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Abstract
The goal of coreset selection in supervised learn-
ing is to produce a weighted subset of data, so that
training only on the subset achieves similar perfor-
mance as training on the entire dataset. Existing
methods achieved promising results in resource-
constrained scenarios such as continual learning
and streaming. However, most of the existing al-
gorithms are limited to traditional machine learn-
ing models. A few algorithms that can handle
large models adopt greedy search approaches due
to the difficulty in solving the discrete subset se-
lection problem, which is computationally costly
when coreset becomes larger and often produces
suboptimal results. In this work, for the first time
we propose a continuous probabilistic bilevel for-
mulation of coreset selection by learning a proba-
blistic weight for each training sample. The over-
all objective is posed as a bilevel optimization
problem, where 1) the inner loop samples core-
sets and train the model to convergence and 2)
the outer loop updates the sample probability pro-
gressively according to the model’s performance.
Importantly, we develop an efficient solver to the
bilevel optimization problem via unbiased policy
gradient without trouble of implicit differentia-
tion. We provide the convergence property of
our training procedure and demonstrate the supe-
riority of our algorithm against various coreset
selection methods in various tasks, especially in
more challenging label-noise and class-imbalance
scenarios.

1. Introduction
In the last decade, deep neural networks (DNNs) have
achieved tremendous successes in multiple areas such as
computer vision (Simonyan & Zisserman, 2015; He et al.,
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2016) and natural language processing (Vaswani et al.,
2017). These superior performances are mostly achieved
via learning from huge amounts of data. However, this data-
driven paradigm also poses several new challenges: 1) the
cumbersome dataset becomes harder to store and transfer;
2) for some real applications, such as continual learning,
one can only access a small number of training data at each
stage of training; 3) in some more extreme scenarios, where
the training data is incorrectly labelled, or they are collected
from different domains, more training data may even hurt
the model’s performance. To address these issues, a natural
idea is to select a small subset (i.e., coreset) comprised of
most informative training samples, such that training on this
subset can achieve comparable or even better performance
with that on the full dataset, which is verified in Appendix
D. Therefore, how to construct a good coreset for DNNs
now becomes a crucial problem.

We notice that, coreset selection has been investigated for
the traditional machine learning models, e.g., SVM (Tsang
et al., 2005), logistic regression (Huggins et al., 2016) and
Gaussian mixture model (Lucic et al., 2017), for a long
time to accelerate the training process and lots of effective
methods have been developed. The idea of these studies is
to find a small weighted training subset, whose objective
function is close to the one of the full training set at any point
in the parameter space. A typical formulation is uniform
function approximation, that is to find a small subset D̂
together with the non-negative weights Ŵ = {wi : i ∈ D̂}
from the training dataset D satisfying that

|L(θ)− L̂(θ)| ≤ ϵL(θ), for any θ ∈ Rp, (1)

where L(θ) = 1
|D|

∑
i∈D ℓ(θ;xi,yi) is the objective func-

tion on the full dataset and L̂(θ) = 1
|D̂|

∑
i∈D̂ wiℓ(θ;xi,yi)

is the one on the selected subset D̂, ϵ is a small number to
control the approximation error. When ϵ is small enough,
the comparable performance of the model learned from L̂
can be guaranteed. Nevertheless, it has been shown that
these methods cannot be applied to DNNs directly (Borsos
et al., 2020). The reason is that as DNNs are always highly
nonconvex and the hypothesis set is significantly larger than
traditional models, to obtain small uniform approximation
error ϵ, one has to select a very large coreset D̂.

More recently, bilevel optimization (Borsos et al., 2020) has
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been introduced to construct the coreset for DNNs. Their
motivation is that the only thing we really care about is the
performance of the model trained on the coreset, i.e., the
optimum of L̂, instead of achieving small approximation
error for the loss function in the whole parameter space.
Therefore, the bilevel optimization with a cardinality con-
straint on D̂ presented below would be a more reasonable
framework for constructing the coreset:

min
Ŵ,D̂⊂D,|D̂|≤K

L(θ∗(W, D̂)) (2)

s.t. θ∗(Ŵ, D̂) = argmin
θ
L̂(θ).

However, despite some promising empirical results are re-
ported, we notice that existing methods adopt greedy strate-
gies to update D̂ as the outer loop involves optimization on
the discrete variable set D̂, which is NP hard. For example,
(Borsos et al., 2020) starts from several randomly sampled
training data and then sequentially adds sample with the
largest gradient with respect to the outer objective into D̂
in each iteration. Such greedy methods generally lead to
suboptimal performance and the selected coreset would be
unnecessarily large. The drawback becomes more promi-
nent if the initially sampled data has bad quality, which may
misguide the selection, especially when the dataset contains
noisy labels or is class-imbalanced.

In this paper, to address the above issue, we propose a prob-
abilistic coreset selection method based on bilevel optimiza-
tion for DNNs. In contrast with the greedy methods, our
key idea is to continualize the discrete bilevel optimization
problem above by probabilistic reparameterization, making
the gradient-based optimization possible. In this way, we
can explore the entire dataset and progressively improve the
quality of the coreset during training. To be precise, we first
assign each training data i with a binary mask mi to indi-
cate whether data i is included in the coreset or not. Then,
to continualize the problem, we parameterize mi to be a
Bernoulli variable with the probability si to be 1 and 1− si
to be 0. Thus, the cardinality of the coreset can be roughly
controlled by the sum of si and coreset selection is trans-
formed into the problem of learning these probabilitis si.
Therefore, we formulate coreset selection as a continuous
bilevel optimization problem with a sparsity constraint (Eqn.
(4)). In the inner loop, we sample a coreset according to the
probability si and use it to train the model (see Eqn. (5)). In
the outer loop, we minimize the loss of the learned model
on the full dataset by adjusting the sample probabilities. We
develop an efficient optimization algorithm (Algorithm 1)
utilizing unbiased policy gradient estimator, which calcu-
lates the probabilities’ gradients via only forward instead of
backward propagation and avoids the complicate calculation
of implicit differentiation.

