A Supplementary results

Figure 5: Edge-guided adversarial training (EAT). In its simplest form, adversarial training is performed over the 2D (Gray+Edge) or 4D (RGB+Edge) input (i.e., number of channels; denoted as Img+Edge). In a slightly more complicated form (B), first for each input (clean or adversarial), the old edge map is replaced with the newly extracted one. The edge map can be computed from the average of only image channels or all available channels (i.e., image plus edge).

Table 1: Results (Top-1 acc) over MNIST. The best accuracy in each column is highlighted in **bold**. In *italics* are the results of the substitute attack. Epsilon values are over 255. We used the ℓ_{∞} variants of FGSM and PGD. Img2Edge means applying the Edge model (first row) to the edge map of the image.

			Orig. 1	nodel		Rob.	. model (8)	Rob.	model (32)	Rob.	model (64)	Average
	ϵ	0/clean	8	32	64	0/clean	8	0/clean	32	0/clean	64	Rob. models
	Edge	0.964	0.925	0.586	0.059	0.973	0.954	0.970	0.892	0.964	0.776	0.921
1_	Img2Edge	,,	0.960	0.951	0.918	"	0.971	"	0.957	"	0.910	0.957
Σ	Img	0.973	0.947	0.717	0.162	0.976	0.955	0.977	0.892	0.970	0.745	0.919
ğ	Img+Edge	0.972	0.941	0.664	0.089	0.976	0.958	0.977	0.902	0.972	0.782	0.928
1	Redetect	"	0.950	0.803	0.356	"	0.962 (0.968)	"	0.919 (0.947)	"	0.843 (0.881)	0.941
	In	ng + Rede	etected	Edge		0.974	0.950	0.970	0.771	0.968	0.228	0.810
		Red	letect			"	0.958 (0.966)	"	0.929 (0.947)	"	0.922 (0.925)	0.953
	Edge	0.964	0.923	0.345	0.000	0.971	0.949	0.973	0.887	0.955	0.739	0.912
0	Img2Edge	"	0.961	0.955	0.934	"	0.970	"	0.958	"	0.927	0.960
14	Img	0.973	0.944	0.537	0.008	0.977	0.957	0.978	0.873	0.963	0.658	0.901
15	Img+Edge	0.972	0.938	0.446	0.001	0.978	0.953	0.975	0.879	0.965	0.743	0.915
1	Redetect	"	0.950	0.741	0.116	"	0.960 (0.967)	"	0.913 (0.948)	"	0.804 (0.908)	0.932
1	In	ng + Rede	etected	Edge		0.975	0.949	0.973	0.649	0.968	0.000	0.752
1	Redetect				"	0.958 (0.967)	"	0.945 (0.958)	"	0.939 (0.942)	0.960	

		0	ria mode	J	Dob	model (8)	Dob	model (22)	Avorago
			ig. moue	20	K 00.		KUD.	22 1100er (32)	Average Dah madala
	ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
	Edge	0.490	0.060	0.015	0.535	0.323	0.382	0.199	0.360
	Img2Edge	"	0.258	0.258	"	0.270	,,	0.217	0.351
N S	Img	0.887	0.359	0.246	0.869	0.668	0.855	0.553	0.736
Ģ	Img + Edge	0.860	0.366	0.169	0.846	0.611	0.815	0.442	0.679
-	Redetect	"	0.399	0.281	"	0.569 (0.631)	,,	0.417 (0.546)	0.662
	Img -	- Redetect	ed Edge		0.846	0.530	0.832	0.337	0.636
		Redetect			"	0.702 (0.753)	"	0.569 (0.678)	0.737
	Edge	0.490	0.071	0.000	0.537	0.315	0.142	0.119	0.278
0	Img2Edge	"	0.259	0.253	"	0.274	,,	0.253	0.301
4	Img	0.887	0.018	0.000	0.807	0.450	0.316	0.056	0.407
5	Img + Edge	0.860	0.019	0.000	0.788	0.429	0.176	0.119	0.378
Ē.	Redetect	"	0.306	0.093	"	0.504 (0.646)	,,	0.150 (0.170)	0.404
	Img -	- Redetect	ed Edge		0.834	0.155	0.776	0.006	0.443
		Redetect			"	0.661 (0.767)	"	0.392 (0.700)	0.666

Table 2: Results over the CIFAR-10 dataset.

