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Abstract

Humans rely heavily on shape information to recognize objects. Conversely,
convolutional neural networks (CNNs) are biased more towards texture. This fact
is perhaps the main reason why CNNs are susceptible to adversarial examples.
Here, we explore how shape bias can be incorporated into CNNs to improve
their robustness. Two algorithms are proposed, based on the observation that
edges are invariant to moderate imperceptible perturbations. In the first one, a
classifier is adversarially trained on images with the edge map as an additional
channel. At inference time, the edge map is recomputed and concatenated to the
image. In the second algorithm, a conditional GAN is trained to translate the edge
maps, from clean and/or perturbed images, into clean images. The inference is
done over the generated image corresponding to the input’s edge map. A large
number of experiments with more than 10 data sets demonstrate the effectiveness
of the proposed algorithms against FGSM, ¢, PGD, Carlini-Wagner, Boundary,
and adaptive attacks. Further, we show that edge information can a) benefit
other adversarial training methods, b) be even more effective in conjunction with
background subtraction, c¢) be used to defend against poisoning attacks, and d) make
CNNs more robust against natural image corruptions such as motion blur, impulse
noise, and JPEG compression, than CNNss trained solely on RGB images. From
a broader perspective, our study suggests that CNNs do not adequately account
for image structures and operations that are crucial for robustness. The code is
available at: https://github.com/aliborji/ShapeDefense.git

1 Introduction

The convolution operation in CNNs is biased towards capturing texture since the number of pixels
constituting texture far exceeds the number of pixels that fall on the object boundary. This in turn
provides a big opportunity for adversarial image manipulation. Some attempts have been made to
emphasize more on edges, for example by utilizing normalization layers (e.g., contrast and divisive
normalization [9]]). Such attempts, however, have not been fully investigated for adversarial defense.
Overall, how shape and texture should be reconciled in CNNs continues to be an open question. Here
we propose two solutions that can be easily implemented and integrated in existing defenses. We
also investigate possible adaptive attacks against them. Extensive experiments across ten datasets,
over which shape and texture have different relative importance, demonstrate the effectiveness of our
solutions against strong attacks. Experiments on more than 10 data sets demonstrate the effectiveness
of the proposed algorithms against FGSM, ¢, PGD, substitute, Carlini-Wagner, Boundary, and
adaptive attacks (the latter are shown in appendices B, C, D, and E in order).

2 Proposed methods

Edge-guided Adversarial Training (EAT). In this approach, we perform adversarial training over
the 2D (Gray+Edge) or 4D (RGB+Edge) input (i.e., number of channels; denoted as Img+Edge).
Please see Appx A for illustration of this algorithm (Alg. 1). In another version of the algorithm,
first, for each input (clean or adversarial), the old edge map is replaced with the newly extracted one.
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Figure 1: Adversarial attacks against ResNet152 over the giant panda image using FGSM [3]], PGD-40
(a=8/255), DeepFool [12] and Carlini-Wagner [3] attacks. The second columns in panels show the difference
(L) between the original image (not shown) and the adversarial one (values shifted by 128 and clamped). The
edge map (using Canny edge detector) remains almost intact at small perturbations. Notice that edges are better
preserved for the PGD-40.

Algorithm 1 Edge-guided adversarial training (EAT) for T" epochs, perturbation budget ¢, and loss balance ratio
v, over a dataset of size M for a network fy (performed in minibatches in practice). 8 € {edge, img, imgedge}
indicates network type and redetect_train means edge redetection during training.

fort=1...T do
fori=1...Mdo
// launch adversarial attack (here FGSM and PGD attacks)
Z; = clip(z; + € sign(V.(fo(z:), yi)))
if 8 == imgedge & redetect_train then
Z; = detect_edge(Z;) // recompute and replace the edge map
end if
C=al(fo(xi),yi) + (1 —a)l(fo(Zi),y:) / herea=0.5
0 =60—YNol //update model weights with some optimizer, e.g., Adam
end for
end for

The edge map can be computed from the average of only image channels or all available channels
(i.e., image plus edge). The latter can sometimes improve the results, since the old edge map, although
perturbed, still contains unaltered shape structures. Then, adversarial training is performed over the
new input. The reason behind adversarial training with redetected edges is to expose the network to
possible image structure damage. The loss for training is a weighted combination of loss over clean
images and loss over adversarial images. At inference time, first, the edge map is computed and then
classification is done over the edge-augmented input. As a baseline model, we also consider first
detecting the input’s edge map and then feeding it to the model trained on the edges for classification.
We refer to this model as Img2Edge.