Notably, our proposed method has the following advantages:

1) Our algorithm gradually improves the quality of the se-
lected subset by explores the training set globally unlike
greedy methods which make urgent decisions at early stage
and cannot remove redundant data once added to the coreset.

2) Our algorithm obtains much more competence in the
setting with label noise or class imbalance without the bother
of making decisions on adding detrimental or redundant data
at early stage. In contrast, the misselected data may mislead
the future selection for greedy methods.

3) Our algorithm develops an efficient policy gradient solver
to the bilevel optimization problem without cumbersome
implicit gradient calculations.

Moreover, we provide the property of our training algo-
rithm in convergence. We demonstrate the superiority of
our method through extensive experimental results on vari-
ous tasks, including data summarization, continual learning,
streaming and feature selection and surpass state-of-the-art
methods by a large margin.

Our main contributions can be summarized as follows:

• To the best of our knowledge, our method is the first
global coreset selection method for DNNs, where we
propose a novel continualized bilevel optimization for-
mulation and develop an efficient policy gradient solver
without implicit gradient calculation.

• We provide the convergence property showing that
our optimization method can converge similarly with
the standard nonconvex projected stochastic gradient
descent algorithm.

• We empirically demonstrate the superiority of our
method through various experiments including data
summarization, continual learning, streaming, feature
selection, especically in more challenging senarios
with noisy labels and class imbalance.

2. Related Works
2.1. Coreset Selection

Coreset selection aims to solve the problem of finding the
most informative subset from the full set, which can be
used to solve the optimization problem and obtain similar
performance as the full set. Several coreset selection meth-
ods are designed for specific learning algorithms, such as
K-means (Feldman & Langberg, 2011; Har-Peled & Kushal,
2007), SVM (Tsang et al., 2005), logistic regression (Hug-
gins et al., 2016) and Gaussian mixture model (Lucic et al.,
2017; Feldman et al., 2011). These methods only work
for traditional models and can not be directly adopted for
DNNs. (Borsos et al., 2020) proposed a bilevel optimization
framework for coreset selection for DNN. However, due to
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the difficulty in solving the discrete optimization problem,
they adopt greedy search algorithm to sequentially select
new samples. Since the samples selected in the early stage
can never be removed afterwards, their method generally
results in suboptimal performance and deteriorates severely
in challenging scenarios, where the initial samples can have
bad quality and misguide the search. Moreover, the greedy-
based algorithm faces expensive computational cost due to
its demand in solving a bilevel optimization problem for
every sample added to the coreset. Our method searches the
coreset globally and does not suffer from those drawbacks.

2.2. Continual Learning and Streaming

Continual learning (CL) (Kirkpatrick et al., 2017; Lopez-
Paz & Ranzato, 2017; Rebuffi et al., 2017) aims to tackle
the scenario where a series of different tasks are learnt se-
quentially using the same model. In this work, we mainly
focus on replay-based CL methods, which keeps a constant
number of data of previous tasks to alleviate the catastrophic
forgetting problem. Streaming (Aljundi et al., 2019b; Hayes
et al., 2019; Chrysakis & Moens, 2020) is more challeng-
ing in the sense that it does not have the concept of tasks
and data is sequentially given to the model. In these cases,
coresets can be adopted to construct the replay memory to
choose the informative data which well represents each task.

2.3. Feature Selection

Feature selection (FS) (Cai et al., 2018; Li et al., 2017; Miao
& Niu, 2016) aims to select a subset of important features to
represent the original data, which reduces the computation
and storage cost. The majority of existing works of feature
selection are mainly focused on traditional models (Güneş
et al., 2010; Sulaiman & Labadin, 2015; Radovic et al.,
2017). However, to the best of our knowledge, the explo-
ration in this direction for deep neural networks is limited.
We note that feature selection can also be considered as an
instance level coreset selection task which can be naturally
addressed by our proposed framework, where the selected
features can be viewed as the coreset.

2.4. Dataset Distillation

An alternative approach for dataset compression is dataset
distillation (Wang et al., 2018; Nguyen et al., 2020), which
is inspired by knowledge distillation (Hinton et al., 2015;
Gou et al., 2021; Yao et al., 2021a). Instead of distilling
knowledge from the model parameters, dataset distillation
learns a few synthetic data points for each class. These meth-
ods work well when the model for deployment is the same
as the one used for learning the synthetic data. However, as
the learnt data points also encode information of the model’s
architecture and initialization weights, their performances
drop significantly when the synthetic data learned on one
model is used to train another model. In contrast, coreset

selection is not sensitive to the model, since we do not alter
the data directly.

2.5. Bilevel Optimization

Bilevel optimization (Sinha et al., 2017) has garnered a lot
of attention in recent years due to its ability to handle hier-
archical decision making processes. Previous works utilize
bilevel optimization in multiple areas of research, such as
hyper-paramter optimization (Lorraine et al., 2020; Maclau-
rin et al., 2015; Pedregosa, 2016; MacKay et al., 2019;
Franceschi et al., 2017; Vicol et al., 2021), meta learning
(Finn et al., 2017; Nichol & Schulman, 2018), neural archi-
tecture search (Pham et al., 2018; Liu et al., 2018; Pham
et al., 2018; Shi et al., 2020; Yao et al., 2021b; Gao et al.,
2022; 2021; Shi et al., 2021) and sample re-weighting (Ren
et al., 2018; Shu et al., 2019; Wang et al., 2022a; Zhou et al.,
2022). Prior to our work, (Borsos et al., 2020) formulates
coreset selection into a bi-level optimization problem and
solves it using a greedy algorithm.

