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Abstract

Although Transformer-based methods have sig-
nificantly improved state-of-the-art results for
long-term series forecasting, they are not only
computationally expensive but more importantly,
are unable to capture the global view of time
series (e.g. overall trend). To address these
problems, we propose to combine Transformer
with the seasonal-trend decomposition method,
in which the decomposition method captures the
global profile of time series while Transform-
ers capture more detailed structures. To fur-
ther enhance the performance of Transformer
for long-term prediction, we exploit the fact that
most time series tend to have a sparse represen-
tation in well-known basis such as Fourier trans-
form, and develop a frequency enhanced Trans-
former. Besides being more effective, the pro-
posed method, termed as Frequency Enhanced
Decomposed Transformer (FEDformer), is more
efficient than standard Transformer with a linear
complexity to the sequence length. Our empir-
ical studies with six benchmark datasets show
that compared with state-of-the-art methods, FED-
former can reduce prediction error by 14.8% and
22.6% for multivariate and univariate time se-
ries, respectively . Code is publicly available at
https://github.com/MAZiqing/FEDformer.

1. Introduction

Long-term time series forecasting is a long-standing chal-
lenge in various applications (e.g., energy, weather, traffic,
economics). Despite the impressive results achieved by
RNN-type methods (Rangapuram et al., 2018; Flunkert
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et al., 2017), they often suffer from the problem of gradient
vanishing or exploding (Pascanu et al., 2013), significantly
limiting their performance. Following the recent success
in NLP and CV community (Vaswani et al., 2017; Devlin
et al., 2019; Dosovitskiy et al., 2021; Rao et al., 2021),
Transformer (Vaswani et al., 2017) has been introduced
to capture long-term dependencies in time series forecast-
ing and shows promising results (Wen et al., 2022; Zhou
et al., 2021; Wu et al., 2021). Since high computational
complexity and memory requirement make it difficult for
Transformer to be applied to long sequence modeling, nu-
merous studies are devoted to reduce the computational cost
of Transformer (Li et al., 2019; Kitaev et al., 2020; Zhou
et al., 2021; Wang et al., 2020; Xiong et al., 2021; Ma et al.,
2021).

Despite the progress made by Transformer-based meth-
ods for time series forecasting, they tend to fail in cap-
turing the overall characteristics/distribution of time series
in some cases. In Figure 1, we compare the time series
of ground truth with that predicted by the vanilla Trans-
former method (Vaswani et al., 2017) in a real-world ETTm1
dataset (Zhou et al., 2021). It is clear that the predicted time
series shared a different distribution from that of ground
truth. The discrepancy between ground truth and prediction
could be explained by the point-wise attention and predic-
tion in Transformer. Since prediction for each timestep is
made individually and independently, it is likely that the
model fails to maintain the global property and statistics of
time series as a whole. To address this problem, we exploit
two ideas in this work. The first idea is to incorporate a
seasonal-trend decomposition approach (Cleveland et al.,
1990; Wen et al., 2019), which is widely used in time series
analysis, into the Transformer-based method. Although this
idea has been exploited before (Oreshkin et al., 2019; Wu
et al., 2021), we present a special design of network that is
effective in bringing the distribution of prediction close to
that of ground truth, according to Kologrov-Smirnov distri-
bution test. Our second idea is to combine Fourier analysis
with the Transformer-based method. Instead of applying
Transformer to the time domain, we apply it to the frequency
domain which helps Transformer better capture global prop-
erties of time series. Combining both ideas, we propose
a Frequency Enhanced Decomposition Transformer, or,
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FEDformer for short, for long-term time series forecasting.

One critical question with FEDformer is which subset of
frequency components should be used by Fourier analysis
to represent time series. A common wisdom is to keep low-
frequency components and throw away the high-frequency
ones. This may not be appropriate for time series forecast-
ing as some of trend changes in time series are related to
important events, and this piece of information could be lost
if we simply remove all high-frequency components. We
address this problem by effectively exploiting the fact that
time series tend to have (unknown) sparse representations
on a basis like Fourier basis. According to our theoretical
analysis, a randomly selected subset of frequency compo-
nents, including both low and high ones, will give a better
representation for time series, which is further verified by
extensive empirical studies. Besides being more effective
for long term forecasting, combining Transformer with fre-
quency analysis allows us to reduce the computational cost
of Transformer from quadratic to linear complexity. We
note that this is different from previous efforts on speeding
up Transformer, which often leads to a performance drop.

In short, we summarize the key contributions of this work
as follows:

1. We propose a frequency enhanced decomposed Trans-
former architecture with mixture of experts for
seasonal-trend decomposition in order to better capture
global properties of time series.

2. We propose Fourier enhanced blocks and Wavelet en-
hanced blocks in the Transformer structure that allows
us to capture important structures in time series through
frequency domain mapping. They serve as substitu-
tions for both self-attention and cross-attention blocks.

3. By randomly selecting a fixed number of Fourier com-
ponents, the proposed model achieves linear computa-
tional complexity and memory cost. The effectiveness
of this selection method is verified both theoretically
and empirically.

4. We conduct extensive experiments over 6 benchmark
datasets across multiple domains (energy, traffic, eco-
nomics, weather and disease). Our empirical stud-
ies show that the proposed model improves the per-
formance of state-of-the-art methods by 14.8% and
22.6% for multivariate and univariate forecasting, re-
spectively.

2. Related Work

In this section, an overview of the literature for time series
forecasting will be given. The relevant works include tradi-
tional times series models (2.1), deep learning models (2.1),
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Figure 1. Different distribution between ground truth and fore-
casting output from vanilla Transformer in a real-world ETTm1
dataset. Left: frequency mode and trend shift. Right: trend shift.
xlabel:timestep,ylabel:electrical load value after normalization

Transformer-based models (2.2), and the Fourier Transform
in neural networks (2.3).

2.1. Traditional Time Series Models

Data-driven time series forecasting helps researchers under-
stand the evolution of the systems without architecting the
exact physics law behind them. After decades of renovation,
time series models have been well developed and served
as the backbone of various projects in numerous applica-
tion fields. The first generation of data-driven methods can
date back to 1970. ARIMA (Box & Jenkins, 1968; Box
& Pierce, 1970) follows the Markov process and builds an
auto-regressive model for recursively sequential forecast-
ing. However, an autoregressive process is not enough to
deal with nonlinear and non-stationary sequences. With the
bloom of deep neural networks in the new century, recur-
rent neural networks (RNN) was designed especially for
tasks involving sequential data. Among the family of RNNss,
LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Chung
et al., 2014) employ gated structure to control the informa-
tion flow to deal with the gradient vanishing or exploration
problem. DeepAR (Flunkert et al., 2017) uses a sequential
architecture for probabilistic forecasting by incorporating
binomial likelihood. Attention based RNN (Qin et al., 2017)
uses temporal attention to capture long-range dependen-
cies. However, the recurrent model is not parallelizable and
unable to handle long dependencies. The temporal convolu-
tional network (Sen et al., 2019) is another family efficient
in sequential tasks. However, limited to the reception field
of the kernel, the features extracted still stay local and long-
term dependencies are hard to grasp.

2.2. Transformers for Time Series Forecasting

With the innovation of transformers in natural language
processing (Vaswani et al., 2017; Devlin et al., 2019) and
computer vision tasks (Dosovitskiy et al., 2021; Rao et al.,
2021), transformer-based models are also discussed, reno-
vated, and applied in time series forecasting (Zhou et al.,
2021; Wu et al., 2021). In sequence to sequence time se-
ries forecasting tasks an encoder-decoder architecture is
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popularly employed. The self-attention and cross-attention
mechanisms are used as the core layers in transformers.
However, when employing a point-wise connected matrix,
the transformers suffer from quadratic computation com-
plexity.

To get efficient computation without sacrificing too much on
performance, the earliest modifications specify the attention
matrix with predefined patterns. Examples include: (Qiu
et al., 2020) uses block-wise attention which reduces the
complexity to the square of block size. Longformer (Belt-
agy et al., 2020) employs a stride window with fixed inter-
vals. LogTrans (Li et al., 2019) uses log-sparse attention
and achieves N log? N complexity. H-transformer (Zhu &
Soricut, 2021) uses a hierarchical pattern for sparse approx-
imation of attention matrix with O(n) complexity. Some
work uses a combination of patterns (BIGBIRD (Zaheer
et al., 2020)) mentioned above. Another strategy is to use
dynamic patterns: Reformer (Kitaev et al., 2020) introduces
a local-sensitive hashing which reduces the complexity to
Nlog N. (Zhu & Soricut, 2021) introduces a hierarchical
pattern. Sinkhorn (Tay et al., 2020) employs a block sorting
method to achieve quasi-global attention with only local
windows.

Similarly, some work employs a top-k truncating to ac-
celerate computing: Informer (Zhou et al., 2021) uses a
KL-divergence based method to select top-k in attention ma-
trix. This sparser matrix costs only N log N in complexity.
Autoformer (Wu et al., 2021) introduces an auto-correlation
block in place of canonical attention to get the sub-series
level attention, which achieves N log N complexity with
the help of Fast Fourier transform and top-k selection in an
auto-correlation matrix.