GAN-based Shape Defense (GSD). Here, first, a conditional GAN is trained to map the edge
image, from clean or adversarial images, to its corresponding clean image (Alg. 2). Any im-
age translation method (here pix2pix by [7] using code at https://github.com/mrzhu-cool/
pix2pix-pytorch) can be employed for this purpose. Next, a CNN is trained over the generated
images. At inference time, first, the edge map is computed and then classification is done over the
generated image for this edge image. The intuition is that the edge map remains nearly the same
over small perturbation budgets (See Appx A). Notice that conditional GAN can also be trained on
perturbed images (similar to [14] and [10] or edge-augmented perturbed images (similar to above).

3 Experiments and results
3.1 Datasets and Models

Experiments are spread across 10 datasets covering a variety of stimulus types. Sample images from
datasets are given in Fig.[2] Models are trained with cross-entropy loss and Adam optimizer [8] with
a batch size of 100, for 20 epochs over MNIST and FashionMNIST, 30 over DogVsCat, and 10 over
the remaining. Canny method is used for edge detection over all datasets, except DogBreeds
for which Sobel edge detection is used. Edge detection parameters are separately adjusted for
each dataset. We did not carry out an exhaustive hyperparameter search, since we are interested in
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Algorithm 2 GAN-based shape defense (GSD)

// Training
1. Create a dataset of images X = {;,;}*=!"" including clean and/or perturbed images
2. Extract edge maps (e;) for all images in the dataset
3. Train a conditional GAN p,(z|e) to map edge image e to clean image x // here pix2pix
4. Train a classifier p.(y|z) to map generated image x to class label y

// Inference
1. For input image z, clean or perturbed, first compute the edge image e
2. Then, compute p.(y|z’) where z’ is the generated image corresponding to e

additional benefits edges may bring rather than training the best possible models. For attacks, we use
https://github.com/Harry24k/adversarial-attacks-pytorch, except Boundary attack for which
we use https://github.com/bethgelab/foolbox.

3.2 Results
3.2.1 Edge-guided Adversarial Training
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1onMNIST, robust models trained using edges outperform models trained on gray-level images
(the last column). The naturally trained models, however, perform better using gray-level images than
edge maps (Orig. model column). Adversarial training with augmented inputs improves the robust-
ness significantly over both datasets, except the FGSM attack on FashionMNIST. Over CIFAR-10,
incorporating the edges improves the robustness by a large margin against the PGD-40 attack. At
€ = 32/255, the performance of the robust model over clean and perturbed images is raised from
(0.316, 0.056) to (0.776, 0.392). On average, the robust model shows 64% improvement over the
RGB model (last column in Table 2). Over the TinyImageNet dataset, as in CIFAR-10, classification
using edge maps is poor perhaps due to the background clutter. Nevertheless, incorporating edges
improves the results. We expect even better results with more accurate edge detection algorithms
(e.g., supervised deep edge detectors). Over these 4 datasets, the final model (i.e., adversarial training
using image + redetected edge, and edge redetection at inference time) leads to the best accuracy.
The improvement over the image is more pronounced at larger perturbations, in particular against the
PGD-40 attack (as expected; please see Fig. [I)).