3. Probabilistic Bilevel Coreset Selection
In this section, we first present our probabilistic coreset
selection framework in Section 3.1 and then develop an
efficient training method for this framework in Section 3.2.

3.1. Bilevel Framework for Coreset Selection

Consider a neural network f(x;θ) with θ being the train-
able parameters and D = {(xi,yi)}ni=1 is the training
dataset, we first formulate coreset selection into the fol-
lowing discrete bilevel optimization paradigm:

min
m∈C̃

Φ̃(m) = L(θ∗(m)) =
1

n

n∑
i=1

ℓ(f(xi;θ
∗(m)),yi), (3)

s.t. θ∗(m) ∈ argmin
θ

L̂(θ;m) =
1

K

n∑
i=1

miℓ(f(xi;θ),yi),

where the mask m ∈ {0, 1}n is a binary vector with mi = 1
indicating sample i is selected into the coreset and otherwise
excluded. K is a positive integer controlling the coreset size
and C̃ = {m : mi = 0 or 1, ∥m∥0 ≤ K} is the feasible
region of m. Intuitively, the inner loop trains the network to
converge on the selected coreset to obtain the model θ∗ (m).
The outer loop evaluates the loss of θ∗ (m) on the full set
and optimizes it to guide the learning of m.
Remark 3.1. The difference between our discrete bilevel
formulation (3) and the existing one in (2) is that our for-
mulation has no weight wi for each sample in the coreset.
We remove these weights for two considerations: 1) our em-
pirical results show that we can achieve good performance
without weighting the coreset; 2) it enables us to develop
extremely efficient training algorithm (see Section 5.3).

Noticing that the discrete nature of the mask m makes
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directly solving the above bilevel optimization problem
intractable, we now turn to continualize it by probabilis-
tic reparameterization, making gradient based optimization
method possible. Our main idea is to view each mask mi as
an independent binary random variable and transform the
problem (3) from optimizing in the discrete vector space into
the probability space, which is continuous. Specifically, we
reparameterize mi as a Bernoulli random variable with prob-
ability si to be 1 and 1− si to be 0, that is mi ∼ Bern(si),
where si ∈ [0, 1]. Assuming the variables mi are inde-
pendent, then we can get the distribution function of m,
i.e., p(m|s) = Πn

i=1(si)
mi(1 − si)

(1−mi). Thus, we can
control the coreset size via the sum of the probabilities si,
i.e., 1⊤s, since Em∼p(m|s)∥m∥0 =

∑n
i=1 si. Therefore,

C̃ can be approximately transformed into C = {s : 0 ⪯ s ⪯
1, ∥s∥1 ≤ K}. Finally, problem (3) can be naturally relaxed
into the following excepted loss minimization problem:

min
s∈C

Φ(s) = Ep(m|s) L(θ∗(m)), (4)

s.t. θ∗(m) ∈ argmin
θ

L̂(θ;m) (5)

where C = {s : 0 ⪯ s ⪯ 1, ∥s∥1 ≤ K} is the domain.

Some appealing features of our Formulation (4) are:

• Our formulation is a tight relaxation (although not
equivalent) of Problem (3). The reasons are:

– It is easy to know that mins∈C Φ(s) ≤
minm∈C̃ Φ̃(m) as any deterministic binary mask
m can be represented as a particular stochastic
one by letting si be either 0 or 1.

– Our constraint C induces sparsity on s due to
the ℓ1-norm and the range [0, 1], making most
components of the optimal s either 0 or 1. That
is, our finally learned stochastic mask is nearly
deterministic, which will be empirically verified
in Section 5.2.

• Due to our sparsity constraint, the selected coreset size
of the inner loop, i.e., ∥m∥ is always small, which
makes the optimization of θ∗ very efficient.

• As shown in Eqn.(6), our outer objective is Φ(s) is dif-
ferentiable, allowing us to use general gradient based
methods for optimization.

3.2. Optimization

Existing bilevel optimization algorithms (Pedregosa, 2016;
Grazzi et al., 2020; 2021) are often computationally costly
due to the expensive implicit differentiation in their chain-
rule based gradient estimator. To be precise, if applied to our
problem, they generally estimate the gradient in the form of

∇sΦ(s) ≈ ∇sθ
∗(m)∇θL(θ∗(m)).

Hence, they need to compute the implicit differentiation of
the inner loop optimum, i.e, ∇sθ

∗(m), which is expensive
since they have to compute the inverse of a huge hessian ma-
trix or unroll the backward propagation for multiple steps.

Even though some efficient bilevel optimization algorithms
have been proposed to alleviate the computational burden,
for instance, (Lorraine et al., 2020) adopted Neumann series
to approximate the hessian inverse, the approximation still
requires much time and leads to inefficiency.

Thanks to our probabilistic formulation of the bilevel prob-
lem, we are able to avoid these expensive computations by
using Policy Gradient Estimator (PGE), which calculates
the gradient using forward instead of backward propagation.
Our key idea can be illustrated by the following equations:

∇sΦ(s) =∇s Ep(m|s) L (θ∗(m))

=∇s

∫
L (θ∗(m)) p(m|s)dm

=

∫
L (θ∗(m))

∇sp(m|s)
p(m|s)

p(m|s)dm

=

∫
L (θ∗(m))∇s ln p(m|s)p(m|s)dm

=Ep(m|s)L (θ∗(m))∇s ln p(m|s). (6)

It shows that L (θ∗(m))∇s ln p(m|s) is an unbiased
stochastic gradient of ∇sΦ(s), which is called policy gra-
dient. Therefore, given the inner loop optimum θ∗(m), we
can update s by projected stochastic gradient descent:

s← PC (s− ηL (θ∗(m))∇s ln p(m|s)) . (PGE)

It is clear that PGE does not involve any implicit differ-
entiation and its component L (θ∗(m)) can be computed
via forward propagation. Moreover, ln p(m|s) has a very
simple form and this projection has a closed form solution
(given in the appendix B) since the constraint C is quite sim-
ple. Therefore, we can update s via PGE very efficiently.