Another emerging strategy is to employ a low-rank approx-
imation of the attention matrix. Linformer (Wang et al.,
2020) uses trainable linear projection to compress the se-
quence length and achieves O(n) complexity and theoreti-
cally proves the boundary of approximation error based on
JL lemma. Luna (Ma et al., 2021) develops a nested lin-
ear structure with O(n) complexity. Nystroformer (Xiong
et al., 2021) leverages the idea of Nystrom approximation in
the attention mechanism and achieves an O(n) complexity.
Performer (Choromanski et al., 2021) adopts an orthogonal
random features approach to efficiently model kernelizable
attention mechanisms.

2.3. Fourier Transform in Transformers

Thanks to the algorithm of fast Fourier transform (FFT), the
computation complexity of Fourier transform is compressed
from N2 to N log N. The Fourier transform has the prop-
erty that convolution in the time domain is equivalent to
multiplication in the frequency domain. Thus the FFT can
be used in the acceleration of convolutional networks (Math-

ieu et al., 2014). FFT can also be used in efficient computing
of auto-correlation function (Wen et al., 2021), which can be
used as a building neural networks block (Wu et al., 2021)
and also useful in numerous time series tasks (Homayouni
et al., 2020; Gao et al., 2020).

(Li et al., 2020; Gupta et al., 2021) first introduced Fourier
Neural Operator in solving partial differential equations
(PDEs). FNO is used as an inner block of networks to per-
form efficient representation learning in the low-frequency
domain. FNO is also proved efficient in computer vision
tasks (Rao et al., 2021). It also serves as a working horse
to build the Wavelet Neural Operator (WNO), which is
recently introduced in solving PEDs (Gupta et al., 2021).
While FNO keeps the spectrum modes in low frequency, ran-
dom Fourier method use randomly selected modes. (Rahimi
& Recht, 2008) proposes to map the input data to a random-
ized low-dimensional feature space to accelerate the training
of kernel machines. (Rawat et al., 2019) proposes the Ran-
dom Fourier softmax (RF-softmax) method that utilizes the
powerful Random Fourier Features to enable more efficient
and accurate sampling from an approximate softmax dis-
tribution. (Lee-Thorp et al., 2021) find that replacing the
self-attention layer in a transformer encoder with a standard
Fourier Transform achieves much shorter training time with
small accuracy loss on the GLUE benchmark.

To the best of our knowledge, our proposed method is the
first work to achieve fast attention mechanism through low
rank approximated transformation in frequency domain for
time series forecasting.

3. Compact Representation of Time Series in
Frequency Domain

It is well-known that time series data can be modeled from
the time domain and frequency domain. One key contri-
bution of our work which separates from other long-term
forecasting algorithms is the frequency-domain operation
with a neural network. As Fourier analysis is a common tool
to dive into the frequency domain, while how to appropri-
ately represent the information in time series using Fourier
analysis is critical. Simply keeping all the frequency com-
ponents may result in inferior representations since many
high-frequency changes in time series are due to noisy in-
puts. On the other hand, only keeping the low-frequency
components may also be inappropriate for series forecasting
as some trend changes in time series represent important
events. Instead, keeping a compact representation of time
series using a small number of selected Fourier components
will lead to efficient computation of transformer, which is
crucial for modelling long sequences. We propose to repre-
sent time series by randomly selecting a constant number
of Fourier components, including both high-frequency and
low-frequency. Below, an analysis that justifies the random
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Figure 2. FEDformer Structure. The FEDformer consists of N encoders and M decoders. The Frequency Enhanced Block (FEB,
blocks) and Frequency Enhanced Attention (FEA, red blocks) are used to perform representation learning in frequency domain. Either
FEB or FEA has two subversions (FEB-f & FEB-w or FEA-f & FEA-w), where ‘-f” means using Fourier basis and ‘-w’ means using

Wavelet basis. The Mixture Of Expert Decomposition Blocks (MOEDecomp,

from the input data.

selection is presented theoretically. Empirical verification
can be found in the experimental session.

Consider we have m time series, denoted as
X1(t),...,Xm(t). By applying Fourier transform
to each time series, we turn each X;(t) into a vec-
tor a; = (ai1,...,a,4)" € RIL By putting all
the Fourier transform vectors into a matrix, we have
A = (a1,a9,...,a,)" € R™*? with each row cor-
responding to a different time series and each column
corresponding to a different Fourier component. Although
using all the Fourier components allows us to best preserve
the history information in the time series, it may potentially
lead to overfitting of the history data and consequentially a
poor prediction of future signals. Hence, we need to select a
subset of Fourier components, that on the one hand should
be small enough to avoid the overfitting problem and on the
other hand, should be able to preserve most of the history
information. Here, we propose to select s components from
the d Fourier components (s < d) uniformly at random.
More specifically, we denote by i1 < 42 < < i
the randomly selected components. We construct matrix
S € {0,1}5*4, with S;, = 1ifi = i, and S;, = 0
otherwise. Then, our representation of multivariate time
series becomes A’ = AST € R™*s_ Below, we will show
that, although the Fourier basis are randomly selected,
under a mild condition, A’ is able to preserve most of the
information from A.

In order to measure how well A’ is able to preserve informa-
tion from A, we project each column vector of A into the
subspace spanned by the column vectors in A’. We denote
by P4/ (A) the resulting matrix after the projection, where
Py (+) represents the projection operator. If A’ preserves
a large portion of information from A, we would expect a
small error between A and P4/ (A), i.e. |A — Pa/(A)]. Let

blocks) are used to extract seasonal-trend patterns

Ay, represent the approximation of A by its first & largest
single value decomposition. The theorem below shows that
|A— P4:(A)]is close to |A— Ay| if the number of randomly
sampled Fourier components s is on the order of k2.

Theorem 1. Assume that u(A), the coherence measure of
matrix A, is Q(k/n). Then, with a high probability, we have

A= Pa(A) < (1+ A - Ay

ifs = O(k?/e?).

The detailed analysis can be found in Appendix B.

For real-world multivariate times series, the corresponding
matrix A from Fourier transform often exhibit low rank
property, since those univaraite variables in multivariate
times series depend not only on its past values but also has
dependency on each other, as well as share similar frequency
components. Therefore, as indicated by the Theorem 1,
randomly selecting a subset of Fourier components allows
us to appropriately represent the information in Fourier
matrix A.

Similarly, wavelet orthogonal polynomials, such as Legen-
dre Polynomials, obey restricted isometry property (RIP)
and can be used for capture information in time series as
well. Compared to Fourier basis, wavelet based representa-
tion is more effective in capturing local structures in time
series and thus can be more effective for some forecasting
tasks. We defer the discussion of wavelet based represen-
tation in Appendix A. In the next section, we will present
the design of frequency enhanced decomposed Transformer
architecture that incorporate the Fourier transform into trans-
former.
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4. Model Structure

In this section, we will introduce (1) the overall structure
of FEDformer, as shown in Figure 2, (2) two subversion
structures for signal process: one uses Fourier basis and
the other uses Wavelet basis, (3) the mixture of experts
mechanism for seasonal-trend decomposition, and (4) the
complexity analysis of the proposed model.

4.1. FEDformer Framework

Preliminary Long-term time series forecasting is a se-
quence to sequence problem. We denote the input length as
I and output length as O. We denote D as the hidden states
of the series. The input of the encoder is a I x D matrix
and the decoder has (/2 4+ O) x D input.

FEDformer Structure Inspired by the seasonal-trend de-
composition and distribution analysis as discussed in Sec-
tion 1, we renovate Transformer as a deep decomposition
architecture as shown in Figure 2, including Frequency En-
hanced Block (FEB), Frequency Enhanced Attention (FEA)
connecting encoder and decoder, and the Mixture Of Ex-
perts Decomposition block (MOEDecomp). The detailed
description of FEB, FEA, and MOEDecomp blocks will be
given in the following Section 4.2, 4.3, and 4.4 respectively.

The encoder adopts a multilayer structure as: X!, =
Encoder(X/; 1), where I € {1,---, N} denotes the out-

put of [-th encoder layer and X0, € R?*P is the embedded
historical series. The Encoder(-) is formalized as

Sk! -~ = MOEDecomp(FEB (XL, ") + 4,
SL2 _ = MOEDecomp(FeedForward (Sénl ) + S(l;nl)7 M
Xeln = Sér’fv

where 8%, i € {1,2} represents the seasonal component
after the i-th decomposition block in the /-th layer respec-
tively. For FEB module, it has two different versions (FEB-f
& FEB-w) which are implemented through Discrete Fourier
transform (DFT) and Discrete Wavelet transform (DWT)
mechanism respectively and can seamlessly replace the self-
attention block.

