
A Example to further motivate surprise

Imagine you are given a network which has been trained to classify different Ford car models outdoors
(in green pastures), and asked to classify pictures of these same models indoors (in a showroom).
Intuitively, most of the learned function is still valid so only a small number of parameters need to be
tweaked, requiring only a small number of indoor examples to do so. Perhaps tweaking parameters
in the first layer would be sufficient, re-extracting the same features from e.g. the darker pixels of
indoor images as were previously extracted from the outdoor images. Similarly, if you were asked
to classify pictures of Fiat cars, you may expect that only a small number of parameters need to
be adapted (likely in later layers this time), perhaps adjusting the (conceptual) wheel and mirror
detectors for the smaller wheels and more rounded mirrors of Fiats. However, as we discuss in
Section 2, minimizing a standard loss function (e.g. cross-entropy) with stochastic gradient descent
(SGD) does not result in such intuitive updates—all of the network’s parameters are updated and
learnt structure is unnecessarily destroyed. These gradients tell us which parameters can reduce the
error, but not which parameters should reduce the error in order to maximally-transfer knowledge
and thus speed-up learning. Doing so requires additional information—such as unit-level surprise.

B Implementation details

B.1 Data

Figure 4: EMNIST-DA shifts. Figure adopted from [9].

Our networks are trained using the 47-class EMNIST dataset [7] (“identity” shift in Figure 4). We
use 2000 samples per class from the training split with the remaining 400 forming a validation set,
we report results on the separate test set also containing 400 examples per class.

We adapt to 10 new data distributions—7 low-level shifts from EMNIST-DA [9] and 3 high-level
label shifts. From the 14 EMNIST-DA shifts depicted in Figure 4, we chose 7 shifts that adversely
affect accuracy (without adaptation) and intuitively affect the early convolutional filters: crystals, fog,
gaussian blur, grass, impulse noise, sky and stripe. To create the 3 label shifts, we train our networks
on only the first 37 classes of EMNIST and then choose 5 of the 10 unseen classes three times from the
range [38, 47] to arrive at: H1:[38, 39, 40, 41, 42], H2:[43, 44, 45, 46, 47], and H3:[38, 40, 42, 44, 46].

To evaluate sample efficiency we run experiments with varying amounts of data, we experiment with
using 2, 5, 10, 20 and 50 samples per class as well as using all the data (2000 samples per class). The
full results of these experiments are given in Appendix E.

B.2 Experimental setup

Table 3 provides the architectural details of the simple 5-layer convolutional neural network (CNN)
that we use. During pre-training we use dropout between the layers, for adaptation we do not as it
unnecessarily complicates the propagation of surprise and makes little difference to the final results.

During pre-training and adaptation we use a batch size of 256. We pre-train for 150 epochs with
a learning rate of 0.01. Due to using small amount of data, during adaptation we train with early
stopping for a maximum of 100 epochs using a patience of 10. We use a learning rate of 0.1 for all
experiments except for when fine-tuning all layers simultaneously which requires a learning rate

9

of 0.01 to prevent divergence. We optimize using stochastic gradient descent with momentum set
to 0.9. For experiments using our update rule the thresholds α and β in Equation 3 are set to 0.01.
Experiments are run over 3 seeds from which we report a mean and one standard deviation.

Table 3: Architecture of the CNN used. For conv. layers, the weights-shape is: num. input channels
× num. output channels × filter height × filter width.

Layer Weights-Shape Stride Padding Activation Dropout Prob.
Conv 3× 64× 5× 5 2 2 ReLU 0.1

Conv 64× 128× 3× 3 2 2 ReLU 0.3

Conv 128× 256× 3× 3 2 2 ReLU 0.5

FC 6400× 128 N/A N/A ReLU 0.5

FC 128× 47 N/A N/A Softmax 0

B.3 Measuring unit-level surprise

A single unit in a feed-forward neural network outputs an activation a = g(wTh+ b), where h is the
hidden unit activations of the previous layer, w the learned weight vector, b the learned bias and g some
non-linearity. During training a unit can store a distribution P (A) which captures the distribution
that its activation can take. A unit is surprised by new data if the activation distribution changes,
i.e. P (A) 6= Q(A), where Q(A) is the distribution of the unit’s activations under the new data. We
quantify surprise using the KL-divergence from P (A) to Q(A), i.e. s(A) = DKL(Q(A)||P (A)) [19,
26].3

