
Appendix

0 Setup and notations

0.1 Neural Tangent Kernel

Consider a neural network model consisting of L layers (yl)1≤l≤L, with yl : Rnl−1 → Rnl , n0 = d and let
θ = (θl)1≤l≤L be the flattened vector of weights and bias indexed by the layer’s index and p be the dimension
of θ. Recall that θl has dimension nl + 1. The output f of the neural network is given by some transformation
s : RnL → Ro of the last layer yL(x); o being the dimension of the output (e.g. number of classes for a
classification problem). For any input x ∈ Rd, we thus have f(x, θ) = s(yL(x)) ∈ Ro. As we train the model,
θ changes with time t and we denote by θt the value of θ at time t and ft(x) = f(x, θt) = (fj(x, θt), j ≤ o).
Let D = (xi, zi)1≤i≤N be the data set and let X = (xi)1≤i≤N , Z = (zj)1≤j≤N be the matrices of input and
output respectively, with dimension d×N and o×N . For any function g : Rd×o → Rk, k ≥ 1, we denote by
g(X ,Z) the matrix (g(xi, zi))1≤i≤N of dimension k ×N .

Jacot et al. (2018) studied the behaviour of the output of the neural network as a function of the training time t
when the network is trained using a gradient descent algorithm. Lee et al. (2019) built on this result to linearize
the training dynamics. We recall hereafter some of these results.

For a given θ, the empirical loss is given by L(θ) = 1
N

∑N
i=1 `(f(xi, θ), zi). The full batch GD algorithm is

given by
θ̂t+1 = θ̂t − η∇θL(θ̂t), (1)

where η > 0 is the learning rate.
Let T > 0 be the training time and Ns = T/η be the number of steps of the discrete GD (1). The continuous
time system equivalent to (1) with step ∆t = η is given by

dθt = −∇θL(θt)dt. (2)

This differs from the result by Lee et al. (2019) since we use a discretization step of ∆t = η. It is well known
that this discretization scheme leads to an error of order O(η) (see Appendix). Equation (2) can be re-written as

dθt = − 1

N
∇θf(X , θt)T∇z′`(f(X , θt),Z)dt.

where∇θf(X , θt) is a matrix of dimension oN × p and∇z′`(f(X , θt),Z) is the flattened vector of dimension
oN constructed from the concatenation of the vectors∇z′`(z′, zi)|z′=f(xi,θt), i ≤ N . As a result, the output
function ft(x) = f(x, θt) ∈ Ro satisfies the following ODE

dft(x) = − 1

N
∇θf(x, θt)∇θf(X , θt)T∇z′`(ft(X ),Z)dt. (3)

The Neural Tangent Kernel (NTK) KL
θ is defined as the o× o dimensional kernel satisfying: for all x, x′ ∈ Rd,

KL
θt(x, x

′) = ∇θf(x, θt)∇θf(x′, θt)
T ∈ Ro×o

=

L∑
l=1

∇θlf(x, θt)∇θlf(x′, θt)
T .

(4)

We also define KL
θt(X ,X ) as the oN × oN matrix defined blockwise by

KL
θt(X ,X ) =


KL
θt(x1, x1) · · · KL

θt(x1, xN )
KL
θt(x2, x1) · · · KL

θt(x2, xN )
...

. . .
...

KL
θt(xN , x1) · · · KL

θt(xN , xN )

 .

By applying (3) to the vector X , one obtains

dft(X ) = − 1

N
KL
θt(X ,X )∇z′`(ft(X ),Z)dt, (5)

meaning that for all j ≤ N

dft(xj) = − 1

N
KL
θt(xj ,X )∇z′`(ft(X ),Z)dt.
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Infinite width dynamics. In the case of an FFNN, Jacot et al. (2018) proved that, with GD, the kernel KL
θt

converges to a kernel KL which depends only on L (number of layers) for all t < T when n1, n2, ..., nL →∞,
where T is an upper bound on the training time, under the technical assumption

∫ T
0
||∇z`(ft(X ,Z))||2dt <∞

a.s. with respect to the initialization weights. The infinite width limit of the training dynamics is given by

dft(X ) = − 1

N
KL(X ,X )∇z′`(ft(X ),Z)dt, (6)

We note hereafter K̂L = KL(X ,X ). As an example, with the quadratic loss `(z′, z) = 1
2
||z′ − z||2, (6) is

equivalent to

dft(X ) = − 1

N
K̂L(ft(X )−Z)dt, (7)

which is a simple linear model that has a closed-form solution given by

ft(X ) = e−
1
N
K̂Ltf0(X ) + (I − e−

1
N
K̂Lt)Z. (8)

For general input x ∈ Rd, we have

ft(x) = f0(x) + γ(x,X )(I − e−
1
N
K̂Lt)(Z − f0(X )). (9)

where γ(x) = KL(x,X )KL(X ,X )−1.

0.2 The Architecture

Let φ be the ReLU activation function. We consider the following architecture

FeedForward Fully-Connected Neural Network (FFNN). Consider an FFNN of depth L, widths (nl)1≤l≤L,
weights wl and bias bl. For some input x ∈ Rd, the forward propagation using the NTK parameterization is
given by

y1
i (x) =

σw√
d

d∑
j=1

w1
ijxj + σbb

1
i

yli(x) =
σw√
nl−1

nl−1∑
j=1

wlijφ(yl−1
j (x)) + σbb

l
i, l ≥ 2.

(10)

1 Proof techniques

The techniques used in the proofs range from simple algebraic manipulation to tricky inequalities.

Lemmas 1, 2. The proofs of these lemmas are simple and follow the same inductive argument as in the
proof of the original NTK result in Jacot et al. (2018). Note that these results can also be obtained by simple
application of the Master Theorem in Yang (2020) using the framework of Tensor Programs.

Proposition 1, Theorems 1, 2. The proof of these results follow two steps; Firstly, estimating the asymp-
totic behaviour of the NTK in the limit of large depth; secondly, controling these behaviour using upper/lower
bounds. We analyse the asymptotic behaviour of the NTK of FFNN using existing results on signal propagation
in deep FFNN.
It is relatively easy to control the dynamics of the NTK in the Ordered/Chaotic phase, however, the dynamics
become a bit complicated on the Edge of Chaos and technical lemmas which we call Appendix Lemmas are
introduced for this purpose.