Over the DogVsCat dataset, as in FashionMNIST, the model trained on the edge map is much more
robust than the image-only model (Table 6 in Appx. A). Over the DogBreeds dataset, utilizing edges
does not improve the results significantly (compared to the image model). The reason could be that
texture is more important than shape in this fine-grained recognition task (Table 7 Appx. A). Over
GTSRB, Icons-50, and Sketch datasets, image+edge model results in higher robustness than the
image-only model, but leads to relatively less improvement compared to the edge-only model. Please
see Tables 8, 10, and 12. Over the Imagenette2-160 dataset (Table 14), classification using images
does better than edges since the texture is very important on this dataset.

Average results over 10 datasets is presented in Fig. [3| (left panel). Combining shape and texture (full
model) leads to a substantial improvement in robustness over the texture alone (5.24% improvement
against FGSM and 28.76% imp. against PGD-40). Also, image+edge model is slightly more robust
than the image-only model. Computing the edge map from all image channels improves the results
on some datasets (e.g., GTSRB and Sketch) but hurts on some others (e.g., CIFAR-10) as shown
in Appx. A. The right two panels in Fig. [3|show a comparison of natural (Orig. model column in
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Figure 3: Left) Average results of the EAT defense on all datasets (last cols. in tables). Middle and Right)
Comparison of natural (Orig. model column; solid lines) vs. adversarial training averaged over all datasets.

tables; solid lines) vs. adversarial training. Natural training with image+edge and redetection at
inference time leads to enhanced robustness with little to no harm to standard accuracy. Despite the
Edge model only being trained on edges from clean images, the Img2Edge model does better than
other naturally-trained models against attacks. The best performance, however, belongs to models
trained adversarially. Notice that our results set a new record on adversarial robustness on some of
these datasets even without exhaustive parameter searclﬂ

Robustness against Carlini-Wagner (CW) and Boundary attacks. Performance of our method
against [ CW attack on MNIST dataset is shown in Appx. C. To make experiments tractable, we set
the number of attack iterations to 10. With even 10 iterations, the original Edge and Img models are
severely degraded. Img2Edge and Img+(Edge Redetect) models, however, remain robust. Adversarial
training with CW attack results in robust models in all cases.

Results against the decision-based Boundary attack [1]] are shown in Appx. D over MNIST and
Fashion MNIST datasets. Edge, Img, and Img+Edge models perform close to zero over adversarial
images. Img+(Edge Redetect) model remains robust since the Canny edge map does not change
much after the attack, as is illustrated in Fig. 6.

Robustness against substitute model attacks. Following [[13]], we trained substitute models to
mimic the robust models (with the same architecture but with RGB channels) using the cross-entropy
loss over the logits of the two networks, for 5 epochs. The adversarial examples crafted for the
substitute networks were then fed to the robust networks. Results are shown in italics in Tables 1, 2, 3
and 4 (performed only against the edge-redetect models). We find that this attack is not able to knock
off the robust models. Surprisingly, it even improves the accuracy in some cases. Please refer to
Appx. B for more details.

Robustness against adaptive attacks. So far we have been using the Canny edge detector which is
non-differentiable. What if the adversary builds a differentiable edge detector to approximate the
Canny edge detector and then utilizes it to craft adversarial examples? To study this, we run two
experiments. In the first one, we build the following pipeline using the HED deep edge detector [15]:
Img — HED — Classifier P A CNN classifier (as above) is trained over the HED edges on the
Imagenette2-160 dataset (See Appx. E). Attacking this classifier with FGSM and PGD-5 (¢ = 8/255)
completely fools the network. The original classifier (Img2Edge here) trained on Canny edges,
however, is still largely robust to the attacks (i.e., Img®@~H#EDP _ Canny — Classifier®®"™) as
shown in Table 19. Notice that the HED edge maps are continuous in the range [0,1], whereas Canny
edge maps are binary, which may explain why it is easy to fool the HED classifier (See Fig. 7).