The decoder also adopts a multilayer structure as:
XL, T = Decoder(X\1 T1-1), where I € {1,---, M}
denotes the output of /-th decoder layer. The Decoder(-) is
formalized as

Sé’;,ﬁ;l = MOEDecomp (FEB (chle_l) + Xée_l) ’
842, T1? = MOEDecomp (FEA (Séel , Xex ) + 8(11,61) ’

Sé’g T3 — MOEDecomp (FeedForward (Sé‘f) + Sé’j) ,

e’ Tde
1 1,3
Xde = Sde 5
1 1—1 1,1 1,2 1,3
Tae = Tae  +Wia-Tqo + Wi T30 +Wis- T30,
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Figure 3. Frequency Enhanced Block with Fourier transform (FEB-
f) structure.
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Figure 4. Frequency Enhanced Attention with Fourier transform
(FEA-f) structure, o (-) is the activation function.

where Sé;f, di’j’,i € {1,2,3} represent the seasonal and

trend component after the ¢-th decomposition block in the
[-th layer respectively. W ;,i € {1,2,3} represents the
projector for the ¢-th extracted trend 7;11; Similar to FEB,
FEA has two different versions (FEA-f & FEA-w) which are
implemented through DFT and DWT projection respectively
with attention design, and can replace the cross-attention
block. The detailed description of FEA(+) will be given in
the following Section 4.3.

The final prediction is the sum of the two refined decom-
posed components as Ws - X3 + T, where Ws is to
project the deep transformed seasonal component X}/ to
the target dimension.

4.2. Fourier Enhanced Structure

Discrete Fourier Transform (DFT) The proposed
Fourier Enhanced Structures use discrete Fourier transform
(DFT). Let F denotes the Fourier transform and F~! de-
notes the inverse Fourier transform. Given a sequence of
real numbers z,, in time domain, where n = 1,2...N. DFT
is defined as X; = 271:7:—01 e~ where i is the imag-
inary unit and X;, [ = 1,2...L is a sequence of complex
numbers in the frequency domain. Similarly, the inverse
DFT is defined as x,, = Zf:_ol X" The complexity of
DFT is O(N?). With fast Fourier transform (FFT), the com-
putation complexity can be reduced to O(N log N). Here
a random subset of the Fourier basis is used and the scale
of the subset is bounded by a scalar. When we choose the
mode index before DFT and reverse DFT operations, the
computation complexity can be further reduced to O(N).

Frequency Enhanced Block with Fourier Transform
(FEB-f) The FEB-fis used in both encoder and decoder
as shown in Figure 2. The input (x € RY*P) of the
FEB-f block is first linearly projected with w € RP*P,
so ¢ = x - w. Then q is converted from the time domain
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to the frequency domain. The Fourier transform of q is
denoted as @ € CV*P. In frequency domain, only the
randomly selected M modes are kept so we use a select
operator as

Q = Select(Q) = Select(F(q)), (3)

where Q € CM*D and M << N. Then, the FEB-f is
defined as

FEB-f(q) = F'(Padding(Q ® R)), (4)

where R € CP*P>M 5 3 parameterized kernel initialized

randomly. Let Y = Q ® C, with Y € CM*P_ The pro-
duction operator © is defined as: Yy, q, = ZdDi:O Qm.,d; -
Ra, d,,m> where d; = 1,2...D is the input channel and
do = 1,2...D is the output channel. The result of @ ® R
is then zero-padded to CN*P before performing inverse
Fourier transform back to the time domain. The structure is
shown in Figure 3.

Frequency Enhanced Attention with Fourier Transform
(FEA-f) We use the expression of the canonical trans-
former. The input: queries, keys, values are denoted as
g € REXP k¢ REXDP ¢ € REXDP | In cross-attention,
the queries come from the decoder and can be obtained by
q = T,y - wgy, where w, € RP*D The keys and values
are from the encoder and can be obtained by k = x4, - wy
and v = x4, - w,, where wy, w, € RP*P Formally, the
canonical attention can be written as

gk’

Vg

In FEA-f, we convert the queries, keys, and values with
Fourier Transform and perform a similar attention mech-
anism in the frequency domain, by randomly selecting M
modes. We denote the selected version after Fourier Trans-
formas Q € CM*XP K € CM*XP v ¢ CM*P_ The
FEA-f is defined as

Atten(g, k, v) = Softmax( Y. 5)

Q = Select(F(q))
K = Select(F(k)) (6)
V = Select(F(v))

(
(
(
' (Padding (o (Q

FEA-f(q, k,v) = F~ K')-Vv), O

where o is the activation function. We use softmax or
tanh for activation, since their converging performance dif-
fers in different data sets. Let Y = o(Q - K ') -V, and
Y € CM*P peeds to be zero-padded to CL*P before per-
forming inverse Fourier transform. The FEA-f structure is
shown in Figure 4.

4.3. Wavelet Enhanced Structure

Discrete Wavelet Transform (DWT) While the Fourier
transform creates a representation of the signal in the fre-
quency domain, the Wavelet transform creates a represen-
tation in both the frequency and time domain, allowing
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Figure 5. Top Left: Wavelet frequency enhanced block decomposi-
tion stage. Top Right: Wavelet block reconstruction stage shared
by FEB-w and FEA-w. Bottom: Wavelet frequency enhanced
cross attention decomposition stage.

efficient access of localized information of the signal. The
multiwavelet transform synergizes the advantages of orthog-
onal polynomials as well as wavelets. More designed detail
is described in Appendix C.

Frequency Enhanced Block with Wavelet Transform
(FEB-w) The overall FEB-w architecture is shown in Fig-
ure 5. It differs from FEB-f in the recursive mechanism: the
input is decomposed into 3 parts recursively and operates
individually. For the wavelet decomposition part, we im-
plement the fixed Legendre wavelets basis decomposition
matrix. Three FEB-f modules are used to process the result-
ing high-frequency part, low-frequency part, and remaining
part from wavelet decomposition respectively.

Frequency Enhanced Attention with Wavelet Transform
(FEA-w) FEA-w contains the decomposition stage and
reconstruction stage like FEB-w. Here we keep the recon-
struction stage unchanged. The only difference lies in the
decomposition stage. The same decomposed matrix is used
to decompose g, k, v signal separately, and g, k, v share
the same sets of module to process them as well. As shown
above, a frequency enhanced block with wavelet decompo-
sition block (FEB-w) contains three FEB-f blocks for the
signal process. We can view the FEB-f as a substitution of
self-attention mechanism. We use a straightforward way to
build the frequency enhanced cross attention with wavelet
decomposition, substituting each FEB-f with a FEA-f mod-
ule. Besides, another FEA-f module is added to process the
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Table 1. Complexity analysis of different forecasting models.

Trainin Testin
Methods Time l%/lemory Stepsg
FEDformer O(L) O(L) 1
Autoformer | O(LlogL) | O(Llog L) 1
Informer O(LlogL) | O(LlogL) 1
Transformer | O (L?) O (L% L
LogTrans O(Llog L) 0 (L?) 1
Reformer O(LlogL) | O(LlogL) L
LSTM O(L) O(L) L

coarsest remaining ¢(L), k(L), v(L) signal.

4.4. Mixture of Experts for Seasonal-Trend
Decomposition

Because of the commonly observed complex periodic pat-
tern coupled with the trend component on real-world data,
extracting the trend can be hard with fixed window average
pooling. To overcome such a problem, we design a Mixture
Of Experts Decomposition block (MOEDecomp). It con-
tains a set of average filters with different sizes to extract
multiple trend components from the input signal and a set
of data-dependent weights for combining them as the final
trend. Formally, we have

X¢rend = Softmax(L(z)) * (F(x)), ©)

where F(-) is a set of average pooling filters and
Softmax(L(x)) is the weights for mixing these extracted
trends.

4.5. Complexity Analysis

For FEDformer-f, the computational complexity for time
and memory is O(L) with a fixed number of randomly se-
lected modes in FEB & FEA blocks. We set modes number
M = 64 as default value. Though the complexity of full
DFT transformation by FFT is (O(Llog(L)), our model
only needs O(L) cost and memory complexity with the pre-
selected set of Fourier basis for quick implementation. For
FEDformer-w, when we set the recursive decompose step to
a fixed number L and use a fixed number of randomly se-
lected modes the same as FEDformer-f, the time complexity
and memory usage are O(L) as well. In practice, we choose
L = 3 and modes number M = 64 as default value. The
comparisons of the time complexity and memory usage in
training and the inference steps in testing are summarized
in Table 1. It can be seen that the proposed FEDformer
achieves the best overall complexity among Transformer-
based forecasting models.

5. Experiments

To evaluate the proposed FEDformer, we conduct extensive
experiments on six popular real-world datasets, including

energy, economics, traffic, weather, and disease. Since
classic models like ARIMA and basic RNN/CNN mod-
els perform relatively inferior as shown in (Zhou et al.,
2021) and (Wu et al., 2021), we mainly include four state-
of-the-art transformer-based models for comparison, i.e.,
Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021),
LogTrans (Li et al., 2019) and Reformer (Kitaev et al., 2020)
as baseline models. Note that since Autoformer holds the
best performance in all the six benchmarks, it is used as the
main baseline model for comparison. More details about
baseline models, datasets, and implementation are described
in Appendix 2.2, E.1, and E.2, respectively.

5.1. Main Results

For better comparison, we follow the experiment settings of
Autoformer in (Wu et al., 2021) where the input length is
fixed to 96, and the prediction lengths for both training and
evaluation are fixed to be 96, 192, 336, and 720, respectively.

