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Abstract
The inductive matrix completion (IMC) problem
is to recover a low rank matrix from few observed
entries while incorporating prior knowledge about
its row and column subspaces. In this work, we
make three contributions to the IMC problem:
(i) we prove that under suitable conditions, the
IMC optimization landscape has no bad local
minima; (ii) we derive a simple scheme with the-
oretical guarantees to estimate the rank of the
unknown matrix; and (iii) we propose GNIMC, a
simple Gauss-Newton based method to solve the
IMC problem, analyze its runtime and derive for
it strong recovery guarantees. The guarantees for
GNIMC are sharper in several aspects than those
available for other methods, including a quadratic
convergence rate, fewer required observed entries
and stability to errors or deviations from low-rank.
Empirically, given entries observed uniformly at
random, GNIMC recovers the underlying matrix
substantially faster than several competing meth-
ods.

1. Introduction
In low rank matrix completion, a well-known problem that
appears in various applications, the task is to recover a
rank-r matrix X∗ ∈ Rn1×n2 given few of its entries, where
r ≪ min{n1, n2}. In the problem of inductive matrix
completion (IMC), beyond being low rank, X∗ is assumed
to have additional structure as follows: its columns belong
to the range of a known matrix A ∈ Rn1×d1 and its rows
belong to the range of a known matrix B ∈ Rn2×d2 , where
r ≤ d1 ≤ n1 and r ≤ d2 ≤ n2. Hence, X∗ may be
written as X∗ = AM∗B⊤, and the task reduces to finding
the smaller matrix M∗ ∈ Rd1×d2 . In practice, the low rank
and/or the additional structure assumptions may hold only
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approximately, and in addition, the observed entries may be
corrupted by noise.

The side information matrices A,B may be viewed as fea-
ture representations. For example, in movies recommender
systems, the task is to complete a matrix X∗ of the ratings
given by n1 users to n2 movies. The columns of A,B may
correspond to viewers’ demographic details (age, gender)
and movies’ properties (length, genre), respectively (Aber-
nethy et al., 2009; Menon et al., 2011; Chen et al., 2012; Yao
& Li, 2019). The underlying assumption in IMC is that un-
covering the relations between the viewers and the movies in
the feature space, as encoded in M∗, suffices to deduce the
ratings X∗ = AM∗B⊤. Other examples of IMC include
multi-label learning (Xu et al., 2013; Si et al., 2016; Zhang
et al., 2018), disease prediction from gene/miRNA/lncRNA
data (Natarajan & Dhillon, 2014; Chen et al., 2018; Lu
et al., 2018) and link prediction in networks (Menon &
Elkan, 2011; Chiang et al., 2018).

If the side information matrices allow for a significant
dimensionality reduction, namely d ≪ n where d =
max{d1, d2} and n = max{n1, n2}, recovering X∗ is eas-
ier from both theoretical and computational perspectives.
From the information limit aspect, the minimal number of
observed entries required to complete a matrix of rank r
with side information scales as O(dr), compared to O(nr)
without side information. Similarly, the number of vari-
ables scales as d rather than as n, enabling more efficient
computation and less memory. Finally, features also allow
completion of rows and columns of X∗ that do not have
even a single observed entry. Unlike standard matrix com-
pletion which requires at least r observed entries in each row
and column of X∗, in IMC the feature vector is sufficient
to inductively predict the full corresponding row/column;
hence the name ’Inductive Matrix Completion’.

Several IMC methods were devised in the past years. Per-
haps the most popular ones are nuclear norm minimization
(Xu et al., 2013; Lu et al., 2018) and alternating minimiza-
tion (Jain & Dhillon, 2013; Natarajan & Dhillon, 2014;
Zhong et al., 2015; Chen et al., 2018). A more recent
method is multi-phase Procrustes flow (Zhang et al., 2018).
While nuclear norm minimization enjoys strong recovery
guarantees, it is computationally slow. Other methods are
faster, but the number of observed entries for their recovery
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Table 1. Recovery guarantees for the algorithms: Maxide (Xu et al., 2013), AltMin (Jain & Dhillon, 2013), MPPF (Zhang et al., 2018)
and GNIMC (this work), for an n× n matrix X∗ of rank r and condition number κ, and d× d side information matrices of incoherence µ,
given a fixed target accuracy. Here f(κ, µ) is some function of κ and µ. For a more detailed comparison, see Section 5.3.

Algorithm
Sample complexity

|Ω| ≳ ...

Requires

incoherent X∗?

Error

decay rate

Time complexity

∼ O(...)

Maxide µ2dr[1 + log(d/r)] log n yes unspecified unspecified

AltMin κ2µ4d2r3 log n no unspecified unspecified

MPPF (κr + d)κ2µ2r2 log d log n yes linear f(κ, µ) · n3/2d2r3 log d log n

GNIMC (ours) µ2d2 log n no quadratic µ2d3r log n

guarantees to hold depends on the condition number of X∗.

In this work, we make three contributions to the IMC prob-
lem. First, by deriving an RIP (Restricted Isometry Prop-
erty) guarantee for IMC, we prove that under certain con-
ditions the optimization landscape of IMC is benign (Theo-
rem 3.1). Compared to a similar result derived by Ghassemi
et al. (2018), our guarantee requires significantly milder con-
ditions, and in addition, addresses the vanilla IMC problem
rather than a suitably regularized one.

Second, we propose a simple scheme to estimate the rank
of X∗ from its observed entries and the side information
matrices A,B. We also provide a theoretical guarantee for
the accuracy of the estimated rank (Theorem 4.1), which
holds for either exactly or approximately low rank X∗ and
with noisy measurements.

Third, we propose a simple Gauss-Newton based method to
solve the IMC problem, that is both fast and enjoys strong
recovery guarantees. Our algorithm, named GNIMC (Gauss-
Newton IMC), is an adaptation of the GNMR algorithm (Zil-
ber & Nadler, 2022) to IMC. At each iteration, GNIMC
solves a least squares problem; yet, its per-iteration com-
plexity is of the same order as gradient descent. As a result,
empirically, our tuning-free GNIMC implementation is 2 to
17 times faster than competing algorithms in a wide range
of settings.

On the theoretical front, we prove that given a standard inco-
herence assumption on A,B and sufficiently many observed
entries sampled uniformly at random, GNIMC recovers X∗

at a quadratic convergence rate (Theorem 5.1). As far as
we know, this is the only available quadratic convergence
rate guarantee for any IMC algorithm. In addition, we prove
that GNIMC is stable against small arbitrary additive error
(Theorem 5.4), which may originate from (i) inaccurate mea-
surements of X∗, (ii) inaccurate side information, and/or
(iii) X∗ being only approximately low rank.

Remarkably, our guarantees do not require X∗ to be inco-
herent, and the required number of observations depends

only on properties of A,B and not on those of X∗. Other
guarantees have similar dependence on A,B, but in addition
either depend on the condition number of X∗ and/or require
incoherence of X∗, see Table 1. Relaxing the incoherence
assumption on X∗ is important, since X∗ is only partially
observed and such an assumption cannot be verified. In
contrast, the matrices A,B are known and their incoherence
can be easily verified (see Definition 2.1 below).

Notation. The i-th largest singular value of a matrix X
is denoted by σi = σi(X). The condition number of a
rank-r matrix is denoted by κ = σ1/σr. The i-th standard
basis vector is denoted by ei, and the Euclidean norm of
a vector x by ∥x∥. The spectral norm of a matrix X is
denoted by ∥X∥2, its Frobenius norm by ∥X∥F , its largest
row norm by ∥X∥2,∞ ≡ maxi ∥X⊤ei∥, its largest entry
magnitude by ∥X∥∞ ≡ maxi,j |Xij |, and the set of its
column vectors by col(X). A matrix X is an isometry if
X⊤X = I , where I is the identity matrix. Denote by
PAB : Rn1×n2 → Rn1×n2 the projection operator onto
the row and column spaces of A,B, respectively, such that
PAB(X) = AA⊤XBB⊤ if A,B are isometries. Denote
by PΩ : Rn1×n2 → Rn1×n2 the sampling operator that
projects a matrix in Rn1×n2 onto an observation set Ω ⊆
[n1] × [n2], such that [PΩ(X)]ij = Xij if (i, j) ∈ Ω and
0 otherwise. Denote by VecΩ(X) ∈ R|Ω| the vector with
the entries Xij for all (i, j) ∈ Ω. Finally, denote by p =
|Ω|/(n1n2) the sampling rate of Ω.

2. Problem Formulation
Let X∗ ∈ Rn1×n2 be a matrix of rank r. For now we
assume r is known; in Section 4 we present a scheme to
estimate r, and prove its accuracy. Assume Ω ⊆ [n1]× [n2]
is uniformly sampled and known, and let Y = PΩ(X

∗ + E)
be the observed matrix where E is additive error. In the
standard matrix completion problem, the goal is to solve

min
X
∥PΩ(X)− Y ∥2F s.t. rank(X) ≤ r. (MC)
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In IMC, in addition to the observations Y we are given two
side information matrices A ∈ Rn1×d1 and B ∈ Rn2×d2

with r ≤ di ≤ ni for i = 1, 2, such that

col(X∗) ⊆ span col(A), col(X∗⊤) ⊆ span col(B). (1)

Note that w.l.o.g., we may assume that A and B are isome-
tries, A⊤A = Id1

and B⊤B = Id2
, as property (1) is

invariant to orthonormalization of the columns of A and B.
Standard matrix completion corresponds to di = ni with
the trivial side information A = In1 , B = In2 . A common
assumption in IMC is di ≪ ni, so that the side informa-
tion is valuable. Note that beyond allowing for (potentially
adversarial) inaccurate measurements, E may also capture
violations of the low rank and the side information assump-
tion (1), as we can view X∗ + E as the true underlying
matrix whose only first component, X∗, has exact low rank
and satisfies (1).

Assumption (1) implies that X∗ = AM∗B⊤ for some rank-
r matrix M∗ ∈ Rd1×d2 . The IMC problem thus reads

min
M
∥PΩ(AMB⊤)− Y ∥2F s.t. rank(M) ≤ r. (IMC)

Some works on IMC (Xu et al., 2013; Zhang et al., 2018)
assume that both X∗ and A,B are incoherent, namely have
small incoherence, defined as follows (Candès & Recht,
2009; Keshavan et al., 2010).

Definition 2.1 (µ-incoherence). A matrix X ∈ Rn1×n2 of
rank r is µ-incoherent if its Singular Value Decomposition
(SVD), UΣV ⊤ with U ∈ Rn1×r and V ∈ Rn2×r, satisfies

∥U∥2,∞ ≤
√
µr/n1 and ∥V ∥2,∞ ≤

√
µr/n2.