Proposition 2. The spectral decomposition of zonal kernels on the sphere is a classical result in spectral
theory which was recently applied to Neural Tangent Kernel Geifman et al. (2020); Cao et al. (2020); ?. In
order to prove the convergence of the eigenvalues, we use Dominated Convergence Theorem, leveraging the
asymptotic results in Proposition 1 and Theorems 1, 2.
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2 The infinite width limit

2.1 Forward propagation

FeedForward Neural Network. For some input x ∈ Rd, the propagation of this input within the network
is given by

y1
i (x) =

σw√
d

d∑
j=1

w1
ijxj + σbb

1
i

yli(x) =
σw√
nl−1

nl−1∑
j=1

wlijφ(yl−1
j (x)) + σbb

l
i, l ≥ 2

Where φ : R→ R is the activation function. When we take the limit nl−1 →∞ recursively over l, this implies,
using Central Limit Theorem, that yli(x) is a Gaussian variable for any input x. This gives an error of order
O(1/

√
nl−1) (standard Monte Carlo error). More generally, an approximation of the random process yli(.) by

a Gaussian process was first proposed by Neal (1995) in the single layer case and has been extended to the
multiple layer case by Lee et al. (2018) and Matthews et al. (2018). The limiting Gaussian process kernels follow
a recursive formula given by, for any inputs x, x′ ∈ Rd

κl(x, x′) = E[yli(x)yli(x
′)]

= σ2
b + σ2

wE[φ(yl−1
i (x))φ(yl−1

i (x′))]

= σ2
b + σ2

wΨφ(κl−1(x, x), κl−1(x, x′), κl−1(x′, x′)),

where Ψφ is a function that only depends on φ. This provides a simple recursive formula for the computation of
the kernel κl; see, e.g., Lee et al. (2018) for more details.

Residual Neural Networks. The infinite width limit approximation for ResNet yields similar results with
an additional residual terms. It is straighforward to see that, in the case of a ResNet with FFNN-type layers, we
have that

κl(x, x′) = κl−1(x, x′) + σ2
b + σ2

wFφ(κl−1(x, x), κl−1(x, x′), κl−1(x′, x′)),

2.2 Gradient Independence

In the mean-field literature of DNNs, an omnipresent approximation in prior literature is that of the gradient
independence which is similar in nature to the practice of feedback alignment (Lillicrap et al., 2016). This
approximation states that, for wide neural networks, the weights used for forward propagation are independent
from those used for back-propagation. When used for the computation of Neural Tangent Kernel, this approxi-
mation was proven to give the exact computation for standard architectures such as FFNN, CNN and ResNets
Yang (2020) (Theorem D.1).

This result has been extensively used in the literature as an approximation before being proved to yields exact
computation for the NTK, and theoretical results derived under this approximation were verified empirically; see
references below.

Gradient Covariance back-propagation. Analytical formulas for gradient covariance back-propagation
were derived using this result, in (Hayou et al., 2019; Schoenholz et al., 2017; Yang and Schoenholz, 2017b; Lee
et al., 2018; Poole et al., 2016; Xiao et al., 2018; Yang, 2019). Empirical results showed an excellent match for
FFNN in Schoenholz et al. (2017), for Resnets in Yang (2019) and for CNN in Xiao et al. (2018).

Neural Tangent Kernel. The Gradient Independence approximation was implicitly used in Jacot et al.
(2018) to derive the infinite width Neural Tangent Kernel (See Jacot et al. (2018), Appendix A.1). Authors have
found that this infinite width NTK computed with the Gradient Independence approximation yields excellent
match with empirical (exact) NTK.

We use this result in our proofs and we refer to it simply by the Gradient Independence.

3 Warmup: Results from the theory of signal propagation in DNNs

3.1 Notation

For FFNN layers, let ql(x) := ql(x, x) be the variance of yl1(x) (the choice of the index 1 is not important
since, in the infinite width limit, the random variables (yli(x))i∈[1:Nl] are iid). Let ql(x, x′), resp. cl1(x, x′) be
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the covariance, resp. the correlation between yl1(x) and yl1(x′). For Gradient back-propagation, let q̃l(x, x′) be

the Gradient covariance defined by q̃l(x, x′) = E
[
∂L
∂yl1

(x) ∂L
∂yl1

(x′)
]

where L is some loss function. Similarly,

let q̃l(x) be the Gradient variance at point x. We also define q̇l(x, x′) = σ2
wE[φ′(yl−1

1 (x))φ′(yl−1
1 (x′))].

3.1.1 Covariance propagation

Covariance propagation for FFNN. In Section 2.1, we derived the covariance kernel propagation in an
FFNN. For two inputs x, x′ ∈ Rd, we have

ql(x, x′) = σ2
b + σ2

wE[φ(yl−1
i (x))φ(yl−1

i (x′))] (11)

this can be written as

ql(x, x′) = σ2
b + σ2

wE
[
φ
(√

ql(x)Z1

)
φ
(√

ql(x′)(cl−1Z1 +
√

1− (cl−1)2Z2

)]
, Z1, Z2

iid∼ N (0, 1),

with cl−1 := cl−1(x, x′).
With ReLU, and since ReLU is positively homogeneous (i.e. φ(λx) = λφ(x) for λ ≥ 0), we have that

ql(x, x′) = σ2
b +

σ2
w

2

√
ql(x)

√
ql(x′)f(cl−1)

where f is the ReLU correlation function given by Hayou et al. (2019)

f(c) =
1

π
(c arcsin c+

√
1− c2) +

1

2
c.

