
Contextual Bandits with Smooth Regret: Efficient Learning in Continuous
Action Spaces

Yinglun Zhu 1 Paul Mineiro 2

Abstract
Designing efficient general-purpose contextual
bandit algorithms that work with large—or even
infinite—action spaces would facilitate applica-
tion to important scenarios such as information
retrieval, recommendation systems, and contin-
uous control. While obtaining standard regret
guarantees can be hopeless, alternative regret no-
tions have been proposed to tackle the large action
setting. We propose a smooth regret notion for
contextual bandits, which dominates previously
proposed alternatives. We design a statistically
and computationally efficient algorithm—for the
proposed smooth regret—that works with general
function approximation under standard supervised
oracles. We also present an adaptive algorithm
that automatically adapts to any smoothness level.
Our algorithms can be used to recover the previ-
ous minimax/Pareto optimal guarantees under the
standard regret, e.g., in bandit problems with mul-
tiple best arms and Lipschitz/Hölder bandits. We
conduct large-scale empirical evaluations demon-
strating the efficacy of our proposed algorithms.

1. Introduction
Contextual bandits concern the problem of sequential deci-
sion making with contextual information. Provably efficient
contextual bandit algorithms have been proposed over the
past decade (Langford & Zhang, 2007; Agarwal et al., 2014;
Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2021; Foster &
Krishnamurthy, 2021). However, these developments only
work in setting with a small number of actions, and their
theoretical guarantees become vacuous when working with
a large action space (Agarwal et al., 2012). The hardness
result can be intuitively understood through a “needle in the
haystack” construction: When good actions are extremely

1University of Wisconsin-Madison 2Microsoft Research NYC.
Correspondence to: Yinglun Zhu <yinglun@cs.wisc.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

rare, identifying any good action demands trying almost
all alternatives. This prevents naive direct application of
contextual bandit algorithms to large action problems, e.g.,
in information retrieval, recommendation systems, and con-
tinuous control.

To bypass the hardness result, one approach is to assume
structure on the model class. For example, in the stan-
dard linear contextual bandit (Auer, 2002; Chu et al., 2011;
Abbasi-Yadkori et al., 2011), learning the d components
of the reward vector—rather than examining every single
action—effectively guides the learner to the optimal ac-
tion. Additional structural assumptions have been stud-
ied in the literature, e.g., linearly structured actions and
general function approximation (Foster et al., 2020; Xu &
Zeevi, 2020), Lipschitz/Hölder regression functions (Klein-
berg, 2004; Hadiji, 2019), and convex functions (Lattimore,
2020). While these assumptions are fruitful theoretically,
they might be violated in practice.

An alternative approach is to compete against a less demand-
ing benchmark. Rather than competing against a policy that
always plays the best action, one can compete against a pol-
icy that plays the best smoothed distribution over the actions:
a smoothed distribution—by definition—cannot concentrate
on the best actions when they are in fact rare. Thus, for
the previously mentioned “needle in the haystack” construc-
tion, the benchmark is weak as well. This de-emphasizes
such constructions and focuses algorithm design on scenar-
ios where intuition suggests good solutions can be found
without prohibitive statistical cost.

Contributions. We study large action space problems un-
der an alternate notion of regret. Our first contribution is
to propose a novel benchmark—the smooth regret—that
formalizes the “no needle in the haystack” principle. We
also show that our smooth regret dominates previously pro-
posed regret notions along this line of work (Chaudhuri &
Kalyanakrishnan, 2018; Krishnamurthy et al., 2020; Maj-
zoubi et al., 2020), i.e., any regret guarantees with respect to
the smooth regret automatically holds for these previously
proposed regrets.

We design efficient algorithms that work with the smooth
regret and general function classes. Our first proposed

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

algorithm, SmoothIGW, works with any fixed smooth-
ness level h > 0, and is efficient—both statistically and
computationally—whenever the learner has access to stan-
dard oracles: (i) an online regression oracle for supervised
learning, and (ii) a simple sampling oracle over the action
space. Statistically, SmoothIGW achieves

√
T/h-type re-

gret for whatever action spaces; here 1/h should be viewed
as the effective number of actions. Such guarantees can be
verified to be minimax optimal when related back to the
standard regret. Computationally, the guarantee is achieved
with O(1) operations with respect to oracles, which can
be usually efficiently implemented in practice. Our second
algorithm is a master algorithm which combines multiple
SmoothIGW instances to compete against any unknown
smoothness level. We show this master algorithm is Pareto
optimal.

With our smooth regret and proposed algorithms, we exhibit
guarantees under the standard regret in various scenarios,
e.g., in problems with multiple best actions (Zhu & Nowak,
2020) and in problems when the expected payoff function
satisfies structural assumptions such as Lipchitz/Hölder con-
tinuity (Kleinberg, 2004; Hadiji, 2019). Our algorithms are
minimax/Pareto optimal when specialized to these settings.

1.1. Paper Organization

We introduce our smooth regret in Section 2, together with
statistical and computational oracles upon which our algo-
rithms are built. In Section 3, we present our algorithm
SmoothIGW, which illustrates the core ideas of learning
with smooth regret at any fixed smoothness level. Built upon
SmoothCB, in Section 4, we present a CORRAL-type of
algorithm that can automatically adapt to any unknown
smoothness level. In Section 5, we connect our proposed
smooth regret to the standard regret over various scenarios.
We present empirical results inSection 6, and close with a
discussion in Section 7.

2. Problem Setting
We consider the following standard contextual bandit prob-
lems. At any time step t ∈ [T], nature selects a context xt ∈
X and a distribution over loss functions `t : A → [0, 1]
mapping from the (compact) action set A to a loss value in
[0, 1]. Conditioned on the context xt, the loss function is
stochastically generated, i.e., `t ∼ P`t(· | xt). The learner
selects an action at ∈ A based on the revealed context xt,
and obtains (only) the loss `t(at) of the selected action. The
learner has access to a set of measurable regression func-
tions F ⊆ (X × A → [0, 1]) to predict the loss of any
context-action pair. We make the following standard realiz-
ability assumption studied in the contextual bandit literature
(Agarwal et al., 2012; Foster et al., 2018; Foster & Rakhlin,
2020; Simchi-Levi & Xu, 2021).

Assumption 1 (Realizability). There exists a regression
function f? ∈ F such that E[`t(a) | xt] = f?(xt, a) for
any a ∈ A and across all t ∈ [T].

The smooth regret. Let (A,Ω) be a measurable space of
the action set and µ be a base probability measure over the
actions. Let Qh denote the set of probability measures such
that, for any measure Q ∈ Qh, the following holds true: (i)
Q is absolutely continuous with respect to the base measure
µ, i.e., Q� µ; and (ii) The Radon-Nikodym derivative of
Q with respect to µ is no larger than 1

h , i.e., dQdµ ≤ 1/h. We
call Qh the set of smoothing kernels at smoothness level
h, or simply put the set of h-smoothed kernels. For any
context x ∈ X , we denote by Smoothh(x) the smallest loss
incurred by any h-smoothed kernel, i.e.,

Smoothh(x) := inf
Q∈Qh

Ea∼Q[f?(x, a)].

Rather than competing with arg mina∈A f
?(x, a)—an im-

possible job in many cases—we take Smoothh(x) as the
benchmark and define the smooth regret as follows:

RegCB,h(T) := E

[
T∑
t=1

f?(xt, at)− Smoothh(xt)

]
. (1)

One important feature about the above definition is that
the benchmark, i.e., Smoothh(xt), automatically adapts to
the context xt: This gives the benchmark more power and
makes it harder to compete against. In fact, our smooth
regret dominates many existing regret measures with easier
benchmarks. We provide some examples in the following.

• Chaudhuri & Kalyanakrishnan (2018) propose the
quantile regret, which aims at competing with the
lower h-quantile of the loss function, i.e., vh(x) :=
inf{ζ : µ(a ∈ A : f?(x, a) ≤ ζ) ≥ h}. Con-
sider Sh := {a ∈ A : f?(x, a) ≤ νh(x)} such
that µ(Sh) ≥ h. Let Qh := µ|Sh/µ(Sh) denote
the (normalized) probability measure after restrict-
ing µ onto Sh. Since Qh ∈ Qh, we clearly have
Smoothh(x) ≤ Ea∼Qh [f?(x, a)] ≤ νh(x). Besides,
the (original) quantile was only studied in the non-
contextual case.

