
Resilient and Communication Efficient Learning
for Heterogeneous Federated Systems

Zhuangdi Zhu 1 Junyuan Hong 1 Steve Drew 2 Jiayu Zhou 1

Abstract

The rise of Federated Learning (FL) is bringing
machine learning to edge computing by utiliz-
ing data scattered across edge devices. However,
the heterogeneity of edge network topologies and
the uncertainty of wireless transmission are two
major obstructions of FL’s wide application in
edge computing, leading to prohibitive conver-
gence time and high communication cost. In this
work, we propose an FL scheme to address both
challenges simultaneously. Specifically, we en-
able edge devices to learn self-distilled neural
networks that are readily prunable to arbitrary
sizes, which capture the knowledge of the learn-
ing domain in a nested and progressive manner.
Not only does our approach tackle system het-
erogeneity by serving edge devices with varying
model architectures, but it also alleviates the is-
sue of connection uncertainty by allowing trans-
mitting part of the model parameters under faulty
network connections, without wasting the con-
tributing knowledge of the transmitted parame-
ters. Extensive empirical studies show that un-
der system heterogeneity and network instability,
our approach demonstrates significant resilience
and higher communication efficiency compared
to the state-of-the-art.

1. Introduction
Federated Learning (FL) is a decentralized machine learn-
ing scheme that eliminates private data sharing on partic-
ipating devices. Recent years witnessed effervescent de-
velopment of FL in varied domains, including healthcare

1Department of Computer Science and Engineering, Michigan
State University, East Lansing, MI 48824, USA. 2Department of
Electrical and Software Engineering, University of Calgary, Cal-
gary, AB T2N 1N4, Canada.. Correspondence to: Zhuangdi Zhu
<zhuzhuan@msu.edu>, Jiayu Zhou <jiayuz@msu.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

(Rieke et al., 2020), computer vision (Liu et al., 2020),
natural language processing (Hard et al., 2018; McMahan
et al., 2017), and Internet of things (IoT) (Khan et al., 2021;
Du et al., 2020), to name just a few. The rapid adoption
and deployment of edge computing have enabled comput-
ing to be even closer to the source of the data and users.
The growing demand for privacy-aware and low-latency
machine learning at the edge makes FL a natural fit.

The diversities among participating devices and their net-
work topologies are phenomenal, which imposed signifi-
cant challenges of statistical and system heterogeneity to
FL. The statistical heterogeneity in FL has been exten-
sively tackled by techniques such as regularized optimiza-
tion (Dinh et al., 2020), customized model aggregation
(Wang et al., 2020), and domain-invariant representation
leanring (Zhu et al., 2021; Hong et al., 2021c). In com-
parison, system heterogeneity, which is induced by signif-
icant gaps in memory capacities and transmission band-
width among edge devices, is under-explored. Moreover,
traditional FL hinges on reliable connections, where model
parameters are transmitted between edge devices and a cen-
tral server without packet loss. This prerequisite can be
prohibitive for practical edge-based applications, including
autonomous driving and IoT, where devices such as wear-
able devices and vehicles can frequently opt-in and opt-
out. Under faulty network connections, prior FL solutions
may become fragile when the model parameters fail to be
intactly shared among active users due to transmission in-
terruptions. This connection uncertainty is bidirectional,
which exists either when a participant downloads or up-
loads parameter updates, leading to nonnegligible informa-
tion loss of the participating devices. To the best of our
knowledge, few pioneer efforts have been made to address
the transmission uncertainty in FL, leaving most FL learn-
ing schemes at potential risk of undermined performance.

Observing the system heterogeneity and connection un-
certainty in FL, in this paper, we propose an FL frame-
work that addresses both challenges simultaneously. In our
approach, edge devices learn a prunable neural network
by self-distillation, such that a model can be structurally
pruned to sub-models that contain adequate knowledge of
the learning domain. Towards effective optimization, we

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

propose progressive learning, which articulates the knowl-
edge representation in the model in a nested and progres-
sive structure. This strategy enables FL participants with
diverging model architectures to fully devote their knowl-
edge to model aggregation. Furthermore, powered with a
sequential model transmission paradigm, our approach is
especially beneficial in amortizing the risk of connection
interruptions, since the partially transmitted model param-
eters before interruption can still contribute self-contained
domain knowledge to the recipient.

To the best of our knowledge, we are the first to address
both system heterogeneity and connection uncertainty in
FL by progressively learning self-distilled networks. Ex-
tensive empirical studies have verified that, our proposed
approach, dubbed as FedResCuE, is Resilient to unstable
transmission connections while Communication Efficient
under system heterogeneity, which achieves high asymp-
totic performance compared with the state-of-the-art.

2. Problem Setting
2.1. Prelimnaries of Federated Learning
Without loss of generality, we consider a learning setting
that addresses a representative problem of multi-class clas-
sification. Let T = {Tk}Kk=1 denote the learning domains
of edge devices, where a domain Tk = 〈Xk × Yk〉 is de-
fined by a joint input and output distribution. Let θk rep-
resent local model parameters, and w global model pa-
rameters, which are usually obtained via parameter-wise
averaging on {θk}Kk=1 (McMahan et al., 2017). Denote
L : ∇Y × Y → R+ the loss function recgonized by all
domains, where ∇Y is a simplex over Y . The objective of
FL is to learn a global model that generalizes well on all
devices: w∗ = arg min

w
ETk∼T [L(f(Xk;w),Yk)], which

is approximated by empirical data in practice:

ŵ∗ = arg min
w

1

K

∑K

k=1

[
1

nk

∑nk

i=1
L(f(xik;w), yik)

]
,

where {xik, yik}
nk
i=1 ⊂ Tk. A FL system typically involves

four iterative phases: i) the downloading phase, when the
server broadcasts a global model to active users; ii) the lo-
cal learning phase, when active users update their local
model parameters; iii) the uploading phase, when active
users send parameters back to the server, and iv) the aggre-
gation phase, when the server derives a global model using
user-uploaded parameters.

2.2. Learning with System Heterogeneity
In this paper, we tackle FL under system heterogeneity,
where edge devices can learn local models θk with var-
ious network architectures due to different capacities in
memory and transmission bandwidth (Horvath et al., 2021;
Diao et al., 2020). To enable FL with system heterogene-

ity, participants will first agree on the largest model archi-
tecture (i.e. a ×1 network), while smaller models in this
system are treated as the pruned versions (i.e. a ×p net-
work) with a pruning ratio p < 1. In Deep Neural Net-
works (DNNs), such pruning is manifested as reducing the
number of channels or filters. For instance, the weight ma-
trix w ∈ Rm×n in a Convolution or Linear layer l will be
pruned to w[: m× p, : n× p] by ratio p. 1

This strategy leaves one potential drawback to model
aggregation, in that the global model is obtained via
parameter-wise averaging on edge models with hetero-
geneous sizes. Naively learning and aggregating such
model parameters may ignore the divergence in their fea-
ture extraction patterns induced by architecture heterogene-
ity, leading to impaired global model performance. Conse-
quently, the knowledge uploaded by users with diverging
model sizes might not be absorbed well by their peers.

2.3. Learning with Unstable Network Connection
Another challenge tackled in this paper is the connection
instability in FL, which differs from the straggler issue as
discussed in prior art (Reisizadeh et al., 2020; Li et al.,
2020). The former refers to active users transmitting par-
tial instead of complete model parameters due to connec-
tion interruption, while the latter results from inactive users
that did not participate in model learning. Connection inter-
ruption may occur bidirectionally either during the down-
loading phase or the uploading phase. It is a common issue
that can be induced by multiple factors, including band-
width, transmission power, noisy density, and interference
(Chen et al., 2019; Nguyen et al., 2021), yet enough effort
has been made to address it. A naive solution to connection
interruption is to ignore the faulty connected devices and
treat them as stragglers (Chen et al., 2020a; Li et al., 2020),
which may waste the local learning of those devices that
could otherwise be leveraged to improve the global model.

3. Resilient and Communication Efficient FL
Towards addressing the challenges of system heterogeneity
and unstable network connections, we aim to learn neural
networks that can be structurally decomposed for learning,
inference, and transmission. Observing the natural prop-
erty of deep neural networks, we propose to vertically de-
compose a model as a sequence of columns, while a col-
umn can be one or more model channels described in Sec-
tion 2.2, depending on the desired granularity. This pro-
posed paradigm enjoys twofold benefits:
• During local learning, the predictive knowledge is pro-

gressively captured in model columns and can be in-
crementally enriched with more column connections,

1Without losing generality, in this paper, we unify the pruning
ratio p for all layers in a model, although such pruning can be
extended to choose different ratios pl for different layers l.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

which benefits FL with system heterogeneity, in that
the knowledge from heterogeneous models can be struc-
turally aligned in the global model.

• During FL synchronization, model columns are sequen-
tially transmitted between the server and the edge device.
It makes FL resilient to unstable connections, since los-
ing parts of the tailing columns upon interruption does
not lead to a catastrophic undermining of domain repre-
sentations, and a lightweight submodel that is success-
fully transmitted still contains intact predictive knowl-
edge. Moreover, this divided-and-transmit strategy is
also in accord with lower-level transmission protocols.
We demonstrate this process in Figure 1.

Orthogonal to our work, there are personalized FL ap-
proaches, which either divide a model horizontally then
transmit the feature extraction layers (Arivazhagan et al.,
2019), or selectively transmit parameters with unordered
structures (Sun et al., 2021). Contrarily, in our FL
paradigm, the received columns can be readily assembled
for learning and inference. Therefore, instead of discarding
the partially received parameters upon connection interrup-
tion, they can be effectively utilized for global aggregation
or local model initialization.