Covariance propagation for ResNet with ReLU. In the case of ResNet, only an added residual term
shows up in the recursive formula. For a ResNet with FFNN layers, the recursion reads

ql(x, x′) = ql−1(x, x′) + σ2
b +

σ2
w

2

√
ql(x)

√
ql(x′)f(cl−1) (12)

3.1.2 Gradient Covariance back-propagation

Gradient back-propagation for FFNN. The gradient back-propagation is given by

∂L
∂yli

= φ′(yli)

Nl+1∑
j=1

∂L
∂yl+1

j

W l+1
ji .

where L is some loss function. Using the Gradient Independence 2.2, we have as in Schoenholz et al. (2017)

q̃l(x) = q̃l+1(x)
Nl+1

Nl
χ(ql(x)).

where χ(ql(x)) = σ2
wE[φ(

√
ql(x)Z)2].

3.1.3 Edge of Chaos (EOC)

Let x ∈ Rd be an input. The convergence of ql(x) as l increases has been studied by Schoenholz et al. (2017)
and Hayou et al. (2019). In particular, under weak regularity conditions, it is proven that ql(x) converges to
a point q(σb, σw) > 0 independent of x as l → ∞. The asymptotic behaviour of the correlations cl(x, x′)
between yl(x) and yl(x′) for any two inputs x and x′ is also driven by (σb, σw): the dynamics of cl is controlled
by a function f i.e. cl+1 = f(cl) called the correlation function. The authors define the EOC as the set of
parameters (σb, σw) such that σ2

wE[φ′(
√
q(σb, σw)Z)2] = 1 where Z ∼ N (0, 1). Similarly the Ordered,

resp. Chaotic, phase is defined by σ2
wE[φ′(

√
q(σb, σw)Z)2] < 1, resp. σ2

wE[φ′(
√
q(σb, σw)Z)2] > 1. On the

Ordered phase, the gradient will vanish as it backpropagates through the network, and the correlation cl(x, x′)
converges exponentially to 1. Hence the output function becomes constant (hence the name ’Ordered phase’).
On the Chaotic phase, the gradient explodes and the correlation converges exponentially to some limiting value
c < 1 which results in the output function being discontinuous everywhere (hence the ’Chaotic’ phase name).
On the EOC, the second moment of the gradient remains constant throughout the backpropagation and the
correlation converges to 1 at a sub-exponential rate, which allows deeper information propagation. Hereafter, f
will always refer to the correlation function.

We initialize the model with wlij , b
l
i
iid∼ N (0, 1), where N (µ, σ2) denotes the normal distribution of mean µ

and variance σ2. In the remainder of this appendix, we assume that the following conditions are satisfied

11



• The input data is a subset of a compact set E of Rd, and no two inputs are co-linear.

• All results are derived in the limit of infinitely wide networks.

3.2 Some results from the information propagation theory

Results for FFNN with Tanh activation.
Fact 1. For any choice of σb, σw ∈ R+, there exist q, λ > 0 such that for all l ≥ 1, supx∈Rd |ql(x, x)− q| ≤
e−λl. (Equation (3) and conclusion right after in Schoenholz et al. (2017)).

Fact 2. On the Ordered phase, there exists γ > 0 such that supx,x′∈Rd |cl(x, x′)− 1| ≤ e−γl. (Equation (8)
in Schoenholz et al. (2017))

Fact 3. Let (σb, σw) ∈ EOC. Using the same notation as in fact 4, we have that sup(x,x′)∈Bε |1− c
l(x, x′)| =

O(l−1). (Proposition 3 in Hayou et al. (2019)).

Fact 4. Let Bε = {(x, x′) ∈ Rd : c1(x, x′) < 1 − ε}. On the chaotic phase, there exist c < 1 such that for
all ε ∈ (0, 1), there exists γ > 0 such that sup(x,x′)∈Bε |c

l(x, x′) − c| ≤ e−γl. (Equations (8) and (9) in
Schoenholz et al. (2017))

Fact 5 (Correlation function). The correlation function f is defined by f(x) =
σ2
b+σ2

wE[φ(
√
qZ1)φ(

√
q(xZ1+

√
1−x2Z2))]

q
where q is given in Fact 1 and Z1, Z2 are iid standard Gaus-

sian variables.

Fact 6. f has a derivative of any order j ≥ 1 given by

f (j)(x) = σ2
wq

j−1E[φ(j)(Z1)φ(j)(xZ1 +
√

1− x2Z2)], ∀x ∈ [−1, 1]

As a result, we have that f (j)(1) = σ2
wq

j−1E[φ(j)(Z1)2] > 0 for all j ≥ 1.

The proof of the previous fact is straightforward following the same integration by parts technique as in the
proof of Lemma 1 in Hayou et al. (2019). The result follows by induction.

Fact 7. Let (σb, σw) ∈ EOC. We have that f ′(1) = 1 (by definition of EOC). As a result, the Taylor expansion
of f near 1 is given by

f(c) = c+ α(1− c)2 − ζ(1− c)3 +O((1− c)4).

where α, ζ > 0.

Proof. The proof is straightforward using fact 6, and integral-derivative interchanging.

Results for FFNN with ReLU activation.
Fact 8. The ordered phase for ReLU is given by Ord = {(σb, σw) ∈ (R+)2 : σw <

√
2}. Moreover, for any

(σb, σw) ∈ Ord, there exist λ such that for all l ≥ 1, supx∈Rd |ql(x, x)− q| ≤ e−λl, where q =
σ2
b

1−σ2
w/2

.

The proof is straightforward using equation (11).

Fact 9. For any (σb, σw) in the Ordered phase, there exist λ such that for all l ≥ 1, sup(x,x′)∈Rd |cl(x, x′)−
1| ≤ e−λl.

The proof of this claim follows from standard Banach Fixed point theorem in the same fashion as for Tanh in
Schoenholz et al. (2017).

Fact 10. The Chaotic phase for ReLU is given by Ch = {(σb, σw) ∈ (R+)2 : σw >
√

2}. Moreover, for any
(σb, σw) ∈ Ch, for all l ≥ 1, x ∈ Rd, ql(x, x) & (σ2

w/2)l.

The variance explodes exponentially on the Chaotic phase, which means the output of the Neural Network
can grow arbitrarily in this setting. Hereafter, when no activation function is mentioned, and when we choose
"(σb, σw) on the Ordered/Chaotic phase", it should be interpreted as "(σb, σw) on the Ordered phase" for ReLU
and "(σb, σw) on the Ordered/Chaotic phase" for Tanh.