Table 3: Results over the Fashion MNIST dataset (*)

		Orig. 1	nodel		Rob	. model (8)	Rob.	model (32)	Rob.	model (64)	Average
ϵ	0/clean	8	32	64	0/clean	8	0/clean	32	0/clean	64	Rob. models
						FGSN	A				
Edge	0.775	0.714	0.497	0.089	0.776	0.740	0.766	0.664	0.748	0.750	0.741
Img2Edge	"	0.755	0.679	0.452	"	0.762	"	0.664	"	0.420	0.690
Img	0.798	0.670	0.288	0.027	0.798	0.722	0.764	0.584	0.768	0.505	0.690
Img+Edge	0.809	0.662	0.229	0.010	0.794	0.732	0.769	0.623	0.750	0.537	0.701
Redetect	"	0.691	0.326	0.053	"	0.739 (0.761)	"	0.616 (0.660)	"	0.491 (0.496)	0.693
Im	Img + Redetected Edge					0.719	0.775	0.539	0.762	0.045	0.605
	Red	etect			"	0.739 (0.753)	"	0.664 (0.678)	"	0.611 (0.532)	0.721
						PGD-	40				
Edge	0.775	0.711	0.370	0.002	0.783	0.744	0.769	0.661	0.743	0.574	0.712
Img2Edge	"	0.757	0.683	0.380	"	0.762	"	0.658	"	0.374	0.681
Img	0.798	0.659	0.133	0.000	0.792	0.713	0.760	0.515	0.734	0.324	0.640
Img+Edge	0.809	0.647	0.100	0.000	0.794	0.726	0.765	0.608	0.744	0.568	0.701
Redetect	Redetect " 0.682 0.235 0.014					0.734(0.760)	"	0.629(0.666)	-	0.607 (0.426)	0.712
Im	Img + Redetected Edge					0.717	0.779	0.393	0.771	0.002	0.577
	Redetect					0.743 (0.766)	"	0.694 (0.681)	"	0.690 (0.504)	0.746

Table 4: Results over the TinyImageNet dataset (*)

	Orig. model				. model (8)	Rob.	model (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				F	GSM			
Edge	0.136	0.010	0.001	0.150	0.078	0.098	0.021	0.087
Img2Edge	"	0.097	0.096	,,	0.094	,,	0.077	0.105
Img	Img 0.531 0.166 0.074				0.297	0.488	0.168	0.366
Img + Edge	0.522	0.152	0.050	0.508	0.273	0.471	0.148	0.350
Redetect	Redetect ,, 0.171 0.081				0.287 (0.356)	,,	0.162 (0.266)	0.357
Img	+ Redetect	ed Edge		0.505	0.264	0.482	0.111	0.340
	Redetect			"	0.305 (0.371)	,,	0.171 (0.296)	0.366
				P	GD-40			
Edge	0.136	0.007	0.000	0.148	0.077	0.039	0.014	0.069
Img2Edge	"	0.094	0.092	,,	0.095	,,	0.033	0.079
Img	0.531	0.019	0.000	0.392	0.150	0.191	0.019	0.188
Img + Edge	mg + Edge 0.522 0.008 0.000				0.131	0.157	0.003	0.173
Redetect	"	0.074	0.009	"	0.198 (0.353)	,,	0.019 (0.103)	0.194
Img	+ Redetect	ed Edge		0.425	0.072	0.328	0.005	0.208
	Redetect			"	0.206 (0.380)	"	0.073 (0.279)	0.258

	Orig. model				odel (8)	Rob. mo	del (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM				
Img+Edge	0.860	0.366	0.169	0.846	0.611	0.815	0.442	0.679
Redetect	"	0.415	0.280	"	0.574	"	0.416	0.663
I	mg + Redetect	ted Edge		0.848	0.547	0.835	0.351	0.645
	Redetec	rt		"	0.696	"	0.553	0.733
				PGD-40				
Img+Edge	0.860		0.000	0.789	0.431	0.179	0.135	0.384
Redetect	"		0.087	,,	0.501	"	0.152	0.405
I	mg + Redetect	ted Edge		0.837	0.164	0.767	0.010	0.444
	Redetec	et		"	0.648	,,	0.352	0.651

Table 5: Results on CIFAR-10 dataset [edge map computed from 4 channels]

Table 6: Results on DogVsCat dataset [edge map computed from 4 channels] (*)

	(Orig. model		Rob. mo	Rob. model (8)		del (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
.				FGSM				
Edge	0.814	0.633	0.119	0.812	0.757	0.806	0.999	0.843
Img2Edge	"	0.755	0.584	"	0.767	"	0.576	0.740
Img	0.863	0.007	0.051	0.777	0.430	0.819	0.985	0.753
Img+Edge	0.823	0.007	0.000	0.782	0.641	0.808	0.992	0.806
Redetect	"	0.043	0.002	"	0.666	"	0.986	0.810
I	mg + Redetect	ed Edge		0.829	0.615	0.812	0.853	0.778
	Redetec	t		"	0.763	"	0.998	0.850
				PGD-40				
Edge	0.814	0.624	0.018	0.820	0.770	0.763	0.681	0.758
Img2Edge	"	0.760	0.568	,,	0.778	,,	0.656	0.754
Img	0.863	0.000	0.000	0.769	0.384	0.500	0.500	0.538
Img+Edge	0.823	0.000	0.000	0.785	0.689	0.816	0.496	0.696
Redetect	"	0.006	0.000	,,	0.744	,,	0.500	0.711
I	mg + Redetect	ed Edge		0.819	0.600	0.817	0.009	0.561
	Redetec	t		"	0.760	"	0.972	0.842