Figure 1: Model parameters are divided and learned as
columns, which are transmitted sequentially between the
server and clients, until an interruption occurs to one col-
umn, or when all columns are transmitted successfully.

3.1. Learning Self-Distilled Local Models
We aim to learn a model that can be structurally decom-
posed, arbitrarily prunable with reduced columns, and dis-
penses with the need for fine-tuning. We name such a
model self-distilled, which more concretely, shall satisfy
the following objective:

θ∗ = arg min
θ∈Θ

L(f(X ;θ),Y)+

E
p∼P

[L(f(X ;θ×p),Y) +DKL[f(X ;θ)‖f(X ;θ×p)]], (1)

where Θ denotes the parameter space;X×Y is the learning
domain; P = {p|p ≤ 1,∀θ ∈ Θ f(X ;θ×p) ⊆ ∇Y} is the
set of legitimate pruning ratios; DKL[p‖q] denotes the KL-
divergence between distribution p and q.

The notion of self-distillation is embodied by two compo-
nents in Equation 1: The first is L(f(X ;θ×p),Y), which
induces the largest model θ to maintain arbitrary submod-
els θ×p that are effective for the learning domain. The other
is DKL[f(X ;θ)‖f(X ;θ×p)], in that it encourages the pre-
dictive knowledge captured by θ (teacher), which is man-
ifested as the learned posterior p(·|X ;θ) ∝ f(X ;θ), to
be distilled to the submodel θ×p (student) by distribution
matching. We verify in Section 5.6 that, the DKL term is
especially beneficial when a submodel itself is not repre-
sentative enough to capture sophisticated features due to a
limited number of channels. Hence the posterior distribu-
tion from the teacher serves as finer-grained guidance in
addition to the label supervision. Moreover, not only is
the learned self-distilled network robust against connection
loss, it also benefits FL under system heterogeneity, as the
knowledge of an edge model with a larger structure can be
adequately conveyed by its submodels, which will be ag-
gregated by the server in the next round and shared with
users of smaller model capacities as inductive bias.

3.2. Effective Optimization via Progressive Learning
Optimizing Equation 1 might be prohibitive at first sight,
as multiple submodels are bundled within the same net-
work structure, while updating θ×pi may interfere with its
nested submodels θ×pj when pj < pi. Towards effective
optimization, we propose an approach that learns a self-
distilled model that incrementally builds up its feature rep-
resentation by involving more model columns.

Specifically, we first sample a batch of ordered pruning ra-
tios P̂ = [pi|pi ∈ P, pi < pi+1 ∀i < S, pS = 1]Si=1,
then adaptively optimize each sampled submodel towards
its objective function. Once a smaller submodel is updated
(e.g. θ×p1), we fix its parameters and update parameters
in the subsequent model columns (e.g. θ×p2\θ×p1). This
learning scheme leverages the idea of coordinate descent
(Wright, 2015), which works by successively optimizing
one coordinate while fixing the others. As illustrated in
Figure 2, predictive knowledge is learned progressively by
adding more lateral connections. More concretely, we up-
date a sampled θ×pi as the following:

θ×pi ← θ×pi − η∇{θ×pi\θ×pi−1
}J(x;θ×pi), (2)

where J(x;θ×pi) is the objective function for the current
submodel θ×pi ; η is the learning rate, and∇{θpi\θ×pi−1}
denotes the gradients w.r.t. parameters that are included in
θ×pi but not in θ×pi−1

. In particular, we tailor the objective
for each submodel θ×pi as the following:

J(x;θ×pi) = L(f(x;θ×pi), y) + αiDKL[f(x; θ̄)‖f(x;θ×pi)], (3)

where θ̄ is a constant cache of the largest network learned
from the last iteration, which serves as the teacher; αi :=
I[pi < 1] indicates the necessity of knowledge distilla-
tion, which renders 0 if the tail of the model columns is

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

sampled (i.e. pi = 1), and 1 otherwise. Once all sam-
pled submodels have been visited, we perform an one-time
back-propagation to update the teacher. We summarize this
model learning approach in Algorithm 1.

Besides being readily prunable, the merits of progressive
learning are multifold. First, it accelerates training by
adaptively reaching a good initialization, which resembles
meta-learning techniques (Finn et al., 2017). Second, it
alleviates the overfitting issue especially when the teacher
model structure is surplus given insufficient training data,
which we verify in Section 5.3. Furthermore, it also alle-
viates the permutation-invariant issue in deep neural net-
works (Wang et al., 2020) by inducing nested and ordered
domain representations captured in submodels.

Figure 2: A self-distilled network is learned via progres-
sively updating columns of parameters.

Algorithm 1 PROGRESSIVE SELF-DISTILLATION

1: Inputs: Training dataset D ⊂ X × Y; model with
parameter set θ ∈ Θ; pruning ratios P , learning rate η,
loss function L, constant S ≤ |P|.

2: repeat
3: Sample batch of x, y ∼ D.
4: Sample ordered ratios P̂ = [pi|pi ∈ P, pi <

pi+1 ∀i < S, pS = 1]Si=1

5: θ̄ ← stop gradient(θ), θ×0 = ∅.
6: for pi ∼ P̂ do
7: gi ← ∇{θ×pi\θ×pi−1

}J(x;θ×pi) .(Equation 3)
8: θ×pi ← θ×pi − η ∗ gi.
9: end for

10: θ ← θ − η ∗ ∇θL(f(x;θ), y).
11: until training stop
12: Return θ

Case Study on the Effects of Progressive Learning:
We illustrate with a preliminary study that, progressively
learning a model enjoys the benefits of 1) finding a good
initialization for the learning domain and 2) alleviating
knowledge forgetting.

In this prototype, we divide a convolution model evenly
into two columns and use the first half θ×0.5 to learn on a
small subset of the MNIST image data. Next, we learn on
the SYNTHETIC images with a same data size, by updat-
ing θ×1.0\θ×0.5 while keeping parameters in θ×0.5 fixed.

This approach is compared with another variant (overwrit-
ing), which learns MNIST using θ×0.5 then learns SYN-
THETIC using the entire model θ×1.0. As shown in Table 1,
where results are averaged over 6 random seeds, the pro-
gressively learned ×1.0 model outperforms its counterpart
on both domains. Overwriting θ×0.5, on the other hand,
may disrupt such initialization brought by learning on the
MNIST domain. This also leads to non-negligible forget-
ting of previously learned representations. See Section A.1
in supplementary for more details.

Accuracy (%) on MNIST and SYNTHETIC.
Domain Progressive learning Overwriting
MNIST 77.95±7.93 38.17±28.19
SYNTHETIC 69.48±1.93 42.30±32.30

Table 1: Progressive vs. overwriting learning.

3.3. Proposed Federated Algorithm: FedResCuE
Before introducing our FL paradigm, we refine our algo-
rithm with two more techniques to further tackle system
heterogeneity and connection instability.

Heterogeneous Model Aggregation: In our FL system,
edge users will initially agree on the maximal network ar-
chitecture and the legitimate pruning ratios P . Next, edge
users can choose their maximal local model size with a
capacity ratio pk ∈ P . During downloading (uploading)
phases, user k with ratio pk will receive (send) at most
×pk of model parameters, depending on the network con-
nection. During the aggregation phase, active users will
only contribute to global parameters that are within their
uploading ratios. Accordingly, in the next learning round
t + 1, ∀ pi ∈ P , the global model parameters are derived
as follows:

wt+1
×pi\w

t+1
×pi−1

=
1

|Atpi |
∑
k∈Atpi

θk,t×pi\θ
k,t
×pi−1

, (4)

where Atpi = {k|k ∈ At, I[R(θk,t) > pi]}; At denotes
the active users from the last round, and R(θk,t) is the up-
loaded network size of user k.

Local Model Padding: Due to unstable network connec-
tions, the local device is prone to receiving only partial of
the global model during the downloading phase. To com-
pensate for the missing global parameters, we leverage the
local parameters cached from the last round to pad the ini-
tialized model to avoid catastrophic information loss. More
concretely, at learning round t, we initialize the local model
for the k-th user as follows:

θk,t ← wt
×pd,tk

∪ {θk,t−1
×pk \θ

k,t−1

×pd,tk
}, (5)

where wt
×pd,tk

denotes the global parameters downloaded
by user, and pd,tk is the downloading ratio, which is possibly
smaller than pk.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Built upon the above techniques, we now present the
proposed FedResCuE in Algorithm 2. In our algo-
rithm, the workload introduced by progressive learning
is lightweight, since the column-wise gradient update has
omitted the need for repeated calculation for small submod-
els, as opposed to some prior arts (Yu et al., 2018). More-
over, as elaborated in Section 5.6.2, FedResCuE can ob-
tain superior performance with a small sampling frequency
(S). Our approach is also communication efficient, which
not only provides flexibility for users to select affordable
model architectures but also requires much fewer commu-
nication rounds than prior work to reach the predefined per-
formance, as verified in Section 5.5.

Algorithm 2 FedResCuE: Resilient and Communication-
Efficient Federated Learning

1: Inputs: Tasks {Dk}Kk=1; global model w with pa-
rameter space Θ; legit pruning ratios P , user capac-
ity ratios {pk}Kk=1, models initialized as {θk,0 :=
w×pk}Kk=1. learning rate η, loss function L, sampling
frequency S, epochs T .