The surprisal (or information content) of an event X = x, with X ∼ P (X), is given by log(1/P (x)).
Intuitively, this quantity represents how “surprised” we are to see X = x, with unlikely events
having high surprisal. Surprise itself is a somewhat overloaded term but can be used to describe the
entropy, H(X) = −

∑
P (x) logP (x), that is the expected surprisal. If we now receive a sample of

a different random variable Y = y, Y ∼ Q(Y), but we have assumed as a prior that we are receiving
samples from P (X), the amount of additional surprisal we receive on account of our assumption
is log(1/P (X = y)) − log(1/Q(Y = y)). The expected value of this quantity over Q is the KL-
Divergence DKL(Q||P) [22], which is the expected surprisal of receiving samples from Q when we
have assumed the distribution to be P . We can also interpret DKL(Q||P) = H(Q,P)−H(Q) as
the expected extra message-length per datum that must be communicated if a code that is optimal for
P is used to communicate Q, compared to a code that is optimal for Q. We have seen this quantity
referred to as Bayesian surprise, information gain, asymmetric surprise or simply surprise [10, 19].
Throughout this work we refer to this quantity as surprise for simplicity.

B.4 Calculating surprise from bin counts

After pre-training we parameterize activation distributions with softly-binned histograms. To calculate
P (A) we run one further forward-pass of the network over the training data and bin the activations
using the same procedure as in [9], with 10 bins, which outputs 10 normalized bin counts πp

1 , . . . π
p
10

for each unit. πp
i represents the probability a falls into bin i and

∑10
i=1 π

p
i = 1. The blue curves in

Fig. 5 depict examples of such distributions. These distributions can be considered as representing
the “normal” activation values of a unit, i.e. the values it expects to take on.

We then receive some data from a new distribution, possibly the same as the pre-training data
distribution, which is fed into the network. During adaptation we can parameterize Q(A) in the same
way as P (A), using a batch of this new data (Fig. 5–orange curves) to calculate normalized bin counts
πq
1, . . . π

q
10 which change as the network learns. The surprise for a unit can then be calculated as

s(A) = DKL

(
Q(A; {πq

i }
10
i=1) || P (A; {πp

i }
10
i=1)

)
=

10∑
i=1

πq
i log

πq
i

πp
i

. (1)

3For convolutions, when creating P (A) and Q(A) we take each spatial location of a feature map to be one
sample of the activation, a.

10

Figure 5: Examples of our histogram parameterizations of P (A), in blue, andQ(A), in orange. When
new data is received, the activation distribution changes. From left to right, the surprise values s(A)
are approximately 0.1, 0.2, 0.3, 0.4.

B.5 A surprise-based update rule

Let pi denote the surprise of “parent” unit i in layer l, cj the surprise of “child” unit j in layer l + 1,
and wij the weight that connects parent unit i with child unit j. This setup is depicted in Fig. 6 below.

p1

p2

p3

c1
w11

w21
w31

Figure 6: Update rule schematic. The highlighted weights update only if the aggregate parent surprise
p̄1 is below some threshold β and the child surprise c1 is above some threshold α.

For child unit j, we calculate its aggregate parent surprise p̄j as a weighted average of its parent
surprises. More specifically, we calculate

p̄j =
∑
i

|wij |∑
k |wkj |

· pi , (2)

where the normalized weight value |wij |∑
k |wkj | ensures comparable scaling across units in a layer. We

then use this to create an update rule where the input weights of child j are updated if and only if
child j is surprised (i.e. cj is above some threshold α) but its parents are not (i.e. p̄ is below some
threshold β). In particular, we create the following update rule:

wij := wij − I[cj > α]I[p̄j < β] · η∇wij
L, (3)

where I[cj > α] is an indicator function that is 1 when cj > α and 0 otherwise, I[p̄j < β] is similarly
defined, η the learning rate, and L the loss function (cross-entropy in our case). I[cj > α] ensures
that only surprised units update, and can be compared with metaplasticity4 in the brain. I[p̄j < β]
prevents/blocks simultaneous changes in later units who may also surprised by their input, and can be
compared with neuromodulation5 in the brain.