Remark 3.2. As we mentioned in Section 3.1, we remove
the weights from the original framework (2) because: 1) we
empirically find that training using the coreset with binary
weights can already achieve competitive performance, and
2) if the weights are not removed, then θ(m) would be
θ(w,m) and we have to compute implicit differentiation
to get ∇wθ∗(w,m), since the gradient of deterministic
variable cannot be estimated via PGE.

Hence, we can solve our bilevel optimization problem (4)
by alternatively: 1) sampling a mask m, i.e., a coreset,
from p(m|s) for the inner loop and train the model on this
coreset to get θ∗(m); 2) updating the probability s using
PGE. The detailed steps are given in Algorithm 1. Notably,
our algorithm has the following advantages:
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Algorithm 1 Probabilistic Bilevel Coreset Selection
Require: a network θ, dataset D and coreset size K.

1: Initialize probabilities s1 = K
|D|1.

2: for training iteration t = 1, 2 . . . T do
3: Sample mask m according to the probability s1.
4: Train the inner loop to converge satisfies:

θ∗(m)← argmin
θ

L̂(θ;m)

5: Sample a mini-batch of data:

B = {(x1,y1) , . . . , (xB ,yB)}

6: Update s using PGE based on θ∗(m) and B:

st+1 ← PC
(
st − ηLB(θ

∗(m))∇s ln p(m|st)
)

7: end for
output The coreset {(xi,yi) : mi ̸= 0 and (xi,yi) ∈ D}

with m sampled from p(m|sT+1).

• While the greedy methods can never remove the re-
dundant data once they are added to the coreset, our
algorithm behaves like a process of sampling coreset
with replacement (Step 4), where the quality of the
selected subset is evaluated on the outer objective and
the sampling probablity s is adjusted accordingly (Step
6) to progressively improve the coreset quality. This
enables us to explore the training set more globally.

• Due to our sparsity constraint C, most of the proba-
bilities si would automatically converge to either 0 or
1 during optimization, thus the uncertainty of the ob-
tained coreset can be finally reduced to nearly 0. This
is empirically verified in Section 5.2.

• The superiority of our method is more prominent in
more challenging tasks involving data with corrupted
labels and class imbalance, which are shown in the
Section 4. The reason is that in those scenarios, more
explorations are needed to gain a global view of the
entire set before deciding which samples to be added
to the coreset, whereas greedy algorithms have to start
making decisions in the early stage without enough
knowledge (demonstrated in Section 5.1).

• As we discussed above, our method is computationally
efficient because 1) for the outer loop, PGE enables
updating the probability without computing any im-
plicit differentiation; 2) for the inner loop , the selected
coreset size is always small, which makes the deriva-
tion of θ∗ efficient; and 3) as opposed to the greedy
algorithm, the running time of our method does not
increase rapidly with the coreset size, since the number
of outer updates is fixed for all coreset sizes.

The property below shows that if we solve the inner loop
problem to convergence, our training algorithm can con-
verge similarly with the standard nonconvex projected
stochastic gradient descent algorithms (Ghadimi et al.,
2016).

Property 3.3. [Informal] Under the mild assumptions on
Φ(s) and the step size η, then the average of the expectation
of the gradient mapping norm, i.e.,

∥1
η

(
st − PC(s

t − η∇sΦ(s
t))

)
∥2,

can converge to a small value as T →∞.

4. Experiments
We conduct the following experiments in common applica-
tion scenarios of coreset selection: 1) data summarization,
where the selected coreset is directly used to train the model;
2) continual learning (Kirkpatrick et al., 2017; Lopez-Paz &
Ranzato, 2017; Rebuffi et al., 2017) and streaming (Aljundi
et al., 2019b; Hayes et al., 2019; Chrysakis & Moens, 2020),
where coresets are selected from training data to construct
the replay memory and resist catastrophic forgetting after se-
quentially learning a series of tasks; 3) feature selection (Cai
et al., 2018; Li et al., 2017; Miao & Niu, 2016), where only
a subset of features are selected for training and inference.

In reality, the quality of training data can not be guaranteed.
For instance, the data for each task of continual learning
may not be balanced or even mislabelled. To test the effec-
tiveness of our method on these challenging scenarios, for
each of those applications mentioned above, we create more
difficult settings by imposing label noise and class imbal-
ance in the training data. We observe that other approaches
including the greedy coreset method (Borsos et al., 2020)
fails significantly in such settings, while our method can still
discover promising coresets, which is credited to the learnt
global information before constructing the final coreset.

4.1. Data Summarization

We examine the quality the coreset constructed by our
method via evaluating the performance of the neural network
trained on the produced coresets. Specifically, we conduct
experiments on two widely used benchmarks, i.e., MNIST
(Deng, 2012) and CIFAR10 (Krizhevsky et al., 2009). To
make a fair comparison, we follow (Borsos et al., 2020)
to use the same model settings (shown in the Appendix C)
when conducting the experiments.

We compare with the following competitive baselines: 1)
Uniform sampling, 2) K-center clustering using the embed-
ding from last layer (Sener & Savarese, 2017), 3) iCaRL’s
selection (Rebuffi et al., 2017), 4) Hardest sampling (Aljundi
et al., 2019a) and 5) Greedy coreset (Borsos et al., 2020).
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Figure 1. Performance comparison between our method and other baselines on data summarization task with various coreset sizes and
different scenarios. For experiments with label noise and class imbalance, the coreset size is set to 1000 for MNIST and 5000 for
CIFAR10. Our method consistently surpasses other baselines by a large margin. Notably, the performance of our method is stable even
under challenging settings, while other methods begin to fail significantly.