2: for t ∈ [T] do
3: Aggregate global parameters wt via Equation 4.
4: Broadcast wt to active users At.
5: for user k ∈ At in parallel do
6: Download wt with downloading ratio pd,tk ≤ pk

depending on the connection quality.
7: θk,t = wt

×pd,tk
∪ {θk,t−1

×pk \θ
k,t−1

×pd,tk
} (. model ini-

tialization via Equation 5)
8: θk,t ← Algorithm 1 (Dk,θ

k,t,P, η,L, S)
9: Upload θk,t, with uploading ratio pu,tk ≤ pk de-

pending on the connection quality.
10: end for
11: end for

4. Related Work
Systematic Heterogeneity in FL is a rising challenge in-
duced by the emergence of FL applications to wireless
communications and IoT, where participating devices have
varying capacities in computation and transmission. Some
work enables heterogeneous model architectures by shar-
ing model predictions on a public dataset instead of sharing
model parameters (Taya et al., 2021; Jeong et al., 2018), at
the cost of non-negligible performance degradation. Some
approaches allow users to share partial model layers, leav-
ing potential opportunities for adopting different architec-
tures for unshared layers (Zhu et al., 2021; Arivazhagan
et al., 2019). Another work tackles system heterogeneity
by allowing the ensemble of small base models on the local
device for both training and inference, which loses the pos-
sibility of building a deep, wider global model (Hong et al.,
2021a). With a different focus on robustness against adver-
sarial attacks, (Hong et al., 2021b) studied the hardware

heterogeneity in the case of adversarial federated learning.
In general, yet enough efforts have been made to effec-
tively tackle the generalization performance of FL with het-
erogeneous model architectures, except for a few pioneers
such as FedHetero (Diao et al., 2020) and FjORD (Horvath
et al., 2021), which are extensively analyzed in Section 5.

Network Pruning has long been studied in non-FL sce-
narios, which aims to prune a lightweight model from a
larger one with the maximal knowledge reserved. Prior
approaches usually require fine-tuning using label super-
visions (Han et al., 2016; Lee et al., 2018; Louizos et al.,
2018; Dettmers & Zettlemoyer, 2019), Later there emerge
zero-short pruning (Yu et al., 2018; Cai et al., 2020). Ap-
proaches include structured pruning that reduces model
channels (Ye et al., 2018; Yu et al., 2018; Yu & Huang,
2019; Cai et al., 2020). Orthogonal approaches include
early exit (Zhang et al., 2021; 2019), which learns hori-
zontally pruned networks with reduced number of neural
layers. Other pruning strategies follow the lottery ticket hy-
pothesis (Frankle & Carbin, 2018; Ramanujan et al., 2020;
Liu et al., 2019). Most prior work derives one submodel
after pruning, whereas the slimmable learning (Yu et al.,
2018) and Cai et al. 2020 makes arbitrarily submodels
prunable. The idea of prunable models has been applied
to FL to tackle system heterogeneity by FjORD (Horvath
et al., 2021). To the best of our knowledge, we are the first
to apply progressive learning to address both system het-
erogeneity and connection instability in FL.

Resilient and Communication Efficient FL addresses FL
under restricted or unstable connection bandwidths (Rei-
sizadeh et al., 2020; Gu et al., 2021; Horvath et al., 2021).
FedProx (Li et al., 2020) tackles stragglers via a regular-
ized objective. Other scheduling-based approaches assume
that the server has control over the active users (Reisizadeh
et al., 2020; Chen et al., 2020a; Nishio & Yonetani, 2019).
Not much work has mentioned the faulty connections is-
sues. Some chooses to naively drop the faulty connected
edge devices (Chen et al., 2020a; Reisizadeh et al., 2020).
Gu et al. 2021 and Yan et al. 2020 suggest to use stale
model parameters for the disconnected users. Meanwhile,
there are complementary efforts that compress transmitted
model parameters by quantization (Alistarh et al., 2017;
Amiri et al., 2020) or sketching (Ivkin et al., 2019). Some
approaches focus on asynchronous communication (Chen
et al., 2020b; Xu et al., 2021). Our algorithm can be po-
tentially combined with related work to further improve re-
siliency and communication efficiency in FL.

5. Evaluation
In this section, we conduct extensive experiments to answer
the following key questions, leaving more experimental de-
tails to the supplementary:

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

1. Is FedResCuE resilient to system heterogeneity and un-
stable network connections?

2. Is FedResCuE communication-efficient to reach satis-
factory performance with fewer synchronization rounds,
compared with the state-of-the-art?

3. Which components of FedResCuE have contributed to
its resiliency and communication efficiency?

Results: Experiments below show that FedResCuE notably
outperforms related work in communication efficiency and
asymptotic performance. Its superiority is consistent across
different FL settings, and become more prominent under
insufficient training data, heterogeneous model architec-
tures, and unstable network connections.

5.1. Experiment Setup

Dataset: We use CIFAR10 and CIFAR100 (Krizhevsky
et al., 2009) to simulate edge users with i.i.d. data distri-
butions. We also apply DIGITSFIVE (Peng et al., 2019)
to simulate users with statistical heterogeneity, which is a
multi-domain benchmark with five image datasets: MNIST
(LeCun et al., 1998), SVHN (Netzer et al., 2011), USPS
(Hull, 1994), Synthetic, and MNIST-M (Ganin & Lempit-
sky, 2015).

Models: We build a RESNET neural network (He et al.,
2016) for learning the CIFAR10 domain, and build a model
consisting of 3 CONV2D layers followed by 3 LINEAR lay-
ers for learning DIGITSFIVE domains. To enable effective
model aggregation under system heterogeneity, we perform
careful treatments on the BATCHNORM layers with more
details in Section A.3.1 of the supplementary.

Settings of System Heterogeneity: We consider two sce-
narios to profile the system heterogeneity: 1) the uniform
setting, where all edge devices maintain the same network
architecture, and 2) the cluster setting, where the size of
local models are randomly sampled from a set PC ⊂ P
to represent different system capacity. For the uniform
setting, one can treat PC = {1.0}. For the cluster set-
ting, we explored Pc = {0.25, 0.5, 0.75, 1.0}, and Pc =
{0.2, 0.35, 0.5, 0.75, 1.0}, respectively, to analyze the im-
pacts of varying degrees of system heterogeneity on the
learning performance.

Settings of Unstable Communication: A connection er-
ror rate er is generated dynamically to denote the proba-
bility that the current column transmission is interrupted.
When transmitting one network, we traverse all columns
until one column is interrupted based on probability er, or
when all columns have been successfully transmitted. Note
that the connection loss occurs bidirectionally. Hence an
edge device may receive or upload models with a smaller
size than its assigned architecture. In practice, we set the
size of a transmission column to be 0.125× of the global

network. For experiments that approximate stable network
connections, we set er = 0.

Compared Approaches: In addition to FedAvg (McMa-
han et al., 2017), we compare FedResCuE against the
following approaches that tackle system heterogeneity: i)
FedHetero (Diao et al., 2020) extended FedAvg to allow
edge devices with different model sizes; ii) FjORD (Hor-
vath et al., 2021) learns prunable local models without pro-
gressive learning; iii) FedSlim is a proposed baseline in
this paper, in which models are locally updated by follow-
ing the slimmable training (Yu et al., 2018) and globally
aggregated as FedAvg.

Training: Active users will sync with the server after a
complete epoch of local training. For faulty connection set-
tings (Section 5.4), the local padding strategy is applied to
all evaluated algorithms for fair comparisons. For the CI-
FAR10 and CIFAR100 domain, training data is i.i.d. sam-
pled and assigned to 20 total users. For the DIGITSFIVE
domains, we assign each domain data to 2 unique users.
For both types of experiments, 5 active users are randomly
selected per communication round. We also evaluate the
algorithmic performance given different sizes of training
data in Section 5.3.

Evaluation: Unless otherwise specified, the performance
is reported using the global model on all available testing
data, which is evaluated every 2 communication rounds.
Results are averaged over 3 random seeds. Asymptotic per-
formance is reported after 300 rounds for CIFAR10, and
100 rounds for DIGITSFIVE.

5.2. Performance Under System Heterogeneity

We apply CIFAR10 data to explore the uniform setting, and
the cluster setting, respectively, as described in Section 5.1.

Results: As shown in Table 2 and Table 3, FedResCuE
consistently exceeds other approaches in asymptotic per-
formance, especially under a heterogeneous (cluster) sys-
tem. In Table 2, the advantage of FedResCuE on the×0.25
global model demonstrates its benefits to small-capacity
users compared to related work, in that FedResCuE helps
predictive knowledge be distilled from larger models into
their nested sub-models, which will be eventually shared
by users with smaller model sizes. In the meantime, Fe-
dResCuE is also more effective than FjORD and FedSlim,
which is largely ascribed to the benefit of its progressive
learning, as opposed to a batch-gradient update scheme in
prior art.

When the granularity of system heterogeneity increases,
as shown in Table 3, FedResCuE is still the most advan-
tageous algorithm when evaluated on all of the available
sub-models. Moreover, our method potentially can support
users with arbitrary legitimate pruning ratios. Note that a

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Global Model Accuracy (%) Evaluated on CIFAR10, with Stable Network Connections (er = 0).
Training

Data
System

Heterogeneity
Evaluated

Model FedAvg FedHetero FjORD FedSlim FedResCuE

100%
Pc = {1.0} (uniform) w×1 81.06±0.63 - 80.57±0.91 81.14±0.76 81.39±0.20

w×0.25 18.57±0.64 - 69.94±0.65 70.47±0.61 71.19±0.19

|Pc| = 4 (cluster)
w×1 - 76.80±0.53 75.71±0.47 77.49±0.40 78.22±0.41

w×0.25 - 68.56±0.51 70.98±0.75 73.22±0.34 73.25±0.47

20%
Pc = {1.0} (uniform) w×1 68.03±0.50 - 67.89±1.47 67.96±0.72 71.27±0.27

w×0.25 16.47±2.24 - 61.38±1.69 59.56±1.39 61.12±1.35

|Pc| = 4 (cluster) w×1 - 59.38±0.41 62.43±1.65 59.53±0.86 64.53±1.06
w×0.25 - 55.41±0.39 61.86±1.21 58.31±0.23 61.98±0.85

Table 2: Performance in varing degrees of system heterogeneity and training data sufficiency. We report the best perfor-
mance from different S for applicable approaches (See Section 5.6.2).

common trend shared by evaluated approaches is that, the
middle-sized sub-models, such as ×0.75 model, tend to
achieve higher generalization performance than the ×1.0
model under system heterogeneity. We ascribe this phe-
nomenon to the less-frequent update of the ×1.0 model ar-
chitecture, which is selected by only a small portion of FL
users under system heterogeneity.