4The modification of a neuron’s future capacity for learning as a function of recent synaptic history [1, 2].
Believed to regulate the plasticity mechanisms themselves in order to generate adaptive behaviour [11, 17, 39, 41].

5Neuromodulators are neurotransmitters which, instead of conveying excitation or inhibition, change the
properties of other neurons or synapses [20].

11

C Alternative surprise measures

Imagine a unit or feature detector with a bi-modal activation distribution where the modes roughly
represent on (detected) and off (not detected). Perhaps such a unit being off more often in the new
data (as when part of an image is occluded, discussed in Section 3) is not a good signal to update. To
differentiate this situation from e.g. the unit being on more often in the new data, we can define a new
measure which we call the surprise increase (SI):

SI = H(Q,P)−H(P), (4)

where H(P) is the entropy of P and H(Q,P) is the cross-entropy of P relative to Q. Unlike the
KL-divergence, SI can be negative. SI is negative (i.e. a surprise decrease) when an event that is
already quite likely under P becomes even more likely under Q—as shown in Figure 7a. This could
be an interesting alternative surprise measurement as it can distinguish between surprise increases
and decreases.

(a) Surprise decrease (b) Surprise increase

Figure 7: SI illustration. P is blue, Q is orange. For fixed P , SI depends only on H(Q,P).

12

D Does batch normalization solve the problem?

Batch normalization (BN, 18) standardizes activation distributions across batches, bringing P (A) and
Q(A) closer together. This naturally raises the question as to whether or not BN solves the problem
of differing unit-level distributions, thus removing the need for unit-level surprise. We investigate
this below.

Do the same surprise patterns exist? Figure 8 shows the ideal situation for BN, where the BN
statistics are (re)calculated using the new data distribution before we calculate surprise. Compared to
Figure 2, the magnitude of the surprise is indeed lessened as BN standardizes P (A) and Q(A), but it
does not make units unsurprised. Moreover, we still see the same patterns of surprise in the early
layers for low-level shifts and in the later layers for high-level shifts.

Is an adaptative strategy still best? As shown in Table 4, it is indeed still best to employ an
adaptive update strategy to train specific layers for specific shifts, e.g. use FlexTune [35] to select
Conv1 & BN1 for low-level shifts and FC2 for high-level shifts. This further confirms that BN alone
does not solve the problem of changes in activation distribution, as selective adaptation strategies are
still superior to updating all layers with SGD. In Table 4 we also show that, if we only use the BN
statistics without any training (AdaBN, 24), or only update the BN parameters and statistics on the
new data (labelled “BN params”), performance is poor compared to the other strategies.

Conv1 Conv2 Conv3 FC1 FC2

0.00

0.02

0.04

0.06

0.08

0.10

(a) Low-level shift (crystals bckgr.)

Conv1 Conv2 Conv3 FC1 FC2

0.00

0.02

0.04

0.06

0.08

0.10

(b) High-level shift (unseen classes)

Figure 8: Network surprise patterns after updating the BN statistics on the new data.

Table 4: 5-shot accuracy with BN. L: low-level shifts average, H: high-level shifts average. Zero-shot
shows accuracy before adaptation. AdaBN [24] updates the BN statistics on the new data. “BN
params” updates only the BN parameters and statistics. For all other methods/rows, only the layers
listed are permitted to update.

L H

Zero-Shot 22.1± 0.2 0.0± 0.0
AdaBN [24] 50.7± 0.4 0.0± 0.0
BN params 66.0± 1.3 0.0± 0.0
Conv1, BN1 78.9± 0.8 0.0± 0.0
Conv2, BN2 67.9± 1.5 0.0± 0.0
Conv3, BN3 60.4± 0.7 0.3± 0.3
FC1, BN4 56.4± 0.5 68.9± 1.7
FC2 52.7± 0.6 95.4± 0.5
FC1, BN4, FC2 55.8± 0.8 94.6± 0.9
All (SGD) 76.7± 0.8 90.7± 2.3

13

E Further Results

E.1 Max-activating patches

Figure 9 shows the maximum-activating image patches on the EMNIST-DA [9] grass shift for selected
units in each layer. Note that we do not have a perfect edges-parts-wholes hierarchy—the receptive
field of Conv2 seems too large as it almost sees the entire image (can be a “whole” rather than a part).

