1)!
rp+1 =

Lpm
p−12prp+1

(p− 1)!
, (B.9)
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4Mrp/p! = ε. (B.10)

First we show that Algorithm 1 indeed ends in T iterations with probability 1− Tδ. Let the event defined in Lemma 5.3
holds. Then for any t where Algorithm 1 does not end, by Lemma 4.1, the function value f decreases as follows:

f(xt+1) ≤ f(xt)−
M

2(p+ 1)!
rp+1 +

p∑
j=1

1

j!
‖∇jf(xt)− J

(j)
t ‖opr

j

≤ f(xt)−
M

2(p+ 1)!
rp+1 + 4

√
log(4/δ)

Lpm
prp+1

√
Bp!

+

p∑
j=2

rj

j!
· Lpm

p−j+1rp−j+1

(p− j)!

≤ f(xt)−
M

2(p+ 1)!
rp+1 + 4

√
log(4/δ)

Lpm
prp+1

√
Bp!

+
Lpm

p−12prp+1

p!

≤ f(xt)−
M

4(p+ 1)!
rp+1, (B.11)

where the second inequality holds due to Lemma 5.3 and 5.2, the last one holds due to (B.9). By (B.11) we know that
Algorithm 1 will ends in

∆f/

(
M

4(p+ 1)!
rp+1

)
= T (B.12)

number of iterations. Second, let t < T be the iteration where Algorithm 2 ends, and we show that xt+1 is indeed an
ε-stationary point. By Lemma 4.2 we have

‖∇f(xt+1)‖2 ≤
2M

p!
rp +

p∑
j=1

1

(j − 1)!
‖∇jf(xt)− J

(j)
t ‖opr

j−1

≤ 2M

p!
rp + 4

√
log(4/δ)

Lpm
prp√

Bp!
+

p∑
j=2

rj−1

(j − 1)!
· Lpm

p−j+1rp−j+1

(p− j)!

≤ 2M

p!
rp + 4

√
log(4/δ)

Lpm
prp√

Bp!
+
Lpm

p−12p−1rp

(p− 1)!

≤ 4M

p!
rp

= ε,

where the second inequality holds due to Lemma 5.3 and 5.2, the last one holds due to (B.10). Finally, we count the total
IHO oracle calls. For each iteration t that is not divided by m, Algorithm 2 costs B number of IHO calls. For iteration t
divided by m, Algorithm 2 costs n number of IHO calls. Thus the final complexity is

T/m · n+ TB = 2TB = g(p) · log(p+1)/(3p)(4/δ) · ∆fL
1/p
p n(3p−1)/(3p)

ε(p+1)/p
,

where the first equality holds due to (B.8), the second one holds due to the selection of B and T in (B.12).

B.4. Proof of Theorem 5.8

Proof of Theorem 5.8. We set our parameters as follows. Let m ≥ p
√
n and

B = n/m, M = c1
2p(p+ 1)

√
log(4/δ)Lpm

p

√
n

, r = c2
(p!)1/pn1/(2p)ε1/p

(p+ 1)1/p log1/(2p)(4/δ)mL
1/p
p

, (B.13)

where ci are positive constants. Then it is easy to see there exist ci to let these parameters satisfy the following conditions:

M

8(p+ 1)!
rp+1 = 6

√
log(4/δ)

2pmp−1/2Lpr
p+1

p!
√
B

, 6
√

log(4/δ)
2pmp−1/2Lpr

p+1

p!
√
B

≥ Lpm
p−12prp+1

(p− 1)!
, (B.14)
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4M

p!
rp = ε. (B.15)

First we show that Algorithm 1 indeed ends in T iterations with probability 1− Tδ. Let the event defined in Lemma 5.7
holds. Then for any t where Algorithm 1 does not end, following the proof of Theorem 5.4, we have

f(xt+1) ≤ f(xt)−
M

2(p+ 1)!
rp+1 + 6

√
log(4/δ)

2pmp−1/2Lpr
p+1

p!
√
B

+
Lpm

p−12prp+1

p!

≤ f(xt)−
M

4(p+ 1)!
rp+1, (B.16)

where the second inequality holds due to (B.14). By (B.16) we know that Algorithm 1 will ends in

∆f/

(
M

4(p+ 1)!
rp+1

)
= T (B.17)

number of iterations. Second, let t < T be the iteration where Algorithm 2 ends, then by Lemma 4.2 we have

‖∇f(xt+1)‖2 ≤
2M

p!
rp + 6

√
log(4/δ)

2pmp−1/2Lpr
p

p!
√
B

+
Lpm

p−12p−1rp

(p− 1)!
≤ 4M

p!
rp = ε,

where the second inequality holds due to Lemma 5.7 and 5.2, the last one holds due to (B.15). Finally, we count the total
IHO oracle calls. Similar to the proof of Theorem 5.4, the final complexity is

T/m · n+ TB = 2TB = g(p) · log1/(2p)(4/δ) · ∆fL
1/p
p n(2p−1)/(2p)

ε(p+1)/p
,

where the first equality holds due to B = n/m, the second one holds due to the selection of B and T in (B.17).