However, for IMC to be well-posed, X∗ does not have to be
incoherent, and it suffices for A,B to be incoherent (Jain
& Dhillon, 2013). In case A and B are isometries, their
incoherence assumption corresponds to bounded row norms,
∥A∥2,∞ ≤

√
µd1/n1 and ∥B∥2,∞ ≤

√
µd2/n2.

3. No Bad Local Minima Guarantee
In this section we present a novel characterization of the
optimization landscape of IMC in the noiseless setting,
E = 0. Following the factorization approach to matrix
recovery problems (see Chi et al. (2019) and references
therein), we first incorporate the rank constraint into the
objective by writing the unknown matrix as M = UV ⊤

where U ∈ Rd1×r and V ∈ Rd2×r. Then, problem (IMC)
reads

min
U,V
∥PΩ(AUV ⊤B⊤)− Y ∥2F . (2)

Clearly, any pair of matrices (U, V ) which satisfy UV ⊤ =
M∗ is a global minimizer of (2) with an objective value

of zero. However, as (2) is non-convex, some of its first-
order critical points, namely points at which the gradient
vanishes, may be bad local minima. The next result, proven
in Appendix C, states that if sufficiently many entries are
observed, all critical points are either global minima or strict
saddle points. At a strict saddle point the Hessian has at least
one strictly negative eigenvalue, so that gradient descent
does not get stuck there. Hence, under the conditions of
Theorem 3.1, gradient descent recovers M∗ from a random
initialization.
Theorem 3.1. Let X∗ ∈ Rn1×n2 be a rank r matrix which
satisfies (1) with µ-incoherent matrices A ∈ Rn1×d1 and
B ∈ Rn2×d2 . Assume Ω ⊆ [n1]× [n2] is uniformly sampled
with |Ω| ≳ µ2d1d2 log n. Then w.p. at least 1 − 2n−2,
any critical point (U, V ) of problem (2) is either a global
minimum with UV ⊤ = M∗, or a strict saddle point.

To the best of our knowledge, Theorem 3.1 is the first guar-
antee for the geometry of vanilla IMC. A previous result by
Ghassemi et al. (2018) addressed only a suitably balance-
regularized version of (2). In addition, their guarantee re-
quires O(µ2rmax{d1, d2}max{d1d2, log2 n}) observed
entries with cubic scaling in d1, d2,1 which is significantly
larger than the quadratic scaling in our Theorem 3.1.

Theorem 3.1 guarantees exact recovery for a family of
gradient-based algorithms beyond vanilla gradient descent.
However, as illustrated in Section 6.1, solving the IMC
problem can be done much faster than by gradient descent
or variants thereof, e.g. by our proposed GNIMC method
described in Section 5.

3.1. IMC as a Special Case of Matrix Sensing

Similar to Ghassemi et al. (2018), our proof of Theorem 3.1
is based on an RIP (Restricted Isometry Property) result we
derive for IMC. The RIP result forms a connection between
IMC and the matrix sensing (MS) problem, as follows. Re-
call that in IMC, the goal is to recover M∗ ∈ Rd1×d2 from
the observations Y = PΩ(AM∗B⊤ + E). In MS, we ob-
serve a set of linear measurements b ≡ A(M∗) + ξ where
A : Rd1×d2 → Rm is a sensing operator and ξ ∈ Rm is
additive error. Assuming a known or estimated rank r of
M∗, the goal is to solve

min
M
∥A(M)− b∥2 s.t. rank(M) ≤ r. (MS)

Problem (IMC) is in the form of (MS) with the operator

A(M) = VecΩ(AMB⊤)/
√
p (3)

and the error vector ξ = VecΩ(E)/
√
p. However, unlike

IMC, in MS the operator A is assumed to satisfy a suitable
RIP, defined as follows (Candes, 2008; Recht et al., 2010).

1The cited complexity is in our notation. The notation in Ghas-
semi et al. (2018) is slightly different from ours; see Appendix F
for more details.
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Definition 3.2. A linear map A : Rd1×d2 → Rm satisfies
a k-RIP with a constant δ ∈ [0, 1), if for all matrices M ∈
Rd1×d2 of rank at most k,

(1− δ)∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δ)∥M∥2F . (4)

The following theorem, proven in Appendix A, states that if
A,B are incoherent and |Ω| is sufficiently large, w.h.p. the
IMC sensing operator (3) satisfies the RIP. This observation
creates a bridge between IMC and MS: for a given MS
method, its RIP-based theoretical guarantees can be directly
transferred to IMC.

Theorem 3.3. Let A ∈ Rn1×d1 , B ∈ Rn2×d2 be two isome-
try matrices such that ∥A∥2,∞ ≤

√
µd1/n1 and ∥B∥2,∞ ≤√

µd2/n2. Let δ ∈ [0, 1), and assume Ω ⊆ [n1] × [n2] is
uniformly sampled with |Ω| ≡ m ≥ (8/δ2)µ2d1d2 log n.
Then, w.p. at least 1−2n−2, the sensing operatorA defined
in (3) satisfies an RIP (4) with k = min{d1, d2} and with
the constant δ.

A similar result was derived by Ghassemi et al. (2018). The-
orem 3.3 improves upon it both in terms of the required
conditions and in terms of the RIP guarantee. First, as in
their landscape guarantee, Ghassemi et al. (2018) require cu-
bic scaling with d1, d2 rather than quadratic as in our result.
Moreover, their sample complexity includes an additional
factor of r log(1/δ) (see Appendix F). Second, they proved
only a min{2r, d1, d2}-RIP, whereas Theorem 3.3 guaran-
tees that A satisfies the RIP with the maximal possible rank
min{d1, d2}. In particular, this allows us to employ a recent
result due to Li et al. (2020) to prove Theorem 3.1 for vanilla
IMC, as detailed in Appendix C.

The technical reason behind our sharper results is that in-
stead of applying the Bernstein matrix inequality to a fixed
matrix and then proving an ϵ-net union bound for all matri-
ces, we apply it to a cleverly designed operator which di-
rectly guarantees the result for all matrices; see Lemma A.1.

4. Rank Estimation Scheme
The factorization approach (2) requires knowing r in ad-
vance, although in practice it is often unknown. In this
section we propose a simple scheme to estimate the un-
derlying rank, and provide a theoretical guarantee for it.
Importantly, our scheme does not assume X∗ is exactly low
rank, but rather the existence of a sufficiently large spectral
gap between its r-th and (r + 1)-th singular values.

Let X̂ = PAB(Y )/p = AA⊤Y BB⊤/p where Y is the ob-
served matrix and p ≡ |Ω|/(n1n2), and denote its singular
values by σ̂i. Our estimator for the rank of X∗ is

r̂ = argmax
i

gi(X̂), gi(X̂) =
σ̂i

σ̂i+1 +D · σ̂1

√
i
, (5)

for some constant D ∈ [0, 1). In our simulations we set
D = (

√
d1d2/|Ω|)1/2. The function gi measures the i-th

spectral gap, with the second term in the denominator added
for robustness of the estimate. For D = 0, gi is simply the
ratio between two consecutive singular values. A similar
estimator was proposed by Keshavan and Oh (2009) for
standard matrix completion. The main difference in our es-
timator is the incorporation of the side information matrices
A,B. We present the following theoretical guarantee for
our estimator, proven in Appendix B. Note that using the
side information matrices A,B allows us to reduce the sam-
ple complexity from O(n), as necessary in standard matrix
completion (Keshavan & Oh, 2009), to only O(log(n)).
Theorem 4.1. There exists a sufficiently small con-
stant c such that the following holds w.p. at least
1 − 2n−2. Let X∗ ∈ Rn1×n2 be a matrix which
satisfies (1) with µ-incoherent A,B. Assume X∗

is approximately rank r, in the sense that for all
i ̸= r, gr(X

∗) > min{(11/10)gi(X∗), 1/10}. Denote
δ = mini{σi+1(X

∗) + Dσ1(X
∗)
√
i}, and assume

Ω ⊆ [n1] × [n2] is uniformly sampled with |Ω| ≥
8µ2d1d2 log(n)∥X∥2F /(cδ)2. Further assume bounded er-
ror ϵ ≡ ∥PABPΩ(E)∥F /p ≤ cδ. Then r̂ = r.

To the best of our knowledge, Theorem 4.1 is the first guar-
antee in the literature for rank estimation in IMC. We remark
that with a suitably modified δ, our guarantee holds for other
choices of gi as well (including gi = σi/σi+1, correspond-
ing to D = 0). An empirical demonstration of our scheme
appears in Section 6.2.

5. GNIMC Algorithm
In this section, we describe GNIMC, an adaptation of the
GNMR algorithm (Zilber & Nadler, 2022) to IMC, and
present recovery guarantees for it.

5.1. Description of GNIMC

Consider the factorized objective (2). Given an estimate
(U, V ), the goal is to find an update (∆U,∆V ) such that
(U ′, V ′) = (U +∆U, V +∆V ) minimizes (2). In terms of
the variables (∆U,∆V ), problem (2) reads

min
∆U,∆V

∥PΩ(AUV ⊤B⊤ +AU∆V ⊤B⊤

+A∆UV ⊤B⊤ +A∆U∆V ⊤B⊤)− Y ∥2F ,

which is nonconvex due to the mixed term ∆U∆V ⊤. The
Gauss-Newton approach is to neglect this term. This yields
the key iterative step of GNIMC, which is solving the fol-
lowing sub-problem:

min
∆U,∆V

∥PΩ(AUV ⊤B⊤ +AU∆V ⊤B⊤

+A∆UV ⊤B⊤)− Y ∥2F . (6)
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Algorithm 1 GNIMC
input sampling operator PΩ, observed matrix Y , side

information matrices (A,B), maximal number of
iterations T , initialization (U0, V0)

output rank-r (approximate) solution to PΩ(X̂) = Y
for t = 0, . . . , T − 1 do

set
(

Ut+1

Vt+1

)
=
(
Ut

Vt

)
+
(

∆Ut+1

∆Vt+1

)
, where

(
∆Ut+1

∆Vt+1

)
is

the minimal norm solution of

argmin
∆U,∆V

∥PΩ[A(UtV
⊤
t +Ut∆V ⊤+∆UV ⊤

t )B⊤]−Y ∥2F

end for
return X̂ = AUTV

⊤
T B⊤

Problem (6) is a linear least squares problem. Note, however,
that it has an infinite number of solutions: for example, if
(∆U,∆V ) is a solution, so is (∆U + UR,∆V − V R⊤)
for any R ∈ Rr×r. We choose the solution with minimal
norm ∥∆U∥2F + ∥∆V ∥2F , see Algorithm 1. In practice,
this solution can be computed using the standard LSQR
algorithm (Paige & Saunders, 1982).