Global Model Accuracy (%) on CIFAR10, with |PC | = 5
Cluster ratio p ×0.2 ×0.35 ×0.5 ×0.75 ×1.0
FedResCuE 57.98 62.59 63.53 62.53 61.99
FjORD 56.24 59.25 59.89 59.23 58.74
FedHetero 52.84 57.17 58.58 57.94 57.57
FedSlim 55.19 57.51 57.84 56.87 56.35

Table 3: Given 5 clusters and 20% training data, FedRes-
CuE outperforms its counterparts that support system het-
erogeneity on all pruned sub-models.

5.3. Performance Given Insufficient Training Data
To analyze the impacts of data sufficiency, we assign 100%
and 20% of the CIFAR10 to users for training, respectively,
assuming a stable network connection (er = 0).

Results: As shown in Table 2, when training data is suffi-
cient with i.i.d. distributions, all algorithms perform com-
parably well. However, given only 20% of the training data,
both FjORD and FedSlim slightly underperform FedAvg
when evaluated using the ×1.0 model, while FedResCuE
remarkably outperforms all others. In fact, the progressive
parameter update in FedResCuE can make a subnetwork a
good initialization for the encompassing larger submodel,
which is analogous to meta-learning that delivers an effec-
tive model with fewer shots of training. This is especially
beneficial in the lack of training data. Contrarily, FjORD
and FedSlim, which adopt batch-gradient updates for learn-
ing prunable models, may struggle with the interference of
noisy gradients, which can be further amplified in a poten-
tially overfit model.

5.4. Performance Under Unstable Connections
We apply both CIFAR10 and DIGITSFIVE to explore the
scenario with unstable connections. For experiments on the
CIFAR10 domain, er is dynamically sampled, with er ∼
[0.1, 0.2]. For the DIGITSFIVE domains, er is set to be a
constant depending on the specific domain.

Results: Under faulty network connections, FedResCuE
consistently outperforms other approaches under both i.i.d.
and heterogeneous data distributions. Given the CIFAR10
domain (Table 4), FedResCuE achieves higher accuracy
than FedSlim and FjORD with a significant margin, which
we ascribe to both its progressive learning procedure and
the proposed optimization objective. In fact, given unsta-
ble connections, a smaller network architecture turns out
to be more reliable, whose transmission is less likely to be
interrupted. FedResCuE can facilitate FL in this scenario,
as it follows a progressive scheme to gradually learn the
larger network, which captures the complementary repre-
sentation built upon its nested smaller submodels. On the
other hand, both FedResCuE and FjORD are more compe-
tent than FedSlim, which indicates that solely performing
distillation from the teacher (×1.0 model) to student (sub-
model), as FedSlim performs, may be insufficient to deliver
reliable submodels, especially given a model with informa-
tion staleness caused by transmission loss. Contrarily, the
optimization of FedResCuE (Equation 1), which encour-
ages both knowledge distillation and submodel-learning
with label supervision, is a more robust strategy.

When unstable connection is bundled with system hetero-
geneity: We found that enabling system heterogeneity in
FL naturally introduces resiliency to connection instabil-
ity, which can be revealed by the performance gain of Fed-
Hetero over FedAvg in Table 4. In fact, FedHetero can be
treated as macro-level prunable training, although the re-
siliency brought by diversified model architectures is less
effective than learning self-distilled networks.

We also explore on the CIFAR100 domain to verify the ef-

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Global Model Accuracy (%) Evaluated on CIFAR10 Under Connection Loss (er > 0).
System Heterogeneity Evaluated Model FedAvg FedHetero FjORD FedSlim FedResCuE

Pc = {1.0} (uniform) w×1 50.36±2.17 - 61.79±1.62 57.31±1.27 70.02±0.40
w×0.25 12.58±0.51 - 60.20±1.67 55.33±0.89 67.40±0.84

|Pc| = 4 (cluster) w×1 - 60.92±1.33 64.52±0.60 62.35±1.76 69.78±0.74
w×0.25 - 59.70±0.64 64.11±0.41 61.77±1.62 68.83±1.00

Table 4: Performance under unstable network connections, given 100% of training data, and 0.1 ≤ er ≤ 0.2.

fectiveness of our approach. In Figure 3, where we adopted
a WIDERES model architecture (Zagoruyko & Komodakis,
2016) for the×1.0 model, with |Pc| = 5, and er = 0.1. Fe-
dResCuE surpassed all baselines on each of the pruned sub
models. Compared with FjORD and FedHetero the superi-
ority of our approach is prominent especially given smaller
pruning ratios.

Figure 3: Pruned model accuracy on CIFAR100, given
100% training data, |Pc| = 5 and 0.05 ≤ er ≤ 0.1.

When unstable connection is bundled with data hetero-
geneity: As shown in Table 5, under domain-dependent
connection errors, FedResCuE also shows consistent ro-
bustness against heterogeneous statistical distributions.
Note that a small training dataset from DIGITSFIVE is ap-
plied to ensure the necessity of FL. Hence Local learning
without sharing parameters yields worse performance than
FL. The performance gain of FedResCuE resides in both
the small (×0.25) and the large (×1.0) model (See Sec-
tion A.3.4 in supplementary). Contrarily, FjORD and Fed-
Slim may underperform FedAvg when evaluated using the
×1.0 model, indicating their potential drawback given in-
sufficient data, which we investigate more in Section 5.3.

5.5. Evaluation of Communication Efficiency
We analyze the communication efficiency via the num-
ber of FL synchronization rounds for the global model to
reach a reasonable performance. As shown in Table 6, un-
der the cluster setting with {Pc} = 4, FedResCuE con-
stantly learns faster to obtain a predefined accuracy, requir-
ing fewer communication rounds than all its peers. The
communication efficiency of FedResCuE also resides in
its flexibility in user model architectures, in that devices
that choose a small model architecture can be further ben-

Accuracy(%) on DIGITSFIVE, Given 5% Training Data.
Domain SVHN Syn USPS MNIST MNIST-M
Local 45.88 62.04 89.95 85.84 61.99
FedAvg 69.54 80.17 94.38 93.61 75.22
FedSlim 66.77 78.95 94.00 93.80 73.95
FjORD 49.72 57.12 68.60 68.01 56.29
FedResCuE 69.32 80.57 95.17 95.05 76.89

Table 5: FedResCuE is the most robust algorithm given het-
erogeneous data and domain-dependent connection error.

efited by transmitting fewer parameters per communica-
tion round. Although other baselines e.g. FedHetero also
enable system heterogeneity, they require non-negligible
more communication rounds to perform comparably to Fe-
dResCuE. Accompanying performance curves of the ×1.0
model are visualized in Figure 4 (See Section A.3.2 in sup-
plementary for comprehensive results).

Communication Efficiency on CIFAR10 dataset.
Acc Model

Size
FedHeteroFjORD FedSlim FedResCuE

100 % training data, 0.1 ≤ er ≤ 0.2.
60% w×0.5 256.7 218.0 253.3 124.7

20 % training data, er = 0
55% w×0.5 180.7 156.0 192.0 96.0

Table 6: FedResCuE requires notably fewer communica-
tion rounds to reach the predefined accuracy (Acc).

(a) 0.1 ≤ er ≤ 0.2 (b) 20% training data
Figure 4: Learning curves evaluated on the ×1.0 model.

5.6. Sensitivity Analysis
5.6.1. EFFECTS OF KNOWLEDGE DISTILLATION:
To analyze the role of knowledge distillation in our model
learning, we design a variant of our approach called FedSeq

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

to compare against FedResCuE. Particularly, the optimiza-
tion objective of FedSeq does not require minimizing the
KL-divergence between the teacher θ̄ and a student θ×pi ,
i.e. it always sets the term αi to 0 in Equation 3.

Results: Knowledge distillation is especially beneficial to
smaller submodels, whereas the gap between FedSeq and
FedResCuE gradually diminishes when evaluating using
larger submodels. As illustrated in Figure 5, where 20%
of the CIFAR10 training data is given, both approaches are
learning comparably well in initial training stages, while
FedResCuE converges to higher asymptotic performance.
The learning curves demonstrate that it is beneficial to dis-
till representation knowledge from a large, complete model
to smaller submodels, in that the larger model has more
channels to capture refined domain knowledge. See Sec-
tion A.4.1 in supplementary for more results.

(a) ×0.25 model. (b) ×0.5 model.

Figure 5: Knowledge-distillation in FedResCuE can benefit
smaller sub-models, compared to its ablated variants.

5.6.2. IMPACTS OF SUBMODEL SAMPLING:

Sampling frequency, denoted as S = |P̂ | in Algorithm 1, is
the number of submodels sampled per batch update. A key
question regarding FedResCuE is: how does S affect the
learning performance? This question is equally intriguing
to FedSlim and FjORD, both of which require submodel
sampling. To answer this question, we traverse different
choices of S, while the sampling granularity is set to be
×0.05 of the largest model width.