Fact 11. For ReLU FFNN on the EOC, we have that ql(x, x) =
σ2
w
d
||x||2 for all l ≥ 1.

The proof is straightforward using equation 11 and that (σb, σw) = (0,
√

2) on the EOC.
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Fact 12. The EOC of ReLU is given by the singleton {(σb, σw) = (0,
√

2)}. In this case, the correlation
function of an FFNN with ReLU is given by

f(x) =
1

π
(x arcsinx+

√
1− x2) +

1

2
x

(Proof of Proposition 1 in Hayou et al. (2019)).
Fact 13. Let (σb, σw) ∈ EOC. Using the same notation as in fact 4, we have that

sup
(x,x′)∈Bε

|1− cl(x, x′)| = O(l−2)

(Follows straightforwardly from Proposition 1 in Hayou et al. (2019)).
Fact 14. We have that

f(c) = c+ s(1− c)3/2 + b(1− c)5/2 +O((1− c)7/2 (13)

with s = 2
√

2
3π

and b =
√

2
30π

.

This result was proven in Hayou et al. (2019) (in the proof of Proposition 1) for order 3/2, the only difference is
that here we push the expansion to order 5/2.

General results on the correlation function.
Fact 15. Let f be either the correlation function of Tanh or ReLU. We have that

• f(1) = 1 (Lemma 2 in Hayou et al. (2019)).

• On the ordered phase 0 < f ′(1) < 1 (By definition).

• On the Chaotic phase f ′(1) > 1 (By definition).

• On the EOC, f ′(1) = 1 (By definition).

• On the Ordered phase and the EOC, 1 is the unique fixed point of f (Hayou et al. (2019)).

• On the Chaotic phase, f has two fixed points, 1 which is unstable, and c < 1 which is a stable fixed
point Schoenholz et al. (2017).

Fact 16. Let ε ∈ (0, 1). On the Ordered/Chaotic phase, with either ReLU or Tanh, there exists α ∈ (0, 1),γ > 0
such that

sup
(x,x′)∈Bε

|f ′(cl(x, x′))− α| ≤ e−γl

Proof. This result follows from a simple first order expansion inequality. For Tanh on the Ordered phase, we
have that

sup
(x,x′)∈Bε

|f ′(cl(x, x′))− f ′(1)| ≤ ζl sup
(x,x′)∈Bε

|cl(x, x′)− 1|

where ζl = supt∈(min(x,x′∈Bε) c
l(x,x′),1) |f ′′(t)| → |f ′′(1)|. We conclude for Ordered phase with Tanh using

fact 2. The same argument can be used for Chaotic phase with Tanh using fact 4; in this case, α = f ′(c) where
c is the unique stable fixed point of the correlation function f .

On the Ordered phase with ReLU, let f̃ be the correlation function. It is easy to see that f̃ ′(c) =
σ2
w
2
f ′(c) where

f is given in fact 12. f ′(x) = 1−
√

2
π

(1− x)1/2 +O((1− x)3/2). Therefore, there exists l0, ζ > 0 such that
for l > l0,

sup
(x,x′)∈Bε

|f ′(cl(x, x′))− f ′(1)| ≤ ζ sup
(x,x′)∈Bε

|cl(x, x′)− 1|1/2

We conclude using fact 9.

Asymptotic behaviour of the correlation in FFNN.
Appendix Lemma 1 (Asymptotic behaviour of cl for ReLU). Let (σb, σw) ∈ EOC and ε ∈ (0, 1). There exist
universal constants κ, κ′, κ′′ > 0 (that do not depend on any parameter) such that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l2
− κ′ log(l)

l3

∣∣∣∣ = O(l−3)

and,

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
3

l
− κ′′ log(l)

l2

∣∣∣∣ = O(l−2).
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Proof. Let (x, x′) ∈ Bε and s = 2
√

2
3π

. From the preliminary results, we have that lim
l→∞

supx,x′∈Rd 1 −

cl(x, x′) = 0 (fact 13). Using fact 14, we have uniformly over Bε,

γl+1 = γl − sγ3/2
l − bγ5/2

l +O(γ
7/2
l )

where s, b > 0, this yields

γ
−1/2
l+1 = γ

−1/2
l +

s

2
+

3s2

8
γ

1/2
l + (

b

2
+

5

16
s3)γl +O(γ

3/2
l ).

Thus, letting b′ = b
2

+ 5
16
s3, as l goes to infinity

γ
−1/2
l+1 − γ

−1/2
l ∼ s

2
,

and by summing and equivalence of positive divergent series

γ
−1/2
l ∼ s

2
l.

Moreover, since γ−1/2
l+1 = γ

−1/2
l + s

2
+ 3s2

8
γ

1/2
l + b′γl +O(γ

3/2
l ), using the same argument multiple times

and inverting the formula yields

cl(x, x′) = 1− κ

l2
+ κ′

log(l)

l3
+O(l−3)

where κ = 9π2

2
. Note that, by Appendix Lemma 3 (section ??), the O bound can be chosen in a way that it does

not depend on (x, x′), it depends only on ε; this concludes the proof for the first part of the result.
Using fact 12, we have that

f ′(x) =
1

π
arcsin(x) +

1

2

= 1−
√

2

π
(1− x)1/2 +O((1− x)3/2).

Thus, it follows that

f ′(cl(x, x′)) = 1− 3

l
+ κ′′

log(l)

l2
+O(l−2).

for some universal constant κ′′ uniformly over the set Bε, which concludes the proof.

We prove a similar result for an FFNN with Tanh activation.

Appendix Lemma 2 (Asymptotic behaviour of cl for Tanh). Let (σb, σw) ∈ EOC and ε ∈ (0, 1). We have

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l
− κ(1− κ2ζ)

log(l)

l3

∣∣∣∣ = O(l−3)

where κ = 2
f ′′(1)

> 0 and ζ = f3(1)
6

> 0. Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
2

l
− 2(1− κ2ζ)

log(l)

l2

∣∣∣∣ = O(l−2).