In general, the computational complexity of solving prob-
lem (6) scales with the condition number κ of X∗. To
decouple the runtime of GNIMC from κ, we use the QR
decompositions of U and V as was similarly done for alter-
nating minimization by Jain et al. (2013). In Appendix D
we describe the full procedure, and prove it is analytically
equivalent to (6). Remarkably, despite the fact that GNIMC
performs a non-local update at each iteration, its resulting
per-iteration complexity is as low as a single gradient de-
scent step, as proven in Appendix D.3. For a discussion
on parallel and distributed computing considerations, see
Appendix D.4.

GNIMC requires an initial guess (U0, V0). A suitable initial-
ization procedure for our theoretical guarantees is discussed
in Proposition 5.3. In practice, GNIMC works well also from
a random initialization.

The proposed GNIMC algorithm is extremely simple, as it
merely solves a least squares problem in each iteration. In
contrast to several previous methods, it requires no param-
eter estimation such as the minimal and maximal singular
values of X∗, or tuning of hyperparameters such as regu-
larization coefficients. Altogether, this makes GNIMC easy
to implement and use. Furthermore, GNIMC enjoys strong
recovery guarantees and fast runtimes, as described below.

5.2. Recovery Guarantees for GNIMC

We first analyze the noiseless case, E = 0. The following
theorem, proven in Appendix C, states that starting from
a sufficiently accurate initialization with small imbalance

∥U⊤U − V ⊤V ∥F , GNIMC exactly recovers the matrix at a
quadratic rate. In fact, the balance condition can be elimi-
nated by adding a single SVD step as discussed below.

Theorem 5.1. There exists a constant c > 1 such that the
following holds w.p. at least 1− 2n−2. Let X∗ ∈ Rn1×n2

be a rank-r matrix which satisfies (1) with µ-incoherent
side matrices A ∈ Rn1×d1 and B ∈ Rn2×d2 . Denote
γ = c/(2σ∗

r ) where σ∗
r = σr(X

∗). Assume Ω ⊆ [n1]× [n2]
is uniformly sampled with

|Ω| ≥ 32µ2d1d2 log n. (7)

Then, for any initial iterate (U0, V0) that satisfies

∥AU0V
⊤
0 B⊤ −X∗∥F ≤

σ∗
r

c
, (8a)

∥U⊤
0 U0 − V ⊤

0 V0∥F ≤
σ∗
r

2c
, (8b)

the estimates Xt = AUtV
⊤
t B⊤ of Algorithm 1 satisfy

∥Xt+1 −X∗∥F ≤ γ · ∥Xt −X∗∥2F , ∀t = 0, 1, .... (9)

Note that by assumption (8a), γ · ∥X0 − X∗∥F ≤ 1/2.
Hence, (9) implies that GNIMC achieves exact recovery,
since Xt → X∗ as t→∞. The computational complexity
of GNIMC is provided in the following proposition, proven
in Appendix D.

Proposition 5.2. Under the conditions of Theorem 5.1, the
time complexity of GNIMC (Algorithm 1) until recovery with
a fixed accuracy (w.h.p.) is O(µ2(d1 + d2)d1d2r log n).

To meet the initialization conditions of Theorem 5.1, we
need to find a rank-r matrix M which satisfies ∥AMB⊤ −
X∗∥ ≤ σ∗

r/c. By taking its SVD M = UΣV ⊤, we ob-
tain that (UΣ

1
2 , V Σ

1
2 ) satisfies conditions (8a-8b). Such a

matrix M can be computed in polynomial time using the
initialization procedure suggested by Tu et al. (2016) for
matrix sensing. Starting from M0 = 0, it iteratively per-
forms a gradient descent step and projects the result into the
rank-r manifold. Its adaptation to IMC reads

Mτ+1 = Pr

[
Mτ −A⊤(PΩ(AMτB

⊤)/p− Y )B
]

(10)

where Pr(M) is the rank-r truncated SVD of M . The
following proposition, proven in Appendix E, states that
O (log(rκ)) iterations suffice to meet the initialization con-
ditions of Theorem 5.1 under a slightly larger sample size
requirement.

Proposition 5.3 (Initialization guarantee). Let X∗, A,B
be as in Theorem 5.1. Assume Ω is uniformly sampled
with |Ω| ≥ 50µ2d1d2 log n. Let Mτ be the result after
τ ≥ 5 log(c

√
rκ) iterations of (10), and denote its SVD by

UΣV . Then w.p. 1− 2n−2,
(
U0

V0

)
=
(

UΣ
1
2

V Σ
1
2

)
satisfies the

initialization conditions (8a)-(8b) of Theorem 5.1.
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Figure 1. Left panel: rel-RMSE (17) as a function of CPU runtime for several IMC algorithms. Here X∗ has a condition number κ = 10.
Right panel: CPU runtime till successful recovery as a function of κ, where each point corresponds to the median of 50 independent
realizations. In both panels X∗ ∈ R1000×1000, A,B ∈ R20×20, r = 10 and oversampling ratio ρ = 1.5.

We conclude this subsection with a guarantee for GNIMC in
the noisy setting. Suppose we observe Y = PΩ(X

∗ + E)
where E is arbitrary additive error. To cope with the error,
we slightly modify Algorithm 1, and add the following
balancing step at the start of each iteration: calculate the
SVD ŪΣV̄ ⊤ of the current estimate UtV

⊤
t , and update

Ut ← ŪΣ
1
2 , Vt ← V̄ Σ

1
2 , (11)

so that (Ut, Vt) are perfectly balanced with U⊤
t Ut = V ⊤

t Vt.
The following result holds for the modified algorithm.

Theorem 5.4. Let X∗, A,B,Ω and c be defined as in The-
orem 5.1, and suppose the error is bounded as

ϵ ≡ 1√
p∥PΩ(E)∥F ≤

σ∗
r

9c
. (12)

Then for any initial iterate (U0, V0) that satisfies (8a), the
estimates Xt = AUtV

⊤
t B⊤ of Algorithm 1 with the balanc-

ing step (11) satisfy

∥Xt −X∗∥F ≤
σ∗
r

42t−1c
+ 6ϵ

t→∞−→ 6ϵ. (13)

In the absence of errors, ϵ = 0, this result reduces to the
exact recovery guarantee with quadratic rate of Theorem 5.1.

5.3. Comparison to Prior Art

Here we describe recovery guarantees for three other algo-
rithms. We compare them only to Theorem 5.1, as none of
these works derived a stability to error result analogous to
our Theorem 5.4. A summary appears in Table 1. In the fol-
lowing, let n = max{n1, n2} and d = max{d1, d2}. For
works which require incoherence condition on several matri-
ces, we use for simplicity the same incoherence coefficient
µ. All guarantees are w.p. at least 1−O(1/n).

Nuclear norm minimization (Maxide) (Xu et al., 2013).
If (i) both X∗ and A,B are µ-incoherent, (ii) ∥LR⊤∥∞ ≤

µr/(n1n2) where LΣR is the SVD of X∗, (iii) d1d2+r2 ≥
8[1 + log2(d/r)](d1 + d2)r, and (iv)

|Ω| ≳ µ2rd[1 + log(d/r)] log n, (14)

then Maxide exactly recovers X∗.

Alternating minimization (Jain & Dhillon, 2013). If A,B
are µ-incoherent and

|Ω| ≳ κ2µ4r3d1d2 log n log(1/ϵ), (15)

then AltMin recovers X∗ up to error ϵ in spectral norm at
a linear rate with a constant contraction factor.

Multi-phase Procrustes flow (Zhang et al., 2018). If both
X∗ and A,B are µ-incoherent and

|Ω| ≳ max{κr, d}κ2µ2r2 log d log n, (16)

then MPPF recovers X∗ at a linear rate with a contraction
factor smaller than 1 − O(1/(rκ)).2 This guarantee im-
plies a required number of iterations which may scale lin-
early with κ, as is indeed empirically demonstrated in Fig-
ure 1(right).

Notably, in terms of the dimension parameters n, d, r, the
sample complexity for Maxide (14) is order optimal up
to logarithmic factors. However, their guarantee requires
additional assumptions, including incoherence of X∗. Also,
from a practical point of view, Maxide is computation-
ally slow and not easily scalable to large matrices (see
Figure 1(left)). In contrast, GNIMC is computationally
much faster and does not require X∗ to be incoherent, a
relaxation which can be important in practice as discussed
in the introduction. Furthermore, our sample complexity
requirement (7) is the only one independent of the con-
dition number without requiring incoherent X∗. Com-
pared to the other factorization-based methods, our sam-
ple complexity is strictly better than that of AltMin, and

2When the estimation error decreases below O(1/(µd)), the
contraction factor is improved to 1−O(1/κ).
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Figure 2. CPU runtime till successful recovery as a function of the oversampling ratio for several IMC algorithms. Left panel: n1 = n2 =
1000, d1 = d2 = 20 and r = 10. Right panel: n1 = 20000, n2 = 1000, d1 = 100, d2 = 50 and r = 5. In both panels κ = 10. Each
point corresponds to the median of 50 independent realizations.

better than MPPF if min{d1, d2} ≲ κ2r2 log d. Since
min{d1, d2} ≤ r2 is a practical setting (see e.g. (Natara-
jan & Dhillon, 2014, Section 4.4) and (Zhang et al., 2018,
Sections 6.1-6.2)), our complexity requirement is often
smaller than that of MPPF even for well-conditioned matri-
ces. In fact, if min{d1, d2} ≤ 54r, then our guarantee is
the sharpest one, as condition (iii) of Maxide is violated.
In addition, to the best of our knowledge, GNIMC is the
only method with a quadratic convergence rate guarantee.
Finally, its contraction factor is constant, and in particular
independent of the rank r and the condition number κ.

We conclude this subsection with a computational complex-
ity comparison. Among the above works, only the compu-
tational complexity of MPPF was analyzed, and it is given
byO(f(κ, µ) ·n3/2d2r3 log d log n) where f(κ, µ) is some
function of κ and µ which was left unspecified by Zhang et
al. (2018). The dependence on the large dimension factor
n3/2 implies that MPPF does not exploit the available side
information in terms of computation time. Our complex-
ity guarantee, Proposition 5.2, is fundamentally better. In
particular, it depends on n only logarithmically, and is inde-
pendent of the condition number κ. This independence is
demonstrated empirically in Figure 1(right).

6. Simulation Results
In the following subsection we compare the performance
of GNIMC to several other algorithms. Then, in the next
subsection, we exemplify our rank estimation scheme.