(a) Conv 1

(b) Conv 2

(c) Conv 3

Figure 9: Max-activating patches for different units on the EMNIST-DA grass shift.

14

E.2 Per-shift Results

What follows is tables of full results for each shift at each number of shots, these are provided for
completeness with no further analysis.

Table 5: 2-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 0.0± 0.1 7.2± 4.9 65.3± 14.1 95.2± 1.4 77.8± 1.4
H2 0.0± 0.0 0.0± 0.0 5.0± 0.8 45.7± 8.8 80.5± 5.4 71.4± 4.2
H3 0.0± 0.0 0.0± 0.0 10.8± 7.3 49.4± 4.3 92.9± 2.3 81.4± 5.7
Crystals 69.9± 4.9 52.1± 0.9 51.0± 0.9 50.0± 0.6 47.8± 0.7 49.6± 1.1
Fog 86.5± 3.2 84.5± 0.4 84.0± 0.5 82.3± 0.8 78.8± 1.2 81.6± 0.4
Gauss. Blur 82.7± 0.3 80.4± 2.0 79.0± 0.3 74.9± 0.6 71.5± 1.0 74.1± 1.9
Grass 81.4± 0.8 21.6± 7.2 8.1± 0.7 7.3± 0.6 7.2± 0.5 7.7± 0.5
Imp. Noise 87.4± 0.9 86.0± 0.2 83.4± 1.4 83.2± 0.9 80.7± 0.6 81.9± 1.4
Sky 74.4± 3.9 54.4± 0.5 33.2± 2.8 18.4± 0.7 13.7± 2.7 18.4± 3.3
Stripe 74.3± 0.9 58.2± 4.8 58.2± 1.4 45.7± 2.1 36.7± 1.0 47.9± 2.6

Avg High 0.0± 0.0 0.0± 0.0 7.7± 4.0 53.5± 3.4 89.6± 1.5 76.9± 2.9
Avg Low 79.5± 1.3 62.4± 2.1 56.7± 0.5 51.7± 0.6 48.1± 0.5 51.6± 0.7
Avg All 55.7± 0.9 43.7± 1.5 42.0± 1.4 52.2± 0.8 60.5± 0.3 59.2± 0.9

Table 6: 2-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 56.7± 4.2 95.2± 1.4 33.8± 21.4
H2 0.0± 0.0 51.9± 5.7 80.5± 5.4 34.3± 11.2
H3 0.0± 0.0 57.6± 5.3 92.9± 2.3 41.4± 9.4
Crystals 46.3± 0.4 55.3± 1.3 69.9± 4.9 68.5± 5.4
Fog 78.4± 0.4 83.6± 1.2 87.1± 2.3 86.6± 3.2
Gauss. Blur 60.4± 2.1 81.2± 0.6 82.7± 0.3 81.8± 1.8
Grass 5.8± 0.2 20.1± 12.0 81.4± 0.8 81.4± 0.8
Imp. Noise 76.9± 0.9 87.9± 0.2 87.4± 0.9 87.7± 0.5
Sky 4.1± 0.5 35.2± 4.9 74.4± 3.9 74.4± 3.9
Stripe 16.3± 1.1 70.0± 1.4 74.3± 0.9 72.8± 2.1

Avg High 0.0± 0.0 55.4± 1.4 89.6± 1.5 36.5± 6.7
Avg Low 41.2± 0.3 61.9± 2.4 79.6± 1.2 79.0± 1.1
Avg All 28.8± 0.2 60.0± 1.9 82.6± 0.7 66.3± 2.5