Multivariate Results For the multivariate forecasting,
FEDformer achieves the best performance on all six bench-
mark datasets at all horizons as shown in Table 2. Compared
with Autoformer, the proposed FEDformer yields an overall
14.8% relative MSE reduction. It is worth noting that for
some of the datasets, such as Exchange and ILI, the im-
provement is even more significant (over 20%). Note that
the Exchange dataset does not exhibit clear periodicity in
its time series, but FEDformer can still achieve superior per-
formance. Overall, the improvement made by FEDformer
is consistent with varying horizons, implying its strength
in long term forecasting. More detailed results on ETT full
benchmark are provided in Appendix E.3.

Univariate Results The results for univariate time series
forecasting are summarized in Table 3. Compared with
Autoformer, FEDformer yields an overall 22.6 % relative
MSE reduction, and on some datasets, such as traffic, the
improvement can be more than 30%. It again verifies that
FEDformer is more effective in long-term forecasting. Note
that due to the difference between Fourier and wavelet basis,
FEDformer-f and FEDformer-w perform well on different
datasets, making them complementary choice for long term
forecasting. More detailed results on ETT full benchmark
are provided in Appendix E.3.

5.2. Ablation Studies

In this section, the ablation experiments are conducted, aim-
ing at comparing the performance of frequency enhanced
block and its alternatives. The current SOTA results of Aut-
oformer which uses the autocorrelation mechanism serve
as the baseline. Three ablation variants of FEDformer are
tested: 1) FEDformer V1: we use FEB to substitute self-
attention only; 2) FEDformer V2: we use FEA to substitute
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Table 2. Multivariate long-term series forecasting results on six datasets with input length I

96 and prediction length O €

{96,192, 336, 720} (For ILI dataset, we use input length I = 36 and prediction length O € {24, 36,48,60}). A lower MSE in-
dicates better performance, and the best results are highlighted in bold.

Methods | Metric ETTm2 Electricity Exchange Traffic ‘Weather ILI
’ 9 192 336 720 | 96 192 336 720 | 96 192 336 720 | 96 192 336 720 | 96 192 336 720 | 24 36 48 60
FEDf N MSE [0.203 0.269 0.325 0.421|0.193 0.201 0.214 0.246|0.148 0.271 0.460 1.195]0.587 0.604 0.621 0.626|0.217 0.276 0.339 0.403|3.228 2.679 2.622 2.857
ormer-t | \AE |0.287 0.328 0.366 0.415]0.308 0.315 0.329 0.355|0.278 0.380 0.500 0.841|0.366 0.373 0.383 0.382(0.296 0.336 0.380 0.428|1.260 1.080 1.078 1.157
FEDformer-w MSE |0.204 0.316 0.359 0.433|0.183 0.195 0.212 0.231|0.139 0.256 0.426 1.090|0.562 0.562 0.570 0.596|0.227 0.295 0.381 0.424|2.203 2.272 2.209 2.545
MAE |0.288 0.363 0.387 0.432]0.297 0.308 0.313 0.343|0.276 0.369 0.464 0.800|0.349 0.346 0.323 0.368 | 0.304 0.363 0.416 0.434|0.963 0.976 0.981 1.061
Autoformer MSE |0.255 0.281 0.339 0.422]0.201 0.222 0.231 0.254|0.197 0.300 0.509 1.447|0.613 0.616 0.622 0.660|0.266 0.307 0.359 0.419|3.483 3.103 2.669 2.770
u MAE |0.339 0.340 0.372 0.419|0.317 0.334 0.338 0.361|0.323 0.369 0.524 0.941|0.388 0.382 0.337 0.408|0.336 0.367 0.395 0.428|1.287 1.148 1.085 1.125
Informer MSE |0.365 0.533 1.363 3.379|0.274 0.296 0.300 0.373|0.847 1.204 1.672 2.478|0.719 0.696 0.777 0.864]0.300 0.598 0.578 1.059|5.764 4.755 4.763 5.264
MAE |0.453 0.563 0.887 1.338]0.368 0.386 0.394 0.439|0.752 0.895 1.036 1.310|0.391 0.379 0.420 0.472|0.384 0.544 0.523 0.741|1.677 1.467 1.469 1.564
LogTrans MSE |0.768 0.989 1.334 3.048|0.258 0.266 0.280 0.283|0.968 1.040 1.659 1.941|0.684 0.685 0.7337 0.717]0.458 0.658 0.797 0.869|4.480 4.799 4.800 5.278
© MAE |0.642 0.757 0.872 1.328|0.357 0.368 0.380 0.376|0.812 0.851 1.081 1.127|0.384 0.390 0.408 0.396|0.490 0.589 0.652 0.675|1.444 1.467 1.468 1.560
Reformer MSE |0.658 1.078 1.549 2.631|0.312 0.348 0.350 0.340|1.065 1.188 1.357 1.510]0.732 0.733 0.742 0.755]0.689 0.752 0.639 1.130|4.400 4.783 4.832 4.882
MAE |0.619 0.827 0.972 1.242|0.402 0.433 0.433 0.420|0.829 0.906 0.976 1.016|0.423 0.420 0.420 423 |0.596 0.638 0.596 0.792|1.382 1.448 1.465 1.483

Table 3. Univariate long-term series forecasting results on six datasets with input length I

96 and prediction length O €

{96,192, 336, 720} (For ILI dataset, we use input length I = 36 and prediction length O € {24, 36,48,60}). A lower MSE in-
dicates better performance, and the best results are highlighted in bold.

Methods | Metric ETTm2 Electricity Exchange Traffic ‘Weather
N 96 192 336 720 | 96 192 336 720 | 96 192 336 720 | 96 192 336 720 96 192 336 720 24 48 60
FEDf £ MSE [0.072 0.102 0.130 0.1780.253 0.282 0.346 0.422|0.154 0.286 0.511 1.301]0.207 0.205 0.219 0.244]0.0062 0.0060 0.0041 0.0055|0.708 0.584 0.717 0.855
Ormer-t | MAE [0.206 0.245 0.279 0.325|0.370 0.386 0.431 0.484|0.304 0420 0555 0.879|0.312 0.312 0.323 0344 | 0.062 0.062 0050 0.059 |0.627 0.617 0.697 0.774
FEDformer-w MSE [0.063 0.110 0.147 0.219/0.262 0.316 0.361 0.448|0.131 0.277 0.426 1.162|0.170 0.173 0.178 0.187|0.0035 0.0054 0.008 0.015 | 0.693 0.554 0.699 0.828
MAE [0.189 0.252 0.301 0.368|0.378 0.410 0.445 0.501|0.284 0.420 0.511 0.832|0.263 0.265 0.266 0.286| 0.046 0.059 0.072 0.091 | 0.629 0.604 0.696 0.770
Autofi MSE |0.065 0.118 0.154 0.182]0.341 0.345 0.406 0.565|0.241 0.300 0.509 1.260|0.246 0.266 0.263 0.269 | 0.011 0.0075 0.0063 0.0085|0.948 0.634 0.791 0.874
Utotormer | \rAE 0,189 0.256 0.305 0.335|0.438 0428 0.470 0.581]0.387 0369 0.524 0.867|0.346 0.370 0371 0372| 0.081 0.067 0062 0.070 |0.732 0.650 0.752 0.797
Informer MSE [0.080 0.112 0.166 0.2280.258 0.285 0.336 0.607|1.327 1.258 2.179 1.280]0.257 0.299 0.312 0.366| 0.004 0.002 0.004 0.003 | 5.282 4.554 4.273 5214
MAE [0.217 0.259 0.314 0.380|0.367 0.388 0.423 0.599|0.944 0.924 1.296 0.953|0.353 0.376 0.387 0.436| 0.044 0.040 0.049 0.042 | 2.050 1.916 1.846 2.057
LogTrans MSE |0.075 0.129 0.154 0.160]0.288 0.432 0.430 0.491|0.237 0.738 2.018 2.405|0.226 0.314 0.387 0.437 |0.0046 0.0060 0.0060 0.007 |3.607 2.407 3.106 3.698
e s MAE |0.208 0.275 0.302 0.322]0.393 0.483 0.483 0.531|0.377 0.619 1.070 1.175]0.317 0.408 0.453 0.491| 0.052 0.060 0.054 0.059 |1.662 1.363 1.575 1.733
Reformer MSE [0.077 0.138 0.160 0.1680.275 0.304 0.370 0.460|0.298 0.777 1.833 1.203|0.313 0.386 0.423 0.378| 0.012 0.0098 0.013 0.011 |3.838 2.934 3.755 4.162
MAE [0.214 0.290 0.313 0.334]0.379 0.402 0.448 0.511|0.444 0.719 1.128 0.956|0.383 0.453 0.468 0.433| 0.087 0.044 0.100 0.083 | 1.720 1.520 1.749 1.847
cross attention only; 3) FEDFormer V3: we use FEA to 065 ] o i rond
. . . h1 fix 0.440 4
substitute both self and cross attention. The ablated versions it IR
0.60 1 ix 435 4
of FEDformer-f as well as the SOTA models are compared u w0430
8 go
in Table 4, and we use a bold number if the ablated version =037 = oz
. . . . —— h2rand
brings improvements compared with Autoformer. We omit 0501 "\_\\\- 0.420 b2 i
~& m2rand
the similar results in FEDformer-w due to space limit. It can oas L A= | oas(X N m
2 4 8 16 32 64 128 256 2 4 8 16 32 64 128 256

be seen in Table 4 that FEDformer V1 brings improvement
in 10/16 cases, while FEDformer V2 improves in 12/16
cases. The best performance is achieved in our FEDformer
with FEB and FEA blocks which improves performance in
all 16/16 cases. This verifies the effectiveness of the de-
signed FEB, FEA for substituting self and cross attention.
Furthermore, experiments on ETT and Weather datasets
show that the adopted MOEDecomp (mixture of experts
decomposition) scheme can bring an average of 2.96% im-
provement compared with the single decomposition scheme.
More details are provided in Appendix E.5.