6.1. Comparison Between Algorithms

We compare the performance of GNIMC to the following
IMC algorithms, all implemented in MATLAB.3 AltMin

3MATLAB and Python code implementations
of GNIMC, AltMin, GD and RGD are available at
github.com/pizilber/IMC.

(Jain & Dhillon, 2013): our implementation of alternating
minimization including the QR decomposition for reduced
runtime; Maxide (Xu et al., 2013): nuclear norm minimiza-
tion as implemented by the authors;4 MPPF (Zhang et al.,
2018): multi-phase Procrustes flow as implemented by the
authors;5 GD, RGD: our implementations of vanilla gradi-
ent descent (GD) and a variant regularized by an imbalance
factor ∥U⊤U − V ⊤V ∥F (RGD); ScaledGD (Tong et al.,
2021): a preconditioned variant of gradient descent;6 and
L-BFGS: limited-memory quasi-Newton BFGS algorithm,
as implemented in MATLAB R2022a. Details on initial-
ization, early stopping criteria and a tuning scheme for the
hyperparameters of Maxide, MPPF, RGD, ScaledGD and
L-BFGS appear in Appendix G. GNIMC and AltMin re-
quire no tuning.

In each simulation we construct U ∈ Rd1×r, V ∈ Rd2×r,
A ∈ Rn1×d1 and B ∈ Rn2×d2 with entries i.i.d. from
the standard normal distribution, and orthonormalize their
columns. We then set X∗ = AUDV ⊤B⊤ where D ∈
Rr×r is diagonal with entries linearly interpolated between
1 and κ. A similar scheme was used by Zhang et al. (2018),
with a key difference that we explicitly control the condition
number of X∗ to study how it affects the performance of
the various methods. Next, we sample Ω of a given size |Ω|
from the uniform distribution over [n1]× [n2]. Since A and
B are known, the n1×n2 matrix X∗ has only (d1+d2−r)r
degrees of freedom. Denote the oversampling ratio by ρ =

|Ω|
(d1+d2−r)r . As ρ is closer to the information limit value of
1, the more challenging the problem becomes. Notably, our
simulations cover a broad range of settings, including much
fewer observed entries and higher condition numbers than

4www.lamda.nju.edu.cn/code_Maxide.ashx
5github.com/xiaozhanguva/Inductive-MC
6github.com/Titan-Tong/ScaledGD. We adapted

the algorithm, originally designed for matrix completion, to the
IMC problem. In addition, we implemented computations with
sparse matrices to enhance its performance.

github.com/pizilber/IMC
www.lamda.nju.edu.cn/code_Maxide.ashx
github.com/xiaozhanguva/Inductive-MC
github.com/Titan-Tong/ScaledGD
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Figure 3. The estimated spectral gaps ĝi (inner magenta) compared to the true ones gi (outer blue) as defined in (5), for X∗ ∈ R30000×10000

of approximate rank r = 5 with singular values [5, 4, 3, 2, 1, 0.2, 0.1, 0.08, 0.06, 0.03], side information d1 = 30, d2 = 20, and sampling
rate p = 0.1%. The numbers above the bars indicate the ratio ĝi/gi. Left panel: D = 0. Right panel: D = (

√
d1d2/|Ω|)1/2 ≈ 0.009.

previous studies (Xu et al., 2013; Zhang et al., 2018).

We measure the quality of an estimate X̂ by its relative
RMSE,

rel-RMSE =
∥X∗ − X̂∥F
∥X∗∥F

. (17)

First, we explore the convergence rate of the various algo-
rithms, by comparing their relative RMSE as a function of
runtime, in the setting n1 = n2 = 1000, d1 = d2 = 20,
r = κ = 10 and ρ = 1.5 (sampling rate p = 0.045%).
Representative results of a single instance of the simula-
tion, illustrating the behavior of the algorithms near con-
vergence, are depicted in Figure 1(left). As shown in the
figure, GNIMC converges much faster than the competing
algorithms due to its quadratic convergence rate.

Next, we examine how the runtime of each algorithm is
affected by the number of observations and by the condition
number. The runtime is defined as the CPU time required
for the algorithm to (i) converge, namely satisfy one of the
stopping criteria (detailed in Appendix G), and (ii) achieve
rel-RMSE ≤ 10−4. If the runtime exceeds 20 minutes
without convergence, the run is stopped.

Figures 1(right) and 2(left) show the median recovery time
on a log scale as a function of the condition number and
of the oversampling ratio, respectively, in the same setting
as above. Figure 2(right) corresponds to a larger matrix
with n1 = 20000, n2 = 1000, d1 = 100, d2 = 50, r = 5
and κ = 10. Evidently, under a broad range of conditions,
GNIMC is faster than the competing methods, in some cases
by an order of magnitude. In general, the advantage of
GNIMC with respect to the competing methods is more sig-
nificant at low oversampling ratios. Finally, GNIMC outper-
forms the competing methods also in terms of the required
number of iterations, see Figure 4 in Appendix H.1.

Remarkably, the runtime of GNIMC, AltMin and

ScaledGD shows almost no sensitivity to the condition
number, as illustrated in Figure 1(right). For GNIMC, this
empirical observation is in agreement with Proposition 5.2,
which states that the computational complexity of GNIMC
does not depend on the condition number. In contrast, the
runtime of the non-preconditioned gradient descent methods
increases approximately linearly with the condition number.

Additional simulation results, including demonstration of
the stability of GNIMC to noise, appear in Appendix H.

6.2. Demonstration of the Rank Estimation Scheme

In this subsection we demonstrate the accuracy of our pro-
posed rank estimation scheme (5). Figure 3 compares the
estimated singular gaps ĝi with the true ones gi for a ma-
trix of approximate rank r = 5 and only p = 0.1% ob-
served entries. We tested two values of D: D = 0 and
D = (

√
d1d2/|Ω|)1/2. The qualitative behavior depicted in

the figure did not change in 50 independent realizations of
the simulation. In particular, the estimated rank r̂ = maxi ĝi
was always 5 for both values of D.

The figure also demonstrates the trade-off in the choice of
the value of D: for larger D, ĝi is a more accurate estimate
of gi, but gi distorts the exact singular gaps σ∗

i /σ
∗
i+1, es-

pecially at their tail (large values of i). Hence, in general,
nonzero D is suitable in case the rank of X∗ is expected to
be relatively low compared to d1, d2.

7. Summary and Discussion
In this work, we presented three contributions to the IMC
problem: benign optimization landscape guarantee; prov-
able rank estimation scheme; and a simple Gauss-Newton
based method, GNIMC, to solve the IMC problem. We
derived recovery guarantees for GNIMC, and showed empir-
ically that it is faster than several competing algorithms. A
key theoretical contribution is a proof that under relatively
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mild conditions, IMC satisfies an RIP, similar to the matrix
sensing problem.

Interestingly, in our simulations GNIMC recovers the matrix
significantly faster than first-order methods, including a very
recent one due to Tong et al. (2021). A possible explanation
is that GNIMC makes large non-local updates, thus requires
fewer iterations to converge; yet, the time complexity of
each iteration is similar to a single local gradient descent
step, leading to a shorter runtime. This raises the following
intriguing questions: are there other non-convex problems
for which non-local methods are faster than first-order ones?
In particular, can these ideas be extended to faster training
of deep neural networks?

Another possible future research is extending and analyzing
our method under generalized frameworks of IMC. Inter-
esting examples include recovering an unknown low rank
X∗ which lies in some known linear subspace instead of
property (1) (Jawanpuria & Mishra, 2018) and non-linear
IMC (Zhong et al., 2019). Another setting with practical
importance is observations corrupted by outliers, as was ex-
tensively studied in other matrix recovery problems (Candès
et al., 2011; Dutta et al., 2019).
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Additional notation. In the following appendices, the Frobenius inner product between two matrices is denoted by
⟨X,Y ⟩ = Tr(Y ⊤X), where Tr denotes the matrix trace. The adjoint of an operator P is denoted by P∗. The spectral norm
of an operator P that acts on matrices is defined as ∥P∥ = maxX ∥P(X)∥F /∥X∥F .

A. Proof of Theorem 3.3 (RIP for IMC)
In the following subsection we state and prove a novel RIP guarantee that is key to the connection between IMC and matrix
sensing. Then, in the next subsection, we use this result to prove Theorem 3.3.

A.1. An Auxiliary Lemma

To present our RIP result in the context of IMC, recall the definition of the linear operator PAB : Rn1×n2 → Rn1×n2 which
projects a matrix X into the row and column spaces of the isometry matrices A and B, respectively,

PAB(X) = AA⊤XBB⊤. (18)

Note that since PAB is a projection operator, ∥PAB∥ = 1.

Lemma A.1. Let A ∈ Rn1×d1 and B ∈ Rn2×d2 be two isometry matrices such that ∥A∥2,∞ ≤
√

µd1/n1 and ∥B∥2,∞ ≤√
µd2/n2. Let δ ∈ [0, 1), and assume Ω ⊆ [n1] × [n2] is uniformly sampled with |Ω| ≡ n1n2p ≥ (8/δ2)µ2d1d2 log n

where n = max{n1, n2}. Then w.p. at least 1− 2n−2,

∥ 1pPABPΩPAB − PAB∥ ≤ δ. (19)

Note that (19) is a bound on the norm of the operator 1
pPABPΩPAB − PAB , which acts on matrices. The numerical factor

8 in the bound on the sample complexity |Ω| of Lemma A.1 can be replaced by any other scalar β strictly greater than 8/3,
resulting in a modified probability guarantee 1− 2n1−3β/8. We remark that 8/3 is strict for our proof technique, which
builds upon Recht’s work (Recht, 2011). A lower value of β is possible by a more careful analysis, see the discussion after
Proposition 5 in Recht (2011).

The proof of Lemma A.1 uses the following matrix Bernstein inequality (Tropp, 2012, Theorem 1.6).