15

Table 7: 5-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 0.1± 0.1 29.8± 8.2 82.8± 7.3 96.4± 1.0 91.9± 2.0
H2 0.0± 0.0 0.5± 0.9 26.1± 6.2 76.7± 6.6 91.3± 1.5 86.2± 3.8
H3 0.0± 0.0 0.3± 0.4 20.3± 6.1 82.3± 5.3 96.0± 0.6 93.0± 2.8
Crystals 78.1± 1.7 57.5± 0.9 52.3± 0.8 51.5± 0.5 49.2± 0.8 51.4± 0.6
Fog 89.6± 0.3 86.5± 0.7 84.8± 0.5 83.1± 0.6 81.3± 0.6 82.6± 0.6
Gauss. Blur 84.0± 0.4 82.5± 0.7 81.7± 0.6 78.3± 0.9 75.9± 0.5 78.1± 0.4
Grass 82.0± 2.2 41.7± 7.4 10.3± 1.3 8.4± 0.9 7.3± 0.5 9.4± 0.4
Imp. Noise 88.6± 0.3 86.8± 0.1 85.7± 0.3 84.3± 0.9 81.5± 0.4 83.9± 0.4
Sky 79.6± 0.7 65.9± 0.5 44.3± 1.9 27.9± 1.8 18.3± 2.4 28.8± 1.2
Stripe 77.1± 1.8 70.9± 2.6 70.6± 0.6 60.4± 1.6 47.0± 1.3 60.9± 2.5

Avg High 0.0± 0.0 0.3± 0.5 25.4± 3.8 80.6± 4.6 94.5± 0.9 90.4± 1.1
Avg Low 82.7± 0.4 70.2± 1.2 61.4± 0.2 56.3± 0.2 51.5± 0.3 56.4± 0.3
Avg All 57.9± 0.3 49.3± 0.8 50.6± 1.2 63.6± 1.2 64.4± 0.3 66.6± 0.1

Table 8: 5-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 68.0± 13.8 96.4± 1.0 80.3± 4.8
H2 0.0± 0.0 78.0± 2.0 91.3± 1.5 77.3± 7.2
H3 0.0± 0.0 77.1± 5.0 96.0± 0.6 79.9± 9.1
Crystals 46.3± 0.4 57.5± 3.8 78.1± 1.7 77.0± 3.4
Fog 78.4± 0.4 86.3± 0.2 89.6± 0.3 89.6± 0.3
Gauss. Blur 60.4± 2.1 84.3± 0.7 84.0± 0.4 83.9± 0.3
Grass 5.8± 0.2 50.9± 6.8 82.0± 2.2 82.3± 2.6
Imp. Noise 76.9± 0.9 88.3± 0.1 88.6± 0.3 87.6± 0.3
Sky 4.1± 0.5 56.6± 4.7 79.6± 0.7 80.8± 0.9
Stripe 16.3± 1.1 75.4± 1.0 77.1± 1.8 79.3± 0.8

Avg High 0.0± 0.0 74.4± 5.2 94.5± 0.9 79.2± 4.2
Avg Low 41.2± 0.3 71.3± 2.1 82.7± 0.4 82.9± 0.5
Avg All 28.8± 0.2 72.2± 2.9 86.3± 0.5 81.8± 1.2

16

Table 9: 10-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 0.5± 0.8 50.1± 5.1 91.3± 2.0 96.1± 0.8 94.5± 0.6
H2 0.0± 0.0 0.9± 0.8 45.7± 8.8 88.5± 1.7 92.8± 0.3 89.0± 2.2
H3 0.0± 0.0 0.3± 0.4 46.6± 16.0 89.7± 5.3 95.0± 1.1 92.8± 1.8
Crystals 80.5± 1.5 59.9± 3.1 54.4± 0.1 52.6± 0.7 50.6± 0.8 52.6± 0.8
Fog 90.1± 0.1 87.8± 0.5 85.6± 0.3 84.1± 0.2 82.1± 1.3 84.3± 0.4
Gauss. Blur 85.0± 0.4 83.9± 1.1 82.6± 0.4 81.4± 0.9 77.9± 2.3 80.7± 0.8
Grass 83.8± 0.9 57.1± 3.2 15.1± 0.8 10.0± 0.9 7.8± 0.1 11.2± 1.0
Imp. Noise 89.1± 0.0 87.2± 0.4 86.0± 0.3 84.7± 0.6 82.7± 0.1 84.5± 0.2
Sky 83.3± 1.5 71.4± 1.0 52.5± 0.5 36.7± 1.2 24.5± 2.4 38.0± 0.2
Stripe 82.4± 0.7 76.1± 2.8 76.1± 1.1 69.2± 0.2 56.8± 0.8 68.1± 1.8