Table 7: Results on DogBreeds dataset using Sobel edge detection [edge map computed from 4 channels] (*)

	(Orig. model		Rob. m	odel (8)	Rob. mo	del (32)	Average
ε	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM				
Edge	0.750	0.006	0.031	0.506	0.101	0.413	0.073	0.273
Img2Edge	"	0.236	0.194	,,	0.362	,,	0.241	0.380
Img	0.899	0.256	0.140	0.823	0.595	0.829	0.449	0.674
Img + Edge	0.896	0.225	0.098	0.862	0.534	0.820	0.385	0.650
Redetect	"	0.244	0.171	,,	0.455	,,	0.292	0.607
In	ng + Redetect	ed Edge		0.843	0.506	0.874	0.298	0.630
	Redetect	t		"	0.618	,,	0.419	0.689
				PGD-40				
Edge	0.750	0.000	0.000	0.514	0.065	0.036	0.000	0.154
Img2Edge	"	0.250	0.207	"	0.301	"	0.037	0.222
Img	0.899	0.000	0.000	0.795	0.286	0.596	0.025	0.425
Img + Edge	0.896	0.000	0.000	0.789	0.225	0.567	0.042	0.406
Redetect	"	0.008	0.000	"	0.396	,,	0.065	0.454
In	ng + Redetect	ed Edge		0.772	0.028	0.677	0.000	0.369
	Redetect	t		"	0.393	,,	0.149	0.498

	(Rob. mo	odel (8)	Rob. mo	del (32)	Average	
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM				
Edge	0.938	0.683	0.315	0.947	0.863	0.946	0.701	0.864
Img2Edge	"	0.501	0.451	,,	0.516	"	0.469	0.719
Img	0.955	0.464	0.322	0.902	0.607	0.896	0.562	0.742
Img + Edge	0.951	0.624	0.382	0.940	0.842	0.943	0.686	0.853
Redetect	"	0.592	0.471	"	0.743	"	0.626	0.813
Ir	ng + Redetect	ed Edge		0.925	0.801	0.939	0.616	0.820
	Redetect	t		"	0.844	"	0.766	0.869
				PGD-40				
Edge	0.938	0.618	0.054	0.950	0.861	0.937	0.598	0.836
Img2Edge	"	0.501	0.459	"	0.506	"	0.462	0.714
Img	0.955	0.189	0.033	0.855	0.495	0.736	0.246	0.583
Img + Edge	0.951	0.271	0.021	0.943	0.750	0.839	0.342	0.718
Redetect	"	0.526	0.251	,,	0.774	"	0.514	0.767
Ir	ng + Redetect	ed Edge		0.929	0.505	0.893	0.134	0.615
	Redetect	t		"	0.818	,,	0.557	0.799

Table 8: Results on GTSRB dataset [edge map computed from 4 channels] (*)

Table 9: Results on GTSRB dataset [edge map computed from 3 channels]

	Orig. model			Rob. mo	Rob. model (8)		del (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM		•		
Img + Edge	0.951	0.624	0.382	0.940	0.842	0.943	0.686	0.853
Redetect	"	0.500	0.395	,,	0.558	"	0.492	0.733
In	ng + Redetect	ed Edge		0.889	0.699	0.891	0.549	0.757
	,,	0.610	"	0.577	0.742			

Table 10: Results on Icons-50 dataset [edge map computed from 4 channels] (*)

	(Orig. model		Rob. mo	odel (8)	Rob. mo	del (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM		-		
Edge	0.883	0.545	0.210	0.904	0.771	0.889	0.594	0.789
Img2Edge	"	0.713	0.690	"	0.746	"	0.730	0.817
Img	0.930	0.495	0.433	0.772	0.789	0.836	0.720	0.779
Img + Edge	0.929	0.569	0.433	0.829	0.818	0.844	0.745	0.809
Redetect	"	0.470	0.414	,,	0.730	"	0.732	0.784
In	ng + Redetect	ed Edge		0.841	0.837	0.849	0.688	0.804
	Redetect			,,	0.817	"	0.710	0.804
				PGD-40				
Edge	0.883	0.423	0.000	0.902	0.769	0.846	0.404	0.730
Img2Edge	"	0.706	0.683	,,	0.753	,,	0.695	0.799
Img	0.930	0.341	0.113	0.765	0.663	0.736	0.453	0.654
Img + Edge	0.929	0.320	0.011	0.800	0.678	0.785	0.366	0.657
Redetect	"	0.416	0.248	,,	0.738	"	0.660	0.746
In	ng + Redetect	ed Edge		0.838	0.644	0.824	0.097	0.601
	Redetect			"	0.792	,,	0.539	0.748