Results: As shown in Figure 6, FedResCuE is constantly
the most robust under different S. In the meantime, a mod-
erate number of ratio sampling (e.g. S = 4) benefit most
evaluated algorithms, while oversampling with a large S
causes non-negligible performance degradation on FedSlim
and FjORD. Their over-sensitivity to S can be induced by
their batch-gradient update scheme, which may cause the
gradients w.r.t. larger submodels to interfere with those of
smaller ones when aggregating all gradients in one batch,
hence undermining model performance. On the contrary,
FedResCuE alleviates such issues by using a progressive
learning scheme that decouples such mutual impacts.

(a) 20% training data. (b) 0.1 ≤ er ≤ 0.2.

Figure 6: Impacts of submodel sampling frequency.

5.6.3. EFFECTS OF PROGRESSIVE LEARNING:
To evaluate the efficacy of the progressive learning scheme,
we compare FedResCuE against an intuitive alternative
named FedRush, which directly updates the sampled sub-
model without freezing the preceding parameters.

Results: As shown in Figure 7, a rush gradient update
as in FedRush leads to notably undermined performance.
Particularly, when updating the θ×pi+1

model, FedRush
overwrites the parameters in θ×pi , which could otherwise
serve as a good initialization to support the subsequent sub-
models. Contrarily, FedResCuE learns more effectively by
avoiding the potential information forgetting.

(a) ×0.25 model. (b) ×1.0 model.

Figure 7: Progressive learning in FedResCuE guarantees a
high performance for the ×1.0 model.

6. Conclusion
We proposed FedResCuE to address both system hetero-
geneity and unstable network connections, by learning self-
distilled networks in a progressive manner, which proves to
be communication-efficient with higher performance in the
proposed Federated Learning settings compared with the
state-of-the-art.

7. Acknowledgement
This research was supported by the National Institute
on Aging 1RF1AG072449, the Office of Naval Research
N00014-20-1-2382, and the National Science Foundation
IIS-1749940.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

References
Alistarh, D., Grubic, D., Li, J., Tomioka, R., and Vojnovic,

M. Qsgd: Communication-efficient sgd via gradient
quantization and encoding. Advances in Neural Infor-
mation Processing Systems, 2017.

Amiri, M. M., Gunduz, D., Kulkarni, S. R., and Poor, H. V.
Federated learning with quantized global model updates.
arXiv preprint arXiv:2006.10672, 2020.

Arivazhagan, M. G., Aggarwal, V., Singh, A. K., and
Choudhary, S. Federated learning with personalization
layers. arXiv preprint arXiv:1912.00818, 2019.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. Once-
for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2020.

Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., and Cui,
S. Performance optimization of federated learning over
wireless networks. In 2019 IEEE Global Communica-
tions Conference (GLOBECOM), pp. 1–6. IEEE, 2019.

Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H. V., and
Cui, S. A joint learning and communications framework
for federated learning over wireless networks. IEEE
Transactions on Wireless Communications, 20(1):269–
283, 2020a.

Chen, Y., Ning, Y., Slawski, M., and Rangwala, H. Asyn-
chronous online federated learning for edge devices with
non-iid data. In 2020 IEEE International Conference on
Big Data (Big Data), pp. 15–24. IEEE, 2020b.

Dettmers, T. and Zettlemoyer, L. Sparse networks from
scratch: Faster training without losing performance.
arXiv preprint arXiv:1907.04840, 2019.

Diao, E., Ding, J., and Tarokh, V. Heterofl: Computation
and communication efficient federated learning for het-
erogeneous clients. arXiv preprint arXiv:2010.01264,
2020.

Dinh, C. T., Tran, N. H., and Nguyen, T. D. Personal-
ized federated learning with moreau envelopes. 34th
Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Du, Z., Wu, C., Yoshinaga, T., Yau, K.-L. A., Ji, Y., and
Li, J. Federated learning for vehicular internet of things:
Recent advances and open issues. IEEE Open Journal of
the Computer Society, 1:45–61, 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, pp. 1126–1135.
PMLR, 2017.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Ganin, Y. and Lempitsky, V. Unsupervised domain adapta-
tion by backpropagation. In International conference on
machine learning, pp. 1180–1189. PMLR, 2015.

Gu, X., Huang, K., Zhang, J., and Huang, L. Fast federated
learning in the presence of arbitrary device unavailabil-
ity. 35th Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. ICLR, 2016.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beau-
fays, F., Augenstein, S., Eichner, H., Kiddon, C., and
Ramage, D. Federated learning for mobile keyboard pre-
diction. arXiv preprint arXiv:1811.03604, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hong, J., Wang, H., Wang, Z., and Zhou, J. Efficient split-
mix federated learning for on-demand and in-situ cus-
tomization. In International Conference on Learning
Representations, 2021a.

Hong, J., Wang, H., Wang, Z., and Zhou, J. Federated
robustness propagation: Sharing adversarial robustness
in federated learning. arXiv preprint arXiv:2106.10196,
2021b.

Hong, J., Zhu, Z., Yu, S., Wang, Z., Dodge, H. H., and
Zhou, J. Federated adversarial debiasing for fair and
transferable representations. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 617–627, 2021c.

Horvath, S., Laskaridis, S., Almeida, M., Leontiadis, I., Ve-
nieris, S. I., and Lane, N. D. Fjord: Fair and accurate
federated learning under heterogeneous targets with or-
dered dropout. 35th Conference on Neural Information
Processing Systems (NeurIPS)., 2021.

Hull, J. J. A database for handwritten text recognition re-
search. IEEE Transactions on pattern analysis and ma-
chine intelligence, 16(5):550–554, 1994.

Ivkin, N., Rothchild, D., Ullah, E., Braverman, V., Stoica,
I., and Arora, R. Communication-efficient distributed
sgd with sketching. Advances in Neural Information
Processing Systems 32 (NeurIPS), 2019.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim,
S.-L. Communication-efficient on-device machine learn-
ing: Federated distillation and augmentation under non-
iid private data. arXiv preprint arXiv:1811.11479, 2018.

Kanchi, S., Sandilya, S., Bhosale, D., Pitkar, A., and Gond-
halekar, M. Overview of lte-a technology. In 2013 IEEE
global high tech congress on electronics, pp. 195–200.
IEEE, 2013.

Khan, L. U., Saad, W., Han, Z., Hossain, E., and Hong,
C. S. Federated learning for internet of things: Recent
advances, taxonomy, and open challenges. IEEE Com-
munications Surveys & Tutorials, 2021.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar,
A., and Smith, V. Federated optimization in heteroge-
neous networks. Proceedings of Machine Learning and
Systems, 2:429–450, 2020.

Li, X., Jiang, M., Zhang, X., Kamp, M., and Dou, Q.
Fedbn: Federated learning on non-iid features via local
batch normalization. ICLR, 2021.

Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y.,
Feng, L., Chen, T., Yu, H., and Yang, Q. Fedvision:
An online visual object detection platform powered by
federated learning. In AAAI, 2020.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. Re-
thinking the value of network pruning. ICLR, 2019.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l 0 regularization. ICLR,
2018.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. 2011.

Nguyen, K., Drew, S., Huang, C., and Zhou, J. Edgepv:
collaborative edge computing framework for task of-
floading. In ICC 2021-IEEE International Conference
on Communications, pp. 1–6. IEEE, 2021.

Nishio, T. and Yonetani, R. Client selection for federated
learning with heterogeneous resources in mobile edge.
In ICC 2019-2019 IEEE International Conference on
Communications (ICC), pp. 1–7. IEEE, 2019.

Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., and
Wang, B. Moment matching for multi-source domain
adaptation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 1406–1415,
2019.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A.,
and Rastegari, M. What’s hidden in a randomly weighted
neural network? In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
11893–11902, 2020.

Raza, S., Liu, W., Ahmed, M., Anwar, M. R., Mirza, M. A.,
Sun, Q., and Wang, S. An efficient task offloading
scheme in vehicular edge computing. Journal of Cloud
Computing, 9:1–14, 2020.

Reisizadeh, A., Tziotis, I., Hassani, H., Mokhtari, A.,
and Pedarsani, R. Straggler-resilient federated learn-
ing: Leveraging the interplay between statistical ac-
curacy and system heterogeneity. arXiv preprint
arXiv:2012.14453, 2020.

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H. R.,
Albarqouni, S., Bakas, S., Galtier, M. N., Landman,
B. A., Maier-Hein, K., et al. The future of digital health
with federated learning. NPJ digital medicine, 3(1):1–7,
2020.

Sun, B., Huo, H., Yang, Y., and Bai, B. Partialfed: Cross-
domain personalized federated learning via partial ini-
tialization. Advances in Neural Information Processing
Systems, 34, 2021.

Taya, A., Nishio, T., Morikura, M., and Yamamoto,
K. Decentralized and model-free federated learning:
Consensus-based distillation in function space. arXiv
preprint arXiv:2104.00352, 2021.

Wang, H., Li, X., Ji, H., and Zhang, H. Federated offload-
ing scheme to minimize latency in mec-enabled vehicu-
lar networks. In 2018 IEEE Globecom Workshops (GC
Wkshps), pp. 1–6. IEEE, 2018.

Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., and
Khazaeni, Y. Federated learning with matched averag-
ing. ICLR, 2020.

Wright, S. J. Coordinate descent algorithms. Mathematical
Programming, 151(1):3–34, 2015.