Lemma A.2. Consider a finite set {Zk} of independent, random matrices with dimensions n1 × n2. Assume that each
random matrix satisfies

E[Zk] = 0 and ∥Zk∥2 ≤ R almost surely. (20)

Define σ2 = max{∥
∑

k E[ZkZ
⊤
k ]∥2, ∥

∑
k E[Z⊤

k Zk]∥2}. Then, for all t ≥ 0,

P

[∥∥∥∥∥∑
k

Zk

∥∥∥∥∥
2

≥ t

]
≤ (n1 + n2) exp

(
− t2/2

σ2 +Rt/3

)
. (21)

Proof of Lemma A.1. The lemma assumes that Ω is uniformly sampled from the set of all collections of m ≡ n1n2p entries
of [n1]× [n2]. Following Recht (2011), in the following proof we assume instead a different probabilistic model: sampling
with replacement. Let Ω′ = {(ik, jk)}mk=1 be a collection of m elements, each i.i.d. from the uniform distribution over
[n1]× [n2]. Define also the corresponding operator

RΩ′(X) =

m∑
k=1

⟨eike⊤jk , X⟩ eike
⊤
jk
. (22)

In contrast to PΩ, the operator RΩ′ is in general not a projection operator, since a pair of indices (i, j) may have been
sampled more than once. In the following, rather than (19), we prove the following modified inequality that involvesRΩ′ in
place of PΩ,

1
p∥PABRΩ′PAB − pPAB∥ ≤ δ. (23)



Inductive Matrix Completion: No Bad Local Minima and a Fast Algorithm

This inequality implies the original (19), as RΩ′(X) reveals in general less information on X than PΩ(X) does due to
possible duplicates in Ω′; see the proof of Proposition 3 in Recht (2011) for a rigorous formulation of this argument.

Since the elements of Ω′ are uniformly sampled from the set [n1]× [n2] and |Ω′| = m ≡ pn1n2, the expectation value of
RΩ′ over the random set Ω′ is p times the identity operator. Hence,

E[PABRΩ′PAB ] = PABE[RΩ′ ]PAB = pP2
AB = pPAB , (24)

where PAB is defined in (18). We thus conclude that (23) is simply a concentration inequality, which we shall prove using
Lemma A.2.

Let X ∈ Rn1×n2 , and decompose it as X =
∑

i,j ⟨X, eie
⊤
j ⟩ eie⊤j . For future use, we define the linear operator Tij :

Rn1×n2 → Rn1×n2 as

Tij(X) = ⟨X,PAB(eie
⊤
j )⟩ PAB(eie

⊤
j ) = ⟨PAB(X), eie

⊤
j ⟩ PAB(eie

⊤
j ), (25)

and present some related equalities. By standard properties of the trace operator,

PABRΩ′PAB =

m∑
k=1

Tikjk . (26)

Hence, taking the expectation over (i, j) uniformly sampled from [n1]× [n2] gives that

E[Tij ] =
1

m
E

[
m∑

k=1

Tikjk

]
=

1

pn1n2
E[PABRΩ′PAB ] =

1

n1n2
PAB . (27)

In addition, by the definition (25) of Tij and the fact that PAB is a projection,

PABTij = TijPAB = Tij . (28)

Finally, by inserting (26) into inequality (23), we obtain that our goal is to bound ∥
∑m

k=1 Tikjk−pPAB∥ = ∥
∑m

k=1Dikjk∥,
where the operator Dij : Rn1×n2 → Rn1×n2 is given by

Dij = Tij −
p

m
PAB = Tij −

1

n1n2
PAB .

By (27), E[Dij ] = 0. To employ Lemma A.2 to the set {Dik,jk}mk=1, we first need to (i) find a scalar R such that ∥Dij∥ ≤ R
almost surely, and (ii) bound max{∥

∑m
k=1 E[DikjkD∗

ikjk
]∥, ∥

∑m
k=1 E[D∗

ikjk
Dikjk ]∥} = ∥

∑m
k=1 E[D2

ikjk
]∥, where the

equality follows since Dij is self-adjoint w.r.t. the Frobenius inner product.

We begin with bounding ∥Dij∥ ≡ maxX ∥Dij(X)∥F /∥X∥F . Recall that if X and Y are positive semidefinite matrices,
then ∥X − Y ∥2 ≤ max{∥X∥2, ∥Y ∥2}. Since any operator can be represented by a matrix, a similar result holds for
operators with the spectral norm. As both Tij and PAB are positive semidefinite and PAB is a projection, we have

∥Dij∥ ≤ max{∥Tij∥,
1

n1n2
∥PAB∥} = max{∥Tij∥,

1

n1n2
}. (29)

Let us bound ∥Tij∥. By the Cauchy-Schwarz inequality,

∥Tij(X)∥ = | ⟨X,PAB(eie
⊤
j )⟩ | · ∥PAB(eie

⊤
j )∥F ≤ ∥PAB(eie

⊤
j )∥2F ∥X∥F .

Inserting the definition of PAB (18), the spectral norm of Tij is bounded as

∥Tij∥ ≤ ∥PAB(eie
⊤
j )∥2F = ∥AA⊤eie

⊤
j BB⊤∥2F

(a)

≤ ∥AA⊤ei∥2∥BB⊤ej∥2

(b)
= ∥A⊤ei∥2∥B⊤ej∥2 ≤ ∥A∥22,∞∥B∥22,∞

(c)

≤ µ2d1d2
n1n2

, (30)



Inductive Matrix Completion: No Bad Local Minima and a Fast Algorithm

where (a) follows from the Cauchy-Schwarz inequality, (b) from the isometry assumption, and (c) from the assumed bound
on the row norms of A and B. Plugging (30) into (29) yields

∥Dij∥ ≤ max{µ
2d1d2
n1n2

,
1

n1n2
} = µ2d1d2

n1n2
≡ R, (31)

where the equality follows since µ ≥ 1 by the definition of incoherence (Definition 2.1). Next, we bound ∥
∑m

k=1 E[D2
ikjk

]∥.
Combining (28), (27) and the fact that both T 2

ij and PAB are positive semidefinite yields

∥E[D2
ij ]∥ = ∥E[T 2

ij −
2

n1n2
Tij +

1

n2
1n

2
2

PAB ]∥ = ∥E[T 2
ij ]−

1

n2
1n

2
2

PAB∥

≤ max{∥E[T 2
ij ]∥,

1

n2
1n

2
2

∥PAB∥} = max{∥E[T 2
ij ]∥,

1

n2
1n

2
2

}.

Let us bound ∥E[T 2
ij ]∥. Since Tij is positive semidefinite, we have T 2

ij ≼ ∥Tij∥Tij . Thus E[T 2
ij ] ≼ E[∥Tij∥Tij ] ≼

µ2d1d2

n1n2
E[Tij ], where the last inequality follows from the deterministic bound (30). Together with (27) this implies

∥E[T 2
ij ]∥ ≤

µ2d1d2
n1n2

∥E[Tij ]∥ =
µ2d1d2
n2
1n

2
2

∥PAB∥ =
µ2d1d2
n2
1n

2
2

.

We thus obtain the bound

∥
m∑

k=1

E[D2
ikjk

]∥ = m · ∥E[D2
ij ]∥ ≤ m

µ2d1d2
n2
1n

2
2

=
pµ2d1d2
n1n2

≡ σ2.

Plugging this together with the bound ∥Dij∥ ≤ R in (31) into Lemma A.2 yields

P

[∥∥∥∥∥
m∑

k=1

Dikjk

∥∥∥∥∥ > pδ

]
≤ (n1 + n2) exp

(
− p2δ2/2

pµ2d1d2

n1n2
+ µ2d1d2

n1n2
pδ/3

)
≤ 2n exp

(
− 3δ2m

8µ2d1d2

)
.

Assuming that m ≥ (8/δ2)µ2d1d2 log n gives

P

[∥∥∥∥∥
m∑

k=1

Dikjk

∥∥∥∥∥ > pδ

]
≤ 2ne−3 logn = 2n−2.

This completes the proof of (23), and thus of (19).

A.2. Proof of Theorem 3.3

Let M ∈ Rd1×d2 , and denote X = AMB⊤. By definition (3) of A,

1

p
∥PΩ(X)∥2F =

1

p
∥PΩ(AMB⊤)∥2F = ∥A(M)∥2. (32)

Next, observe that PAB(X) = AA⊤AMB⊤BB⊤ = AMB⊤ = X . Hence

∥PΩ(X)∥2F = ⟨PΩ(X),PΩ(X)⟩ = ⟨X,PΩ(X)⟩ = ⟨X, pX⟩+ ⟨X,PΩ(X)− pX⟩
= p∥X∥2F + ⟨PAB(X),PΩPAB(X)− pPAB(X)⟩
= p∥X∥2F + ⟨X,PABPΩPAB(X)− pPAB(X)⟩ .

Applying the Cauchy-Schwarz inequality and (19) of Lemma A.1 yields∣∣∥PΩ(X)∥2F − p∥X∥2F
∣∣ = | ⟨X,PABPΩPAB(X)− pPAB(X)⟩ |
≤ ∥X∥F ∥PABPΩPAB(X)− pPAB(X)∥F ≤ pδ∥X∥2F .
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Hence

(1− δ)∥X∥2F ≤
1

p
∥PΩ(X)∥2F ≤ (1 + δ)∥X∥2F . (33)

Since A,B are isometries, ∥X∥F = ∥AMB⊤∥F = ∥M∥F . Plugging this together with (32) into (33) yields the RIP
(4).

In the following remark, we extend the connection between IMC and matrix sensing (MS) to another setting of the two
problems, where the goal is to find the minimal rank matrix that agrees with the observations.
Remark A.3. An alternative setting of IMC, which does not assume a known rank but does assume noise-free observations,
is to find a matrix with the lowest possible rank that is consistent with the data,

min
M

rank(M) s.t. PΩ(AMB⊤) = PΩ(X
∗). (IMC*)

The analogous setting of MS is

min
M

rank(M) s.t. A(M) = A(M∗). (MS*)

With the sensing operator A defined in (3), (IMC*) is in the form of (MS*). Since this sensing operator satisfies the RIP
under certain conditions as guaranteed by Theorem 3.3, the connection between IMC and MS holds in this setting as well.

B. Proof of Theorem 4.1 (Rank Estimation)
The proof of the theorem is based on the following lemma, which employs Lemma A.1 to bound the difference between the
singular values of X∗ and those of X̂ = PAB(Y )/p.

Lemma B.1. Let X∗ ∈ Rn1×n2 be a matrix which satisfies (1) with µ-incoherent matrices A,B. Let δ, ϵ and Ω be defined
as in Theorem 4.1 with constant c < 1/2. Then w.p. at least 1− 2n−2,

|σ̂i − σ∗
i | ≤ 2cδ, ∀i, (34)

where σ∗
i = σi(X

∗).

Proof. Since X∗ satisfies the side information property (1), we have PAB(X
∗) = X∗. Hence

X̂ =
1

p
PABPΩ(X

∗ + E) = 1

p
PABPΩPAB(X

∗) +
1

p
PABPΩ(E).

Using PAB(X
∗) = X∗ again, we get

X̂ −X∗ =

(
1

p
PABPΩPAB − PAB

)
(X∗) +

1

p
PABPΩ(E).