Table 11: Results on Icons-50 dataset [edge map computed from 3 channels]

	Orig. model			Rob. mo	Rob. model (8)		del (32)	Average
ε	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM		•		
Img+Edge	0.929	0.569	0.433	0.829	0.818	0.844	0.745	0.809
Redetect	"	0.520	0.460	"	0.737	"	0.731	0.785
I	mg + Redetect	ted Edge		0.831	0.788	0.870	0.725	0.804
	Redetec	t		"	0.783	"	0.765	0.812

		Orig. model		Rob. mo	odel (8)	Rob. mo	del (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM				
Edge	0.479	0.167	0.041	0.502	0.343	0.483	0.216	0.386
Img2Edge	,,	0.464	0.014	,,	0.494	,,	0.022	0.375
Img	0.532	0.109	0.021	0.530	0.278	0.474	0.144	0.356
Gray + Edge	0.486	0.097	0.019	0.513	0.286	0.440	0.167	0.352
Redetect	,,	0.263	0.004	,,	0.355	,,	0.013	0.330
In	ng + Redetecte	ed Edge		0.497	0.180	0.420	0.071	0.292
	Redetect			"	0.416	"	0.162	0.374
				PGD-40				
Edge	0.480	0.106	0.000	0.508	0.341	0.401	0.068	0.330
Img2Edge	,,	0.471	0.127	,,	0.499	,,	0.214	0.405
Img	0.532	0.028	0.000	0.538	0.260	0.018	0.000	0.204
Gray + Edge	0.486	0.034	0.000	0.500	0.279	0.026	0.000	0.201
Redetect	,,	0.277	0.024	,,	0.360	,,	0.004	0.223
In	ng + Redetecte	ed Edge		0.502	0.121	0.448	0.000	0.268
	Redetect			"	0.423	,,	0.212	0.396

Table 12: Results on Sketch dataset [edge map computed from 2 channels] (*)

Table 13: Results on Sketch dataset [edge map computed from 1 channel]

	Orig. model			Rob. mo	del (8)	Rob. model (32)		Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM				
Gray + Edge	0.486	0.097	0.019	0.513	0.286	0.440	0.167	0.352
Redetect	"	0.213	0.005	,,	0.388	,,	0.022	0.341
In	g + Redetect	ed Edge		0.519	0.296	0.445	0.191	0.363
	Redetect	t		,,	0.397	,,	0.020	0.345

	(Orig. model		Rob. m	odel (8)	Rob. mo	del (32)	Average
ϵ	0/clean	8	32	0/clean	8	0/clean	32	Rob. models
				FGSM				
Edge	0.780	0.101	0.436	0.781	0.520	0.664	0.245	0.553
Img2Edge	"	0.599	0.598	,,	0.603	,,	0.578	0.656
Img	0.969	0.617	0.409	0.959	0.827	0.946	0.710	0.860
Img + Edge	0.959	0.613	0.373	0.951	0.801	0.935	0.643	0.832
Redetect	"	0.652	0.471	,,	0.812	"	0.687	0.846
Ir	ng + Redetect	ed Edge		0.950	0.747	0.949	0.592	0.810
	Redetect	t		,,	0.834	"	0.732	0.866
				PGD-40				
Edge	0.780	0.064	0.000	0.794	0.526	0.577	0.071	0.492
Img2Edge	,,	0.601	0.577	,,	0.610	,,	0.381	0.591
Img	0.969	0.052	0.005	0.918	0.599	0.808	0.221	0.636
Img + Edge	0.959	0.045	0.000	0.909	0.558	0.762	0.151	0.595
Redetect	"	0.445	0.069	"	0.743	"	0.305	0.680
Ir	ng + Redetect	ed Edge		0.944	0.246	0.883	0.046	0.530
	Redetect	t		"	0.757	"	0.432	0.754

B Robustness against substitute model attacks

Following [13], we trained substitute models to mimic the robust models (with the same architecture but with RGB channels) using the cross-entropy loss over the logits of the two networks, for 5 epochs. The adversarial examples crafted for the substitute networks were then fed to the robust networks. Results are shown in *italics* in Tables 1, 2, 3 and 4 (performed only against the edge-redetect models). We find that this attack is not able to knock off the robust models. Surprisingly, it even improves the accuracy in some cases.