5.3. Mode Selection Policy

The selection of discrete Fourier basis is the key to effec-
tively representing the signal and maintaining the model’s
linear complexity. As we discussed in Section 3, random
Fourier mode selection is a better policy in forecasting tasks.
more importantly, random policy requires no prior knowl-
edge of the input and generalizes easily in new tasks. Here

Mode number Mode number

Figure 6. Comparison of two base-modes selection method
(Fix&Rand). Rand policy means randomly selecting a subset
of modes, Fix policy means selecting the lowest frequency modes.
Two policies are compared on a variety of base-modes number
M € {2,4,8...256} on ETT full-benchmark (h1, m1, h2, m2).

we empirically compare the random selection policy with
fixed selection policy, and summarize the experimental re-
sults in Figure 6. It can be observed that the adopted random
policy achieves better performance than the common fixed
policy which only keeps the low frequency modes. Mean-
while, the random policy exhibits some mode saturation
effect, indicating an appropriate random number of modes
instead of all modes would bring better performance, which
is also consistent with the theoretical analysis in Section 3.
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Table 4. Ablation studies: multivariate long-term series forecasting results on ETTm1 and ETTm2 with input length / = 96 and prediction
length O € {96,192, 336, 720}. Three variants of FEDformer-f are compared with baselines. The best results are highlighted in bold.

Methods | Transformer | Informer | Autoformer | FEDformer V1 | FEDformer V2 | FEDformer V3 | FEDformer-f
Self-att FullAtt ProbAtt AutoCorr FEB-f(Eq. 4) AutoCorr FEA-f(Eq. 7) FEB-f(Eq. 4)
Cross-att FullAtt ProbAtt AutoCorr AutoCorr FEA-f(Eq. 7) FEA-f(Eq. 7) FEA-f(Eq. 7)
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
— | 96 | 0525 0486 0458 0465 0481 0463 0378 0419 0539 0490 0.534 0482 0.379 0419
E 192 | 0.526 0.502 0.564 0.521 0.628 0.526 0.417 0.442 0.556 0499 0.552 0493 0426 0.441
L[—'u 336 | 0.514 0.502 0.672 0.559 0.728 0.567 0.480 0477 0.541 0498 0.565 0.503 0.445 0.459
720 | 0.564 0.529 0.714 0.596 0.658 0.548 0.543 0.517 0.558 0.507 0.585 0.515 0.543 0.490
~ 96 0.268 0.346 0.227 0305 0.255 0.339 0.259 0337 0216 0297 0211 0292 0.203 0.287
E 192 | 0304 0355 0300 0360 0281 0340 0.285 0344 0274 0331 0272 0329 0.269 0.328
E 336 | 0.365 0.400 0.382 0410 0339 0372 0320 0373 0334 0369 0327 0363 0.325 0.366
720 | 0475 0.466 1.637 0.794 0422 0419 0.761 0.628 0427 0420 0418 0415 0421 0415
Count ‘ 0 0 0 0 0 0 3 1 0 0 1 1 4 7

5.4. Distribution Analysis of Forecasting Output

In this section, we evaluate the distribution similarity be-
tween the input sequence and forecasting output of different
transformer models quantitatively. In Table 5, we applied
the Kolmogrov-Smirnov test to check if the forecasting re-
sults of different models made on ETTm1 and ETTm?2 are
consistent with the input sequences. In particular, we test
if the input sequence of fixed 96-time steps come from the
same distribution as the predicted sequence, with the null
hypothesis that both sequences come from the same distri-
bution. On both datasets, by setting the common P-value
as 0.01, various existing Transformer baseline models have
much less values than 0.01 except Autoformer, which indi-
cates their forecasting output have a higher probability to
be sampled from the different distributions compared to the
input sequence. In contrast, Autoformer and FEDformer
have much larger P-value compared to others, which mainly
contributes to their seasonal-trend decomposition mecha-
nism. Though we get close results from ETTm?2 by both
models, the proposed FEDformer has much larger P-value
in ETTml. And it’s the only model whose null hypothesis
can not be rejected with P-value larger than 0.01 in all cases
of the two datasets, implying that the output sequence gener-
ated by FEDformer shares a more similar distribution as the
input sequence than others and thus justifies the our design
motivation of FEDformer as discussed in Section 1. More
detailed analysis are provided in Appendix D.

5.5. Differences Compared to Autoformer baseline

Since we use the decomposed encoder-decoder overall ar-
chitecture as Autoformer, we think it is critical to empha-
size the differences. In Autoformer, the authors consider a
nice idea to use the top-k sub-sequence correlation (auto-
correlation) module instead of point-wise attention, and
the Fourier method is applied to improve the efficiency for
sub-sequence level similarity computation. In general, Auto-
former can be considered as decomposing the sequence into
multiple time domain sub-sequences for feature exaction.

Table 5. P-values of Kolmogrov-Smirnov test of different trans-
former models for long-term forecasting output on ETTm1 and
ETTm?2 dataset. Larger value indicates the hypothesis (the input
sequence and forecasting output come from the same distribution)
is less likely to be rejected. The best results are highlighted.

Methods \ Transformer Informer Autoformer FEDformer  True
— | 96 0.0090 0.0055 0.020 0.048 0.023
E 192 0.0052 0.0029 0.015 0.028 0.013
5 336 0.0022 0.0019 0.012 0.015 0.010

720 0.0023 0.0016 0.008 0.014 0.004
~ | 96 0.0012 0.0008 0.079 0.071 0.087
ﬁ 192 0.0011 0.0006 0.047 0.045 0.060
5 336 0.0005 0.00009 0.027 0.028 0.042

720 0.0008 0.0002 0.023 0.021 0.023

Count | 0 0 3 5 NA

In contrast, We use frequency transform to decompose the
sequence into multiple frequency domain modes to extract
the feature. In particular, we do not use a selective approach
in sub-sequence selection. Instead, all frequency features
are computed from the whole sequence, and this global
property makes our model engage better performance for
long sequence.

6. Conclusions

This paper proposes a frequency enhanced transformer
model for long-term series forecasting which achieves state-
of-the-art performance and enjoys linear computational com-
plexity and memory cost. We propose an attention mecha-
nism with low-rank approximation in frequency and a mix-
ture of experts decomposition to control the distribution
shifting. The proposed frequency enhanced structure de-
couples the input sequence length and the attention matrix
dimension, leading to the linear complexity. Moreover,
we theoretically and empirically prove the effectiveness of
the adopted random mode selection policy in frequency.
Lastly, extensive experiments show that the proposed model
achieves the best forecasting performance on six benchmark
datasets in comparison with four state-of-the-art algorithms.
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A. Low-rank Approximation of Attention

In this section, we discuss the low-rank approximation of
the attention mechanism. First, we present the Restricted
Isometry Property (RIP) matrices whose approximate error
bound could be theoretically given in A.1. Then in A.2, we
follow prior work and present how to leverage RIP matrices
and attention mechanisms.

If the signal of interest is sparse or compressible on a fixed
basis, then it is possible to recover the signal from fewer
measurements. (Wang et al., 2020; Xiong et al., 2021) sug-
gest that the attention matrix is low-rank, so the attention
matrix can be well approximated if being projected into a
subspace where the attention matrix is sparse. For the effi-
cient computation of the attention matrix, how to properly
select the basis of the projection yet remains to be an open
question. The basis which follows the RIP is a potential
candidate.

A.1. RIP Matrices

The definition of the RIP matrices is:

Definition A.1. RIP matrices. Let m < n be positive
integers, ® be a m x n matrix with real entries, 6 > 0, and
K < m be an integer. We say that ® is (K,§) — RIP, if
for every K-sparse vector © € R™ we have (1 — ¢)||z| <
[ @] < (14 6)[]l.

RIP matrices are the matrices that satisfy the restricted isom-
etry property, discovered by D. Donoho, E. Candes and T.
Tao in the field of compressed sensing. RIP matrices might
be good choices for low-rank approximation because of
their good properties. A random matrix has a negligible
probability of not satisfying the RIP and many kinds of ma-
trices have proven to be RIP, for example, Gaussian basis,
Bernoulli basis, and Fourier basis.

Theorem 2. Let m < n be positive integers, 6 > 0, and
K = O(ut;)- Let @ be the random matrix defined by one

of the following methods:

(Gaussian basis) Let the entries of © be i.i.d. with a normal
distribution N (0, -L).
(Bernoulli basis) Let the entries of ® be i.i.d. with a

Bernoulli distribution taking the values :l:ﬁ m, each with
50% probability.