Proof. Let (x, x′) ∈ Bε and λl := 1 − cl(x, x′). Using a Taylor expansion of f near 1 (fact 7), there exist
α, ζ > 0 such that

λl+1 = λl − αλ2
l + ζλ3

l +O(λ4
l )

Here also, we use the same technique as in the previous lemma. We have that

λ−1
l+1 = λ−1

l (1− αλl + ζλ2 +O(λ3
l ))
−1 = λ−1

l (1 + αλl + (α2 − ζ)λ2
l +O(λ3

l ))

= λ−1
l + α+ (α2 − ζ)λl +O(λ2

l ).

By summing (divergent series), we have that λ−1
l ∼ αl. Therefore,

λ−1
l+1 − λ

−1
l − α = (α2 − β)α−1l−1 + o(l−1)

By summing a second time, we obtain

λ−1
l = αl + (α− βα−1) log(l) + o(log(l)),

14



Using the same technique once again, we obtain

λ−1
l = αl + (α− βα−1) log(l) +O(1).

This yields

λl = α−1l−1 − α−1(1− α−2β)
log(l)

l2
+O(l−2).

In a similar fashion to the previous proof, we can force the upper bound in O to be independent of x using
Appendix Lemma 3. This way, the bound depends only on ε. This concludes the first part of the proof.

For the second part, observe that f ′(x) = 1 + (x− 1)f ′′(1) +O((x− 1)2), hence

f ′(cl(x, x′)) = 1− 2

l
+ 2(1− α−2ζ)

log(l)

l2
+O(l−2)

which concludes the proof.

4 A technical lemma for the derivation of uniform bounds

Results in Theorem 1 and 2 and Proposition 1 involve a supremum over the set Bε. To obtain such results, we
need a ’uniform’ Taylor analysis of the correlation cl(x, x′) (see the next section) where uniformity is over
(x, x′) ∈ Bε. It turns out that such result is trivial when the correlation follows a dynamical system that is
controlled by a non-decreasing function. We clarify this in the next lemma.

Appendix Lemma 3 (Uniform Bounds). Let A ⊂ R be a compact set and g a non-decreasing function on A.
Define the sequence ζl by ζl = g(ζl−1) and ζ0 ∈ A. Assume that there exist αl, βl that do not depend on ζl,
with βl = o(αl), such that for all ζ0 ∈ A,

ζl = αl +Oζ0(βl)

where Oζ0 means that the O bound depends on ζ0. Then, we have that

sup
ζ0∈A

|ζl − αl| = O(βl)

i.e. we can choose the bound O to be independent of ζ0.

Proof. Let ζ0,m = minA and ζ0,M = maxA. Let (ζm,l) and (ζM,l) be the corresponding sequences. Since
g is non-decreasing, we have that for all ζ0 ∈ A, ζm,l ≤ ζl ≤ ζM,l. Moreover, by assumption, there exists
M1,M2 > 0 such that

|ζm,l − αl| ≤M1|βl|
and

|ζM,l − αl| ≤M2|βl|
therefore,

|ζl − αl| ≤ max(|ζm,l − αl|, |ζM,l − αl|) ≤ max(M1,M2)|βl|
which concludes the proof.

Note that Appendix Lemma 3 can be easily extended to Taylor expansions with ‘o’ instead of ‘O’. We will use
this result in the proofs, by refereeing to Appendix Lemma 3.

5 Proofs of Section 3: Large Depth Behaviour of Neural Tangent Kernel

5.1 Proofs of the results of Section 3.1

In this section, we provide proofs for the results of Section 3.1 in the paper.

Recall that Lemma 1 in the paper is a generalization of Theorem 1 in Jacot et al. (2018) and is reminded here.
The proof is simple and follows similar induction techniques as in Jacot et al. (2018).

Lemma 1 (Generalization of Th. 1 in Jacot et al. (2018)). Consider an FFNN of the form (3). Then, as
n1, n2, ..., nL−1 →∞, we have for all x, x′ ∈ Rd, i, i′ ≤ nL, KL

ii′(x, x
′) = δii′K

L(x, x′), where KL(x, x′)
is given by the recursive formula

KL(x, x′) = q̇L(x, x′)KL−1(x, x′) + qL(x, x′),

where ql(x, x′) = σ2
b + σ2

wE[φ(yl−1
1 (x))φ(yl−1

1 (x′))] and q̇l(x, x′) = σ2
wE[φ′(yl−1

1 (x))φ′(yl−1
1 (x′))].
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Proof. The proof for general σw is similar to when σw = 1 (Jacot et al. (2018)) which is a proof by induction.

For l ≥ 2 and i ∈ [1 : nl]

∂θ1:ly
l+1
i (x) =

σw√
nl

nl∑
j=1

wl+1
ij φ′(ylj(x))∂θ1:ly

l
j(x).

Therefore,

(∂θ1:ly
l+1
i (x))(∂θ1:ly

l+1
i (x′))t =

σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t

Using the induction hypothesis, namely that as n0, n1, ..., nl−1 →∞, for all j, j′ ≤ nl and all x, x′

∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t → Kl(x, x′)1j=j′

we then obtain for all nl, as n0, n1, ..., nl−1 →∞

σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t → σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl(x, x′)

and letting nl go to infinity, the law of large numbers, implies that

σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl(x, x′)→ q̇l+1(x, x′)Kl(x, x′).

Moreover, we have that

(∂wl+1y
l+1
i (x))(∂wl+1y

l+1
i (x′))t + (∂bl+1y

l+1
i (x))(∂bl+1y

l+1
i (x′))t =

σ2
w

nl

∑
j

φ(ylj(x))φ(ylj(x
′)) + σ2

b

→
nl→∞

σ2
wE[φ(yli(x))φ(yli(x

′))] + σ2
b = ql+1(x, x′).

which ends the proof.

The following proposition establishes that any initialization on the Ordered or Chaotic phase, leads to a trivial
limiting NTK as the number of layers L becomes large.