Above, we used an off the shelf deep edge detector trained on natural scenes. As can be seen in Appx.
E, its generated edge maps differ significantly from Canny edges. What if the adversary trains a
model with the (input, output) pair as (input image, Canny edge map) to better approximate the Canny
edge detector? In experiment two, we investigate this possibility. We build a pipeline consisting of a
convolutional autoencoder followed by a CNN on MNIST. Details regarding architecture and training
procedure are given in Appx. E. As results in Fig. 10 reveal, FGSM and PGD-40 attacks against
the pipeline are very effective. Passing the adversarial images through Canny and then a trained
(naturally or adversarially) classifier on Canny edges (i.e., Img2Edge), still leads to high accuracy,
which means that transfer was not successful. We attribute this feat to the binary output of Canny.
Two important point deserve attention. First, here we used the Img2Edge model, which as shown
above, is less robust compared to the full model (i.e., img+edge and redetection). Thus, adaptive

Ief. [6]; the best robust accuracy on CIFAR-10 against PGD attack, ¢~ of size 8/255, is about 67%.



attacks may be even less effective against the full model. Second, proposed methods perform better
when edge map is less disturbed. For example, as shown in Fig. 10 (bottom), the PGD-40 adaptive
attack is less effective against the shape defense since edges are preserved better.

Analysis of parameter . By setting o = 0, the network will be exposed only to adversarial
examples (Alg. 1), which is computationally more efficient. However, it results in lower accuracy
and robustness compared to when o = 0.5, which means exposing the network to both clean and
adversarial images is important (See Table 22; Appx. H). Nevertheless, here again incorporating
edges improves the robustness significantly compared to the image-only case.

Speculation behind effectiveness of this method. The main reason is that the edge map acts as a
checksum, and the network learns (through adversarial training) to rely more on the redetected edges
when other channels are misleading. This aligns with prior observations such as shortcut learning
in CNNs [4]. Also, our approach resembles adversarial patch or backdoor/trojan attacks where the
goal is to fool a classifier by forcing it to rely on irrelevant cues. Conversely, here we use this trick
to make a model more robust. Also, the Img2Edge model can purify the input before classifying it.
Any adaptive attack against the EAT defense has to alter the edges which most likely will result in
perceptible structural damages.

3.2.2 GAN-based Shape defense

We trained the pix2pix model for 10 epochs over MNIST and FashionMNIST datasets, and for 100
epochs over Icons-50 dataset. Sample generated images are shown in Fig. 11 (Appx. F). A CNN
(same architecture as before) was trained for 10 epochs to classify the generated images. Results are
shown in Fig. ] The model trained over the images generated by pix2pix (solid lines in the figure) is
compared to the model trained over the original clean training set (denoted by the dashed lines). Both
models are tested over the clean and perturbed versions of the original test sets of the four datasets.
Over MNIST and FashionMNIST datasets, GSD performs on par with the original model on clean
test images. It is, however, much more robust than the original model against the attacks. When we
trained the pix2pix over the edge maps from the perturbed images, the new CNN models became
even more robust (stars in Fig. 4} top panels). We expect even better results with training over edge
maps from both intact and perturbed image

10
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Speculation behind effectiveness of

this method. The main reason is that cGAN learns a function f that is invariant to adversarial
perturbations. Since the edge map is not completely invariant to (especially large) perturbations,
one has to train the cGAN on the augmented dataset composed of clean and perturbed images. One
advantage of this approach is it computational efficiency since there is no need for adversarial training.
Any adaptive attack against this defense has to fool the cGAN which is perhaps not feasible since it
will be noticed from the generated images (i.e., cGAN will fail to generate decent images).

4 Summary and Discussion

Two algorithms are proposed to use shape bias and background subtraction to strengthen CNNs and
defend against adversarial attacks and backdoor attacks. To fool these defenses, one has to perturb
the image such that the new edge map is significantly different from the old one while preserving
image shape and geometry, which does not seem to be trivial at low perturbation budgets. Our results
without exhaustive parameter search (model architecture, epochs, edge detection, cGAN training,
etc.) are very promising. Comparison with other more complicated defenses remains to be done.

2Similarly, the edge map classifier used in the Img2Edge model in the previous section (EAT defense) can be
trained on edge maps from both clean and adversarial examples to improve performance.
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