• Krishnamurthy et al. (2020) study a notion of regret
that is smoothed in a different way: Their regret
aims at competing with a known and fixed smooth-
ing kernel (on top of a fixed policy set) with Radon-
Nikodym derivative at most 1/h. Our benchmark is
clearly harder to compete against since we consider
any smoothing kernel with Radon-Nikodym derivative
at most 1/h.

Besides being more competitive with respect to above bench-
marks, smooth regret can also be naturally linked to the

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

standard regret under various settings previously studied in
the bandit literature, e.g., in the discrete case with multiple
best arms (Zhu & Nowak, 2020) and in the continuous case
with Lipschitz/Hölder continuous payoff functions (Klein-
berg, 2004; Hadiji, 2019). We provide detailed discussion
in Section 5.

2.1. Computational Oracles

The first step towards designing computationally efficient
algorithms is to identify reasonable oracle models to access
the sets of regression functions or actions. Otherwise, enu-
meration over regression functions or actions (both can be
exponentially large) immediately invalidate the computa-
tional efficiency. We consider two common oracle models:
a regression oracle and a sampling oracle.

The regression oracles. A fruitful approach to designing
efficient contextual bandit algorithms is through reduction
to supervised regression with the class F (Foster & Rakhlin,
2020; Simchi-Levi & Xu, 2021; Foster et al., 2020; 2021a).
Following Foster & Rakhlin (2020), we assume that we have
access to an online regression oracle AlgSq, which is an
algorithm for sequential predication under square loss. More
specifically, the oracle operates in the following protocol:
At each round t ∈ [T], the oracle makes a prediction f̂t, then
receives context-action-loss tuple (xt, at, `t(at)). The goal
of the oracle is to accurately predict the loss as a function
of the context and action, and we evaluate its performance
via the square loss (f̂t(xt, at)− `t(at))2. We measure the
oracle’s cumulative performance through the square-loss
regret to F , which is formalized below.

Assumption 2. The regression oracle AlgSq guarantees
that, with probability at least 1 − δ, for any (potentially
adaptively chosen) sequence {(xt, at, `t(at))}Tt=1,

E

[
T∑
t=1

(
f̂t(xt, at)− `t(at)

)2

−

inf
f∈F

T∑
t=1

(f(xt, at)− `t(at))2

]
≤ RegSq(T, δ),

for some (non-data-dependent) function RegSq(T, δ).

Sometimes it’s useful to consider a weighted regression
oracle, where the square errors are weighted differently. It
is shown in Foster et al. (2020) (Theorem 5 therein) that
any regression oracle satisfies Assumption 2 can be used
to generate a weighted regression oracle that satisfies the
following assumption.

Assumption 3. The regression oracle AlgSq guarantees
that, with probability at least 1 − δ, for any (potentially

adaptively chosen) sequence {(wt, xt, at, `t(at))}Tt=1,

E

[
T∑
t=1

wt

(
f̂t(xt, at)− `t(at)

)2

−

inf
f∈F

T∑
t=1

wt(f(xt, at)− `t(at))2

]

≤ E
[
max
t∈[T]

wt

]
RegSq(T, δ),

for some (non-data-dependent) function RegSq(T, δ).

For either regression oracle, we let TSq denote an up-
per bound on the time to (i) query the oracle’s estimator
f̂t with context-action pair (xt, a) and receive its predi-
cated value f̂t(xt, a) ∈ [0, 1]; (ii) query the oracle’s es-
timator f̂t with context xt and receive its argmin action
ât = arg mina∈A f̂t(xt, a); and (iii) update the oracle with
example (xt, at, rt(at)). We letMSq denote the maximum
memory used by the oracle throughout its execution.

Online regression is a well-studied problem, with known
algorithms for many model classes (Foster & Rakhlin, 2020;
Foster et al., 2020): including linear models (Hazan et al.,
2007), generalized linear models (Kakade et al., 2011), non-
parametric models (Gaillard & Gerchinovitz, 2015), and
beyond. Using Vovk’s aggregation algorithm (Vovk, 1998),
one can show that RegSq(T, δ) = O(log(|F|/δ)) for any
finite set of regression functions F , which is the canonical
setting studied in contextual bandits (Langford & Zhang,
2007; Agarwal et al., 2012). In the following of this pa-
per, we use abbreviation RegSq(T) := RegSq(T, T

−1),
and will keep the RegSq(T) term in our regret bounds to
accommodate for general set of regression functions.

The sampling oracles. In order to design algorithms that
work with large/continuous action spaces, we assume access
to a sampling oracle AlgSample to get access to the action
space. In particular, the oracle AlgSample returns an action
a ∼ µ randomly drawn according to the base probability
measure µ over the action space A. We let TSample denote a
bound on the runtime of single query to the oracle; and let
MSample denote the maximum memory used by the oracle.

Representing the actions. We use bA to denote the num-
ber of bits required to represent any action a ∈ A, which
scales with O(log|A|) with a finite set of actions and Õ(d)
for actions represented as vectors in Rd. Tighter bounds
are possible with additional structual assumptions. Since
representing actions is a minimal assumption, we hide the
dependence on bA in big-O notation for our runtime and
memory analysis.

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

2.2. Additional Notation

We adopt non-asymptotic big-oh notation: For functions
f, g : Z → R+, we write f = O(g) (resp. f = Ω(g)) if
there exists a constant C > 0 such that f(z) ≤ Cg(z) (resp.
f(z) ≥ Cg(z)) for all z ∈ Z . We write f = Õ(g) if f =

O(g · polylog(T)), f = Ω̃(g) if f = Ω(g/polylog(T)).
We use . only in informal statements to highlight salient
elements of an inequality.

For an integer n ∈ N, we let [n] denote the set {1, . . . , n}.
For a set Z , we let ∆(Z) denote the set of all Radon proba-
bility measures over Z . We let unif(Z) denote the uniform
distribution/measure over Z . We let Iz ∈ ∆(Z) denote the
delta distribution on z.

3. Efficient Algorithm with Smooth Regret
We design an oracle-efficient (SmoothIGW, Algorithm 1)
algorithm that achieves a

√
T -type regret under the smooth

regret defined in Eq. (1). We focus on the case when the
smoothness level h > 0 is known in this section, and leave
the design of adaptive algorithms in Section 4.

Algorithm 1 contains the pseudo code of our proposed
SmoothIGW algorithm, which deploys a smoothed sam-
pling distribution to balance exploration and exploitation.
At each round t ∈ [T], the learner observes the context xt
from the environment and obtains the estimator f̂t from the
regression oracle AlgSq. It then constructs a sampling dis-
tribution Pt by mixing a smoothed distribution constructed
using the inverse gap weighting (IGW) technique (Abe &
Long, 1999; Foster & Rakhlin, 2020) and a delta mass at the
greedy action ât := arg mina∈A f̂t(xt, a). The algorithm
samples an action at ∼ Pt and then update the regression
oracle AlgSq. The key innovation of the algorithm lies in
the construction of the smoothed IGW distribution, which
we explain in detail next.

Algorithm 1 SmoothIGW
Input: Exploration parameter γ > 0, online regression

oracle AlgSq.
1: for t = 1, 2, . . . , T do
2: Observe context xt.
3: Receive f̂t from regression oracle AlgSq.
4: Get ât ← arg mina∈A f̂t(xt, a).
5: Define

Pt := Mt + (1−Mt(A)) · Iât , (2)

where Mt is the measure defined in Eq. (4)
6: Sample at ∼ Pt and observe loss `t(at). // This can

be done efficiently via Algorithm 2.