Let δ′ = cδ/∥X∗∥F . By definition, δ ≤ σ∗
2 + Dσ∗

1 < 2σ∗
1 . Hence δ′ < 1 for c < 1/2. Invoking Lemma A.1 with

|Ω| ≥ 8µ2d1d1 log(n)∥X∗∥2F /(cδ)2 = 8µ2d1d1 log(n)/δ
′2 and using the condition ϵ ≤ cδ imply

∥X̂ −X∗∥F ≤
∥∥∥∥(1

p
PABPΩPAB − PAB

)
(X∗)

∥∥∥∥
F

+
1

p
∥PABPΩ(E)∥F ≤ δ′∥X∗∥F + ϵ

≤ 2cδ. (35)

Hence also ∥X̂ −X∗∥F ≤ 2cδ. Equation (34) of the lemma follows by Weyl’s inequality.

Proof of Theorem 4.1. Denote ĝi = gi(X̂) and g∗i = gi(X
∗). We need to show that argmaxi ĝi = r. Invoking Lemma B.1

implies

ĝr =
σ̂r

σ̂r+1 +Dσ̂1
√
r
≥ σ∗

r − 2cδ

σ∗
r + 2cδ +D(σ∗

1 + 2cδ)
√
r
. (36)
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By the definition of δ, we have that δ ≤ (1 +D)σ∗
1 < 2σ∗

1 and also δ ≤ σ∗
r +Dσ∗

1

√
r. Plugging this into (36) yields

ĝr ≥
σ∗
r − 2cδ

σ∗
r + 2cδ +D(σ∗

1 + 4cσ∗
1)
√
r
≥ σ∗

r − 2c(σ∗
r +Dσ∗

1

√
r)

(1 + 2c)(σ∗
r +Dσ∗

1

√
r) + 4cDσ∗

1

√
r

≥ σ∗
r − 2c(σ∗

r +Dσ∗
1

√
r)

(1 + 6c)(σ∗
r +Dσ∗

1

√
r)

=
1

1 + 6c
g∗r −

2c

1 + 6c
.

Next, let i ̸= r. Since δ ≤ σ∗
i+1 +Dσ∗

1

√
i, we similarly have

ĝi =
σ̂i

σ̂i+1 +Dσ̂1

√
i
≤ σ∗

i + 2cδ

σ∗
i+1 − 2cδ +D(σ∗

1 − 2cδ)
√
i
≤

σ∗
i + 2c(σ∗

i+1 +Dσ∗
1

√
i)

(1− 2c)(σ∗
i+1 +Dσ∗

1

√
i)− 4cDσ∗

i+1

√
i

≤ σ∗
i + 2c(σ∗

i +Dσ∗
1

√
i)

(1− 6c)(σ∗
i+1Dσ∗

1

√
i)

=
1

1− 6c
g∗i +

2c

1− 6c
.

By assumption, g∗r ≥ min{(11/10)g∗i , 1/10}. We thus obtain that ĝr > ĝi for a sufficiently small constant c. Hence
r̂ = argmaxi ĝi = r, as required.

Remark B.2. One of the motivations for our proposed rank estimation scheme is that the rank is required as an input to most
factorization-based matrix recovery algorithms, including GNIMC. Since our recovery guarantees for GNIMC, Theorems 5.1
and 5.4, are independent of the underlying matrix condition number, GNIMC provably (as well as empirically) recovers
the matrix given an overestimated rank input. However, a tighter estimate of the true rank allows for a more efficient
computation. An alternative to exact rank estimation is a rank continuation scheme, where one begins with an overestimated
rank and adaptively adjusts it throughout the algorithm iterations (Dutta et al., 2021).

C. Proof of Theorems 3.1, 5.1 and 5.4
Our proof of Theorem 3.1 follows by combining Theorem 3.3 with a general result due to Li et al. (2020). In contrast to
previous works (Li et al., 2017; Zhu et al., 2018; Bi et al., 2021), the result of Li et al. (2020) applies to a regularization-free
objective. Consider the following general low rank optimization problem,

min
M∈Rd1×d2

f(M), s.t. rank(M) ≤ r. (37)

By incorporating the rank constraint into the objective function, we obtain the factorized problem

min
U∈Rd1×r,V ∈Rd2×r

g(U, V ) ≡ f(UV ⊤). (38)

The following result provides a sufficient condition on f(M) such that g(U, V ) has no bad local minima. The condition is
on the bilinear form of the Hessian of f(M), defined as∇2f(M)[N,N ] =

∑
i,j,k,l

∂2f(M)
∂Mij∂Mkl

NijNkl.

Lemma C.1. Let α, β be two positive constants that satisfy β/α ≤ 3/2. Assume that f satisfies

α∥N∥2F ≤ ∇2f(M)[N,N ] ≤ β∥N∥2F (39)

for all M,N ∈ Rd1×d2 . If f(M) has a critical point M∗ with rank(M∗) ≤ r, then any critical point (U, V ) of g(U, V ) in
(38) is either a global minimum with UV ⊤ = M∗ or a strict saddle point.

To prove the lemma, we will use the following definition (Zhu et al., 2018).

Definition C.2. A function f : Rd1×d2 → Rd1×d2 is (r1, r2)-restricted strongly convex and smooth if it satisfies (39) for
any M ∈ Rd1×d2 of rank at most r1 and N ∈ Rd1×d2 of rank at most r2.

Proof of Lemma C.1. By Theorem III.1 in Li et al. (2020), the lemma follows if f(X) satisfies the (r1, r2)-restricted
strongly convex smoothness, where

r1 = min{2r, d1, d2} and r2 = min{4r, d1, d2}. (40)
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In fact, since Li et al. (2020) assume r ≪ min{d1, d2} throughout their work, their Theorem III.1 is phrased with r1 = 2r
and r2 = 4r; however, it is straightforward to verify that in the general case, in which the rank of M,N is bounded by
min{d1, d2}, the theorem holds with r1, r2 as in (40). Our condition in the lemma is stronger, as it requires (39) to hold for
all M,N , and thus implied by their Theorem III.1.

Proof of Theorem 3.1. As discussed in the main text, the IMC problem can be written as a matrix sensing problem with
the objective f(M) = ∥A(M) − b∥2, where the sensing operator A is given in (3) and b = A(M∗) + VecΩ(E)/

√
p.

Furthermore, by Theorem 3.3, for the assumed |Ω|, the operator A satisfies a min{d1, d2}-RIP (4) with a constant δ ≤ 1/5.
Note that the min{d1, d2}-RIP of A : Rd1×d2 → Rd1×d2 in fact means that (4) holds for any d1 × d2 matrix, since the rank
of any such matrix is bounded by min{d1, d2}.

Next, for any M,N ∈ Rd1×d2 , we have ∇f(M) = A∗(A(M) − b) and ∇2f(M)[N,N ] = ∥A(N)∥2 (Zhu et al., 2018,
Section C.1). Plugging the last equality into the RIP (4) of the sensing operator A yields

(1− δ)∥N∥2F ≤ ∇2f(M)[N,N ] ≤ (1 + δ)∥N∥2F .

Let α = 1 − δ and β = 1 + δ. Then f satisfies Equation (39) with the constants α, β. Further, since δ ≤ 1/5, we have
β/α ≤ 3/2. The corollary thus follows by Lemma C.1.

Finally, the proof of Theorems 5.1 and 5.4 is straightforward thanks to our Theorem 3.3.

Proof of Theorems 5.1 and 5.4. By Theorem 3.3, (IMC) is a special case of (MS) where the sensing operator A satisfies a
rank min{d1, d2}-RIP with a constant δ ≤ 1/2. Theorems 5.1 and 5.4 thus follow from the MS recovery guarantees for
GNMR (Zilber & Nadler, 2022, Theorems 3.3-3.4).

D. Computational Complexity Analysis
In Section 5.1 of the main text we briefly mentioned a way to use QR decompositions in order to efficiently find the minimal
norm solution to the least squares problem (6). In the following subsection we describe the full procedure in detail. Then, in
the next subsection, we prove Proposition 5.2 on the corresponding computational complexity. In both subsections we use
the following simple result.
Lemma D.1. Assume the conditions of Proposition 5.2. Then w.p. at least 1 − 2n−2, the factor matrices Ut, Vt of the
iterates of GNIMC (Algorithm 1) have full column rank for all t = 0, 1, ....

Proof. We prove that if

∥AUtV
⊤
t B⊤ −X∗∥F < σ∗

r , (41)

then Ut and Vt are full column rank. The lemma follows since (41) holds at t = 0 by assumption (8a) with c > 1, and at any
t > 0 w.p. at least 1− 2n−2 by the contraction principle (9).

By combining Weyl’s inequality and (41),

|σr(AUtV
⊤
t B⊤)− σ∗

r | ≤ ∥AUtV
⊤
t B⊤ −X∗∥2 ≤ ∥AUtV

⊤
t B⊤ −X∗∥F < σ∗

r .

Since A and B are isometries, the above inequality implies that |σr(UtV
⊤
t )− σ∗

r | < σ∗
r . Hence

0 < σr(UtV
⊤
t ) ≤ min{σr(Ut)∥Vt∥2, σr(Vt)∥Ut∥2},

which implies that both σr(Ut) and σr(Vt) are strictly positive, namely Ut, Vt have full column rank.

D.1. A Computationally Efficient Way to Find The Minimal Norm Solution to (6)

At iteration t of GNIMC (Algorithm 1), our goal is to efficiently calculate the solution (∆Ut+1,∆Vt+1) to the rank deficient
least squares problem (6) whose norm ∥∆Ut+1∥2F + ∥∆Vt+1∥2F is minimal. The least squares problem (6) at iteration t
reads

argmin
∆U,∆V

∥PΩ[A(UtV
⊤
t + Ut∆V ⊤ +∆UV ⊤

t )B⊤]− Y ∥2F . (42)
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Denote the condition number of X∗ by κ. If Ut, Vt are approximately balanced and their product UtV
⊤
t is close to X∗,

their condition number scales as
√
κ. Hence, the condition number of the least squares problem (namely, the condition

number of the operator defined in (45) below) scales as
√
κ. As a result, directly solving (42) leads to a factor of

√
κ in the

computational complexity. In the following, we describe a procedure that gives the same solution to (42) but eliminates the
dependency in

√
κ, as proven in the next subsection. The procedure consists of two phases. First, we efficiently compute a

feasible solution to (42), not necessarily the minimal norm one. Second, we describe how, given a solution to (42), we can
efficiently compute the one with minimal norm, (∆Ut+1,∆Vt+1). Algorithm 2 provides a sketch of this procedure.7

By Lemma D.1, the factor matrices of the current iterate Ut, Vt are full column rank. Let QURU and QV RV be the QR
decompositions of Ut and Vt, respectively, such that QU ∈ Rd1×r and QV ∈ Rd2×r are isometries, and RU , RV ∈ Rr×r

are invertible. Instead of (42), we solve the following modified least squares problem,

(∆U ′,∆V ′) = argmin
∆U,∆V

∥PΩ(AUtV
⊤
t B⊤ +AQU∆V ⊤B⊤ +A∆UQ⊤

V B
⊤)− Y ∥2F . (43)

Here, (∆U ′,∆V ′) is any feasible solution to (43), not necessarily the minimal norm one. Next, let

∆U ′′ = ∆U ′(R−1
V )⊤ and ∆V ′′ = ∆V ′(R−1

U )⊤. (44)

It is easy to verify that (∆U ′′,∆V ′′) is a feasible solution to the original least squares problem (42). This concludes the
first part of the procedure, which can be viewed as preconditioning: as we show below, (43) has a lower condition number
than (42), and it hence faster to solve by iterative methods. The reason for the better conditioning is that QU , QV both have
condition number one rather than

√
κ. The detailed computational complexity analysis is deferred to the next subsection.