(Random selected Discrete Fourier basis) Let A C
{0,...,n — 1} be a random subset of size m. Let ® be the
matrix obtained from the Discrete Fourier transform matrix
(i.e. the matrix F with entries F|l,j] = exp=2™4/™ /\/n)
forl,j €{0,..,n — 1} by selecting the rows indexed by A.

Then ® is (K, o) — RIP with probabilityp =~ 1 — e ™.

Theorem 2 states that Gaussian basis, Bernoulli basis and
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Fourier basis follow RIP. In the following section, the
Fourier basis is used as an example and show how to use RIP
basis in low-rank approximation in the attention mechanism.

A.2. Low-rank Approximation with Fourier
Basis/Legendre Polynomials

Linformer (Wang et al., 2020) demonstrates that the atten-
tion mechanism can be approximated by a low-rank matrix.
Linformer uses a trainable kernel initialized with Gaussian
distribution for the low-rank approximation, While our pro-
posed FEDformer uses Fourier basis/Legendre Polynomials,
Gaussian basis, Fourier basis, and Legendre Polynomials
all obey RIP, so similar conclusions could be drawn.

Starting from Johnson-Lindenstrauss lemma (Johnson,
1984) and using the version from (Arriaga & Vempala,
2006), Linformer proves that a low-rank approximation
of the attention matrix could be made.

Let ® € RVXM be the random selected Fourier ba-
sis/Legendre Polynomials. ® is RIP matrix. Referring to
Theorem 2, with a probability p ~ 1 —e™", forany x € RY,
we have

(1= )lz]l < [|Pz]] < (L + 8)]]. ©)

Referring to (Arriaga & Vempala, 2006), with a probability
p~1—4e ", forany zi,29 € RY, we have

(1= 0)llzrzy || < [|l21@" g || < (1 +0)||zr2z ]| (10)

With the above inequation function, we now discuss the
case in attention mechanism. Let the attention matrix

B= softmam(%) = exp(A) - D', where (Dy4)si =

25:1 exp(Ay;). Following Linformer, we can conclude
a theorem as (please refer to (Wang et al., 2020) for the
detailed proof)

Theorem 3. For any row vector p € RN of matrix B and
any column vector v € RN of matrix V, with a probability
p=1—o0(1), we have

60T dv T —buT|| < 8w . (11)

Theorem 3 points out the fact that, using Fourier ba-
sis/Legendre Polynomials ® between the multiplication of
attention matrix (P) and values (V'), the computation com-
plexity can be reduced from O(N?2d) to O(N Md), where d
is the hidden dimension of the matrix. In the meantime, the
error of the low-rank approximation is bounded. However,
Theorem 3 only discussed the case which is without the
activation function.

Furthermore, with the Cauchy inequality and the fact that
the exponential function is Lipchitz continuous in a compact

region (please refer to (Wang et al., 2020) for the proof), we
can draw the following theorem:

Theorem 4. For any row vector A; € RN in matrix A
T
(A= %), with a probability of p = 1 — o(1), we have

lexp(A; @ T)®v " —exp(A;)v T || < §llexp(A)vT||. (12)

Theorem 4 states that with the activation function (softmax),
the above discussed bound still holds.

In summary, we can leverage RIP matrices for low-rank ap-
proximation of attention. Moreover, there exists theoretical
error bound when using a randomly selected Fourier basis
for low-rank approximation in the attention mechanism.

B. Fourier Component Selection

Let X(¢),..., X (t) be m time series. By applying
Fourier transform to each time series, we turn each X (t)
into a vector a; = (a;1,... 7a1—7d)—'— € R?. By putting
all the Fourier transform vectors into a matrix, we have
A = (aj,az,...,a,)" € R™*? with each row corre-
sponding to a different time series and each column cor-
responding to a different Fourier component. Here, we
propose to select s components from the d Fourier compo-
nents (s < d) uniformly at random. More specifically, we
denote by i; < iy < ... < i, the randomly selected compo-
nents. We construct matrix S € {0,1}**%, with S, = 1 if
i =1, and S; j, = 0 otherwise. Then, our representation of
multivariate time series becomes A’ = AST € R™**, The
following theorem shows that, although the Fourier basis is
randomly selected, under a mild condition, A’ can preserve
most of the information from A.

Theorem 5. Assume that pi(A), the coherence measure of
matrix A, is Q(k/n). Then, with a high probability, we have

[A = Par(A)] < (1 +€)|A = Ayl
ifs = 0(k?/e?).
Proof. Following the analysis in Theorem 3 from (Drineas
et al., 2007), we have
A = Pa(A)] < |A— A"(A)T A
=|A— (AST)(AST) Ayl
= A= (AST)(AST) Agl.

Using Theorem 5 from (Drineas et al., 2007), we have, with
a probability at least 0.7,

|A— (AST)(ArST)T Al < (14 €)|A — Ayl

if s = O(k? /€% x pu(A)n/k). The theorem follows because
w(A) = O(k/n). O
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C. Wavelets

In this section, we present some technical background about
Wavelet transform which is used in our proposed framework.

C.1. Continuous Wavelet Transform

First, let’s see how a function f(¢) is decomposed into a set
of basis functions 15 (), called the wavelets. It is known as
the continuous wavelet transform or CWT'. More formally
it is written as

Asir) = [ v o,

where * denotes complex conjugation. This equation shows
the variables (s, 7), s and 7 are the new dimensions, scale,
and translation after the wavelet transform, respectively.

The wavelets are generated from a single basic wavelet W(t),
the so-called mother wavelet, by scaling and translation as

berlt) = 720 (7).

where s is the scale factor, 7 is the translation factor, and /s
is used for energy normalization across the different scales.

C.2. Discrete Wavelet Transform

Continues wavelet transform maps a one-dimensional signal
to a two-dimensional time-scale joint representation which
is highly redundant. To overcome this problem, people in-
troduce discrete wavelet transformation (DWT) with mother

wavelet as
1 " t— k:_Tosé
J s?
50

DWT is not continuously scalable and translatable but can
be scaled and translated in discrete steps. Here j and k are
integers and sg > 1 is a fixed dilation step. The translation
factor 79 depends on the dilation step. The effect of discretiz-
ing the wavelet is that the time-scale space is now sampled
at discrete intervals. We usually choose sg = 2 so that the
sampling of the frequency axis corresponds to dyadic sam-
pling. For the translation factor, we usually choose 7p = 1
so that we also have a dyadic sampling of the time axis.

Yjx(t) =

When discrete wavelets are used to transform a continuous
signal, the result will be a series of wavelet coefficients and
it is referred to as the wavelet decomposition.

C.3. Orthogonal Polynomials

The next thing we need to focus on is orthogonal polynomi-
als (OPs), which will serve as the mother wavelet function

we introduce before. A lot of properties have to be main-
tained to be a mother wavelet, like admissibility condition,
regularity conditions, and vanishing moments. In short, we
are interested in the OPs that are non-zero over a finite do-
main and are zero almost everywhere else. Legendre is a
popular set of OPs used it in our work here. Some other
popular OPs can also be used here like Chebyshev without
much modification.

C.4. Legendre Polynomails

The Legendre polynomials are defined with respect to (w.r.t.)
a uniform weight function wy,(z) = 1for—1 < z < lor
wr,(z) = 1(—1,1)() such that

1 2 =
| P@p@a= {7 00
-1 0 i J.

Here the function is defined over [—1, 1], but it can be ex-
tended to any interval [a, b] by performing different shift
and scale operations.

C.5. Multiwavelets

The multiwavelets which we use in this work combine ad-
vantages of the wavelet and OPs we introduce before. Other
than projecting a given function onto a single wavelet func-
tion, multiwavelet projects it onto a subspace of degree-
restricted polynomials. In this work, we restricted our ex-
ploration to one family of OPs: Legendre Polynomials.

First, the basis is defined as: A set of orthonormal
basis w.r.t. measure pu, are ¢q,...,¢Pr—1 such that
(s, ¢j>“ = ;5. With a specific measure (weighting func-
tion w(x)), the orthonormality condition can be written as

[ di(2);(x)w(@)dz = bi;.

Follow the derivation in (Gupta et al., 2021), through us-
ing the tools of Gaussian Quadrature and Gram-Schmidt
Orthogonalizaition, the filter coefficients of multiwavelets
using Legendre polynomials can be written as

1/2
HZ.(jQ) =2 ; ¢i(x)d;(2x)wr, (22 — 1)dx

1
:%A@wmmm

1 k Z;
-5 ;wifbi (5> b (w) .