Table 15: Results of the substitute attack against the robust Img + Edge models (redetect and full model).

		MNIST			Fashion MNIST			CIFAR		TinyImgNet	
ε	8	32	64	8	32	64	8	32	8	32	

FGSM

Img + edge model (redetect inference)										
Substitute model on clean images	0.94	0.9365	0.9314	0.7515	0.7393	0.7311	0.8079	0.7766	0.008	0.008
Substitute model on adversarial images	0.8941	0.5858	0.0992	0.6484	0.3701	0.0967	0.2716	0.2049	0.004	0.003
Robust model on clean images	0.9761	0.9766	0.9722	0.7939	0.7692	0.75	0.8463	0.8463	0.508	0.471
Robust model on adversarial images	0.9623	0.9189	0.842	0.7391	0.6156	0.4908	0.5695	0.4186	0.287	0.161
Robust model on substitute adv. images	0.9678	0.9472	0.8813	0.7609	0.6604	0.4955	0.6307	0.5463	0.356	0.266
Img + redetected edge model (redetect in	nference)									
Substitute model on clean images	0.9381	0.9335	0.9326	0.7513	0.7431	0.7388	0.8104	0.7966	0.008	0.008
Substitute model on adversarial images	0.89	0.5696	0.0989	0.6538	0.3663	0.08	0.2879	0.1988	0.004	0.002
Robust model on clean images	0.9742	0.9699	0.9681	0.7891	0.7746	0.7617	0.8456	0.8328	0.495	0.482
Robust model on adversarial images	0.9583	0.9283	0.9216	0.7392	0.664	0.6115	0.7032	0.5684	0.380	0.170

Img + edge model (redetect inference)										
Substitute model on clean images	0.9391	0.9344	0.9257	0.7531	0.7408	0.7303	0.756	0.194	0.008	0.006
Substitute model on adv. images	0.8906	0.4455	0.0196	0.6473	0.2745	0.0096	0.020	0.003	0.000	0.000
Robust model on clean images	0.9782	0.9751	0.9654	0.7938	0.7652	0.7442	0.788	0.179	0.395	0.157
Robust model on adv. images	0.9599	0.9132	0.8039	0.7336	0.6289	0.6068	0.504	0.152	0.242	0.018
Robust model on substitute adv. images	0.9667	0.9477	0.9079	0.7603	0.6656	0.4263	0.646	0.170	0.352	0.103
Img + redetected edge model (redetect i	nference)									
Substitute model on clean images	0.9385	0.9363	0.9329	0.7503	0.7471	0.7415	0.804	0.730	0.008	0.008
Substitute model on adv. images	0.8888	0.4617	0.0211	0.6458	0.2687	0.01	0.016	0.000	0.000	0.000
Robust model on clean images	0.975	0.9732	0.9682	0.7998	0.7793	0.7715	0.834	0.766	0.425	0.328
Robust model on adv. images	0.9581	0.9449	0.9386	0.7435	0.6943	0.6902	0.662	0.375	0.206	0.074
Robust model on substitute adv. images	0.9665	0.9575	0.9417	0.7661	0.681	0.5037	0.767	0.700	0.380	0.279

PGD-40

C Robustness against Carlini-Wagner (CW) and Boundary attacks

Performance of our method against l_2 CW attack [3] on MNIST dataset is shown in Table 16. To make experiments tractable, we set the number of attack iterations to 10. With even 10 iterations, the original Edge and Img models are severely degraded. Img2Edge and Img+(Edge Redetect) models, however, remain robust. Adversarial training with CW attack results in robust models in all cases.

Performance of the the EAT defense against the l_2 Carlini-Wagner attack [3] with the following parameters:

attack = CW(net, targeted=False, c=1e-4, kappa=0, iters=10, lr=0.001)

	Orig. r	nodel	Robust	model	Average
	0/clean	adv.	0/clean	adv.	Rob. models
Edge	0.964	0.106	0.948	0.798	0.873
Img2Edge	,,	0.962	,,	0.949	0.949
Img	0.973	0.103	0.949	0.856	0.903
Img+Edge	0.972	0.097	0.945	0.845	0.895
Redetect	,,	0.971	"	0.942	0.944
Img + l	Redetected Ed	ge	0.947	0.819	0.883
	Redetect		,,	0.946	0.946

Table 16: Robustness against Carlini-Wagner (CW) and Boundary attacks

D Robustness against Boundary attack

Results against the decision-based Boundary attack [1] over MNIST and Fashion MNIST datasets are shown below. Edge, Img, and Img+Edge models perform close to zero over adversarial images. Img+(Edge Redetect) model remains robust since the Canny edge map does not change much after the attack, as is illustrated in Fig. 6.