Proposition 1 (Limiting Neural Tangent Kernel with Ordered/Chaotic Initialization). Let (σb, σw) be either in
the ordered or in the chaotic phase. Then, there exist λ > 0 such that for all ε ∈ (0, 1), there exists γ > 0 such
that

sup
(x,x′)∈Bε

|KL(x, x′)− λ| ≤ e−γL.

We will use the next lemma in the proof of proposition 1.

Appendix Lemma 4. Let (al) be a sequence of non-negative real numbers such that ∀l ≥ 0, al+1 ≤ αal +
ke−βl, where α ∈ (0, 1) and k, β > 0. Then there exists γ > 0 such that ∀l ≥ 0, al ≤ e−γl.

Proof. Using the inequality on al, we can easily see that

al ≤ a0α
l + k

l−1∑
j=0

αje−β(l−j)

≤ a0α
l + k

l

2
e−βl/2 + k

l

2
αl/2

where we divided the sum into two parts separated by index l/2 and upper-bounded each part. The existence of
γ is straightforward.

Now we prove Proposition 1
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Proof. We prove the result for FFNN first. Let x, x′ be two inputs. From lemma 1, we have that

Kl(x, x′) = Kl−1(x, x′)q̇l(x, x′) + ql(x, x′)

where q1(x, x′) = σ2
b +

σ2
w
d
xTx′ and ql(x, x′) = σ2

b + σ2
wEf∼N (0,ql−1)[φ(f(x))φ(f(x′))] and q̇l(x, x′) =

σ2
wEf∼N (0,ql−1)[φ

′(f(x))φ′(f(x′))]. From facts 1, 2, 4, 9, 16, in the ordered/chaotic phase, there exist
k, β, η, l0 > 0 and α ∈ (0, 1) such that for all l ≥ l0 we have

sup
(x,x′)∈Bε

|ql(x, x′)− k| ≤ e−βl

and
sup

(x,x′)∈Bε
|q̇l(x, x′)− α| ≤ e−ηl.

Therefore, there exists M > 0 such that for any l ≥ l0 and x, x′ ∈ Rd

Kl(x, x′) ≤M.

Letting rl = sup(x,x′)∈Bε |K
l(x, x′)− k

1−α |, we have

rl ≤ αrl−1 +Me−ηl + e−βl

We conclude using Appendix Lemma 4.

Now, we show that the Initialization on the EOC improves the convergence rate of the NTK wrt L. We first
prove two preliminary lemmas that will be useful for the proof of the next proposition. Hereafter, the notation
g(x) = Θ(m(x)) means there exist two constants A,B > 0 such that Am(x) ≤ g(x) ≤ Bm(x).

Appendix Lemma 5. Let A,B,Λ ⊂ R+ be three compact sets, and (al), (bl), (λl) be three sequences of
non-negative real numbers such that for all (a0, b0, λ0) ∈ A×B × Λ

al = al−1λl + bl, λl = 1− α

l
+O(l−1−β), bl = q(b0) + o(l−1),

where α ∈ N∗ independent of a0, b0, λ0, q(b0) ≥ 0 is a limit that depends on b0, and β ∈ (0, 1).
Assume the ‘O’ and ‘o’ depend only on A,B,Λ ⊂ R. Then, we have

sup
(a0,b0,λ0)∈A×B×Λ

∣∣∣∣all − q

1 + α

∣∣∣∣ = O(l−β).

Proof. Let A,B,Λ ⊂ R be three compact sets and (a0, b0, λ0) ∈ A×B × Λ. It is easy to see that there exists
a constant G > 0 independent of a0, b0, λ0 such that |al| ≤ G × l + |a0| for all l ≥ 0. Letting rl = al

l
, we

have that for l ≥ 2

rl = rl−1(1− 1

l
)(1− α

l
+O(l−1−β)) +

q

l
+ o(l−2)

= rl−1(1− 1 + α

l
) +

q

l
+O(l−1−β).

where O bound depends only on A,B,Λ. Letting xl = rl − q
1+α

, there exists M > 0 that depends only on
A,B,Λ, and l0 > 0 that depends only on α such that for all l ≥ l0

xl−1(1− 1 + α

l
)− M

l1+β
≤ xl ≤ xl−1(1− 1 + α

l
) +

M

l1+β
.

Let us deal with the right hand inequality first. By induction, we have that

xl ≤ xl0−1

l∏
k=l0

(1− 1 + α

k
) +M

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)

1

k1+β
.

By taking the logarithm of the first term in the right hand side and using the fact that
∑l
k=l0

1
k

= log(l) +O(1),
we have

l∏
k=l0

(1− 1 + α

k
) = Θ(l−1−α).
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where the bound Θ does not depend on l0. For the second part, observe that

l∏
j=k+1

(1− 1 + α

j
) =

(l − α− 1)!

l!

k!

(k − α− 1)!

and
k!

(k − α− 1)!

1

k1+β
∼k→∞ kα−β .

Since α ≥ 1 (α ∈ N∗), then the serie with term kα−β is divergent and we have that

l∑
k=l0

k!

(k − α− 1)!

1

k2
∼

l∑
k=1

kα−β

∼
∫ l

1

tα−βdt

∼ 1

α− β + 1
lα−β+1.

Therefore, it follows that
l∑

k=l0

l∏
j=k+1

(1− 1 + α

j
)

1

k1+β
=

(l − α− 1)!

l!

l∑
k=l0

k!

(k − α− 1)!

1

k1+β

∼ 1

α
l−β .

This proves that

xl ≤
M

α
l−β + o(l−β).

where the ‘o’ bound depends only on A,B,Λ. Using the same approach for the left-hand inequality, we prove
that

xl ≥ −
M

α
l−β + o(l−β).

This concludes the proof.

The next lemma is a different version of the previous lemma which will be useful for other applications.