Avg High 0.0± 0.0 0.6± 0.6 47.5± 6.4 89.8± 1.2 94.6± 0.6 92.1± 0.5
Avg Low 84.9± 0.3 74.8± 1.3 64.6± 0.2 59.8± 0.4 54.6± 0.5 59.9± 0.4
Avg All 59.4± 0.2 52.5± 0.8 59.5± 1.8 68.8± 0.5 66.6± 0.4 69.6± 0.4

Table 10: 10-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 84.8± 0.5 96.1± 0.8 90.4± 3.0
H2 0.0± 0.0 79.9± 1.7 92.8± 0.3 88.3± 2.0
H3 0.0± 0.0 87.1± 2.7 95.0± 1.1 89.7± 5.1
Crystals 46.3± 0.4 61.2± 1.6 80.5± 1.5 79.8± 0.9
Fog 78.4± 0.4 87.4± 0.2 90.1± 0.1 90.1± 0.1
Gauss. Blur 60.4± 2.1 85.7± 0.6 85.0± 0.4 85.3± 1.0
Grass 5.8± 0.2 69.2± 2.4 83.8± 0.9 84.3± 1.3
Imp. Noise 76.9± 0.9 88.2± 0.4 89.1± 0.0 88.0± 0.2
Sky 4.1± 0.5 66.8± 1.1 83.3± 1.5 83.4± 1.5
Stripe 16.3± 1.1 78.8± 1.1 82.4± 0.7 82.5± 0.9

Avg High 0.0± 0.0 84.0± 0.5 94.6± 0.6 89.5± 1.2
Avg Low 41.2± 0.3 76.8± 0.7 84.9± 0.3 84.8± 0.5
Avg All 28.8± 0.2 78.9± 0.5 87.8± 0.4 86.2± 0.6

17

Table 11: 20-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 2.1± 3.4 66.4± 8.9 95.7± 0.9 97.2± 0.7 95.1± 0.6
H2 0.0± 0.0 5.6± 0.9 64.9± 8.7 90.3± 1.5 94.8± 0.6 91.6± 1.1
H3 0.0± 0.0 9.5± 1.3 69.3± 6.2 93.5± 2.2 96.1± 1.0 95.3± 0.9
Crystals 83.7± 0.5 65.6± 2.3 56.7± 0.2 54.6± 0.3 51.5± 0.7 54.6± 0.4
Fog 90.4± 0.4 88.4± 0.1 86.1± 1.0 85.2± 0.2 84.0± 0.3 85.1± 0.2
Gauss. Blur 86.6± 0.4 85.0± 1.4 83.4± 0.6 82.2± 0.8 81.0± 0.9 82.3± 1.1
Grass 85.6± 1.0 67.6± 2.8 20.7± 1.8 13.4± 1.0 8.3± 0.3 14.1± 0.9
Imp. Noise 89.1± 0.6 87.7± 0.2 86.6± 0.2 85.2± 0.5 83.7± 0.5 84.9± 0.2
Sky 84.8± 1.0 76.3± 0.7 59.5± 0.4 45.1± 1.5 31.7± 0.7 47.0± 0.7
Stripe 83.9± 1.3 79.7± 2.0 78.9± 0.9 74.7± 0.2 62.2± 0.9 75.3± 0.3

Avg High 0.0± 0.0 5.7± 0.8 66.8± 2.9 93.2± 1.2 96.1± 0.3 94.0± 0.2
Avg Low 86.3± 0.3 78.6± 1.1 67.4± 0.2 62.9± 0.3 57.5± 0.4 63.3± 0.3
Avg All 60.4± 0.2 56.7± 0.9 67.3± 0.8 72.0± 0.5 69.0± 0.4 72.5± 0.3