7: Update AlgSq with (xt, at, `t(at))

Smoothed variant of IGW. The IGW technique was pre-
viously used in the finite-action contextual bandit setting
(Abe & Long, 1999; Foster & Rakhlin, 2020), which as-
signs a probability mass to every action a ∈ A inversely
proportional to the estimated loss gap (f̂(x, a)− f̂(x, â)).
To extend this strategy to continuous action spaces we lever-
age Radon-Nikodym derivatives. Fix any constant γ > 0,
we define a IGW-type function as

mt(a) :=
1

1 + hγ(f̂t(xt, a)− f̂t(xt, ât))
. (3)

For any ω ∈ Ω, we then define a new measure

Mt(ω) :=

∫
a∈ω

mt(a) dµ(a) (4)

of the measurable action space (A,Ω), where m(a) =
dM
dµ (a) serves as the Radon-Nikodym derivative between the

new measure M and the base measure µ. Since mt(a) ≤ 1
by construction, we have Mt(A) ≤ 1, i.e., Mt is a sub-
probability measure. SmoothIGW plays a probability mea-
sure Pt ∈ ∆(A) by mixing the sub-probability measure Mt

with a delta mass at the greedy action ât, as in Eq. (2).

Algorithm 2 Rejection Sampling for IGW
Input: Sampling oracle AlgSample, greedy action ât,

Radon-Nikodym derivative mt(a).
1: Draw a ∼ µ from sampling oracle AlgSample.
2: Sample Z from a Bernoulli random distribution with

mean mt(a).
3: if Z = 1 then
4: Take action a.
5: else
6: Take action ât.

Efficient sampling. We now discuss how to sample from
the distribution of Eq. (2) using a single call to the sampling
oracle, via rejection sampling. We first randomly sample an
action a ∼ µ from the sampling oracle AlgSample and with
respect to the base measure µ. We then compute mt(a) in
Eq. (3) with two evaluation calls to f̂t, one at f̂t(xt, a) and
the other at f̂t(xt, ât). Finally, we sample a random variable
Z from a Bernoulli distribution with expectation mt(a) and
play either action ât or action a depending upon the real-
ization of Z. One can show that the sampling distribution
described above coincides with the distribution defined in
Eq. (2) (Proposition 1).1 We present the pseudo code for
rejection sampling in Algorithm 2.
Proposition 1. The sampling distribution generated from
Algorithm 2 coincides with the sampling distribution defined
in Eq. (2).

1The same idea can be immediately applied to the case of
sampling from the IGW distribution with finite number of actions
(Foster & Rakhlin, 2020).

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

Proof of Proposition 1. Let P t denote the sampling distri-
bution achieved by Algorithm 2. For any ω ∈ Ω, if ât /∈ ω,
we have

P t(ω) =

∫
a∈ω

mt(a) dµ(a) = Mt(ω)

Now suppose that ât ∈ ω: Then the rejection probability,
which equals Ea∼µ[1−mt(a)] = 1−Mt(A), will be added
to the above expression.

We now state the regret bound for SmoothIGW in the fol-
lowing.

Theorem 1. Fix any smoothness level h ∈ (0, 1]. With an
appropriate choice for γ > 0, Algorithm 1 ensures that

RegCB,h(T) ≤
√

4T RegSq(T)/h,

with per-round runtime O(TSq + TSample) and maximum
memory O(MSq +MSample).

Key features of Algorithm 1. Algorithm 1 achieves
Õ(
√
T/h) regret, which has no dependence on the number

of actions.2 This suggests the Algorithm 1 can be used in
large action spaces scenarios and only suffer regret scales
with 1/h: the effective number of actions considered for
smooth regret. We next highlight the statistical and compu-
tational efficiencies of Algorithm 1.

• Statistical optimality. It’s not hard to prove a
Ω̃(
√
T/h) lower bound for the smooth regret by relat-

ing it to the standard regret under a contextual bandit
problem with finite actions: (i) the smooth regret and
the standard regret coincides when h = 1/|A|; and
(ii) the standard regret admits lower bound Ω̃(

√
|A|T)

(Agarwal et al., 2012). In Section 5, we further relate
our smooth regret guarantee to standard regret guar-
antee under other scenarios and recover the minimax
bounds.

• Computational efficiency. Algorithm 1 is oracle-
efficient and enjoys per-round runtime and maximum
memory that scales linearly with oracle costs. To our
knowledge, this leads to the first computationally ef-
ficient general-purpose algorithm that achieves a

√
T -

type guarantee under smooth regret. The previously
known efficient algorithm applies an ε-Greedy-type
of strategy and thus only achieves a T 2/3-type regret
(Majzoubi et al. (2020), and with respect to a weaker
version of the smooth regret).

2We focus on the canonical case studied in contextual bandits
with a finite F , and view RegSq(T) = O(log|F|).

Proof sketch for Theorem 1. To analyze Algorithm 1,
we follow a recipe introduced by Foster & Rakhlin (2020);
Foster et al. (2020) based on the Decision-Estimation Coeffi-
cient (DEC, defined in Foster et al. (2021b) and adjusted to
our setting), defined as decγ(F) := supf̂ ,x decγ(F ; f̂ , x),
where

decγ(F ; f̂ , x) := inf
P∈∆(A)

sup
f?∈F

Ea∼P (5)[
f?(x, a?)− Smoothh(x)− γ

4
· (f̂(x, a)− f?(x, a))2

]
.

Foster & Rakhlin (2020); Foster et al. (2020; 2021b) con-
sider a meta-algorithm which, at each round t, (i) computes
f̂t by appealing to a regression oracle, (ii) computes a distri-
bution Pt ∈ ∆(A) that solves the minimax problem in Eq.
(5) with xt and f̂t plugged in, and (iii) chooses the action at
by sampling from this distribution. One can show that for
any γ > 0, this strategy enjoys the following regret bound:

RegCB,h(T) . T · decγ(F) + γ ·RegSq(T), (6)

More generally, if one computes a distribution that does not
solve Eq. (5) exactly, but instead certifies an upper bound on
the DEC of the form decγ(F) ≤ decγ(F), the same result
holds with decγ(F) replaced by decγ(F). Algorithm 1
is a special case of this meta-algorithm, so to bound the
regret it suffices to show that the exploration strategy in the
algorithm certifies a bound on the DEC.

By applying principles of convex conjugation, we can show
that the IGW distribution of Eq. (2) bounds the first term in
Eq. (6) by 3

hγ for any set of regression functions F . With
this game value bound, we then optimally tune γ to achieve
the stated regret bound.

4. Adapting to Unknown Smoothness
Parameters

Our results in Section 3 shows that, with a known h, one can
achieve smooth regret proportional to

√
T/h against the

optimal smoothing kernel in Qh. The total loss achieved by
the learner is the smooth regret plus the total loss suffered
by playing the optimal smoothing kernel. One can notice
that these two terms go into different directions: When h
gets smaller, the loss suffered by the optimal smoothing
kernel gets smaller, yet the regret term gets larger. It is
apriori unclear how to balance these terms, and therefore
desirable to design algorithms that can automatically adapt
to an unknown h ∈ (0, 1]. Note it is sufficient to adapt to
unknown h ∈ [1/T, 1], as the regret bound is vacuous for
h < 1/T . We provide such an algorithm in this section.

The CORRAL master algorithm. Our algorithm fol-
lows the standard master-base algorithm structure: We run

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

multiple base algorithms with different configurations in
parallel, and then use a master algorithm to conduct model
selection on top of base algorithms. The goal of the master
algorithm is to balance the regret among base algorithms
and eventually achieve a performance that is “close” to the
best base algorithm (whose identity is unknown). We use the
classical CORRAL algorithm (Agarwal et al., 2017) as the
master algorithm and initiate a collection of B = dlog T e
(modified) Algorithm 1 as base algorithms. More specifi-
cally, for b = 1, 2, . . . , B, each base algorithm is initialized
with smoothness level hb = 2−b. For any h? ∈ [1/T, 1],
one can notice that there exists a base algorithm i? that suits
well to this (unknown) h? in the sense that hb? ≤ h? ≤ 2hb? .
The goal of the master algorithm is thus to adapt to the base
algorithm indexed by b?.