Appendix Lemma 6. Let A,B,Λ ⊂ R+ be three compact sets, and (al), (bl), (λl) be three sequences of
non-negative real numbers such that for all (a0, b0, λ0) ∈ A×B × Λ

al = al−1λl + bl, bl = q(b0) +O(l−1),

λl = 1− α

l
+ κ

log(l)

l2
+O(l−2),

where α ∈ N∗, κ 6= 0 both do not depend on a0, b0,Λ0, q(bo) ∈ R+ is a limit that depends on b0.
Assume the ‘O’ and ‘o’ depend only on A,B,Λ ⊂ R. Then, we have

sup
(a0,b0,λ0)∈A×B×Λ

∣∣∣∣all − q

1 + α

∣∣∣∣ = Θ(log(l)l−1)

Proof. Let A,B,Λ ⊂ R be three compact sets and (a0, b0, λ0) ∈ A×B×Λ. Similar to the proof of Appendix
Lemma 5, there exists a constant G > 0 independent of a0, b0, λ0 such that |al| ≤ G× l + |a0| for all l ≥ 0,
therefore (al/l) is bounded. Let rl = al

l
. We have

rl = rl−1(1− 1

l
)(1− α

l
+ κ

log(l)

l2
+O(l−1−β)) +

q

l
+O(l−2)

= rl−1(1− 1 + α

l
) + rl−1κ

log(l)

l2
+
q

l
+O(l−2).

Let xl = rl− q
1+α

. It is clear that λl = 1−α/l+O(l−3/2). Therefore, using appendix lemma 5 with β = 1/2,
we have rl → q

1+α
uniformly over a0, b0, λ0. Thus, assuming κ > 0 (for κ < 0, the analysis is the same), there

exists κ1, κ2,M, l0 > 0 that depend only on A,B,Λ such that for all l ≥ l0

xl−1(1− 1 + α

l
) + κ1

log(l)

l2
− M

l2
≤ xl ≤ xl−1(1− 1 + α

l
) + κ2

log(l)

l2
+
M

l2
.
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It follows that

xl ≤ xl0
l∏

k=l0

(1− 1 + α

k
) +

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)
κ2 log(k) +M

k2

and

xl ≥ xl0
l∏

k=l0

(1− 1 + α

k
) +

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)
κ1 log(k)−M

k2
.

Recall that we have
l∏

k=l0

(1− 1 + α

k
) = Θ(l−1−α)

and
l∏

j=k+1

(1− 1 + α

j
) =

(l − α− 1)!

l!

k!

(k − α− 1)!

so that
k!

(k − α− 1)!

κ1 log(k)−M
k2

∼k→∞ log(k)kα−1.

Therefore, we obtain

l∑
k=l0

k!

(k − α− 1)!

κ1 log(k)−M
k2

∼
l∑

k=1

log(k)kα−1

∼
∫ l

1

log(t)tα−1dt

∼ C1l
α log(l),

where C1 > 0 is a constant. Similarly, there exists a constant C2 > 0 such that

l∑
k=1

k!

(k − α− 1)!

κ2 log(k) +M

k2
∼ C2l

α log(l).

Moreover, having that (l−α−1)!
l!

∼ l−1−α yields

xl ≤ C′l−1 log(l) + o(l−1 log(l))

where C′ and ‘o’ depend only on A,B,Λ. Using the same analysis, we get

xl ≥ C′′l−1 log(l) + o(l−1 log(l))

where C′′ and ‘o’ depend only on A,B,Λ, which concludes the proof.

Theorem 1 (Neural Tangent Kernel on the Edge of Chaos). Let φ be ReLU or Tanh, (σb, σw) ∈ EOC and
K̃L = KL/L. We have that

sup
x∈E
|K̃L(x, x)− K̃∞(x, x)| = O(L−1)

Moreover, there exists a constant λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
(x,x′)∈Bε

∣∣K̃L(x, x′)− K̃∞(x, x′)
∣∣ = Θ(log(L)L−1).

where
• if φ is ReLU, then K̃∞(x, x′) =

σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′).
• if φ is Tanh, then K̃∞(x, x′) = q(1− (1− λ)1x 6=x′) where q > 0 is a constant.

Proof. Let ε ∈ (0, 1), E ⊂ Rd, (σb, σw) ∈ EOC, and x, x′ ∈ Rd. Recall that cl(x, x′) = ql(x,x′)√
ql(x,x)ql(x′,x′)

.

Let γl := 1− cl(x, x′) and f be the correlation function defined by the recursive equation cl+1 = f(cl) (See
appendix 3). By definition, we have that q̇l(x, x) = f ′(cl−1(x, x′)). Let us first prove the result for ReLU.
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• φ =ReLU: From fact 11 in the appendix, we know that, when choosing the hyper-parameters (σw, σb)
on the EOC for ReLU, the variance ql(x, x) is constant w.r.t l and is given by ql(x, x) = q1(x, x) =
σ2
w
d
||x||2. Moreover, from fact 15, we have that q̇l(x, x) = 1. Therefore

Kl(x, x) = Kl−1(x, x) +
σ2
w

d
||x||2 = l

σ2
w

d
||x||2 = lK̃∞(x, x)

which concludes the proof for KL(x, x). Note that the results is ’exact’ for ReLU, which means the
upper bound O(L−1) is valid but not optimal in this case. However, we will see that this bound is
optimal for Tanh.

From Appendix Lemma 1, we have that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l2
− κ′ log(l)

l3

∣∣∣∣ = O(l−3)

and

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
3

l
− κ′′ log(l)

l2

∣∣∣∣ = O(l−2).

Using Appendix Lemma 6 with al = Kl+1(x, x′), bl = ql+1(x, x′), λl = f ′(cl(x, x′)), we conclude
that

sup
(x,x′)∈Bε

∣∣∣∣Kl+1(x, x′)

l
− 1

4

σ2
w

d
‖x‖‖x′‖

∣∣∣∣ = Θ(log(l)l−1)

Using the compactness of Bε, we conclude that

sup
(x,x′)∈Bε

∣∣∣∣Kl(x, x′)

l
− 1

4

σ2
w

d
‖x‖‖x′‖

∣∣∣∣ = Θ(log(l)l−1)

• φ = Tanh: The proof in the case of Tanh is slightly different from that of ReLU. We use different
technical lemmas to conclude.

From Appendix Lemma 2, we have that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l
− κ(1− κ2ζ)

log(l)

l3

∣∣∣∣ = O(l−3)

where κ = 2
f ′′(1)

> 0 and ζ = f3(1)
6

> 0. Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
2

l
− 2(1− κ2ζ)

log(l)

l2

∣∣∣∣ = O(l−2).