Next, we describe how to transform a feasible solution, such as (∆U ′′,∆V ′′), into the minimal norm one (∆Ut+1,∆Vt+1).
To this end, we first express the least squares operator in terms of the sensing operatorA defined in (3). In the matrix sensing
formulation, the least squares problem (42) reads

min
(∆U,∆V )

∥PΩ[A(UtV
⊤
t + Ut∆V ⊤ +∆UV ⊤

t )B⊤]− Y ]∥F

= min
(∆U,∆V )

∥VecΩ[A(UtVt + Ut∆V ⊤ +∆UV ⊤
t )B⊤]/

√
p− VecΩ(Y )/

√
p∥

= min
(∆U,∆V )

∥A(UtV
⊤
t + Ut∆V ⊤ +∆UV ⊤

t )− b∥

= min
(∆U,∆V )

∥A(Ut∆V ⊤ +∆UV ⊤
t )− bt∥,

where b = VecΩ(Y )/
√
p and bt = b−A(UtV

⊤
t ). The least squares operator L(Ut,Vt) : R(d1+d2)×r → Rm is thus

L(Ut,Vt)

U

V

 = A(UtV
⊤ + UV ⊤

t ). (45)

Let K = kerL(Ut,Vt). According to the second part of Lemma 4.4 in Zilber and Nadler (2022), which holds due to our
Theorem 3.3,

K =
{
( U
V ) ∈ R(d1+d2)r | U⊤Ut = V ⊤

t V
}⊥

=
{(

UtR

−VtR
⊤

)
| R ∈ Rr×r

}
=
{(

QUR

−QV R⊤

)
| R ∈ Rr×r

}
, (46)

where the second equality follows by Eq. (26) in (Zilber & Nadler, 2022). Also, dim{K} = r2 as QU , QV are isometries.
By definition of the minimal norm solution

(
∆Ut+1

∆Vt+1

)
, any other solution is of the form

(
∆U ′′

∆V ′′

)
=
(

∆Ut+1

∆Vt+1

)
+
(
KU

KV

)
where(

∆Ut+1

∆Vt+1

)
⊥ K and

(
KU

KV

)
∈ K. Hence, all we need to do is to subtract from

(
∆U ′′

∆V ′′

)
its component in K. Denote the

7We remark that while the second phase works for any given feasible solution, in practice the feasible solution we find is also a
minimal norm solution but of a different least squares problem. As this solution works well in practice, we did not implement the second
phase in our simulations.
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Algorithm 2 Efficient procedure to compute the minimal norm solution to (6)
input sampling operator PΩ, observed matrix Y , side information matrices (A,B), current iterate (Ut, Vt)
output the minimal norm solution to (6)
{Phase I: compute a feasible solution to (6)}

1: compute QURU and QV RV , the QR decompositions of Ut and Vt, respectively
2: compute (∆U ′,∆V ′), any feasible solution to

argmin
(∆U,∆V )

∥PΩ[A(UtV
⊤
t +QU∆V ⊤ +∆UQ⊤

V )B
⊤]− Y ∥2F

3: set ∆U ′′ = ∆U ′(R−1
V )⊤, ∆V ′′ = ∆V ′(R−1

U )⊤

{Phase II: compute the minimal norm solution to (6)}
4: let PK : R(d1+d2)×r → R(d1+d2)×r be the projector onto K, using its orthonormal basis given in (48)
5: set

(
∆Ut+1

∆Vt+1

)
= (I − PK)

(
∆U ′′

∆V ′′

)
6: return (∆Ut+1,∆Vt+1)

columns of QU , QV by ui, vi for i ∈ [r], respectively, and let

K(ij) =
1√
2

 uie
⊤
j

−vje⊤i

 , ∀(i, j) ∈ [r]× [r]. (47)

Then the following set of r2 matrices form an orthonormal basis for the kernel K of (46) under the Frobenius inner product
⟨C,D⟩ = Tr(C⊤D):

KB =
{
K(ij) | (i, j) ∈ [r]× [r]

}
. (48)

Let I be the identity operator. By calculating the projector PK onto the span of KB , we obtain the minimal norm solution(
∆Ut+1

∆Vt+1

)
= (I − PK)

(
∆U ′′

∆V ′′

)
.

The procedure described in this subsection is sketched in Algorithm 2.

D.2. Proof of Proposition 5.2

For the analysis of the computational complexity of GNIMC with the minimal norm solution computed via Algorithm 2, we
first prove the following auxiliary lemma. Recall that the condition number of an operator P : R(d1+d2)×r → Rm is defined
as maxZ{∥P(Z)∥/∥Z∥F }/minZ{∥P(Z)∥/∥Z∥F }.
Lemma D.2. Let Ω, A,B be defined as in Proposition 5.2. Let L(QU ,QV ) be the least squares operator of step 2 in
Algorithm 2,

L(QU ,QV )

U

V

 = A(QUV
⊤ + UQ⊤

V ). (49)

Denote its condition number by κL. Then

κL ≤
√
6. (50)

We remark that the bound in (50) can be slightly improved (up to κL ≤
√
2) at the cost of increasing |Ω|.

Proof of Lemma D.2. By combining assumption (7) and Theorem 3.3, the sensing operator A satisfies a min{d1, d2}-RIP
with a constant δ ≤ 1/2. Hence, as in the proof of Lemma 4.2 in Zilber and Nadler (2022), the minimal nonzero singular
value of L(QU ,QV ), σmin(L(QU ,QV )), is bounded from below by

√
1− δmin{σr(QU ), σr(QV )} . Next, by Lemma D.1,
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Ut and Vt are of full column rank. Hence, QU and QV are isometries, and in particular σr(QU ) = σr(QV ) = 1. We thus
obtain σmin(L(QU ,QV )) ≥

√
1− δ.

We similarly bound from above the maximal singular value, σ1(L(QU ,QV )). Let U ∈ Rd1×r, V ∈ Rd2×r. Then∥∥∥∥∥∥L(QU ,QV )

U

V

∥∥∥∥∥∥
2

(a)

≤ (1 + δ)∥UQ⊤
V +QUV

⊤∥2F
(b)

≤ (1 + δ)(∥UQ⊤
V ∥F + ∥QUV

⊤∥F )2

(c)
= (1 + δ)(∥U∥2F + 2∥U∥F ∥V ∥F + ∥V ∥2F )

(d)

≤ 2(1 + δ)(∥U∥2F + ∥V ∥2F ),

where (a) follows by the RIP of A, (b) by the triangle inequality, (c) by the fact that QU , QV are isometries, and (d) by
ab ≤ (a2 + b2)/2. Hence, the maximal singular value is bounded from above by

√
2(1 + δ). The condition number of

L(QU ,QV ) is thus bounded as

κL ≤
√

2(1 + δ)

1− δ
≤
√
6

where the second inequality follows since δ ≤ 1/2.

We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. According to our quadratic convergence guarantee, the number of GNIMC iterations till recovery
with a fixed accuracy is constant. Thus, up to a multiplicative constant, the complexity of GNIMC is the same as the
complexity of a single iteration, which we shall now analyze according to its sketch in Algorithm 2.

The complexity of step 1, which consists of QR factorizations of d × r matrices, is O(dr2) (Golub & Pereyra, 2003,
Section 5.2.9). Step 2 is separately analyzed below. Step 3 is dominated by the calculation of the matrix product, which
costs O(dr2). Steps 4-5 are dominated by the calculation of the projection of a feasible solution

(
∆U ′′

∆V ′′

)
onto the kernel

K given in (46). To this end, we first construct a matrix K ∈ R(d1+d2)r×r2 whose columns are the vectorization of the
elements of the orthonormal basis KB given in (48). Then, to obtain the required projection, we calculate the product
KK⊤z where z ≡ Vec

(
∆U ′′

∆V ′′

)
∈ R(d1+d2)r is the vectorization of the feasible solution in hand. By first calculating K⊤z

and then K(K⊤z) we obtain the complexity of O(dr3).

Finally, we analyze the complexity of step 2. GNIMC solves the least squares problem using the standard LSQR algorithm
(Paige & Saunders, 1982), which applies the conjugate gradient (CG) method to the normal equations. Each inner iteration
of CG is dominated by the calculation of AQU∆V ⊤B⊤ + A∆UQ⊤

V B
⊤ at the entries of Ω (Paige & Saunders, 1982,

Section 7.7). To obtain a single entry of AQU∆V ⊤B⊤, we calculate a single row of AQU , a single column of ∆V ⊤B⊤,
and then take the product. Since QU ∈ Rd1×r and ∆V ⊤ ∈ Rr×d2 , this sums up toO(d1r+ d2r+ r2) ∼ O(dr) operations.
Similarly, calculating a single entry of A∆UQ⊤

V B
⊤ takes O(dr) operations. The complexity of a single iteration of CG is

thus O(dr|Ω|).

Next, we analyze the required number of CG iterations. Let κL be the condition number of the least squares operator
L(QU ,QV ) as defined in Lemma D.2. The residual error of CG decays at least linearly with a contraction factor κL−1

κL+1
(Hayami, 2018, Section 4). By Lemma D.2, κL is bounded by a constant, and hence the required number of CG iterations is
also a constant. We thus conclude that the total complexity of step 2 is O(dr|Ω|).

Putting everything together, the complexity of GNIMC is O(dr3 + dr|Ω|). One of the conditions of the proposition is the
lower bound |Ω| ≥ 32µ2d1d2 log n. W.l.o.g., we may assume |Ω| = 32µ2d1d2 log n (if |Ω| is larger, we can ignore some of
the observed entries). We thus obtain that the complexity of GNIMC is O(µ2dd1d2r log n).