We provide a brief description of the CORRAL master
algorithm, and direct the reader to Agarwal et al. (2017) for
more details. The master algorithm maintains a distribution
qt ∈ ∆([B]) over base algorithms. At each round, the
master algorithm sample a base algorithm It ∼ qt and
passes the context xt, the sampling probability qt,It and
parameter ρt,It := 1/mini≤t qt,It into the base algorithm
It. The base algorithm It then performs its learning process:
it samples an arm at, observes its loss `t(at,It), and then
updates its internal state. The master algorithm is updated
with respect to the importance-weighted loss `t(at,It)

qt,It
and

parameter ρt,It . In order to obtain theoretical guarantees, the
base algorithms are required to be stable, which is defined
as follows.
Definition 1. Suppose the base algorithm indexed by
b satisfies—when implemented alone—regret guarantee
RegCB,hb(T) ≤ Rb(T) for some non-decreasing Rb(T) :
N+ → R+. Let RegImp,h denote the importance-weighted
regret for base algorithm b, i.e.,

RegImp,hb(T) :=

E

[
T∑
t=1

1(It = b)

qt,b
(f?(xt, at)− Smoothhb(xt))

]
.

The base algorithm b is called (α,Rb(T)) stable if

RegImp,hb(T) ≤ E
[
ραT,b

]
Rb(T).

A stable base algorithm. Our treatment is inspired by
Foster et al. (2020). Let (τ1, τ2, . . .) ⊆ [T] denote the time
steps when the base algorithm b is invoked, i.e., when It = b.
When invoked, the base algorithm receives (xt, qt,b, ρt,b)
from the master algorithm. The base algorithm then sample
from a distribution similar to Eq. (2) but with a customized
learning rate γt,b :=

√
T/(hb · ρt,b ·RegSq(T)). After

observing the loss `t(at,b), the base algorithm then updates
the weighted regression oracle satisfying Assumption 3. Our
modified algorithm is summarized in Algorithm 3.

Algorithm 3 Stable Base Algorithm (Index b)
Input: Weighted online regression oracle AlgSq.

1: Initialize weighted regression oracle AlgSq.
2: for t ∈ (τ1, τ2, . . .) do
3: Receive context xt, probability qt,b and parameter

ρt,b from the master algorithm.
4: Receive f̂t,b from the weighted online regression ora-

cle AlgSq.
5: Get ât,b ← arg mina∈A f̂t,b(xt, a).

6: Define γt,b :=
√

12T/(hb · ρt,b ·RegSq(T)) and

wt,b := 1(It = b) · γt,b/qt,b.
7: Define Pt,b := Mt,b+(1−Mt,b(A))·Iât,b according

to Eq. (2) but with γt,b defined above.
8: Sample at,b ∼ Pt,b and observe loss `t(at,b). // This

can be done efficiently via Algorithm 2.

9: Update the weighted regression oracle AlgSq with
(wt,b, xt, at, `t(at,b))

Proposition 2. For any b ∈ [B], Algorithm 3 is(
1
2 ,
√

4T RegSq(T)/hb

)
-stable, with per-round runtime

O(TSq + TSample) and maximum memory O(MSq +
MSample).

We now provide our model selection guarantees that adapt
to unknown smoothness parameter h ∈ (0, 1]. The result
directly comes from combining the guarantee of CORRAL
(Agarwal et al., 2017) and our stable base algorithms.

Theorem 2. Fix learning rate η ∈ (0, 1], the CORRAL
algorithm with Algorithm 3 as base algorithms guarantees
that

RegCB,h(T) = Õ

(
1

η
+
η T RegSq(T)

h

)
,∀h ∈ (0, 1].

The CORRAL master algorithm has per-round run-
time Õ(TSq + TSample) and maximum memory Õ(MSq +
MSample).

Remark 1. We keep the current form of Theorem 2 to
better generalize to other settings, as explained in Sec-
tion 5. With a slightly different analysis, we can recover
the Õ(T

1
1+β h−β(log|F|)

β
1+β) guarantee for any β ∈ [0, 1],

which is known to be Pareto optimal (Krishnamurthy
et al., 2020). We provide the proofs for this result in Ap-
pendix B.2.1.

5. Extensions to Standard Regret
We extend our results to various settings under the standard
regret guarantee, including the discrete case with multiple
best arms, and the continuous case under Lipschitz/Hölder
continuity. Our results not only recover previously known

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

minimax/Pareto optimal guarantees, but also generalize ex-
isting results in various ways.

Although our guarantees are stated in terms of the smooth
regret, they are naturally linked to the standard regret among
various settings studied in this section. We thus primarily
focus on the standard regret in this section. Let a?t :=
arg mina∈A f

?(xt, a) denote the best action under context
xt. The standard (expected) regret is defined as

RegCB(T) := E

[
T∑
t=1

f?(xt, at)− f?(xt, a?t)

]
.

We focus on the canonical case with a finite set of regres-
sion functions F and consider RegSq(F) = O(log(|F|T))
(Vovk, 1998).

5.1. Discrete Case: Bandits with Multiple Best Arms

Zhu & Nowak (2020) study a non-contextual bandit problem
with a large (discrete) action set A which might contain
multiple best arms. More specifically, suppose there exists
a subset of optimal arms A? ⊆ A with cardinalities |A?| =
K? and |A| = K, the goal is to adapt to the effective
number of arms K

K? and minimize the standard regret. Note
that one could have K

K? � K when K? is large.

Existing Results. Suppose K
K? = Θ(Tα) for some α ∈

[0, 1]. Zhu & Nowak (2020) shows that: (i) when α is
known, the minimax regret is Θ̃(T (1+α)/2); and (ii) when
α is unknown, the Pareto optimal regret can be described by
Õ(max

{
T β , T 1+α−β}) for any β ∈ [0, 1).

Our Generalizations. We extend the problem to the con-
textual setting: We use A?xt = arg mina∈A f

?(xt, a) ⊆ A
to denote the subset of optimal arms with respect to context
xt, and analogously assume that infx∈X |A?x| = K? and
K
K? = Tα.

Since K?

K represents the proportion of actions that are op-
timal, by setting h = K?

K = T−α (and under uniform
measure), we can then relate the standard regret to the
smooth regret, i.e., RegCB(T) = RegCB,h(T). In the case
when α is known, Theorem 1 implies that RegCB(T) =

O(T (1+α)/2 log1/2(|F|T)). In the case with unknown α,
by setting η = T−β in Theorem 2, we have

RegCB(T) = O(max(T β , T 1+α−β log(|F|T))).

These results generalize the known minimax/Pareto optimal
results in Zhu & Nowak (2020) to the contextual bandit case,
up to logarithmic factors.

5.2. Continuous Case: Lipschitz/Hölder Bandits

Kleinberg (2004); Hadiji (2019) study non-contextual ban-
dit problems with (non-contextual) mean payoff functions

f?(a) satisfying Hölder continuity. More specifically, let
A = [0, 1] (with uniform measure) and L,α > 0 be some
Hölder smoothness parameters, the assumption is that

|f?(a)− f?(a′)| ≤ L |a− a′|α,

for any a, a′ ∈ A. The goal is to adapt to provide standard
regret guarantee that adapts to the smoothness parameters L
and α.

Existing Results. In the case when L,α are known,
Kleinberg (2004) shows that the minimax regret scales
as Θ(L1/(2α+1)T (α+1)/(2α+1)); in the case with unknown
L,α, Hadiji (2019) shows that the Pareto optimal regret can
be described by Õ(max{T β , L1/(1+α)T 1− α

1+αβ}) for any
β ∈ [1

2 , 1].

Our Generalizations. We extend the setting to the contex-
tual bandit case and make the following analogous Hölder
continuity assumption,3 i.e.,

|f?(x, a)− f?(x, a′)| ≤ L |a− a′|α, ∀x ∈ X .

We first divide the action set A = [0, 1] into B = d1/he
consecutive intervals {Ib}Bb=1 such that Ib = [(b− 1)h, bh].
Let bt denote the index of the interval where the best ac-
tion a?t := arg mina∈A f

?(xt, a) lies into, i.e., a?t ∈ Ibt .
Our smooth regret (at level h) provides guarantees with
respect to the smoothing kernel unif(Ibt). Since we have
Ea∼unif(Ibt)

[f?(xt, a)] ≤ f?(xt, a
?
t) + Lhα under Hölder

continuity, the following guarantee holds under the standard
regret

RegCB(T) ≤ RegCB,h(T) + LhαT. (7)

When L,α are known, setting

h = Θ(L−2/(2α+1)T−1/(2α+1) log1/(2α+1)(|F|T))

in Theorem 1 (together with Eq. (7))
leads to a near minimax regret guarantee
O(L1/(2α+1)T (α+1)/(2α+1) log(α/(2α+1)(|F|T)) (Klein-
berg, 2004). In the case when L,α are unknown, setting
η = T−β in Theorem 2 (together with Eq. (7)) leads to

RegCB(T)

= O
(

max
{
T β , L1/(1+2α)T 1− α

1+αβ logα/(1+α)(|F|T)
})
,

which matches the Pareto frontier obtained in Hadiji (2019)
up to logarithmic factors.