Xu, C., Qu, Y., Xiang, Y., and Gao, L. Asynchronous feder-
ated learning on heterogeneous devices: A survey. arXiv
preprint arXiv:2109.04269, 2021.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Yan, Y., Niu, C., Ding, Y., Zheng, Z., Wu, F., Chen, G.,
Tang, S., and Wu, Z. Distributed non-convex optimiza-
tion with sublinear speedup under intermittent client
availability. arXiv preprint arXiv:2002.07399, 2020.

Ye, J., Lu, X., Lin, Z., and Wang, J. Z. Rethinking
the smaller-norm-less-informative assumption in chan-
nel pruning of convolution layers. arXiv preprint
arXiv:1802.00124, 2018.

Yu, J. and Huang, T. S. Universally slimmable networks
and improved training techniques. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pp. 1803–1811, 2019.

Yu, J., Yang, L., Xu, N., Yang, J., and Huang, T. Slimmable
neural networks. arXiv preprint arXiv:1812.08928,
2018.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., and Ma, K.
Be your own teacher: Improve the performance of con-
volutional neural networks via self distillation. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3713–3722, 2019.

Zhang, L., Bao, C., and Ma, K. Self-distillation: Towards
efficient and compact neural networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
2021.

Zhu, Z., Hong, J., and Zhou, J. Data-free knowledge dis-
tillation for heterogeneous federated learning. Interna-
tional Conference on Machine Learning, 2021.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

A. Appendix
A.1. Case Study: Effects of Progressive Learning
For this prototype experiment, we apply the same network architecture used for learning DIGITSFIVE domains, which is
presented in Section A.6.1. We illustrate the progressive and overwriting learning approaches in Figure 8 and Figure 9,
respectively. For progressive learning, parameters in θ×0.5 are updated first for learning the MNIST domain, which are
then frozen when updating parameters in θ×1.0\θ×0.5 for learning the SYNTHETIC domain. Contrarily, the overwriting
approach updates the entire set of model parameters when learning on the SYNTHETIC domain. We set the learning rate to
0.01 and train 10 epochs for learning each domain, with a batch size set to be 32. For the 10% (5%) training data setting, we
apply 743 (371) training samples for learning both MNIST and SYNTHETIC domains. Experimental results are averaged
from 6 random seeds, with seed numbers set to be 1, 3, 5, 7, 9, 11, respectively.

As shown in Table 7 and Table 8, the overwriting learning procedure leads to drastic information forgetting on the pre-
viously learned domain (MNIST). On the contrary, evaluations on both the ×0.5 model and ×1.0 model indicate that a
progressive learning scheme can adaptively build up knowledge on the new training data without undermining the preced-
ing knowledge representations. In fact, the new collateral connections that are progressively learned can also improve the
overall model performance on the MNIST domain. For instance, when training using 5% of domain data, model perfor-
mance on the MNIST domain has been improved from 66.46% (on the×0.5 model) to 72.27% (on the×1.0 model), which
verifies the advantage of our progressive model learning strategy.

Figure 8: Illustration of progressive learning. Figure 9: Illustration of overwriting learning.

Accuracy (%) Evaluated on the × 1.0 Model
Domain Progressive Learning Overwriting

Given 10 % training data
MNIST 77.95±7.93 38.17±28.19
SYNTHETIC 69.48±1.93 42.30±32.30

Given 5 % training data
MNIST 72.27±9.43 19.60±17.53
SYNTHETIC 52.43±5.88 19.03±16.32

Table 7: Progressive vs. overwriting learning.

Accuracy (%) on MNIST Evaluated on the × 0.5 Model
Training data Progressive Learning Overwriting

Given 10 % training data
10% 74.99±11.26 33.51±24.95

Given 5 % training data
5% 66.46±14.20. 19.23±16.21

Table 8: The overwriting learning approach leads to
severe forgetting on previously learned knowledge.

A.2. Details of Evaluated Related Work
One related approach to learn prunable models is the slimmable network proposed in (Yu et al., 2018), which works by
sampling a set of pruning ratios P = {pi|0 < pi ≤ 1}|P |i=1 then performing a batch gradient update, as summarized in
Algorithm 3. During each learning iteration, a constant copy of the complete network θ̄ is referred to as teacher, whose
prediction distribution p(·|x; θ̄) ∝ f(x;θ) is distilled into the submodel θ×pi , i.e. the student. The gradients for both
teacher and student models are later aggregated to update the network parameter.

Slimmable learning is proposed for non-FL settings, where sufficient data is accessible on a central machine. There are
potential drawbacks of directly applying it to our FL setting. First is the error propagation issue: when the teacher model is
underperforming e.g. given insufficient training or connection loss, its sub-optimality may be propagated back into the stu-
dent. In contrast, we propose an objective (in Equation 1) that alleviates this issue by introducing minθ×p L(f(X ;θ×p),Y),
which allows submodels to receive label supervisions. Second, the gradients for different submodels may interfere with
each other when being aggregated, which weakens the model’s learning effect, as verified in Section 5.6.2.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Another compared related work is FjORD (Horvath et al., 2021), which also learns prunable networks for a heterogeneous
FL system. We summarize its local model updating procedure in Algorithm 4. In practice, we also apply loss backprop-
agation through the teacher model (i.e. line 9 in Algorithm 4) when optimizing towards the FjORD objectives, which is
suggested in (Horvath et al., 2021) to further improve their model performance. Note that FjORD does not involve pro-
gressive parameter updates, the effects of which will be elaborated more in Section A.4.1. In our experiments, we explore
different choices of S and perform evaluations on FjORD and FedSlim using their optimal S accordingly.

Algorithm 3 SLIMMABLE-TRAINING ((Yu et al., 2018))

1: Inputs: training dataset D ⊂ X × Y; model with parameter set θ; pruning ratios P , learning rate η, loss function L,
constant S ≤ |P|.

2: repeat
3: Sample batch x, y ∼ D.
4: Sample widths P̂ = [pi|pi ∼ P]Si=1.
5: θ̄ ← stop gradient(θ).
6: for pi ∼ P̂ do
7: gi ← ∇θ×piKL[f(x; θ̄)‖f(x;θ×pi)].
8: end for
9: gθ ← ∇θL(f(x;θ), y)

10: Update parameter θ ← θ − η ∗ (gθ +
∑
i∈|S| gi)

11: until training stop

Algorithm 4 Local Model Update for FjORD((Horvath et al., 2021))

1: Inputs: training dataset D ⊂ X × Y; model with parameter set θ; pruning ratios P , learning rate η, loss function L,
constant S ≤ |P|.

2: repeat
3: Sample batch x, y ∼ D.
4: Sample widths P̂ = [pi|pi ∼ P]Si=1. . (S = 1 in (Horvath et al., 2021))
5: θ̄ ← stop gradient(θ).
6: for pi ∼ P̂ do
7: gi ← ∇θ×pi

{
L(f(X ;θ×pi),Y) +DKL[f(x; θ̄)‖f(x;θ×pi)]

}
.

8: end for
9: gθ ← ∇θL(f(x;θ), y)

10: Update parameter θ ← θ − η ∗ (gθ +
∑
i∈|S| gi)

11: until training stop

A.3. Experiments

A.3.1. TREATMENTS ON BATCH NORMALIZATION LAYERS

The BATCHNORM layers need to be carefully tackled for effectively training prunable models. Prior arts either make the
BATCHNORM layers localized on user devices to improve personalized FL, such as proposed in FedBN(Li et al., 2021),
or learn individual BATCHNORM modules for each possible submodel (Yu et al., 2018), which unnecessarily inreases the
number of learnable parameters. In our work, we apply a lightweight approach that still shares the trainable parameters
in BATCHNORM layers, while disabling tracking the running average and variance of training batches, which proves to be
an effective scheme across different datasets (Diao et al., 2020). For fair comparisons, we apply the same strategy on all
baselines, including the FedAvg.

Table 9 summarizes the impacts of different practices regarding BATCHNORM layers on the FedAvg performance, which
indicates that personalizing BN layers, as FedBN applies, might not be good practice for learning i.i.d. yet complicated
domains such as CIFAR10. On the contrary, decoupling feature learning from relying on tracking the mean and variance
of training data, proves to be effective on both FedAvg and our proposed self-distillation approach.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Effects of Different BATCHNORM Layer Configurations.

Algorithm
Personalized
BN Layers

Tracking
Training Status

Test Accuracy (%)
(Given 100% training)

Test Accuracy (%)
(Given 20% training)

FedAvg∗ × × 81.06±0.63 68.03±0.50
FedAvg × X 79.73±0.22 68.14±0.47
FedBN X X 76.12±0.74 60.41±0.57

Table 9: We adopted FedAvg∗ as the baseline implementation in the main paper.

A.3.2. OVERVIEW OF COMMUNICATION EFFICIENCY
We summarize the communication efficiency of evaluated algorithms on CIFAR10 domain in Table 10, where evaluation
is performed under a heterogeneous FL system. Results demonstrate that FedResCuE requires the least communication
rounds to reach the predefined accuracy.

Communication Efficiency on CIFAR10 Dataset, Cluster Setting

Accuracy
Model
Size FedHetero FjORD∗ FedSlim∗ FedResCuE

100 % training data, 0.1 ≤ er ≤ 0.2.
65% w×1 - - - 174.7±22.2
60% w×0.5 256.7±19.3 218.0±5.9 253.3±26.5 124.7±11.1
55% w×0.25 222.7±6.8 165.3±5.2 190.7±23.8 85.3±1.9

20 % training data, er = 0
60% w×1 - 244.0±33.5 188.7±133.4 166.0±14.2
55% w×0.5 180.7±14.8 156.0±13.4 192.0±7.1 96.0±2.8
50% w×0.25 163.3±11.5 122.7±4.1 168.7±5.2 76.7±1.9

Table 10: Communication Efficiency Overview. ‘-’ indicates that predefined performance is not reached before training
ends.