Performance of the the edge augmented model against the Boundary attack [1] with the following parameters:

	0	rig. model
	0/clean	adv. (boundary)
Edge	0.964	0.000
Img	0.973	0.003
Img+Edge	0.972	0.000
Redetect	,,	0.945
Img+Redetected Edge (adversarially trained using FGSM $\epsilon = 8/255$)	0.974	0.001
Redetect	"	0.965

Table 18: Results over 500 images from the Fashion MNIST dataset

	0	rig. model
	0/clean	adv. (boundary)
Edge	0.776	0.005
Img	0.798	0.018
Img+Edge	0.809	0.003
Redetect	,,	0.747
Img+Redetected Edge (adversarially trained using FGSM $\epsilon = 8/255$)	0.789	0.003
Redetect	,,	0.770

Fashion MNIST

Figure 6: Sample images from the Boundary attack.

E Robustness against adaptive attacks

E.1 Robustness against adaptive attacks over Imagenette2-160 dataset

We use the PyTorch implementation³ of the HED edge detector proposed by [15]. Here, a classifier is first trained on top of the edge maps from the HED. Then, the entire pipeline (Img \longrightarrow HED \longrightarrow Classifier^{*HED*}) is attacked to generate an adversarial image. The performance of this classifier is measured on both clean and adversarial images. The adversarial image is also fed to the classifier trained on Canny edge maps (i.e., Img^{adv-HED} \longrightarrow Canny \longrightarrow Classifier^{*Canny*}). Results are shown in Table below. As it can be seen, adversarial examples crafted for HED fail to completely fool the model trained on Canny edges (i.e., they do not transfer).

Table 19: Results over 500 images from the Imagenette2-160 dataset against the FGSM and PGD-5 ($\epsilon = 8/255$) attacks.

		Orig. mod	lel
	0/clean	adv. (FGSM)	adv. (PGD-5)
Img2Edge (Img \longrightarrow HED \longrightarrow Classifier ^{<i>HED</i>})	0.793	0.052	0.003
Img2Edge (Img ^{<i>adv</i>-<i>HED</i>} \longrightarrow Canny \longrightarrow Classifier ^{<i>Canny</i>})	0.767	0.542	0.548

Figure 7: Two sample adversarial images (FGSM) along with their edge maps using HED and Canny edge detection methods.

E.2 Robustness against adaptive attacks over MNIST dataset

Here, we attempt to explicitly approximate the Canny edge detector using a differentiable convolutional autoencoder. In our pipeline, a classifier (CNN) is stacked after the convolutional autoencoder (with sigmoid output neurons). We first freeze the classifier and train the autoencoder using the MSE loss with (input, output) pair being (image, canny edge map). We then freeze the autoencoder and train the classifier using Cross Entropy loss. After training the network, we then craft adversarial examples for it and feed them to a classifier trained on

³https://github.com/sniklaus/pytorch-hed

Canny edges (original models or robust models as was mentioned in the main text). Fig. 8 shows the pipeline and some sample approximated edge maps. Fig. 9 shows the architecture details in PyTorch.

The top panel in Fig. 10 shows results using the FGSM and PGD-40 attacks against the pipeline itself, and also against the Img2Edge model (trained over clean edges or adversarial ones⁴). As can be seen, both attacks are very successful against the pipeline but they do not perform well against the Canny edge map classifier (i.e., crafted adversarial examples for the pipeline do not transfer well to the Img2Edge trained over Canny Edge map; img \rightarrow Canny \rightarrow class label). Notice, that here we only used the model trained on edge maps. It is likely to gain even better robustness against the adaptive attacks in using the img+edge+redetect.

The bottom panel in Fig. 10 shows sample adversarial digits (constructed using the adaptive attack) and their edge maps under the FGSM and PGD-40 attacks. Notice how PGD-40 attack preserves the edges (compered to FGSM). This is because it needs less perturbation to fool the classifier. Also, notice that the perturbations shown are perceptible which results in edges maps having noise. If we limit ourselves to imperceptible perturbations, then edge maps will not change much compared to the original edge maps on clean images.

Freeze the CNN (requires_grad = False) and train the AutoEncoder
 Freeze the AutoEncoder (requires_grad = False) and train the CNN
 Unfreeze all the network (requires_grad = True) and attack it

4. Feed the adeversarial image to a CNN trained with Canny edge maps

Figure 8: Top: our pipeline to approximate the Canny edge detector and our approach for crafting adversarial examples, Bottom: Sample digits and their generated edge maps.