6. Experiments
In this section we compare our technique empirically with
prior art from the bandit and contextual bandit literature.
Code to reproduce these experiments is available at https:
//github.com/pmineiro/smoothcb.

3The special case with Lipschitz continuity (α = 1) has been
previously studied in the contextual setting, e.g., see Krishna-
murthy et al. (2020).

https://github.com/pmineiro/smoothcb
https://github.com/pmineiro/smoothcb

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

0 20 40 60 80 100
103 examples

0

1000

2000

3000
re

gr
et

(ours)
empMOSS++

Figure 1. Comparison on a discrete action bandit dataset. Smaller
is better. Following the display convention of Zhu & Nowak
(2020), shaded areas are 38% confidence regions.

6.1. Comparison with Bandit Prior Art

We replicate the real-world dataset experiment from Zhu
& Nowak (2020). The dataset consists of 10025 captions
from the New Yorker Magazine Cartoon Caption Contest
and associated average ratings, normalized to [0, 1]. The
caption text is discarded resulting in a non-contextual bandit
problem with 10025 arms. When an arm is chosen, the
algorithm experiences a Bernoulli loss realization whose
mean is one minus the average rating for that arm. The goal
is to experience minimum regret over the planning horizon
T = 105. There are 54 arms in the dataset that have the
minimal mean loss of 0.

For our algorithm, we used the uniform distribution over
[1, 2, . . . , |A|] as a reference measure, for which O(1) sam-
pling is available. We instantiated a tabular regression func-
tion, i.e., for each arm we maintained the empirical loss
frequency observed for that arm. We use CORRAL with
learning rate η = 1 and instantiated 8 subalgorithms with γh
geometrically evenly spaced between 103 and 106. These
were our initial hyperparameter choices, but they worked
well enough that no tuning was required.

In Figure 1, we compare our technique with empMOSS++, the
best performing technique from Zhu & Nowak (2020). Our
technique is statistically equivalent.

6.2. Comparison with Contextual Bandit Prior Art

We replicate the online setting from Majzoubi et al. (2020),
where 5 large-scale OpenML regression datasets are con-
verted into continuous action problems on [0, 1] by shifting
and scaling the target values into this range. The context
x is a mix of numerical and categorical variables depend-
ing upon the particular OpenML dataset. For any example,
when the algorithm plays action a and the true target is y,
the algorithm experiences loss |y − a| as bandit feedback.

We use Lebesgue measure on [0, 1] as our reference mea-

Table 1. Average progressive loss, scaled by 1000, on continuous
action contextual bandit datasets. 95% CI intervals presented.

CATS Ours (Linear) Ours (RFF)

Cpu [55, 57] [40.6, 40.7] [38.6,38.7]
Fri [183, 187] [161, 163] [156,157]
Price [108, 110] [70.2, 70.5] [66.1,66.3]
Wis [172, 174] [138, 139] [136.2,136.6]
Zur [24, 26] [24.3, 24.4] [25.4, 25.5]

sure, for which O(1) sampling is available. To maintain
O(1) computation, we consider regression functions with
(learned) parameters θ via f(x, a; θ) := g (â (x; θ)− a; θ)
where, for any θ, z = 0 is a global minimizer of g(z; θ).
Subject to this constraint, we are free to choose g(·; θ) and
â(·; θ) and yet are ensured that we can directly compute the
minimizer of our loss predictor via â(x; θ). For our experi-
ments we use linear argmin predictor with logistic link and
a logistic loss predictor: Let θ := (v;w; ξ), we choose

g(z; θ) := σ (|w||z|+ ξ) , and â(x; θ) := σ
(
v>x

)
,

where σ(·) is the sigmoid function.

In Table 1, we compare our technique with CATS from
Majzoubi et al. (2020). Following their protocol, we tune
hyperparameters for each dataset to be optimal in-hindsight,
and then report 95% confidence intervals based upon the
progressive loss of a single run. Our algorithm outperforms
CATS.

To further exhibit the generality of our technique, we also
include results for a nonlinear argmin predictor in Table 1
(last column), which uses a Laplace kernel regressor imple-
mented via random Fourier features (Rahimi et al., 2007)
to predict the argmin. This approach achieves even better
empirical performance.

7. Discussion
This work presents simple and practical algorithms for
contextual bandits with large—or even continuous—action
spaces, continuing a line of research which assumes actions
that achieve low loss are not rare. While our approach can
be used to recover minimax/Pareto optimal guarantees under
certain structural assumptions (e.g., with Hölder/Lipschitz
continuity), it doesn’t cover all cases. For instance, on a
large but finite action set with a linear reward function, the
optimal smoothing kernel can be made to perform arbitrarily
worse than the optimal action (e.g., by having one optimal
action lying in an orthogonal space of all other actions); in
this construction, algorithms provided in this paper would
perform poorly relative to specialized linear contextual ban-
dit algorithms.

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

In future work we will focus on offline evaluation. Our tech-
nique already generates data that is suitable for subsequent
offline evaluation of policies absolutely continuous with the
reference measure, but only when the submeasure sample
is accepted (line 4 of Algorithm 2), i.e., only M(A) frac-
tion of the data is suitable for reuse. We plan to refine our
sampling distribution so that the fraction of re-usable data
can be increased, but presumably at the cost of additional
computation.

We manage to achieve a
√
T -regret guarantee with respect

to smooth regret, which dominates previously studied regret
notions that competing against easier benchmarks. A natu-
ral question to ask is, what is the strongest benchmark such
that it is possible to still achieve a

√
T -type guarantee for

problems with arbitrarily large action spaces? Speculating,
there might exist a regret notion which dominates smooth
regret yet still admits a

√
T guarantee.

References
Abbasi-Yadkori, Y., Pál, D., and Szepesvári, C. Improved

algorithms for linear stochastic bandits. In NIPS, vol-
ume 11, pp. 2312–2320, 2011.

Abe, N. and Long, P. M. Associative reinforcement learning
using linear probabilistic concepts. In ICML, pp. 3–11.
Citeseer, 1999.

Agarwal, A., Dudı́k, M., Kale, S., Langford, J., and
Schapire, R. Contextual bandit learning with predictable
rewards. In Artificial Intelligence and Statistics, pp. 19–
26. PMLR, 2012.

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and
Schapire, R. Taming the monster: A fast and simple algo-
rithm for contextual bandits. In International Conference
on Machine Learning, pp. 1638–1646. PMLR, 2014.

Agarwal, A., Luo, H., Neyshabur, B., and Schapire, R. E.
Corralling a band of bandit algorithms. In Conference on
Learning Theory, pp. 12–38. PMLR, 2017.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

Chaudhuri, A. R. and Kalyanakrishnan, S. Quantile-regret
minimisation in infinitely many-armed bandits. In UAI,
pp. 425–434, 2018.

Chu, W., Li, L., Reyzin, L., and Schapire, R. Contextual
bandits with linear payoff functions. In Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 208–214. JMLR Workshop
and Conference Proceedings, 2011.

Foster, D. and Rakhlin, A. Beyond UCB: Optimal and
efficient contextual bandits with regression oracles. In
International Conference on Machine Learning, pp. 3199–
3210. PMLR, 2020.

Foster, D., Agarwal, A., Dudik, M., Luo, H., and Schapire,
R. Practical contextual bandits with regression oracles.
In International Conference on Machine Learning, pp.
1539–1548. PMLR, 2018.

Foster, D., Rakhlin, A., Simchi-Levi, D., and Xu, Y.
Instance-dependent complexity of contextual bandits and
reinforcement learning: A disagreement-based perspec-
tive. In Conference on Learning Theory, pp. 2059–2059.
PMLR, 2021a.