For example, if £k = 3, following the formula, the filter
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coefficients are derived as follows

1 1
—\% 0 0 ? 0 0
0 _ /3 1 1 3 1
H'=1=37% O LH =[35 25 O I
0 _Vi5 1 0 VI5 1
42 4V2 42 4v2
1 B 1 B 0
0 2V2 22 VI . 2v/2 2v2 VI
_ 1 15 — 1 15
G—[O 4\/5 4{5]7G7[ 0 74\/5 4\/51
0 0 = 0 0 -1
2 V2

For a given f(z), the multiwavelet coefficients at the
k—1

scale n can be defined as s} = [(f, gbﬁ)u } ,dp =

nli=o

[(F v, ]

sp,dpr € RFX2". ¢ are wavelet orthonormal basis of
piecewise polynomials. The decomposition/reconstruction
across scales is defined as

k—1

, respectively, w.r.t. measure u, with
i=0

st = H sy + HWspt,
S;Ll+l — Z(O) (H(O)TSZL + G(O)Td;L) ,

i = GOy 9

+ H(l)sglj-lh

S;l-:-ll —»® (H(l)T noy G(l)Tdn)

where (H®, HD G© GW) are linear coefficients for
multiwavelet decomposition filters. They are fixed matrices
used for wavelet decomposition. The multiwavelet repre-
sentation of a signal can be obtained by the tensor product
of multiscale and multiwavelet basis. Note that the basis
at various scales are coupled by the tensor product, so we
need to untangle it. Inspired by Gupta et al.,2021, we adapt
a non-standard wavelet representation to reduce the model
complexity. For a map function F'(z) = z’, the map under
multiwavelet domain can be written as

Uli = And}' + Busy', Ul =Cndi, Uli=Fsi, (14)
where (U}, Uj;, si', d}) are the multiscale, multiwavelet
coefficients, L is the coarsest scale under recursive decompo-
sition, and A,,, B,,, C,, are three independent FEB-f blocks
modules used for processing different signal during decom-
position and reconstruction. Here I is a single-layer of
perceptrons which processes the remaining coarsest signal

after L decomposed steps.

C.6. Frequency Enhanced Attention with Wavelet
Transform (FEA-w)

For each cycle L, it produces a processed high-frequency
tensor Ud(L), a processed low-frequency frequency tensor
Us(L), and the raw low-frequency tensor X (L + 1). This
is a ladder-down approach, and the decomposition stage
performs the decimation of the signal by a factor of 1/2,
running for a maximum of L cycles, where L < log, (M)
for a given input sequence of size M. In practice, L is set as

a fixed argument parameter. The three sets of FEB-f blocks
are shared during different decomposition cycles L. For
the wavelet reconstruction part, we recursively build up our
output tensor as well. For each cycle L, we combine X (L +
1), Us(L), and Ud(L) produced from the decomposition
part and produce X (L) for the next reconstruction cycle.
For each cycle, the length dimension of the signal tensor is
increased by 2 times.

D. Output Distribution Analysis
D.1. Bad Case Analysis

Using vanilla Transformer as baseline model, we demon-
strate two bad long-term series forecasting cases in ETTm1
dataset as shown in the following Figure 7.

N . '1 | ) ]
%(/ - AL
15 W‘ VWW o

0 200 400 600 800

w

o

Figure 7. Different distribution between ground truth and forecast-
ing output from vanilla Transformer in a real-world ETTm1 dataset.
Left: frequency mode and trend shift. Right: trend shift.

The forecasting shifts in Figure 7 is particularly related
to the point-wise generation mechanism adapted by the
vanilla Transformer model. To the contrary of classic mod-
els like Autoregressive integrated moving average (ARIMA)
which has a predefined data bias structure for output dis-
tribution, Transformer-based models forecast each point
independently and solely based on the overall MSE loss
learning. This would result in different distribution between
ground truth and forecasting output in some cases, leading
to performance degradation.

D.2. Kolmogorov-Smirnov Test

We adopt Kolmogorov-Smirnov (KS) test to check whether
the two data samples come from the same distribution. KS
test is a nonparametric test of the equality of continuous or
discontinuous, two-dimensional probability distributions. In
essence, the test answers the question “what is the proba-
bility that these two sets of samples were drawn from the
same (but unknown) probability distribution”. It quantifies a
distance between the empirical distribution function of two
samples. The Kolmogorov-Smirnov statistic is

Dn,m = sup |Fl,n(x) - FQ,m($)|

where F ,, and F5 ,,, are the empirical distribution functions
of the first and the second sample respectively, and sup is the
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Table 6. Kolmogrov-Smirnov test P value for long sequence time-series forecasting output on ETT dataset (full experiment)

Methods ‘ Transformer LogTrans Informer Reformer Autoformer FEDformer True
—| 96 0.0090 0.0073 0.0055 0.0055 0.020 0.048 0.023
E 192 0.0052 0.0043 0.0029 0.0013 0.015 0.028 0.013
E 336 0.0022 0.0026 0.0019 0.0006 0.012 0.015 0.010

720 0.0023 0.0064 0.0016 0.0011 0.008 0.014 0.004
~ | 96 0.0012 0.0025 0.0008 0.0028 0.078 0.071 0.087
E 192 0.0011 0.0011 0.0006 0.0015 0.047 0.045 0.060
E 336 0.0005 0.0011 0.00009 0.0007 0.027 0.028 0.042

720 0.0008 0.0005 0.0002 0.0005 0.023 0.021 0.023

Count ‘ 0 0 0 0 3 5 NA

supremum function. For large samples, the null hypothesis
is rejected at level « if

1 « n+m
Dim > \/2111(2) \/nm ’
where n and m are the sizes of the first and second samples
respectively.

D.3. Distribution Experiments and Analysis

Though the KS test omits the temporal information from the
input and output sequence, it can be used as a tool to mea-
sure the global property of the foretasting output sequence
compared to the input sequence. The null hypothesis is that
the two samples come from the same distribution. We can
tell that if the P-value of the KS test is large and then the
null hypothesis is less likely to be rejected for true output
distribution.

We applied KS test on the output sequence of 96-720 pre-
diction tasks for various models on the ETTm1 and ETTm2
datasets, and the results are summarized in Table 6. In the
test, we compare the fixed 96-time step input sequence dis-
tribution with the output sequence distribution of different
lengths. Using a 0.01 P-value as statistics, various existing
Transformer baseline models have much less P-value than
0.01 except Autoformer, which indicates they have a higher
probability to be sampled from the different distributions.
Autoformer and FEDformer have much larger P value com-
pared to other models, which mainly contributes to their
seasonal trend decomposition mechanism. Though we get
close results from ETTm1 by both models, the proposed
FEDformer has much larger P-values in ETTm1. And it is
the only model whose null hypothesis can not be rejected
with P-value larger than 0.01 in all cases of the two datasets,
implying that the output sequence generated by FEDformer
shares a more similar distribution as the input sequence
than others and thus justifies the our design motivation of
FEDformer as discussed in Section 1.

Note that in the ETTm1 dataset, the True output sequence

Table 7. Summarized feature details of six datasets.

DATASET \ LEN DIM FREQ
ETTm2 69680 8 15 MIN
ELECTRICITY | 26304 322 1H

EXCHANGE 7588 9 1 DAY
TRAFFIC 17544 863 1H

WEATHER 52696 22 10 MIN
ILI 966 8 7 DAYS

has a smaller P-value compared to our FEDformer’s pre-
dicted output, it shows that the model’s close output distribu-
tion is achieved through model’s control other than merely
more accurate prediction. This analysis shed some light on
why the seasonal-trend decomposition architecture can give
us better performance in long-term forecasting. The design
is used to constrain the trend (mean) of the output distribu-
tion. Inspired by such observation, we design frequency en-
hanced block to constrain the seasonality (frequency mode)
of the output distribution.

E. Supplemental Experiments
E.1. Dataset Details

In this paragraph, the details of the experiment datasets are
summarized as follows: 1) ETT (Zhou et al., 2021) dataset
contains two sub-dataset: ETT1 and ETT2, collected from
two electricity transformers at two stations. Each of them
has two versions in different resolutions (15min & 1h). ETT
dataset contains multiple series of loads and one series of oil
temperatures. 2) Electricity' dataset contains the electricity
consumption of clients with each column corresponding
to one client. 3) Exchange (Lai et al., 2018) contains the
current exchange of 8 countries. 4) Traffic?> dataset contains
the occupation rate of freeway system across the State of

"https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams
20112014
Zhttp://pems.dot.ca.gov
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Table 8. Multivariate long sequence time-series forecasting results on ETT full benchmark. The best results are highlighted in bold.

Methods ‘ FEDformer-f

FEDformer-w

Autoformer ‘

Informer

LogTrans

‘ Reformer

Metric ‘ MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

96
192
336
720

ETTh1

0.376
0.420
0.459
0.506

0.419
0.448
0.465
0.507

0.395
0.469
0.530
0.598

0.424
0.470
0.499
0.544

0.449
0.500
0.521
0.514

0.459
0.482
0.496
0.512

0.865
1.008
1.107
1.181

0.713
0.792
0.809
0.865

0.878
1.037
1.238
1.135

0.740
0.824
0.932
0.852

0.837
0.923
1.097
1.257

0.728
0.766
0.835
0.889

96
192
336
720

ETTh2

0.346
0.429
0.496
0.463

0.388
0.439
0.487
0474

0.394
0.439
0.482
0.500

0.414
0.445
0.480
0.509

0.358
0.456
0.482
0.515

0.397
0.452
0.486
0.511

3.755
5.602
4.721
3.647

1.525
1.931
1.835
1.625

2.116
4.315
1.124
3.188

1.197
1.635
1.604
1.540

2.626
11.12
9.323
3.874

1.317
2979
2.769
1.697

96
192
336
720

ETTml1

0.379
0.426
0.445
0.543

0.419
0.441
0.459
0.490

0.378
0.464
0.508
0.561

0.418
0.463
0.487
0.515

0.505
0.553
0.621
0.671

0.475
0.496
0.537
0.561

0.672
0.795
1.212
1.166

0.571
0.669
0.871
0.823

0.600
0.837
1.124
1.153

0.546
0.700
0.832
0.820

0.538
0.658
0.898
1.102

0.528
0.592
0.721
0.841

96
192
336
720

ETTm2

0.203
0.269
0.325
0.421

0.287
0.328
0.366
0.415

0.204
0.316
0.359
0.433

0.288
0.363
0.387
0.432

0.255
0.281
0.339
0.422

0.339
0.340
0.372
0.419

0.365
0.533
1.363
3.379

0.453
0.563
0.887
1.338

0.768
0.989
1.334
3.048

0.642
0.757
0.872
1.328

0.658
1.078
1.549
2.631

0.619
0.827
0.972
1.242

California. 5) Weather® dataset contains 21 meteorological
indicators for a range of 1 year in Germany. 6) Illness*
dataset contains the influenza-like illness patients in the
United States. Table 7 summarizes feature details (Sequence
Length: Len, Dimension: Dim, Frequency: Freq) of the six
datasets. All datasets are split into the training set, validation
set and test set by the ratio of 7:1:2.