⁴Here we used the model adversarially trained at eps=8/255 and test it against other perturbations; unlike the main text where we trained robust models separately for each epsilon.

```
# combined network
# LeNet Model definition
class MNIST_Net_combined(nn.Module):
   def __init__(self, net_type='gray'):
        super(MNIST_Net_combined, self).__init__()
        self.encoder = nn.Sequential( # like the Composition layer you built
            nn.Conv2d(1, 16, 3, stride=2, padding=1),
            nn.ReLU(),
           nn.Conv2d(16, 32, 3, stride=2, padding=1),
            nn.ReLU(),
            nn.Conv2d(32, 64, 7)
        )
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(64, 32, 7),
            nn.ReLU(),
            nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1),
            nn.ReLU(),
            nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1),
            nn.Sigmoid()
        )
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
    def forward(self, x):
       z = self.encoder(x)
       x_auto = self.decoder(z) # reconstructed egde
       x_auto = x_auto.view(x_auto.shape[0],1, 28,28)
       x = F.relu(F.max_pool2d(self.conv1(x_auto), 2))
       x = F.relu(F.max pool2d(self.conv2 drop(self.conv2(x)), 2))
       x = x.view(-1, 320)
       x = F.relu(self.fc1(x))
       x = F.dropout(x, training=self.training)
       x = self.fc2(x)
       return x, x_auto
```

Figure 9: PyTorch code of our pipeline shown in Fig 8.

Figure 10: Top: Performance of the adaptive attack, Bottom: Samples adversarial images and their edge maps using the Canny edge detector.

F Sample generated images by the conditional GAN in GAN-based Shape Defense (GSD)

MNIST Lons-50 CIFAR-10 9 9 9 10</t

GSD: Regular training

GSD: Training over adversarial images

Figure 11: Top) GSD with a classifier trained on images generated (by pix2pix) only from the edge maps of the clean images, Bottom) GSD with edge maps derived from adversarial examples. Columns from left to right: adversarial images by the FGSM attack, their edge maps, and generated images by pix2pix.

G Shape-based extensions of vanilla PGD adversarial training, free adversarial training (FreeAT), and fast adversarial training (FastAT) algorithms

Algorithm 3 Shape-based PGD adversarial training for T epochs, given some radius ϵ , adversarial step size α and N PGD steps and a dataset of size M for a network f_{θ} . $\beta \in \{edge, img, imgedge\}$ indicates the net_type and redetect_train mean edge redetection during training.

for $t = 1 \dots T$ do for $i = 1 \dots M$ do // Perform PGD adversarial attack $\delta = 0$ // or randomly initialized for $j = 1 \dots N$ do $\delta = \delta + \alpha \cdot \operatorname{sign}(\nabla_{\delta}\ell(f_{\theta}(x_i + \delta), y_i)))$ $\delta = \max(\min(\delta, \epsilon), -\epsilon)$ end for $\tilde{x}_i = x_i + \delta$ if redetect_train & $\beta ==$ imgedge then $\tilde{x}_i = \operatorname{detect_edge}(\tilde{x}_i)$ // recompute and replace the edge map end if $\theta = \theta - \nabla_{\theta}\ell(f_{\theta}(\tilde{x}_i), y_i)$ // Update model weights with some optimizer, e.g. SGD end for end for

Algorithm 4 Shape-based "Free" adversarial training for T epochs, given some radius ϵ , N minibatch replays, and a dataset of size M for a network f_{θ} . $\beta \in \{edge, img, imgedge\}$ indicates the net_type and redetect_train mean edge redetection during training.

 $\delta = 0$ // Iterate T/N times to account for minibatch replays and run for T total epochs for t = 1 ... T/N do for $i = 1 \dots M$ do // Perform simultaneous FGSM adversarial attack and model weight updates T times for $j = 1 \dots N$ do $\tilde{x}_i = x_i + \delta$ if redetect_train & $\beta ==$ imgedge then $\tilde{x}_i = \text{detect_edge}(\tilde{x}_i)$ // recompute and replace the edge map end if // Compute gradients for perturbation and model weights simultaneously $\nabla_{\delta}, \nabla_{\theta} = \nabla \ell(f_{\theta}(\tilde{x}_i), y_i)$ $\delta = \delta + \epsilon \cdot \operatorname{sign}(\nabla_{\delta})$ $\delta = \max(\min(\delta, \epsilon), -\epsilon)$ $\theta = \theta - \nabla_{\theta} // Update model weights with some optimizer, e.g. SGD$ end for end for end for