Foster, D. J. and Krishnamurthy, A. Efficient first-order
contextual bandits: Prediction, allocation, and triangular
discrimination. Advances in Neural Information Process-
ing Systems, 34, 2021.

Foster, D. J., Gentile, C., Mohri, M., and Zimmert, J. Adapt-
ing to misspecification in contextual bandits. Advances
in Neural Information Processing Systems, 33, 2020.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A.
The statistical complexity of interactive decision mak-
ing. arXiv preprint arXiv:2112.13487, 2021b.

Gaillard, P. and Gerchinovitz, S. A chaining algorithm
for online nonparametric regression. In Conference on
Learning Theory, pp. 764–796. PMLR, 2015.

Hadiji, H. Polynomial cost of adaptation for X-armed ban-
dits. Advances in Neural Information Processing Systems,
32, 2019.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 69(2-3):169–192, 2007.

Kakade, S. M., Kanade, V., Shamir, O., and Kalai, A. Ef-
ficient learning of generalized linear and single index
models with isotonic regression. Advances in Neural
Information Processing Systems, 24, 2011.

Kleinberg, R. Nearly tight bounds for the continuum-armed
bandit problem. Advances in Neural Information Process-
ing Systems, 17:697–704, 2004.

Krishnamurthy, A., Langford, J., Slivkins, A., and Zhang, C.
Contextual bandits with continuous actions: Smoothing,
zooming, and adapting. Journal of Machine Learning
Research, 21(137):1–45, 2020.

Langford, J. and Zhang, T. The epoch-greedy algorithm
for contextual multi-armed bandits. Advances in neural
information processing systems, 20(1):96–1, 2007.

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

Lattimore, T. Improved regret for zeroth-order adversarial
bandit convex optimisation. Mathematical Statistics and
Learning, 2(3):311–334, 2020.

Majzoubi, M., Zhang, C., Chari, R., Krishnamurthy, A.,
Langford, J., and Slivkins, A. Efficient contextual bandits
with continuous actions. Advances in Neural Information
Processing Systems, 33:349–360, 2020.

Rahimi, A., Recht, B., et al. Random features for large-scale
kernel machines. In NIPS, volume 3, pp. 5. Citeseer,
2007.

Simchi-Levi, D. and Xu, Y. Bypassing the monster: A faster
and simpler optimal algorithm for contextual bandits un-
der realizability. Mathematics of Operations Research,
2021.

Vovk, V. A game of prediction with expert advice. Journal
of Computer and System Sciences, 56(2):153–173, 1998.

Xu, Y. and Zeevi, A. Upper counterfactual confidence
bounds: a new optimism principle for contextual bandits.
arXiv preprint arXiv:2007.07876, 2020.

Zhu, Y. and Nowak, R. On regret with multiple best arms.
Advances in Neural Information Processing Systems, 33:
9050–9060, 2020.

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

A. Proofs and Supporting Results from Section 3
This section is organized as follows. We provide supporting results in Appendix A.1, then give the proof of Theorem 1 in
Appendix A.2.

A.1. Supporting Results

A.1.1. PRELIMINARIES

We first introduce the concept of convex conjugate. For any function φ : R → R ∪ {−∞,+∞}, its convex conjugate
φ? : R→ R ∪ {−∞,+∞} is defined as

φ?(w) := sup
v∈R

(vw − φ(v)).

Since (φ?)? = φ, we have (Young-Fenchel inequality)

φ(v) ≥ vw − φ?(w), (8)

for any w ∈ dom(φ?).

Lemma 1. φ(v) = 1
γ (v − 1)2 and φ?(w) = w + γ

4w
2 are convex conjugates.

Proof of Lemma 1. By definition of the convex conjugate, we have

φ?(w) = sup
v∈R

(
− 1

γ
·
(
v2 − (2 + γw)v + 1

))
= w +

γ

4
w2,

where the second line comes from plugging in the maximizer v = γw
2 + 1. Note that the domain of φ?(w) is in fact Rd here.

So, Eq. (8) holds for any w ∈ Rd.

We also introduce the concept of χ2 divergence. For probability measures P and Q on the same measurable space (A,Ω)
such that Q� P , the χ2 divergence of Q from P is defined as

χ2(Q ‖ P) := Ea∼P

[(
dQ

dP
(a)− 1

)2
]
,

where dQ
dP (a) denotes the Radon-Nikodym derivative of Q with respect to P , which is a function mapping from a to R.

A.1.2. BOUNDING THE DECISION-ESTIMATION COEFFICIENT

We aim at bounding the Decision-Estimation Coefficient in this section. We use expression infQ∈Qh Ea?∼Q[f?(x, a?)] for
Smoothh(x). With this expression, we rewrite the Decision-Estimation Coefficient in the following: With respect to any
context x ∈ X and estimator f̂ obtained from AlgSq, we denote

decγ(F ; f̂ , x) := inf
P∈∆(A)

sup
Q∈Qh

sup
f∈F

Ea∼P,a?∼Q
[
f(x, a)− f(x, a?)− γ

4
·
(
f̂(x, a)− f(x, a)

)2
]
,

and define decγ(F) := supf̂ ,x decγ(F ; f̂ , x) as the Decision-Estimation Coefficient. We remark here that
supQ∈Qh Ea?∼Q[−f(x, a?)] = − infQ∈Qh Ea∼Q[f?(x, a?)] so we are still compete with the best smoothing kernel within
Qh.

We first state a result that helps eliminate the unknown f function in Decision-Estimation Coefficient (and thus the supf∈F
term), and bound Decision-Estimation Coefficient by the known f̂ estimator (from the regression oracle AlgSq) and the
χ2-divergence from Q to P (whenever P and Q are probability measures).

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

Lemma 2. Fix constant γ > 0 and context x ∈ X . For any measures P and Q such that Q� P , we have

sup
f∈F

Ea∼P,a?∼Q
[
f(x, a)− f(x, a?)− γ

4
·
(
f̂(x, a)− f(x, a)

)2
]

≤ Ea∼P
[
f̂(x, a)

]
− Ea∼Q

[
f̂(x, a)

]
+

1

γ
· Ea∼P

[(
dQ

dP
(a)− 1

)2
]
.

Proof of Lemma 2. We omit the dependence on the context x ∈ X , and use abbreviations f(a) := f(x, a) and f̂(a) :=

f̂(x, a). Let g := f − f̂ , we re-write the expression as

sup
f∈F

Ea∼P,a?∼Q
[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]

= sup
g∈F−f̂

Ea∼P
[
f̂(a)

]
− Ea?∼Q

[
f̂(a?)

]
− Ea?∼Q

[
g(a?)

]
+ Ea∼P

[
g(a)− γ

4
· (g(a))

2
]

= Ea∼P
[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+ sup
g∈F−f̂

(
Ea∼Q

[
−g(a)

]
− Ea∼P

[
(−g(a)) +

γ

4
· (−g(a))

2
])

= Ea∼P
[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+ sup
g∈F−f̂

Ea∼P
[
dQ

dP
(a) · (−g(a))−

(
(−g(a)) +

γ

4
· (−g(a))

2
)]

= Ea∼P
[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+ sup
g∈F−f̂

Ea∼P
[
dQ

dP
(a) · (−g(a))− φ?(−g(a))

]
,

where we use the fact that Q� P and φ?(w) = w + γ
4w

2. Focus on the last term that depends on g takes the form of the
RHS of Eq. (8): Consider v = dQ

dP (a) and w = −g(a) and apply Eq. (8) (with Lemma 1) eliminates the dependence on g
(since it works for any w = −g(a)) and leads to the following bound

sup
f∈F

Ea∼P,a?∼Q
[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]

≤ Ea∼P
[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+

1

γ
· Ea∼P

[(
dQ

dP
(a)− 1

)2
]
.

We now bound the Decision-Estimation Coefficient with sampling distribution defined in Eq. (2). We drop the dependence
on t and define the sampling distribution in the generic form: Fix any constant γ > 0, context x ∈ X and estimator f̂ , we
define sampling distribution

P := M + (1−M(A)) · Iâ, (9)

where â := arg mina∈A f̂(x, a) and the measure M is defined through M(ω) :=
∫
a∈ωm(a) dµ(a) with

m(a) :=
1

1 + hγ(f̂(x, a)− f̂(x, â))
. (10)

Lemma 3. Fix any constant γ > 0 and any set of regression function F . Let P be the sampling distribution defined in Eq.
(9), we then have decγ(F) ≤ 3

h γ .