The results in the first column of Figure 1 demonstrate that
our method consistently outperforms other baselines across
various coreset sizes. Notably, our method’s superiority is
more prominent in the small-sized region. It is interesting
that hardest sampling fails for data summarization tasks,
which can be that the majority of hard samples come from
only a few classes and therefore causes the selected coreset
to be unbalanced.

4.2. Data Summarization with Label Noise and Class
Imbalance

We further conduct experiments in more challenging and
practical scenarios, where the dataset contains corrupted
labels and class-imbalanced data to showcase the effective-
ness of our method. The model setting is the same as stated
in Section 4.1 and the outer objective is calculated based
on a held-out balanced validation dataset with 100 samples,
comprised of 10 uniformly sampled data from each class.

For the label noise experiment, we adopt 2 types of noises:
pairwise noise and symmetric noise. For the class imbalance
experiment, we adopt similar setting as in Cui et al. (2019).
The detailed descriptions are given in the Appendix C due to
space limit. The coreset sizes for the MNIST and CIFAR10
experiments are 1000 and 5000, respectively.

In these challenging settings, our algorithm’s advantage over
other methods becomes much more prominent, as shown
in Figure 1. Notably, our method is much less sensitive
to the quality of entire dataset, which can be credited to
the global information learnt by repeatedly sampling before

constructing the final coreset. On the other hand, the greedy
counterpart begins to fail dramatically as the label noise
ratio and imbalance factor grow higher, which is in line with
our intuition that greedy methods can be severely affected
if the samples in the early phase are redundant or even
detrimental. More analysis is given in Section 5.1.

4.3. Continual Learning and Streaming

Two important applications of coreset construction are con-
tinual learning (Kirkpatrick et al., 2017; Lopez-Paz & Ran-
zato, 2017; Rebuffi et al., 2017; Wang et al., 2022b;c)
and streaming (Aljundi et al., 2019b; Hayes et al., 2019;
Chrysakis & Moens, 2020; Zou et al., 2019). Specifically,
continual learning aims to learn a series of tasks sequentially
using the same model, and a constant number of data can be
reserved for previous tasks to alleviate the catastrophic for-
getting of early knowledge. It is thus essential to choose the
most informative data for each task when constructing the
replay memory. Streaming is similar to continual learning
except that the data stream is not divided into tasks, which
is more challenging.

Continual Learning. We conduct experiments on the fol-
lowing datasets commonly adopted by the community: 1)
PermMNIST (Goodfellow et al., 2013) constructs 10 tasks
by performing different random permutation on the image
pixels for each task; 2) SplitMNIST (Zenke et al., 2017)
splits MNIST into five tasks, each containing two adjacent
classes; and 3) SplitCIFAR10 is based on CIFAR10 and
splitted in the same way as SplitMNIST. To make a fair
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comparison, we use the same settings as adopted in (Bor-
sos et al., 2020), the details are shown in the Appendix C.
Moreover, we design more challenging CL tasks with label
noise and class imbalance to showcase the superiority of our
method, where symmetric noise with 20% noise ratio and
class imbalance factor of 50 is applied to each dataset.

We compare our algorithm with data selection methods
mentioned in Section 4.1. The results demonstrated in Table
1 verify that our proposed method consistently dominates
other baselines across all tasks. Our advantage is more
prominent especially under challenging settings, where the
performance of other methods drop significantly and our
method continues to perform well. Remarkably, our method
surpasses the greedy counterpart (Borsos et al., 2020) by
around 10% on tasks with label noise.

Streaming. We follow Borsos et al. (2020) to conduct ex-
periment in streaming setting (details are in the Appendix).
We compare our method with Reservoir sampling (Vitter,
1985) and greedy coreset (Borsos et al., 2020). We also con-
duct experiments on label noise scenario, where symmetric
label noise with 20% noise ratio is imposed to the data. The
results in Table 2 demonstrate that our method dominates
other baselines on these streaming tasks.

The success on CL and streaming tasks proves that our
method can select informative data that well represent each
task to construct the replay memory, which performs well
even under challenging conditions.

4.4. Feature Selection
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Figure 2. Left: We select a subset of pixel locations, then retain
the corresponding pixels of all the training data for training and
inference. Right: Pixel selection on dataset with gaussian noise
applied to the images. Our method consistently surpasses other
baselines by a large margin given different subset size constraints
and the advantage is more evident with gaussian noise.

We apply our algorithm for feature selection (FS) tasks on
the MNIST dataset to further validate its effectiveness. FS
can be naturally viewed as a coreset construction problem,
where the selected subset of features is the coreset. The

adaptation of our method in this case is straightforward: the
inner loop is to train the model using the selected pixels of
the images, while the outer loop is to update the probability
of each pixel based on the loss on all the pixels.

Specifically, we select n pixels locations and the correspond-
ing pixels are used during both training and inference. As
shown in Figure 2, for various number of selected features,
our method consistently outperforms other baselines includ-
ing F-score (Güneş et al., 2010), mutual information (Su-
laiman & Labadin, 2015), MRMR (Radovic et al., 2017)
and greedy coreset (Borsos et al., 2020) by a large margin.
The selected pixels are demonstrated in Figure 3, which
shows that our method is able to retain the most informative
features. To further showcase the advantage of our algo-
rithm under more challenging scenario, we impose gaussian
noise (with mean set to 0 and stand deviation 2.5) to the
image pixels. As demonstrated on the right part of Figure
2, while the performance of most other methods deteriorate
significantly, our method still achieves stable performance.

Figure 3. Visualization of selected pixels by our algorithm, where
the numbers from 0 to 9 are demonstrated. The white pixels are
selected by our algorithm and the black dots are those overlapped
with the digits. We can see that the selected pixel locations effec-
tively capture the important information of the images.