A.3.3. PERFORMANCE WITH SYSTEM HETEROGENEITY

In addition to the discussion in Section 5.2 of the main paper, we provide two more observations regarding system het-
erogeneity: 1) when FL is free from the risk of a connection interruption, a uniform setting in which the same model
architecture is assigned to all the edge devices, is generally more beneficial than a cluster setting, where heterogeneous
and smaller models are enabled. This result conforms to our perception that larger models can capture more representative
feature maps for the learning domain, while smaller models sacrifice such information gain for computation and commu-
nication efficiency. 2) Contrarily, the diversity in model architecture makes FL resilient to connection loss to some extent.
Specifically, performing parameter-wise averaging on heterogeneous models, just as FedHetero applies, can potentially
make submodels within the global model function as well, in that the submodel parameters are contributed by smaller-
capacity users. Therefore, it can outperform FedAvg under unpredictable connection losses, although such an advantage
is much less effective than FedResCuE with self-distillation learning. We provide a more comprehensive summary in
Table 11, with the accompanying learning curves illustrated in Section A.5.

A.3.4. PERFORMANCE UNDER CONNECTION LOSS

In our experiments, we simulate the unpredictable transmission scenarios with connection loss via a random variable er,
which denotes the probability that the current column transmission is interrupted. For experiments on the CIFAR10 domain,
er is first uniformly sampled within an error bound (e.g. er ∈ [0.1, 0.2]). Next, we use er to determine whether the current
column transmission will be interrupted, by comparing it against another uniformly-sampled random variable ε, which
leads to interruption iff ε < er. We perform such random sampling on er and ε for transmitting each column in a model,
while a column for transmission is set to be ×0.125 of the global model width.

Performance overview on the CIFAR10 domain given different connection loss rates is presented in Table 12. For experi-
ments on the DIGITSFIVE domains, we set constant er that depends on the domain type. Performance on all five domains
is provided in Table 13. Note that we applied a small training dataset from DIGITSFIVE to ensure the necessity of FL, so
that Local learning without parameter sharing yields worse performance than FL.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Global Model Accuracy (%) Evaluated on CIFAR10.
Training

Data
User

Capacity Evaluated Model FedAvg FedHetero FjORD∗ FedSlim∗ FedResCuE

100%
∀k pk = 1 (uniform) w×1 81.06±0.63 - 80.57±0.91 81.14±0.76 81.39±0.20

w×0.5 49.46±1.10 - 77.59±0.31 77.47±0.75 77.82±0.15
w×0.25 18.57±0.64 - 69.94±0.65 70.47±0.61 71.19±0.19

∀k pk ∼ PC (cluster)
w×1 - 76.80±0.53 75.71±0.47 77.49±0.40 78.22±0.41
w×0.5 - 76.08±0.50 75.35±0.43 77.12±0.40 77.58±0.33
w×0.25 - 68.56±0.51 70.98±0.75 73.22±0.34 73.25±0.47

20%
∀k pk = 1 (uniform) w×1 68.03±0.50 - 67.89±1.47 67.96±0.72 71.27±0.27

w×0.5 36.56±1.74 - 65.13±1.70 64.80±1.19 68.15±0.39
w×0.25 16.47±2.24 - 61.38±1.69 59.56±1.39 61.12±1.35

∀k pk ∼ PC (cluster) w×1 - 59.38±0.41 62.43±1.65 59.53±0.86 64.53±1.06
w×0.5 - 59.95±0.36 63.06±1.61 60.36±0.45 66.37±0.78
w×0.25 - 55.41±0.39 61.86±1.21 58.31±0.23 61.98±0.85

Table 11: FL Performance with i.i.d. user statistical distributions.

Global Model Accuracy (%) Evaluated on CIFAR10 Under Connection Loss.
Connection

Error
User

Capacity
Evaluated

Model FedAvg FedHetero FjORD FedSlim FedResCuE

0.1 ≤ er ≤ 0.2
uniform w×1 50.36±2.17 - 61.79±1.62 57.31±1.27 70.02±0.40

w×0.25 12.58±0.51 - 60.20±1.67 55.33±0.89 67.40±0.84

cluster w×1 - 60.92±1.33 64.52±0.60 62.35±1.76 69.78±0.74
w×0.25 - 59.70±0.64 64.11±0.41 61.77±1.62 68.83±1.00

0.2 ≤ er ≤ 0.3
uniform w×1 41.79±4.33 - 54.91±1.07 48.46±0.73 64.80±0.85

w×0.25 12.27±0.93 - 55.20±1.31 48.42±0.87 64.10±0.26

cluster w×1 - 51.70±1.14 57.60±2.25 56.28±1.61 65.74±0.30
w×0.25 - 51.90±0.33 57.69±2.22 56.34±1.56 65.18±0.57

Table 12: Performance under faulty connections, given 100% of training data.

Constant Error Rates er for DIGITSFIVE

Domain SVHN Synthetic USPS MNIST MNIST-M
er 0.05 0.05 0.3 0.3 0.05

DIGITSFIVE performance, trained using 5% of data.
Domain SVHN Synthetic USPS MNIST MNIST-M

×1.0 Model.
Local 45.88±0.92 62.04±1.16 89.95±1.93 85.84±3.35 61.99±1.79

FedAvg 69.54±0.15 80.17±0.24 94.38±0.55 93.61±0.38 75.22±0.87
FedSlim 66.77±0.61 78.95±0.82 94.00±0.41 93.80±0.53 73.95±1.02
FjORD 49.72±23.42 57.12±30.11 68.60±36.34 68.01±37.35 56.29±26.48

FedResCuE 69.32±0.78 80.57±0.77 95.17±0.47 95.05±0.44 76.89±0.76

×0.25 Model.
FedAvg 20.00±0.55 19.14±5.64 34.03±14.65 32.16±18.65 20.47±9.28
FedSlim 64.00±0.96 77.15±2.13 93.44±1.26 93.38±0.75 72.16±1.51
FjORD 48.11±22.35 54.58±31.15 68.51±36.28 65.79±39.13 52.75±29.16

FedResCuE 67.11±0.77 79.06±0.41 94.55±0.37 94.64±0.28 75.64±0.37

Table 13: FedResCuE is the most robust algorithm given heterogeneous data and domain-dependent connection errors.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

A.4. Modeling of Connection Uncertainty

In our experiments, we assume that an error rate er is related to each model column transmission between the server and
the edge device. This setting is built upon the mechanism of downstream wireless connections. Specifically, we present a
fine-grained formulation of the connection error rates in a wireless communication scenario:

Lossy Wireless Connections: Following the wireless model of (Raza et al., 2020), we can leverage LTE-A (Kanchi et al.,
2013), which is a representative model of 4G network, for the wireless links between the edge server (ES) and edge devices
for FL, considering the orthogonal frequency division multiple access (OFDMA) scheme. The parameter des,k denotes the
distance between the edge server and the kth edge device while the path loss between them can be characterized by d−σes,k
and the white Gaussian noise powerN0, where σ is the path loss exponent. The wireless channel is modeled as a frequency-
flat block-fading Rayleigh fading channel, with the uplink channel fading coefficient h (Wang et al., 2018). The uplink
data rate of the kth edge device is defined as:

Rk = Bklog2

(
1 +

Ptd
−σ
es,k

∣∣h2
∣∣

N0 + I

)
. (6)

In the equation above,Bk denotes the channel bandwidth, Pt represents the transmission power of the ES. I is the inter-cell
interference. AsRk fluctuates based on changing wireless network conditions, we can define a minimum uplink rateRmin,
such that any rate lower than Rmin will lead to timeouts and packet loss. As a result, the probability that a packet gets
lost over the edge network shall be derived as the following:

Pr {Rk < Rmin} = Pr

{
Bklog2

(
1 +

Ptd
−σ
es,k

∣∣h2
∣∣

N0 + I

)
< Rmin

}

= Pr

{
dσ >

Pt
∣∣h2
∣∣

(N0 + I) 2
Rmin
Bk −N0 − I

}

= Pr

d >
(

Pt
∣∣h2
∣∣

(N0 + I) 2
Rmin
Bk −N0 − I

) 1
σ

 . (7)

Suppose in a given LTE-A network, Bk, N0, I , Pt, σ, and h are constants. If the distances between the edge devices and
the ES, i.e., des,k, follow the Poisson distribution, then the probability of a packet to be lost during transmission can be
derived by Equation (7).

Macro-Level Simulation of Connection Uncertainty: When conducting experiments for unstable network connec-
tion scenarios, we use er, i.e. the connection loss rate for each column, as a macro-level modeling to approximate
Pr {Rk < Rmin} in Equation (7). This type of modeling is grounded in that an upstream column and a downstream
packet are logically related to each other. Depending on the size limit of a transmission packet and the granularity of our
model decomposition, a column could be further decomposed into one or multiple packets during wireless transmission.

A.4.1. ABLATION STUDY

Impacts of Sampling Frequency: We explored the effects of different sampling frequency S on model learning, where S
is the number of submodels sampled per batch update (e.g.|P̂ | = S in Algorithm 1). S = 0 would reduce all algorithms to
regular FedAvg without self distillation. An overlarge S, on the other hand, may bring extra computation workload to edge
devices. In our experiments, the sampling granularity is set to be ×0.05 of the largest model width, and the smallest model
width is set to be ×0.1. Hence there are 19 eligible pruning ratios, i.e. |P| = 19.