Proof of Lemma 3. As in the proof of Lemma 2, we omit the dependence on the context x ∈ X and use abbreviations
f(a) := f(x, a) and f̂(a) := f̂(x, a).

We first notice that for any Q ∈ Qh we have Q�M for M defined in Eq. (10): we have (i) Q� µ by definition, and (ii)
µ�M (since m(a) ≥ 1

1+hγ > 0).4 On the other side, however, we do not necessarily have P � µ for P defined in Eq.

4We thus have Q� P as well since P contains the component M by definition. We will, however, mostly be working with M due to
its nice connection with the base measure µ, as defined in Eq. (10).

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

(9): It’s possible to have P ({a?}) > 0 yet µ({a?}) = 0, e.g., µ is some continuous measure. To isolate the corner case, we
first give the following decomposition for any Q ∈ Qh and f ∈ F . With P := M + (1−M(A)) · Iâ, we have

Ea∼P,a?∼Q
[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]

= (1−M(A)) ·
(
f(â)− γ

4
·
(
f̂(â)− f(â)

)2)
+ Ea∼M,a?∼Q

[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]

= (1−M(A)) ·
(
f̂(â) +

(
f(â)− f̂(â)

)
− γ

4
·
(
f̂(â)− f(â)

)2)
+ Ea∼M,a?∼Q

[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]

≤ (1−M(A)) ·
(
f̂(â) +

1

γ

)
+ Ea∼M,a?∼Q

[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]

≤ (1−M(A)) ·
(
f̂(â) +

1

γ

)
+ Ea∼M

[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+

1

γ
· Ea∼M

[(
dQ

dM
(a)− 1

)2
]

≤ 1

γ
+ (1−M(A)) ·

(
f̂(â)

)
+ Ea∼M

[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+

1

γ
· Ea∼M

[(
dQ

dM
(a)− 1

)2
]
, (11)

where the fourth line comes from applying AM-GM; the fifth line comes from applying Lemma 2 with Q�M ; and the
last line comes from the fact that M is a sub-probability measure since m(a) ≤ 1 by definition.5

For any Q ∈ Qh, we have q(a) := dQ
dµ (a) ≤ 1

h by definition. Also recall that m(a) := dM
dµ (a) = 1

1+hγ(f̂(a)−f̂(â))
. We now

focus on the last three terms in Eq. (11). With change of measures, we have

Ea∼M
[
f̂(a)

]
− Ea∼Q

[
f̂(a)

]
+

1

γ
· Ea∼M

[(
dQ

dM
(a)− 1

)2
]

= Ea∼µ
[
f̂(a)m(a)

]
− Ea∼µ

[
f̂(a)q(a)

]
+

1

γ
· Ea∼µ

[(
q(a)

m(a)
− 1

)2

m(a)

]

= Ea∼µ

 f̂(a)

1 + hγ
(
f̂(a)− f̂(â)

)
+

1

γ
· Ea∼µ

[
−γf̂(a)q(a) +

q2(a)

m(a)
− 2q(a) +m(a)

]

=
1

hγ
· Ea∼µ

 hγ
(
f̂(a)− f̂(â)

)
1 + hγ

(
f̂(a)− f̂(â)

) +
hγf̂(â)

1 + hγ
(
f̂(a)− f̂(â)

)


+
1

γ
· Ea∼µ

[
q(a) ·

(
−γf̂(a) + q(a)

(
1 + hγ

(
f̂(a)− f̂(â)

))
− 2
)]

+
1

γ

=
1

hγ
· Ea∼µ[1−m(a)] + Ea∼µ

[
f̂(â)m(a)

]
+

1

γ
· Ea∼µ

[
q(a) ·

(
−γf̂(a) + q(a)hγ

(
f̂(a)− f̂(â)

))
− q2(a)

]
+

1

γ

≤ 1

hγ
+M(A) · f̂(â) +

1

γ
· Ea∼µ

[
q(a) ·

(
−γf̂(â)

)]
+

1

γ

=
1

hγ
+

1

γ
+M(A) · f̂(â)− f̂(â), (12)

where we use the fact that q(a) ≤ 1
h in the inequality. Plugging Eq. (12) into Eq. (11) leads to

Ea∼P,a?∼Q
[
f(a)− f(a?)− γ

4
·
(
f̂(a)− f(a)

)2
]
≤ 1

hγ
+

2

γ
≤ 3

hγ
. (13)

Since Eq. (13) works for any Q ∈ Qh and f ∈ F , we obtain that decγ(F) ≤ 3
hγ .

5With a slight abuse of notation, we use Ea∼M [·] denote the integration with respect to the sub-probability measure M .

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

A.2. Proof of Theorem 1

Theorem 1. Fix any smoothness level h ∈ (0, 1]. With an appropriate choice for γ > 0, Algorithm 1 ensures that

RegCB,h(T) ≤
√

4T RegSq(T)/h,

with per-round runtime O(TSq + TSample) and maximum memory O(MSq +MSample).

Proof of Theorem 1. We use abbreviation ft(a) := f(xt, a) for any f ∈ F . Let a?t denote the action sampled according to
the best smoothing kernel within Qh (which could change from round to round). We let E denote the good event where
the regret guarantee stated in Assumption 2 (i.e., RegSq(T) := RegSq(T, T

−1)) holds with probability at least 1− T−1.
Conditioned on this good event, following the analysis provided in Foster et al. (2020), we decompose the contextual bandit
regret as follows.

E

[
T∑
t=1

f?t (at)− f?t (a?t)

]
= E

[
T∑
t=1

f?t (at)− f?t (a?t)−
γ

4
·
(
f̂t(at)− f?t (at)

)2
]

+
γ

4
· E

[
T∑
t=1

(
f̂t(at)− f?t (at)

)2
]

≤ T · 3

hγ
+
γ

4
· E

[
T∑
t=1

(
f̂t(at)− f?t (at)

)2
]
,

where the bound on the first term comes from Lemma 3. We analyze the second term below.

γ

4
· E

[
T∑
t=1

((
f̂t(at)− `t(at)

)2

−
(
f?(at)− `t(at)

)2

+ 2
(
`t(at)− f?t (at)

)
·
(
f̂t(at)− f?t (at)

))]

=
γ

4
· E

[
T∑
t=1

((
f̂t(at)− `t(at)

)2

−
(
f?t (at)− `t(at)

)2
)]

≤ γ

4
·RegSq(T),

where on the second line follows from the fact that E[`t(a) | xt] = f?(xt, a) and `t is conditionally independent of at, and
the third line follows from the bound on regression oracle stated in Assumption 2. As a result, we have

RegCB,h(T) ≤ 3T

hγ
+
γ

4
·RegSq(T) +O(1),

where the additional term O(1) accounts for the expected regret suffered under event ¬E . Taking γ =√
12T/(h ·RegSq(T)) leads to the desired result.

Computational complexity. We now discuss the computational complexity of Algorithm 1. At each round Algorithm 1 takes
O(1) calls to AlgSq to obtain estimator f̂t and the best action ât. Instead of directly form the action distribution defined in
Eq. (2), Algorithm 1 uses Algorithm 2 to sample action at ∼ Pt, which takes one call of the sampling oracle AlgSample to
draw a random action and O(1) calls of the regression oracle AlgSq to compute the mean of the Bernoulli random variable.
Altogether, Algorithm 1 has per-round runtime O(TSq + TSample) and maximum memory O(MSq +MSample).

B. Proofs from Section 4
This section is organized as follows. We first prove Proposition 2 in Appendix B.1, then prove Theorem 2 in Appendix B.2.

B.1. Proof of Proposition 2

The proof of Proposition 2 follows similar analysis as in Foster et al. (2020), with minor changes to adapt to our settings.

Proposition 2. For any b ∈ [B], Algorithm 3 is
(

1
2 ,
√

4T RegSq(T)/hb

)
-stable, with per-round runtime O(TSq + TSample)

and maximum memory O(MSq +MSample).