5. Ablation Study and Analysis
5.1. Advantage of Global Algorithm Compared with

Greedy Counterpart

In this experiment, we analyze how the quality of coreset
changes as the size increases using MNIST with 1) 90%
corrupted labels and 2) imbalance factor of 200. Specifically,
we monitor the change of mislabeling ratio and imbalance
criterion in the selected coreset as the size increases. As
shown in Figure 4, at the early stage of greedy coreset (blue
line), the quality of selected data is much worse due to
the lack of global knowledge. Those samples can never
be removed and continues to misguide the search, which
finally leads to suboptimal coreset. On the other hand, since
our method (orange line) samples subsets globally with
replacement during the optimization, more information can
be learned in this trial-and-error process before arriving at
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Table 1. Experiment result on continual learning for PermMNIST, SplitMNIST and CIFAR10 datasets. Normal stands for the standard
dataset without modification; Noise represents symmetric label noise with 20% corruption ratio and Imbalance means the data has an
class imbalance factor of 50. As demonstrated, using our proposed approach to construct the replay memory consistently surpasses other
methods. Remarkably, the advantage of our global search strategy against the greedy counterpart becomes more prominent on challenging
tasks: for tasks with label noise, our method surpasses the greedy counterpart by around 10%.

Datasets PermMNIST SplitMNIST SplitCIFAR-10
Normal Noise Imbalance Normal Noise Imbalance Normal Noise Imbalance

Uniform 78.46 32.12 43.70 93.70 44.32 53.32 36.20 15.80 20.50
k-center embeddings 78.57 37.53 54.53 94.55 51.89 71.50 36.91 16.68 21.44
Hardest samples 76.79 15.38 38.72 91.57 17.23 56.39 28.10 9.63 15.63
iCaRL 79.68 39.36 67.53 95.13 60.99 72.23 34.52 18.47 25.47
Greedy Coreset 79.26 65.84 68.67 96.50 81.75 84.58 37.60 24.23 31.28
Ours 80.60 74.26 75.32 98.15 92.23 94.30 39.10 31.20 35.30

Table 2. Experiment result on Streaming for MNIST with and with-
out label noise. Using our proposed approach to construct the
replay memory consistently surpasses other methods significantly.

Datasets PermMNIST SplitMNIST
Normal Noise Normal Noise

Reservoir sampling 73.21 25.82 90.72 22.03
Greedy Coreset 74.44 61.30 92.59 82.52
Ours 75.5 70.33 94.20 90.69

Figure 4. Analysis of how the quality of coreset changes as the
coreset size increases. Left: The noise ratio of samples in the
coreset. Right: The class imbalance of samples in the coreset,
where the y-axis is defined as the difference between the most
class and the least class, then devided by the total coreset size. We
can see that the poor data quality at the early phase of greedy-based
method misguides the search and results in suboptimal coreset.

the final coreset (more analysis in Section 3.3).

5.2. Evolution of Coreset during Search

In Figure 5, we analyze the search process of our method. In
this experiment, we select 100 samples from 1000 training
data with noise ratio set to 0.9. The left part visualizes how
the distribution of probabilities evolve as the search goes on.
The initial sample probabilities are evenly distributed and
equal to 0.1. As the search goes on, most of the probabilities
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Figure 5. Left: The distribution of probability scores during the
search. As the search progresses, most of the score values converge
to either 0 or 1, which eventually renders a deterministic coreset
with low variance. Right: the noise ratio in the selected coreset as
the outer iteration increases. Our method progressively improves
the quality of the coreset by learning the global information and
updating the probability distribution accordingly.

converge to either 0 or 1, i.e., the uncertainty is gradually
reduced to 0, which generates a nearly deterministic sparse
mask with low variance. In the right part we show how the
noise ratio in the selected coreset evolves. We can observe
that the noise ratio continues to decrease, which verifies that
our method is able to progressively improve the quality of
the coreset by learning the global information.

5.3. Time Complexity Analysis
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Figure 6. Comparison of time consumption between our method
and the greedy counterpart. As the greedy coreset selection method
needs to solve a bilevel problem for every newly added sample,
the cost increases rapidly with the coreset size.
The comparison of time complexities between our method
and the greedy counterpart is shown in Figure 6. Since the
greedy coreset selection method (Borsos et al., 2020) needs
to solve a bilevel optimization problem for every newly
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added sample, the time complexity increases rapidly with
the coreset size. On the other hand, the time required by
our method is not sensitive to the coreset size as the number
of outer iterations remains fixed. Furthermore, owing to
the efficiency of policy gradients, the update of sample
probabilities takes much less time.

6. Conclusion
In this paper, we propose a global coreset selection algo-
rithm based on bilevel optimization and adopt probabilistic
reparameterization to continualize the discrete optimiza-
tion problem. Our method is computationally efficient and
achieves promising results even on challenging scenarios
with label noise or imbalanced classes. We theoretically
prove its convergence and conduct extensive experiments
on various tasks to demonstrate its superiority.
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Supplementary Materials: Probabilistic Bilevel Coreset Selection

This appendix can be divided into the following parts:

• In Section A, we provide the proof of our property to show the convergence of our method.

• In Section B, we give the algorithm for calculating the projection onto our constraint set C.

• In Section C, we give the detailed configurations of our experiments.

• In Section D, we give more experimental results.

• In Section E, we present discussions on future works.

A. Proof of Property 3.3
At first, we would like to rephrase our theorem into a more formal form below by adding some assumptions following
(Pedregosa, 2016).

Theorem A.1. We assume Φ(s) is L-smooth, and the policy gradient variance E∥LB(θ
∗(m))∇s ln p(m|s)−∇sΦ(s)∥2 ≤

σ2. Let η < 1/L and we denote the gradient mapping Gt at t-th iteration as

Gt = 1

η

(
st − PC(s

t − η∇sΦ(s
t))

)
,

then we have

1

T

T∑
t=1

E∥Gt∥2 ≤ 8− 2Lη

2− Lη
σ2, (7)

when T →∞.