E.2. Implementation Details

Our model is trained using ADAM (Kingma & Ba, 2017)
optimizer with a learning rate of 1e~*. The batch size is set
to 32. An early stopping counter is employed to stop the
training process after three epochs if no loss degradation
on the valid set is observed. The mean square error (MSE)
and mean absolute error (MAE) are used as metrics. All
experiments are repeated 5 times and the mean of the metrics
is used in the final results. All the deep learning networks
are implemented in PyTorch (Paszke et al., 2019) and trained
on NVIDIA V100 32GB GPUs.

E.3. ETT Full Benchmark

We present the full-benchmark on the four ETT datasets
(Zhou et al., 2021) in Table 8 (multivariate forecasting) and
Table 9 (univariate forecasting). The ETTh1 and ETTh2
are recorded hourly while ETTm1 and ETTm?2 are recorded
every 15 minutes. The time series in ETTh1 and ETTml
follow the same pattern, and the only difference is the sam-
pling rate, similarly for ETTh2 and ETTm?2. On average,
our FEDformer yields a 11.5% relative MSE reduction for
multivariate forecasting, and a 9.4 % reduction for univariate

3https://www.bgc-jena.mpg.de/wetter/
*https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

forecasting over the SOTA results from Autoformer.
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Figure 8. Multihead attention map with 8 heads using tanh (top)
and softmax (bottom) as activation map for the FEDformer-f train-
ing on ETTm?2 dataset.
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Table 9. Univariate long sequence time-series forecasting results on ETT full benchmark. The best results are highlighted in bold.

Methods ‘ FEDformer-f ‘ FEDformer-w ‘ Autoformer ‘ Informer LogTrans Reformer
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
—| 96 | 0.079 0215 0.080 0.214 0.071 0.206 0.193 0377 0.283 0468 0.532 0.569
E 192 | 0.104 0.245 0.105 0256 0.114 0.262 0.217 0395 0234 0409 0.568 0.575
S 336 | 0.119 0.270 0.120 0.269 0.107 0.258 0.202 0.381 0.386 0.546 0.635 0.589
720 | 0.142  0.299 0.127 0280 0.126 0.283 0.183 0.355 0475 0.628 0.762 0.666
~ | 96 | 0128 0.271 0.156 0.306 0.153 0.306 0213 0373 0217 0379 1411 0.838
E 192 | 0.185 0.330 0.238 0.380 0.204 0.351 0.227 0.387 0281 0.429 5.658 1.671
S 336 | 0.231 0.378 0.271 0412 0246 0389 0.242 0401 0.293 0437 4777 1.582
720 | 0.278 0420 0.288 0.438 0.268 0.409 0.291 0439 0218 0387 2.042 1.039
—=| 96 | 0.033 0.140 0.036 0.149 0.056 0.183 0.109 0.277 0.049 0.171 0296 0.355
E 192 | 0.058 0.186 0.069 0206 0.081 0.216 0.151 0310 0.157 0.317 0429 0474
&~ | 336 | 0.084 0231 0.071 0.209 0.076 0.218 0427 0.591 0.289 0459 0.585 0.583
4 720 | 0.102 0.250 0.105 0.248 0.110 0.267 0438 0.586 0.430 0.579 0.782 0.730
o~ | 96 | 0.067 0.198 0.063 0.189 0.065 0.189 0.088 0.225 0.075 0.208 0.076 0.214
E 192 | 0.102 0.245 0.110 0252 0.118 0.256 0.132 0.283 0.129 0.275 0.132 0.290
E 336 | 0.130 0.279 0.147 0301 0.154 0.305 0.180 0.336 0.154 0302 0.160 0.312
720 | 0.178 0.325 0219 0368 0.182 0.335 0.300 0435 0.160 0.321 0.168 0.335

E.4. Cross Attention Visualization

The o(Q - K 7) can be viewed as the cross attention weight
for our proposed frequency enhanced cross attention block.
Several different activation functions can be used for atten-
tion matrix activation. Tanh and softmax are tested in this
work with various performances on different datasets. We
use tanh as the default one. Different attention patterns are
visualized in Figure 8. Here two samples of cross attention
maps are shown for FEDformer-f training on the ETTm?2
dataset using tanh and softmax respectively. It can be seen
that attention with Softmax as activation function seems
to be more sparse than using tanh. Overall we can see at-
tention in the frequency domain is much sparser compared
to the normal attention graph in the time domain, which
indicates our proposed attention can represent the signal
more compactly. Also this compact representation supports
our random mode selection mechanism to achieve linear
complexity.

E.5. Improvements of Mixture of Experts
Decomposition

We design a mixture of experts decomposition mechanism
which adopts a set of average pooling layers to extract the
trend and a set of data-dependent weights to combine them.
The default average pooling layers contain filters with kernel
size 7, 12, 14, 24 and 48 respectively. For comparison, we
use single expert decomposition mechanism which employs
a single average pooling layer with a fixed kernel size of
24 as the baseline. In Table 10, a comparison study of
multivariate forecasting is shown using FEDformer-f model
on two typical datasets. It is observed that the designed
mixture of experts decomposition brings better performance

Table 10. Performance improvement of the designed mixture of
experts decomposition scheme.

Methods | FEDformer-f | FEDformer-f
Dataset | ETThl | Weather
Mechanism | MOE  Single | MOE  Single

0.217 0.238 | 0.376  0.375

1 92 0.276  0.291 0420 0.412

336 0.339 0.352 0.450 0.455

720 0403 0413 | 0496 0.502
Improvement | 5.35% | 0.57%

than the single decomposition scheme.

E.6. Multiple random runs

Table 11 lists both mean and standard deviation (STD) for
FEDformer-f and Autoformer with 5 runs. We observe a
small variance in the performance of FEDformer-f, despite

the randomness in frequency selection.
Table 11. A subset of the benchmark showing both Mean and STD.

MSE ‘ ETTm?2 Electricity Exchange Traffic

| 96 | 0203400042 0.194+0.0008 0.148 +0.002 0217 + 0.008
A | 192 | 0269 +0.0023  0.201+0.0015 0270 0.008  0.604 = 0.004
£ | 336 | 0.3254+0.0015 0215+ 0.0018 0460+ 0.016  0.621 = 0.006

720 | 0421 +£0.0038  0.246+0.0020  1.195+0.026  0.626 =+ 0.003
5| 96 | 0255+0020 020140003 0.197+0.019 0.613+0.028
£ 1192 | 02810027 022240003  0300£0.020  0.616%0.042
£ 1336 | 033940018  0231£0.006 0509+ 0.041  0.622+0.016
21720 | 042240015 025440007 144740084 041940017

E.7. Sensitivity to the number of modes: ETTx1 vs

ETTx2

The choice of modes number depends on data complexity.
The time series that exhibits the higher complex patterns
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requires the larger the number of modes. To verify this claim,
we summarize the complexity of ETT datasets, measured
by permutation entropy and SVD entropy, in Table 12. It is
observed that ETTx1 has a significantly higher complexity
(corresponding to a higher entropy value) than ETTx2, thus
requiring a larger number of modes.

Table 12. Complexity experiments for datasets

Methods | ETTh1  ETTh2 ETTml ETTm2
Permutation Entropy | 0.954 0.866 0.959 0.788
SVD Entropy | 0.807 0.495 0.589 0.361

E.8. When Fourier/Wavelet model performs better

Our high level principle of model deployment is that Fourier-
based model is usually better for less complex time series,
while wavelet is normally more suitable for complex ones.
Specifically, we found that wavelet-based model is more
effective on multivariate time series, while Fourier-based
one normally achieves better results on univariate time se-
ries. As indicated in Table 13, complexity measures on
multivariate time series are higher than those on univariate
ones.

Table 13. Perm Entropy Complexity comparison for multi vs uni

Permutation Entropy | Electricity — Traffic  Exchange Illness
Multivariate | 0910 0.792 0.961 0.960
Univariate | 0.902 0.790 0.949 0.867