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

Proof of Proposition 2. Fix the index b ∈ [B] of the subroutine. We use shorthands h = hb, qt = qt,b, ρt = ρt,b,
γt = γt,b, and so forth. We also write Zt = Zt,b := 1(It = b). Similar to the proof of Theorem 1, we use abbreviation
ft(a) := f(xt, a) for any f ∈ F . Let a?t denote the action sampled according to the best smoothing kernel within Qh
(which could change from round to round).

We let E denote the good event where the regret guarantee stated in Assumption 3 (with RegSq(T) := RegSq(T, T
−1))

holds with probability at least 1− T−1. Conditioned on this good event, similar to the proof of Theorem 1 (and following
Foster et al. (2020)), we decompose the contextual bandit regret as follows.

E

[
T∑
t=1

Zt
qt

(f?t (at)− f?t (a?t))

]

= E

[
T∑
t=1

Zt
qt

(
f?t (at)− f?t (a?t)−

γt
4
·
(
f̂t(at)− f?t (at)

)2
)]

+ E

[
T∑
t=1

Zt
qt
· γt

4
·
(
f̂t(at)− f?t (at)

)2
]

≤ E

[
T∑
t=1

Zt
qt
· 3

hγt

]
+ E

[
T∑
t=1

Zt
qt
· γt

4
·
(
f̂t(at)− f?t (at)

)2
]

≤ E
[
max
t∈[T]

γ−1
t

]
· 3T

h
+ E

[
T∑
t=1

Zt
qt
· γt

4
·
(
f̂t(at)− f?t (at)

)2
]
,

where the bound on the first term follows from Lemma 3 (the third line, conditioned on Zt). We bound the second term next.

E

[
T∑
t=1

Zt
qt
· γt

4
·
(
f̂t(at)− f?t (at)

)2
]

=
1

4
· E

[
T∑
t=1

Zt
qt
γt

((
f̂t(at)− `t(at)

)2

−
(
f?t (at)− `t(at)

)2

+ 2
(
`t(at)− f?t (at)

)
·
(
f̂t(at)− f?t (at)

))]

=
1

4
· E

[
T∑
t=1

Zt
qt
γt

(
(ft(at)− `t(at))2 −

(
f?t (at)− `t(at)

)2
)]

≤ 1

4
· E
[
max
t∈[T]

γt
qt

]
·RegSq(T),

where the last line follows from Assumption 3. As a result, we have

RegImp,h(T) ≤ E
[
max
t∈[T]

γ−1
t

]
· 3T

h
+

1

4
E
[
max
t∈[T]

γt
qt

]
·RegSq(T) +O(1),

where the additional O(1) term is to account for the expected regret under event ¬E . Notice that γt :=√
12T/(h · ρt ·RegSq(T)), which is non-decreasing in T ; and γt

qt
≤ γtρt, which is non-increasing in T . Thus, we

have

RegImp,h(T) ≤ E
[
γ−1
T

]
· 3T

h
+

1

4
E[γT ρT] ·RegSq(T) +O(1)

= E[
√
ρT] ·

√
3TRegSq(T)/4h+ E[

√
ρT]
√

3TRegSq(T)/4h+O(1)

≤ E[
√
ρT] ·

√
4TRegSq(T)/h.

Computational complexity. The computational complexity of Algorithm 3 can be analyzed in a similar way as the
computational complexity of Algorithm 1, except with a weighted regression oracle AlgSq this time.

B.2. Proof of Theorem 2

We first restate the guarantee of CORRAL, specialized to our setting.

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

Theorem 3 (Agarwal et al. (2017)). Fix an index b ∈ [B]. Suppose base algorithm b is (αb, Rb(T))-stable with respect to
decision space indexed by b. If αb < 1, the CORRAL master algorithm, with learning rate η > 0, guarantees that

E

[
T∑
t=1

f?(xt, at)− inf
Qt∈Qhb

Ea?t∼Qt [f
?(xt, a

?
t)]

]
= Õ

(
B

η
+ Tη + (Rb(T))

1
1−αb η

αb
1−αb

)
.

Theorem 2. Fix learning rate η ∈ (0, 1], the CORRAL algorithm with Algorithm 3 as base algorithms guarantees that

RegCB,h(T) = Õ

(
1

η
+
η T RegSq(T)

h

)
,∀h ∈ (0, 1].

The CORRAL master algorithm has per-round runtime Õ(TSq + TSample) and maximum memory Õ(MSq +MSample).

Proof of Theorem 2. We prove the guarantee for any h? ∈ [1/T, 1] as the otherwise the bound simply becomes vacuous.
Recall that we initialize B = dlog T e Algorithm 3 as base algorithms, each with a fixed smoothness parameter hb = 2−b,
for b ∈ [B]. Using such geometric grid guarantees that there exists an b? ∈ [B] such that hb? ≤ h? ≤ 2hb? . To obtain
guarantee with respect to h?, it suffices to compete with subroutine b? sinceQh? ⊆ Qhb? by definition. Proposition 2 shows

that the base algorithm indexed by b? is (1
2 ,
√

4TRegSq(T)/hb?)-stable. Plugging this result into Theorem 3 leads to the
following guarantee:

E

[
T∑
t=1

f?(xt, at)− inf
Qt∈Qh?

Ea?t∼Qt [f
?(xt, a

?
t)]

]
≤ E

[
T∑
t=1

f?(xt, at)− inf
Qt∈Qhb?

Ea?t∼Qt [f
?(xt, a

?
t)]

]

= Õ

(
B

η
+ Tη +

η T RegSq(T)

hb?

)
= Õ

(
1

η
+ Tη +

η T RegSq(T)

h?

)
.

Computational complexity. The computational complexities (both runtime and memory) of the CORRAL master algorithm
can be upper bounded by Õ(B · C) where we use C denote the complexities of the base algorithms. We have B = O(log T)
in our setting. Thus, directly plugging in the computational complexities of Algorithm 3 leads to the results.

B.2.1. RECOVERING ADAPTIVE BOUNDS IN KRISHNAMURTHY ET AL. (2020)

We discuss how our algorithms can also recover the adaptive regret bounds stated in Krishnamurthy et al. (2020) (Theorems
4 and 15), i.e.,

RegCB,h(T) = Õ
(
T

1
1+β (h?)−β(log|F|)

β
1+β

)
,

for any h? ∈ (0, 1] and β ∈ [0, 1]. This line of analysis directly follows the proof used in Krishnamurthy et al. (2020).

We focus on the case with RegSq(T) = O(log(|F|T)). For base algorithm (Algorithm 3), following the analysis used in
Krishnamurthy et al. (2020), we have

RegImp,h(T) ≤ min
{
T,E[

√
ρT] ·

√
4TRegSq(T)/h

}
≤ min

{
T,
√

E[ρT] ·
√

4TRegSq(T)/h
}

= O

(
T

1
1+β ·

(
E[ρT]RegSq(T)/h

) β
1+β

)
,

where on the first line we combine the regret obtained from Proposition 2 with a trivial upper bound T ; on the second line
we use the fact that

√
· is concave; and on the third line we use that fact that min{A,B} ≤ AγB1−γ for A,B > 0 and

Contextual Bandits with Smooth Regret: Efficient Learning in Continuous Action Spaces

γ ∈ [0, 1] (taking A = T , B =
√
E[ρT] · 4TRegSq(T)/h and γ = 1−β

1+β). This line of analysis thus shows that Algorithm 3

is
(

β
1+β , Õ

(
T

1
1+β ·

(
RegSq(T)/h

) β
1+β

))
-stable for any β ∈ [0, 1].6

Now following the similar analysis as in the proof of Theorem 2, and consider RegSq(T) = O(log(|F|T)) for the case
with a finite set of regression functions, we have

E

[
T∑
t=1

f?(xt, at)− inf
Qt∈Qh?

Ea?t∼Qt [f
?(xt, a

?
t)]

]
= Õ

(
1

η
+ Tη + T ·

(
log(|F|T) η

h?

)β)
,

for any h? ∈ (0, 1]. Taking η = T−
1

1+β · (log(|F|T))
− β

1+β recovers the results presented in Krishnamurthy et al. (2020).

6As remarked in Krishnamurthy et al. (2020), the CORRAL algorithm works with both E[ραT] and (E[ρT])α.