As shown in Figure 10, FedResCuE can benefit from finer-grained submodel sampling and maintains a robust performance
across different choices of S. On the contrary, the performance of FjORD is only slightly improved by increasing S
from 2 to 4, whose performance drops notably when S becomes overlarge, especially given insufficient training data.
FedSlim is the most sensitive to the choice of S, which learns prunable submodels purely by knowledge distillation and
batch-gradient updates. Its performance degrades drastically with an increasing S and becomes highly unstable under
connection interruptions. We ascribe the robustness of FedResCuE over others to its progressive learning scheme, rather
than a batch-gradient update strategy as FedSlim and FjORD applies.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

(a) 20% training data, ×1.0
model.

(b) 20% training data, ×0.5
model.

(c) 0.1 ≤ er ≤ 0.2, ×1.0
model.

(d) 0.1 ≤ er ≤ 0.2, ×0.5
model.

Figure 10: Impacts of the submodel sampling frequency.

Effects of Knowledge Distillation: We compare FedResCuE against its ablated variant named FedSeq which does not
require minimizing the KL-divergence between the largest model and the sampled submodel. We provide the model
learning process of FedSeq in Algorithm 5. Table 14 summarizes their asymptotic performance under different FL settings,
which demonstrates that FedResCuE is more beneficial to smaller submodels. We present the corresponding evaluation
curves in Figure 11.

Algorithm 5 Local Model Update for FedSeq

1: Inputs: Training datasetD ⊂ X ×Y; model with parameter set θ ∈ Θ; pruning ratios P , learning rate η, loss function
L, constant S ≤ |P|.

2: repeat
3: Sample batch of x, y ∼ D.
4: Sample ordered ratios P̂ = [pi|pi ∈ P, pi < pi+1 ∀i < S, pS = 1]Si=1

5: for pi ∼ P̂ do
6: gi ← ∇{θ×pi\θ×pi−1

}L(f(X ;θ×pi),Y)

7: θ×pi ← θ×pi − η ∗ gi.
8: end for
9: θ ← θ − η ∗ ∇θL(f(x;θ), y).

10: until training stop
11: Return θ

Comparing FedResCuE and FedSeq, on CIFAR10 dataset
Algorithm w×0.25 w×0.5 w×0.75 w×1.0

Given 20 % training data
FedResCuE 61.12±1.35 68.15±0.39 69.98±0.41 71.27±0.27
FedSeq 58.96±1.24 66.39±0.60 69.18±0.28 70.13±0.16

0.1 ≤ er ≤ 0.2
FedResCuE 67.40±0.84. 69.91±0.42. 70.23±0.42. 70.02±0.40
FedSeq 66.47±0.36 69.45±0.41 69.70±0.37 69.67±0.32

Table 14: Performance with and without knowledge-distillation.

Effects of Progressive Learning: One contributing factor to FedResCuE’s superior performance is its progressive learn-
ing strategy, which adaptively learns gradients by fixing the parameters of previously learned submodels. To validate the
efficacy of progressive learning, we compared FedResCuE against a variant called FedRushṪhe detailed model learning
process of FedRush is provided in Algorithm 6. Learning curves of these two algorithms are illustrated in Figure 12, which
demonstrate that the progressive parameter update, as FedResCuE adopts, is necessary to derive reliable models, espe-
cially given insufficient training data or connection interruptions. FedRush, on the other hand, undermines the knowledge
learned by smaller submodels by overwriting parameters during the model update, which could otherwise serve as a good
initialization for the subsequent submodel to build up representative domain knowledge.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

(a) ×0.25 model. (b) ×0.5 model. (c) ×0.75 model. (d) ×1.0 model.

Figure 11: Compared with FedSeq, the knowledge-distillation strategy in FedResCuE can benefit smaller submodels.

Algorithm 6 Local Model Update for FedRush

1: Inputs: training dataset D ⊂ X × Y; model with parameter set θ; pruning ratios P , learning rate η, loss function L,
constant S ≤ |P|.

2: repeat
3: Sample batch x, y ∼ D.
4: Sample ordered ratios P̂ = [pi|pi ∈ P, pi < pi+1 ∀i < S, pS = 1]Si=1

5: θ̄ ← stop gradient(θ), θ×0 = ∅.
6: for pi ∼ P̂ do
7: gi ← ∇θ×pi

{
L(f(X ;θ×pi),Y) +DKL[f(x; θ̄)‖f(x;θ×pi)]

}
.

8: θ×pi ← θ×pi − η ∗ gi. . (Overwrite previously learned θpi−1
.)

9: end for
10: θ ← θ − η ∗ ∇θL(f(x;θ), y)
11: until training stop

(a) ×0.25 model. (b) ×0.5 model. (c) ×0.75 model. (d) ×1.0 model.
Figure 12: Compared to FedRush, FedResCuE maintains a high performance for the ×1.0 model.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

A.5. Overview of Model Learning Performance

Performance with Stable Network Connections:

Figure 13: 100% training data, CIFAR10, uniform architecture, er = 0.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model
Figure 14: 100% training data, CIFAR10, cluster architecture, er = 0.

Performance Given Insufficient Training Data:

Figure 15: 20% training data, CIFAR10, uniform architecture, er = 0.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model
Figure 16: 20% training data, CIFAR10, cluster architecture, er = 0.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

Performance Under Connection Loss:

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure 17: 100% training data, CIFAR10, uniform architecture, 0.1 ≤ er ≤ 0.2.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure 18: 100% training data, CIFAR10, cluster architecture, 0.1 ≤ er ≤ 0.2.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure 19: 100% training data, CIFAR10, uniform architecture, 0.2 ≤ er ≤ 0.3.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure 20: 100% training data, CIFAR10, cluster architecture, 0.2 ≤ er ≤ 0.3.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

A.6. Experiment Configurations

A.6.1. MODEL ARCHITECTURE

For the CIFAR10 domain, we build a ResNet neural network (He et al., 2016) using 4 residual blocks, while a residual
block maintains 1) a convolution module that consits of 3 CONV2D layers, each followed by a BATCHNORM2D layer and
a RELU activation layer; and 2) a shortpath module to be in parallel with the convolution module. The ResNet model
contains 8,036,426 trainable parameters in total, with a model size of 33.09 MB. For the DIGITSFIVE domains, we build a
neural network consiting of 3 CONV2D layers, each followed by a BATCHNORM layer, and 3 LINEAR layers. It contains
14,214,090 trainable parameters in total, with a model size of 55.30 MB.

Network Architecture for Learning CIFAR10.
Layer Output Shape # of Parameters

Conv2d-1 64 × 14 × 14 9,408
MaxPool2d-4 64 × 7 × 7 0
Conv2d-5 64 × 7 × 7 4,096
Conv2d-8 64 × 7 × 7 36,864
Conv2d-11 256 × 7 × 7 16,384
Conv2d-13 256 × 7 × 7 16,384
Conv2d-17 128 × 7 × 7 32,768
Conv2d-20 128 × 4 × 4 147,456
Conv2d-23 512 × 4 × 4 65,536
Conv2d-25 512 × 4 × 4 131, 072
Conv2d-29 256 ×4 × 4 131,072
Conv2d-32 256 × 2 × 2 589,824
Conv2d-35 1024 × 2 × 2 262,144
Conv2d-37 1024 × 2 × 2 524,288
Conv2d-41 512 × 2, 2 524,288
Conv2d-44 512 × 1 × 1 2,359,296
Conv2d-47 2048 × 1 × 1 1,048,576
Conv2d-49 2048 × 1 × 1 2,097,152
AvgPool2d-53 2048 × 1 × 1 0
Linear-54 10 20,490

Table 15: ResNet Architecture for Learning CIFAR10, omitting BatchNorm and ReLU layers.

Network Architecture for Learning DIGITSFIVE.
Layer Output Shape # of Parameters

Conv2d-1 64 × 28 × 28 4,864
BatchNorm2d-2 64 × 28 × 28 128
Conv2d-3 64 × 14 × 14 102,464
BatchNorm2d-4 64 × 14 × 14 128
Conv2d-5 128 × 7 × 7 204,928
BatchNorm2d-6 128 × 7 × 7 256
Linear-7 2048 12,847,104
Linear-8 512 1,049,088
Linear-9 10 5,130

Table 16: Model Architecture for Learning DIGITSFIVE.

A.6.2. OPTIMIZER IMPLEMENTATION FOR PROGRESSIVE LEARNING

In practice, we customzie the default SGD optimizer implemented in Pytorch to realize progressive gradient updates. A
trainable neural layer consits of parameter tensors, each of which can be treated as a weight matrix. When calculating
gradients for the neural layer, we specify the columns to be updated, which corresponds to a set of indices for elements
in the weight matrix. When applying the gradients, we mask out the gradients of parameters that were not included in the
specified columns.

Resilient and Communication Efficient Learning for Heterogeneous Federated Systems

A.6.3. HYPER-PARAMETER CONFIGURATIONS

We summarize in Table 17 the hyper-parameters used in our experiments.

Hyper-parameter Configurations
Domain Hyper-parameter Value

Shared

Optimizer SGD
learning rate 0.1
Momentum 0.9

Nesterov TRUE
Weight decay 10−4

Track training in BatchNorm FALSE
Share BatchNorm TRUE

Data category 10
of active users 5

Random seeds for training 3, 5, 7
Batch Size 32

CIFAR10 Training Epoch 300
of total users 20

Used training data 100%, 20%
Column Granularity for P ×0.05

DIGITSFIVE Training Epoch 100
of total users 10

users per domain 2
Used training data 5%

Column Granularity for P ×0.125

Table 17: Configurations of Hyper-parameters.