Table 12: 20-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 89.3± 1.6 97.2± 0.7 95.5± 1.2
H2 0.0± 0.0 85.4± 3.1 94.8± 0.6 89.9± 1.4
H3 0.0± 0.0 90.3± 0.6 96.3± 0.9 93.5± 2.4
Crystals 46.3± 0.4 66.5± 1.8 83.7± 0.5 82.1± 0.9
Fog 78.4± 0.4 88.1± 0.3 90.4± 0.4 90.4± 0.4
Gauss. Blur 60.4± 2.1 86.0± 0.5 86.6± 0.4 86.9± 0.4
Grass 5.8± 0.2 77.0± 1.2 85.6± 1.0 85.5± 0.2
Imp. Noise 76.9± 0.9 88.5± 0.1 89.1± 0.6 88.3± 0.3
Sky 4.1± 0.5 73.3± 0.8 84.8± 1.0 84.7± 0.9
Stripe 16.3± 1.1 81.6± 0.4 83.9± 1.3 84.7± 1.1

Avg High 0.0± 0.0 88.3± 1.4 96.1± 0.2 93.0± 1.1
Avg Low 41.2± 0.3 80.1± 0.3 86.3± 0.3 86.1± 0.3
Avg All 28.8± 0.2 82.6± 0.2 89.2± 0.2 88.2± 0.4

18

Table 13: 50-shot accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.0 25.8± 24.0 83.5± 5.3 97.0± 0.2 97.2± 0.5 95.9± 0.9
H2 0.0± 0.0 32.8± 4.5 84.4± 1.9 94.8± 0.7 95.2± 0.9 93.5± 1.2
H3 0.0± 0.0 28.1± 17.4 85.0± 4.7 95.5± 1.9 97.6± 0.5 96.1± 0.6
Crystals 85.2± 0.5 72.9± 1.2 59.3± 0.3 57.8± 0.3 53.1± 0.6 57.8± 0.2
Fog 90.6± 0.2 89.3± 0.1 87.7± 0.2 86.7± 0.2 85.1± 0.3 86.6± 0.2
Gauss. Blur 87.9± 0.5 87.3± 0.3 85.8± 0.4 84.6± 0.2 83.2± 0.6 84.6± 0.2
Grass 87.1± 0.6 75.2± 1.9 29.8± 1.6 19.3± 0.8 9.0± 0.2 19.7± 0.6
Imp. Noise 89.4± 0.3 88.3± 0.2 86.9± 0.3 85.9± 0.3 84.8± 0.2 85.9± 0.2
Sky 86.7± 0.5 80.9± 0.3 66.4± 0.6 54.3± 1.8 38.2± 0.8 56.7± 0.4
Stripe 87.4± 0.3 84.6± 0.7 83.2± 0.5 79.9± 0.9 67.6± 0.8 79.8± 0.8

Avg High 0.0± 0.0 28.9± 12.2 84.3± 3.7 95.8± 0.6 96.7± 0.6 95.2± 0.2
Avg Low 87.8± 0.1 82.6± 0.4 71.3± 0.3 66.9± 0.3 60.1± 0.3 67.3± 0.0
Avg All 61.4± 0.1 66.5± 3.8 75.2± 0.9 75.6± 0.4 71.1± 0.3 75.7± 0.1

Table 14: 50-shot accuracy across shifts: comparison of different responses. Zero-shot is the accuracy
before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 93.3± 0.5 97.2± 0.5 96.8± 0.3
H2 0.0± 0.0 89.9± 0.9 95.2± 0.9 94.4± 0.6
H3 0.0± 0.0 93.8± 1.4 97.6± 0.5 95.5± 2.0
Crystals 46.3± 0.4 73.2± 0.9 85.2± 0.5 83.5± 0.5
Fog 78.4± 0.4 88.9± 0.3 90.6± 0.2 90.5± 0.3
Gauss. Blur 60.4± 2.1 87.3± 0.4 87.9± 0.5 87.4± 0.3
Grass 5.8± 0.2 81.8± 0.4 87.1± 0.6 86.2± 0.4
Imp. Noise 76.9± 0.9 88.9± 0.2 89.4± 0.3 88.5± 0.5
Sky 4.1± 0.5 79.1± 0.5 86.7± 0.5 86.9± 0.3
Stripe 16.3± 1.1 84.8± 1.3 87.4± 0.3 87.5± 0.4