D.3. Comparison to Gradient Descent

In this subsection we show that the per-iteration cost of GNIMC, as analyzed above, is of the same order as that of gradient
descent. Denote EΩ = PΩ(AUV ⊤B⊤)−Y , and let f(U, V ) = ∥EΩ∥2F be the objective of the factorized matrix completion
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problem (2). Its gradient is

∇Uf(U, V ) = 2A⊤EΩBV, ∇V f(U, V ) = 2B⊤E⊤
ΩAU.

As explained in the analysis of step 2 above, calculating EΩ costs O(dr|Ω|). Since A⊤EΩ and B⊤E⊤
Ω have at most

r|Ω| nonzero entries, this is also the cost of calculating (A⊤EΩ)B and (B⊤E⊤
Ω )A. Finally, calculating (A⊤EΩB)V and

(B⊤E⊤
ΩA)U is O(d1d2r). The per-iteration complexity of gradient descent is thus O(dr|Ω|+ d1d2r). Under assumption

(7) on |Ω|, this coincides with the per-iteration complexity of GNIMC.

We remark that empirically, the overall complexity (namely, from initialization to convergence) of gradient descent seems
so be much larger than that of GNIMC, see Section 6.1. This observation is in agreement with the theoretical analysis of
gradient descent in Zhang et al. (2018), see their Theorem 5.5.

D.4. Parallel and Distributed Computing Considerations

Large scale problems often raise the need for parallel computing as well as GPU implementations. However, as noted
by Hubbard and Hedge (2017), parallelization is more challenging for inductive matrix completion than for standard
matrix completion. In matrix completion, whose objective is minU,V ∥PΩ(UV ⊤)− Y ∥F , a single row or column of the
estimate UV ⊤ is associated with a single row of the unknown factor U or V , respectively. In contrast, in IMC, with the
objective given in (2), any single row or column of the estimate AUV ⊤B⊤ is associated with the entire factors U, V , making
parallelization harder. Yet, as each iteration of GNIMC solves a least squares problem, this allows for the following naive
parallelization scheme: employ a parallelized version of the LSQR algorithm, see e.g. Balay et al. (1996).

Our description of the IMC problem assumes a centralized setting. Li et al. (2020) analyzed the global geometry of a family
of low-rank matrix recovery problems in distributed setting. Building upon Li et al. (2020), our theoretical results can be
directly extended to a distributed setting as well (cf. Appendix C). In particular, our Theorem 3.1 holds also in the distributed
IMC setting.

E. Proof of Proposition 5.3 (Initialization Guarantee)
By its construction,

(
U0

V0

)
is perfectly balanced, U⊤

0 U0 = V ⊤
0 V0, and thus satisfies (8b). Hence, we only need to prove (8a).

Let A be the sensing operator that corresponds to (IMC) as defined in (3). By Theorem 3.3, w.p. at least 1 − 2n−2, the
operator A satisfies a min{d1, d2}-RIP with a constant δ = 2/5. Hence, according to Lemmas 5.1-5.2 in Tu et al. (2016),
or more explicitly Eq. (5.26) in their extended arXiv version, after τ ≥ log(c

√
rκ)/ log(1/(2δ)) ≥ 5 log(c

√
rκ) iterations

of (10) we have ∥Mτ −M∗∥F ≤ σ∗
r/c. Since A,B are isometries, ∥AMτB

⊤ −X∗∥F = ∥Mτ −M∗∥F ≤ σ∗
r/c. Hence(

U0

V0

)
satisfies (8a) for any τ ≥ 5 log(c

√
rκ).

F. Comparison to Ghassemi et al. (2018)
Ghassemi et al. (2018) derived results analogous to our Theorems 3.1 and 3.3. However, there are three main differences
between the claims. First, the sample complexity for the RIP result in Ghassemi et al. (2018) is

O(µ2rmax{d1, d2}max{d1d2, log2 n} log(1/δ)/δ2), (51)

compared to our O(µ2d1d2 log(n)/δ
2). We remark that in their notation, their claimed sample complexity is

O(µ2 max{d1, d2}r̄2r) where r̄ = max{r, log n}. However, there seems to be an error in their analysis. Their as-
sumption is that A/

√
n1 and B/

√
n2 are isometries, and their corresponding incoherence assumption is ∥A∥22,∞ ≤ µr̄ and

∥B∥22,∞ ≤ µr̄ with a constant µ (Ghassemi et al., 2018, Assumption 1). But since A ∈ Rn1×d1 and B ∈ Rn2×d2 , either
the assumption should be ∥A∥22,∞ ≤ µd1 and ∥B∥22,∞ ≤ µd2, or the parameter µ is not a constant but rather scales with
max{d1, d2}/r̄. In any case, in our notation their sample complexity is as given in (51).

Second, the RIP result in Ghassemi et al. (2018) is for rank-min{2r, d1, d2} matrices, compared to our stronger rank-
min{d1, d2} RIP. We remark that while their RIP result is formulated as 2r-RIP, this implicitly assumes r ≪ min{d1, d2}
(see also the discussion in Appendix C). In the general case, their guarantee is min{2r, d1, d2}-RIP.

Third, Ghassemi et al. (2018) prove benign optimization landscape for the problem

min
U,V
∥PΩ(AUV ⊤B⊤)− Y ∥+ 1

4
∥UU⊤ − V V ⊤∥2F , (52)
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Figure 4. Same as Figure 2, but with Y-axis corresponds to number of iterations.

which is an imbalance regularized version of (2). Furthermore, it seems that their result cannot be readily extended to the
vanilla IMC problem, as the regularization in (52) is essential in their proof.

G. Additional Simulation Details
All algorithms are initialized with the same procedure, which is the spectral initialization, except for Maxide which is not
factorization based and is by default initialized with the zero matrix.

Maxide requires as input a regularization parameter; MPPF, GD, RGD and ScaledGD require a step size parameter; and
L-BFGS requires a memory limit. For each simulation setting, we tuned the optimal parameter out of 10 logarithmically-
scaled values. The permitted values for Maxide were 10−5, ..., 10−14; for MPPF, GD and RGD were 10−2/κ, ..., 10

1
2 /κ

where κ is the condition number of X∗; for ScaledGD were 10−2, ..., 10
1
2 ; and for L-BFGS were 1, ..., 103. In all

simulations, we verified that the selected value is an interior point of the permitted set, so that it is close to optimal. We
remark that the regularization coefficient of MPPF and RGD can also be tuned, but we observed it has a very little effect. For
GNIMC, in all simulations we identically set the maximal number of iterations for the inner least-squares solver to 10 if
the observed error is low, ∥PΩ(Xt)−Y ∥F

∥Y ∥F
≤ 10−4, and 1000 otherwise. This scheme exhibits slightly better performance

than setting a constant value of maximal inner iterations (but only marginally). While tuning this value for each simulation
independently, as we did for the hyperparameters of the above algorithms, may enhance performance, we preferred to
demonstrate the performance of a tuning-free version of GNIMC.

We used the following two stopping criteria for all methods: (i) small relative observed RMSE, ∥PΩ(Xt)−Y ∥F

∥Y ∥F
≤ ϵ, or (ii)

small relative estimate change ∥PΩ(Xt−Xt−1)∥F

∥PΩ(Xt)∥F
≤ ϵ. In our simulations, we set ϵ = 10−14. For a fair comparison, we

disabled all the other early stopping criteria defined in the algorithms.

H. Additional Simulation Results
In subsection H.1 we show the number of iterations required by each method to recover the matrix instead of the required
CPU time as in the main text. In subsection H.2 we demonstrate the stability of GNIMC to Gaussian noise. In subsection
H.3 we demonstrate the insensitivity of several algorithms to the condition number of the underlying matrix in terms of the
number of observations required for recovery.

H.1. Number of Iterations Plots

To gain further insight into the convergence rate of each algorithm, Figure 4 shows the median number of iterations till
convergence on a log scale as a function of the oversampling ratio, with the same settings as in Figure 2. In particular, all
methods start from the same (spectral) initialization. Note that each iteration of GNIMC and AltMin includes solving an
inner least-squares problem, so these methods are not directly comparable to the others in terms of the number of iterations.
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Figure 5. Stability of GNIMC to additive Gaussian noise, with the same settings as in Figure 1(left).

Table 2. Lowest oversampling ratio ρ from which the median of rel-RMSE (17) is lower than 10−4 as a function of the condition
number κ, in the setting n1 = n2 = 1000, d1 = d2 = 20, r = 10. L-BFGS fails at κ = 104 for any oversampling ratio. The median
rel-RMSE is taken over 50 independent realizations.

Alg. κ 1 10 102 103 104

GNIMC 1.2 1.1 1.1 1.1 1.1

AltMin 1.1 1.1 1.1 1.1 1.1

GD 1.1 1.1 1.1 1.1 1.1

RGD 1.2 1.2 1.1 1.1 1.1

ScaledGD 1.2 1.1 1.2 1.2 1.1

Maxide 1.4 1.4 1.4 1.4 1.4

L-BFGS 1.1 1.1 1.1 1.1 −

H.2. Stability of GNIMC to Noise

Figure 5 demonstrates the stability of GNIMC to noise. In this simulation, either the observed entries Y , the side information
matrices A,B, or both, are corrupted by additive Gaussian noise of zero mean and standard deviation σ. As seen in the
figure, the error of GNIMC scales linearly with the noise level σ.

H.3. Insensitivity of Several Algorithms to the Condition Number

In Figure 1(right) we addressed the sensitivity (or insensitivity) of several IMC algorithms to the condition number of X∗

in terms of their runtime. In this subsection, we explore another aspect of sensitivity to the condition number: rather than
runtime, we study how the condition number affects the number of observations required for a successful recovery given no
time constraints.

In our simulations, we observed the following interesting phenomenon: For all algorithms, the number of observations
|Ω| required for recovery is independent of the condition number κ. We demonstrate this in Table 2, which compares the
minimal oversampling ratio, out of the values ρ = 1.1, 1.2, ..., required by several algorithms to reach relative RMSE of
10−4. Since in this experiment our goal is to explore fundamental recovery abilities rather than speedy performance, the
algorithms are given essentially unlimited runtime (in practice, the time limit was set to one CPU hour, and 3 hours for GD
and RGD in the case of κ = 104). The table shows that the minimal oversampling ratio does not increase with κ; in fact,
it sometimes slightly decreases when κ is small. We did not include MPPF in Table 2 due to its long runtime; however, a
limited set of simulations suggests that the same conclusion also holds for it.

Beyond illustrating the abilities of the algorithms, this result demonstrates a basic property of the IMC problem: insensitivity
to the condition number. This result corresponds well with our RIP guarantee for IMC, Theorem 3.3, as the RIP holds for all
matrices of certain ranks regardless of their condition number.