Remark A.2. We would like to point out the following things:

• We give this theorem just to show that our algorithm works well similarly with the general projected/proximal stochastic
gradient descent algorithms for one level optimization problems, e.g., (Ghadimi et al., 2016), instead of to show how
fast our algorithm can converge. Therefore, we do not consider the techniques, such as variance reduction, to improve
the convergence rate of our algorithm, which are out of the scope of this work.

• σ2 is actually the variance of our gradient estimator PGE with a single mask. It can become smaller with the techniques,
such as sample more masks and use larger batch size in PGE. Therefore, the LHS of Eqn.(7) can converge to a small
value.

• Our experimental results show that our algorithm can work well even if we sample only one mask in each iteration.
Therefore, in the above theorem, we give the result when only one mask is sampled, to make it consistent with the
settings of our experiments.

Before giving the detailed proof, we need the following lemmas about the properties of the projection operator, which can
be found in (Ghadimi et al., 2016).

Lemma A.3 (firmly nonexpansive operators). Given a compact convex set C ⊂ Rd and let PC(·) be the projection operator
on C, then for any u ∈ Rd and v ∈ Rd, we have

∥PC (u)− PC (v) ∥2 ≤ (u− v)
⊤
(PC (u)− PC (v)) .
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Lemma A.4. Given a compact convex set C ⊂ Rd and let PC(·) be the projection operator on C, then for any c ∈ C and
u ∈ Rd,v ∈ Rd, we have

∥PC(c+ u)− PC(c+ v)∥ ≤ ∥u− v∥.

Proof. of Theorem A.1:

In the following, we denote

gt = LB(θ
∗(m))∇s ln p(m|st).

In our algorithm, we update s as

st+1 = PC
(
st − ηgt

)
.

Let the stochastic and deterministic gradient mappings be

Ĝt =1

η

(
st − PC

(
st − ηgt

))
=

1

η

(
st − st+1

)
,

Gt =1

η

(
st − PC

(
st − η∇Φ(st)

))
,

we can have

Φ(st+1) ≤ Φ(st) + ⟨∇Φ(st), st+1 − st⟩+ L

2
∥st+1 − st∥2

= Φ(st)− η⟨∇Φ(st), Ĝt⟩+ Lη2

2
∥Ĝt∥2

= Φ(st)− η⟨∇Φ(st)− gt + gt, Ĝt⟩+ Lη2

2
∥Ĝt∥2

= Φ(st)− η⟨gt, Ĝt⟩+ Lη2

2
∥Ĝt∥2 + η⟨δt, Ĝt⟩( here δt = gt −∇Φ(st))

≤ Φ(st)− η∥Ĝt∥2 + Lη2

2
∥Ĝt∥2 + η⟨δt, Ĝt⟩ (LemmaA.3)

≤ Φ(st)− (η − Lη2

2
)∥Ĝt∥2 + η⟨δt, Ĝt⟩

= Φ(st)− (η − Lη2

2
)∥Ĝt∥2 + η⟨δt,Gt⟩+ η⟨δt, Ĝt − Gt⟩

≤ Φ(st)− (η − Lη2

2
)∥Ĝt∥2 + η⟨δt,Gt⟩+ η∥δt∥∥Ĝt − Gt∥

≤ Φ(st)− (η − Lη2

2
)∥Ĝt∥2 + η⟨δt,Gt⟩+ η∥δt∥2. (LemmaA.4)

Therefore, we can get

(η − Lη2

2
)∥Ĝt∥2 ≤ Φ(st)− Φ(st+1) + η⟨δt,Gt⟩+ η∥δt∥2.

Thus, we can obtain

T∑
t=1

(η − Lη2

2
)∥Ĝt∥2 ≤ Φ(s1)− Φ(sT+1) + η

T∑
t=1

(
⟨δt,Gt⟩+ ∥δt∥2

)
. (8)

Now, we turn to analyze the item ⟨δt,Gt⟩ as follows:

E⟨δt,Gt⟩ = EstE·|st

(
⟨gt −∇Φ(st),Gt⟩|st

)
= 0, (9)
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For ∥δt∥2, we have

E∥δt∥2 = E∥gt −∇Φ(st)∥2 ≤ σ2. (10)

Combining the inequalities (9), (8) and (10), we can have

1

T

T∑
t=1

E∥Ĝt∥2 ≤ Φ(s1)− Φ∗

(1− Lη/2)T
+

σ2

1− Lη/2
. (11)

Finally, we bound E∥Gt∥2 as follows:

E∥Gt∥2 ≤ 2E∥Ĝt∥2 + 2E∥gt −∇Φ(st)∥2 (12)

≤ 2E∥Ĝt∥2 + 2σ2. (13)

Combine inequalities (13) and (11), when T →∞, we can obtain

1

T

T∑
t=1

E∥Gt∥2 ≤ 2

1− Lη/2

(
Φ(s1)− Φ∗

T
+ (2− Lη/2)σ2

)
→ 8− 2Lη

2− Lη
σ2

B. Project Calculation
The projection from s to C can be calculated by:

Algorithm 2 Projection from z to C
Require: a vector z.

1: Solve v1 from 1⊤[min(1,max(0, z − v∗11))]−K = 0.
2: v∗2 ← max(0, v∗1).
3: s← min(1,max(0, z − v∗21)).

output s

Proof. The projection from z to set C can be formulated in the following optimization problem:

min
s∈Rn

1

2
∥s− z∥2,

s.t.1⊤s ≤ K and 0 ≤ si ≤ 1.

Then we solve the problem with Lagrangian multiplier method.