Avg High 0.0± 0.0 92.3± 0.6 96.7± 0.6 95.6± 0.6
Avg Low 41.2± 0.3 83.4± 0.2 87.8± 0.1 87.2± 0.1
Avg All 28.8± 0.2 86.1± 0.3 90.4± 0.2 89.7± 0.1

19

Table 15: 2000-shot (all data) accuracy across shifts: training different layers of a CNN

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0± 0.1 80.0± 9.9 97.6± 0.2 98.7± 0.1 98.6± 0.1 98.8± 0.1
H2 2.0± 3.2 78.2± 8.1 96.7± 0.2 98.0± 0.2 98.0± 0.2 98.3± 0.2
H3 0.0± 0.0 81.9± 2.8 97.7± 0.4 98.6± 0.3 98.7± 0.2 98.8± 0.0
Crystals 88.0± 0.3 85.5± 0.3 72.6± 0.2 69.4± 0.6 57.4± 0.4 68.2± 0.3
Fog 91.2± 0.3 91.2± 0.1 90.6± 0.1 90.2± 0.1 88.0± 0.3 89.6± 0.1
Gauss. Blur 90.1± 0.1 90.9± 0.1 90.3± 0.0 90.2± 0.1 86.7± 0.1 89.7± 0.2
Grass 89.1± 0.2 86.1± 0.5 56.6± 1.1 40.8± 0.9 17.0± 0.3 38.8± 1.0
Imp. Noise 89.8± 0.1 89.7± 0.2 88.2± 0.1 88.3± 0.2 86.6± 0.3 87.6± 0.2
Sky 89.0± 0.1 88.2± 0.3 81.7± 0.1 75.2± 0.3 48.8± 0.4 73.7± 0.4
Stripe 89.9± 0.1 90.8± 0.3 90.3± 0.1 89.0± 0.0 76.3± 0.5 88.3± 0.2

Avg High 0.7± 1.1 80.0± 5.1 97.4± 0.2 98.5± 0.1 98.4± 0.1 98.6± 0.0
Avg Low 89.6± 0.1 88.9± 0.0 81.5± 0.2 77.6± 0.1 65.8± 0.1 76.5± 0.1
Avg All 62.9± 0.3 86.3± 1.5 86.2± 0.1 83.8± 0.1 75.6± 0.1 83.2± 0.1

Table 16: 2000-shot (all data) accuracy across shifts: comparison of different responses. Zero-shot is
the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0± 0.0 97.9± 0.1 98.8± 0.1 98.7± 0.2
H2 0.0± 0.0 97.2± 0.4 98.3± 0.1 98.1± 0.2
H3 0.0± 0.0 98.2± 0.1 98.8± 0.0 98.7± 0.3
Crystals 46.3± 0.4 87.7± 0.3 88.0± 0.3 88.3± 0.2
Fog 78.4± 0.4 90.9± 0.0 91.3± 0.2 90.8± 0.2
Gauss. Blur 60.4± 2.1 90.5± 0.1 90.9± 0.1 90.6± 0.1
Grass 5.8± 0.2 89.2± 0.1 89.1± 0.2 89.5± 0.4
Imp. Noise 76.9± 0.9 89.3± 0.2 89.8± 0.1 89.5± 0.2
Sky 4.1± 0.5 89.1± 0.2 89.0± 0.1 89.4± 0.1
Stripe 16.3± 1.1 90.6± 0.3 90.8± 0.3 90.0± 0.2

Avg High 0.0± 0.0 97.8± 0.1 98.6± 0.0 98.5± 0.1
Avg Low 41.2± 0.3 89.6± 0.1 89.8± 0.0 89.7± 0.1
Avg All 28.8± 0.2 92.1± 0.1 92.5± 0.0 92.4± 0.0

20

	Example to further motivate surprise
	Implementation details
	Data
	Experimental setup
	Measuring unit-level surprise
	Calculating surprise from bin counts
	A surprise-based update rule

	Alternative surprise measures
	Does batch normalization solve the problem?
	Further Results
	Max-activating patches
	Per-shift Results