Algorithm 5 Shape-based FGSM adversarial training for T epochs, given some radius ϵ , N PGD steps, step size α , and a dataset of size M for a network f_{θ} . $\beta \in \{edge, img, imgedge\}$ indicates the net_type and *redetect_train* mean edge redetection during training.

```
for t = 1 ... T do

for i = 1 ... M do

// Perform FGSM adversarial attack

\delta = \text{Uniform}(-\epsilon, \epsilon)

\delta = \delta + \alpha \cdot \text{sign}(\nabla_{\delta}\ell(f_{\theta}(x_i + \delta), y_i)))

\delta = \max(\min(\delta, \epsilon), -\epsilon)

\tilde{x}_i = x_i + \delta

if redetect_train & \beta == imgedge then

\tilde{x}_i = \text{detect\_edge}(\tilde{x}_i) // recompute and replace the edge map

end if

\theta = \theta - \nabla_{\theta}\ell(f_{\theta}(\tilde{x}_i), y_i) // Update model weights with some optimizer, e.g. SGD

end for

end for
```

	R	un 1	R	un 1	Run 1		Av	/erage	
Model	Clean	PGD-10	Clean	PGD-10	Clean	PGD-10	Clean	PGD-10	
Edge	0.559	0.384	0.581	0.187	0.608	0.586	0.582	0.386	
RGB	0.813	0.368	0.598	0.205	0.889	0.569	0.767	0.381	
Img + Edge	0.863	0.590	0.882	0.334	0.878	0.878	0.874	0.386	
Redetect	"	0.593	"	0.341	"	0.245	"	0.393	
RGB + Redet. Edge	0.892	0.001	0.817	0.115	0.889	0.105	0.866	0.074	
Redetect	"	0.265	,,	0.656	,,	0.326	"	0.416	

Table 20: Performance of the Fast Adversarial Training (FastAT) method over three runs.

Table 21: Performance of the Free Adversarial Training (FreeAT) method over three runs.

	Run 1		Run 1		Run 1		Average	
Model	Clean	PGD-10	Clean	PGD-10	Clean	PGD-10	Clean	PGD-10
Edge	0.674	0.672	0.704	0.702	0.660	0.659	0.679	0.678
RGB	0.783	0.450	0.768	0.450	0.772	0.447	0.774	0.449
Img + Edge	0.784	0.432	0.779	0.447	0.782	0.448	0.782	0.442
Redetect	"	0.447	,,	0.448	"	0.449	"	0.448
RGB + Redet. Edge	0.776	0.451	0.776	0.454	0.780	0.447	0.777	0.451
Redetect	"	0.452	,,	0.456	,,	0.448	"	0.452

H Analysis of parameter α in Alg. 1 (EAT defense)

	Rob. model (8)		Rob. model (32)		Rob. model (64)		Average	
ϵ	0/clean	8	0/clean	32	0/clean	64	Rob. models	
FGSM								
Img+Edge	0.963	0.938	0.959	0.869	0.931	0.684	0.891	
Redetect	"	0.943	"	0.887	,,	0.727	0.902	
Img + Redetected Edge	0.963	0.936	0.944	0.588	0.937	0.030	0.733	
Redetect	"	0.948	,,	0.911	,,	0.916	0.937	
PGD-40								
Img+Edge	0.966	0.940	0.960	0.859	0.928	0.607	0.877	
Redetect	"	0.946	,,	0.883	"	0.657	0.890	
Img + Redetected Edge	0.963	0.933	0.947	0.469	0.936	0.000	0.708	
Redetect	"	0.946	,,	0.913	,,	0.915	0.937	

Table 22: Results (Top-1 acc.) over MNIST corresponding to $\alpha = 0$ (i.e., adversarial training only on adversarial examples taking part in the loss function). See also Table 1 in the main text.

Table 23: Results (Top-1 acc.) over Fashion MNIST corresponding to $\alpha = 0$ (i.e., adversarial training only on adversarial examples taking part in the loss function). See also Table 3 in the main text.

	Rob. mo	odel (8)	Rob. model (32)		Rob. model (64)		Average	
ϵ	0/clean	8	0/clean	32	0/clean	64	Rob. models	
FGSM								
Img+Edge	0.756	0.701	0.732	0.619	0.683	0.487	0.663	
Redetect	"	0.707	,,	0.635	,,	0.481	0.666	
Img + Redetected Edge	0.768	0.705	0.739	0.481	0.693	0.040	0.571	
Redetect	"	0.727	,,	0.660	,,	0.635	0.704	
PGD-40								
Img+Edge	0.768	0.702	0.749	0.573	0.718	0.432	0.657	
Redetect	"	0.714	,,	0.593	,,	0.510	0.675	
Img + Redetected Edge	0.778	0.702	0.762	0.414	0.750	0.001	0.568	
Redetect	"	0.725	,,	0.632	,,	0.615	0.710	