L(s, v) =
1

2
∥s− z∥2 + v(1⊤s−K) (14)

=
1

2
∥s− (z − v1)∥2 + v(1⊤z −K)− n

2
v2. (15)

with v ≥ 0 and 0 ≤ si ≤ 1. Minimize the problem with respect to s, we have

s̃ = 1z−v1≥1 + (z − v1)1>z−v1>0 (16)
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Then we have

g(v) =L(s̃, v)

=
1

2
∥[z − v1]− + [z − (v + 1)1]+∥2

+ v(1⊤z − s)− n

2
v2

=
1

2
∥[z − v1]−∥2 +

1

2
∥[z − (v + 1)1]+∥2

+ v(1⊤z − s)− n

2
v2, v ≥ 0.

g′(v) =1⊤[v1− z]+ + 1⊤[(v + 1)1− z]−

+ (1Tz − s)− nv

=1⊤ min(1,max(0, z − v1))−K, v ≥ 0.

It is easy to verify that g′(v) is a monotone decreasing function with respect to v and we can use a bisection method solve
the equation g′(v) = 0 with solution v∗1 . Then we get that g(v) increases in the range of (−∞, v∗1] and decreases in the
range of [v∗1 ,+∞). The maximum of g(v) is achieved at 0 if v∗1 ≤ 0 and v∗1 if v∗1 > 0. Then we set v∗2 = max(0, v∗1).
Finally we have

s∗ =1z−v∗
21≥1 + (z − v∗21)1>z−v∗

21>0 (17)

=min(1,max(0, z − v∗21)). (18)

C. Experiment Details
We use the following hyper-parameters during optimization for our experiments. For the inner-loop, the model is trained for
100 epochs using SGD with learning rate of 0.1 and momentum of 0.9. For the outer-loop, the probabilities s are optimized
by adam with learning rate of 2.5 and cosine scheduler. The outer-loop is updated for 500-2000 times. Note that gumbel
softmax can also be used as an alternative for PGE when calculating the hyper-gradient, which sometimes demonstrates
better stability. In implemetation, we combine gumbel softmax and PGE to achieve a balance between efficiency and
accuracy.

Label Noise and Class Imbalance For pairwise noise, the label of a particular class has a probability p to be flipped to the
adjacent class; for symmetric noise, a class has a probability p

n−1 to be changed to any other n− 1 classes. For the class
imbalance experiment, we adopt similar setting as in (Cui et al., 2019). Specifically, the number of training samples per
class is exponentially reduced according to the function n′

i = niσ
i, where i is the class index. We define dataset imbalance

factor as nmax

nmin
, where nmax and nmin are the number of samples in the largest and smallest classes, respectively.

Data Summarization We follow (Borsos et al., 2020) and use a convolutional neural network stacked with two blocks of
convolution, dropout, max-pooling and ReLU activation for MNIST, and use ResNet18(He et al., 2016) for the CIFAR10
experiment. For baselines K-center clustering using the embedding from last layer (Sener & Savarese, 2017), iCaRL’s
selection (Rebuffi et al., 2017) and Hardest sampling (Aljundi et al., 2019a), which depend on the model embedding, we
pretrain a feature extractor using 1000 uniformly sampled data.

Continual learning To make a fair comparison, we follow (Borsos et al., 2020) to keep 1000 subsamples for each task
other than SplitCIFAR100 (where all data is used). For PermMNIST, we use a fully-connected network with two hidden
layers of 100 neurons, followed by ReLU activation and dropout with probability 0.2, the memory size is set to 100. For
SplitMNIST, we use the same CNN architecture as in data summerization task, the memory size is 500. For SplitCIFAR10,
we adopt ResNet18 similar to Section 4.1, the memory is set to 200. As for SplitCIFAR100, all the training data is used and
the memory size is set to 2000. For experiments with label noise and class imbalance, a balanced held-out validation dataset
of size 100 is used.

Streaming We follow (Borsos et al., 2020) to modify PermMNIST and SplitMNIST used in continual learning by
concatenating all the tasks and stream the data in subsets of 125. The memory size in this setting is set to 100 and separated
into 10 slots. Merge reduced introduced in (Borsos et al., 2020) is also adopted for fair comparison.
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In feature selection experiments, we uniformly sample 1000 training data, while all the testing data are used to evaluate the
trained model. All the experiments are repeated with 5 different random seeds.

D. More Experiments
D.1. Comparison with Training on Entire Dataset under Label Noise and Class Imbalance Settings
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Figure 7. We compare the performance of the trained model on the coreset selected by our method with that trained on the entire dataset,
where the dataset contains label noise and class imbalance. We can see that the training with the selected coreset surpasses the entire
dataset by a large margin, which is because the coreset can effectively remove the label noise and automatically balance the data in
different classes.
As mentioned in Section 1 of the main paper, training on the coreset may sometimes even achieve better performance than
training on the entire dataset. We verify this via conductin experiment on dataset with label noise and class imbalance. We
can see that training the model using the entire dataset in these cases lead to failure due to the poor data quality. On the other
hand, our coreset selection method has the effect of removing the label noise and automatically balancing the data in each
class.

D.2. Transferability of found coresets with various sizes among different networks

Table 3. Transferability of found coresets with various sizes among different networks.

Net1 Net2
Dataset / Size Random Coreset Random Coreset

MNIST (100) 87.3 95.01 70.90 75.60
CIFAR10 (4000) 63.50 78.35 67.57 79.05

We use the coreset selected by one network to train different networks. In Table 3, we show the results of the following
experiment: The coresets is searched by Net1, which is then used to train both Net1 itself and Net2. The found coreset
outperforms uniform sampling for both networks, which verifies the transferability of the found coreset. For CIFAR10, Net1
is ResNet18 and Net2 is ResNet32; for MNIST, Net1 is Convnet and Net2 is MLP.

E. Future Directions
Our coreset selection also performs rather faster than Borsos et al. (2020), it stills faces computational difficulties when
applied to larger datasets like ImageNet-1K. One possible solution is to employ model sparsity to speed-up the training
process or make the trained model smaller (Shao et al., 2019; Zhou et al., 2021a;b).