We conclude in the same way as in the case of ReLU using Appendix Lemma 6. The only difference
is that, in this case, the limit of the sequence bl = ql+1(x, x′) is the limiting variance q (from facts 3,
1) does not depend on (x, x′).

5.2 Proofs of the results on ResNets

In this section, we provide proofs for lemma 2 together with Theorem 2 and proposition 2.

Lemma 2 (NTK of a ResNet with Fully Connected layers in the infinite width limit). Let x, x′ be two inputs
and Kres,1 be the exact NTK for the Residual Network with 1 layer. Then, we have

• For the first layer (without residual connections), we have for all x, x′ ∈ Rd

Kres,1
ii′ (x, x′) = δii′

(
σ2
b +

σ2
w

d
x · x′

)
,

where x · x′ is the inner product in Rd.
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• For l ≥ 2, as n1, n2, ..., nL−1 →∞, we have for all i, i′ ∈ [1 : nl],Kres,l
ii′ (x, x′) = δii′K

l
res(x, x

′),
where Kl

res(x, x
′) is given by the recursive formula have for all x, x′ ∈ Rd and l ≥ 2, as

n1, n2, ..., nl →∞ recursively, we have

Kl
res(x, x

′) = Kl−1
res (x, x′)(q̇l(x, x′) + 1) + q̂l(x, x′).

Proof. The first result is the same as in the FFNN case since we assume there is no residual connections between
the first layer and the input. We prove the second result by induction.

• Let x, x′ ∈ Rd. We have

K1
res(x, x

′) =
∑
j

∂y1
1(x)

∂w1
1j

∂y1
1(x)

∂w1
1j

+
∂y1

1(x)

∂b11

∂y1
1(x)

∂b11
=
σ2
w

d
x · x′ + σ2

b .

• The proof is similar to the FeedForward network NTK. For l ≥ 2 and i ∈ [1 : nl]

∂θ1:ly
l+1
i (x) = ∂θ1:ly

l
i(x) +

σw√
nl

nl∑
j=1

wl+1
ij φ′(ylj(x))∂θ1:ly

l
j(x).

Therefore, we obtain

(∂θ1:ly
l+1
i (x))(∂θ1:ly

l+1
i (x′))t = (∂θ1:ly

l
i(x))(∂θ1:ly

l
i(x
′))t

+
σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t + I

where

I =
σw√
nl

nl∑
j=1

wl+1
ij (φ′(ylj(x))∂θ1:ly

l
i(x)(∂θ1:ly

l
j(x
′))t + φ′(ylj(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
i(x
′))t).

Using the induction hypothesis, as n0, n1, ..., nl−1 →∞, we have that

(∂θ1:ly
l+1
i (x))(∂θ1:ly

l+1
i (x′))t +

σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t + I

→ Kl
res(x, x

′) +
σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl
res(x, x

′) + I ′,

where I ′ =
σ2
w
nl
wl+1
ii (φ′(yli(x)) + φ′(yli(x

′)))Kl
res(x, x

′).

As nl →∞, we have that I ′ → 0. Using the law of large numbers, as nl →∞

σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl
res(x, x

′)→ q̇l+1(x, x′)Kl
res(x, x

′).

Moreover, we have that

(∂wl+1y
l+1
i (x))(∂wl+1y

l+1
i (x′))t + (∂bl+1y

l+1
i (x))(∂bl+1y

l+1
i (x′))t =

σ2
w

nl

∑
j

φ(ylj(x))φ(ylj(x
′)) + σ2

b

→
nl→∞

σ2
wE[φ(yli(x))φ(yli(x

′))] + σ2
b = ql+1(x, x′).

The proof of main theorem on ResNets requires the following lemma on the asymptotic behaviour of cl for
ResNet.

Appendix Lemma 7 (Asymptotic expansion of cl for ResNet). Let ε ∈ (0, 1) and σw > 0. We have for FFNN

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κσw
l2
− κ′σw

log(l)

l3

∣∣∣∣ = O(l−3)
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where κσw , κ
′
σw > 0 are two constants that depend on σw.

Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣∣f ′(cl(x, x′))− 1 +
3(1 + 2

σ2
w

)

l
− κ′′σW

log(l)

l2

∣∣∣∣∣ = O(l−2).

where f is the ReLU correlation function given in fact 12 and κ′′σW > 0 is a constant that depends on σw.

Proof. Let ε ∈ (0, 1).

• Let x 6= x′ ∈ Rd, and cl := cl(x, x′). It is straightforward that the variance terms follow the recursive
form

ql(x, x) = ql−1(x, x) + σ2
w/2q

l−1(x, x) = (1 + σ2
w/2)l−1q1(x, x)

Leveraging this observation, we have that

cl+1 =
1

1 + α
cl +

α

1 + α
f(cl),

where f is the ReLU correlation function given in fact 12 and α =
σ2
w
2

. Recall that

f(c) =
1

π
c arcsin(c) +

1

π

√
1− c2 +

1

2
c.

As in the proof of Appendix Lemma 1, let γl = 1− cl, therefore, using Taylor expansion of f near 1
given in fact 14 yields

γl+1 = γl −
αs

1 + α
γ

3/2
l − αb

1 + α
γ

5/2
l +O(γ

7/5
l ).

This form is exactly the same as in the proof of Appendix Lemma 1 with s′ = αs
1+α

and b′ = αb
1+α

.
Thus, following the same analysis we conclude.

For the second result, observe that the derivation is the same as in Appendix Lemma 1.

The next theorem shows that no matter what the choice of σw > 0, the normalized NTK of a ResNet will always
have a subexponential convergence rate to a limiting K̄∞res.

Theorem 2 (NTK for ResNet). Consider a ResNet satisfying

yl(x) = yl−1(x) + F(wl, yl−1(x)), l ≥ 2, (14)

where F is a dense layer with ReLU activation. Let KL
res be the corresponding NTK and K̄L

res = KL
res/αL

(Normalized NTK) with αL = L(1 +
σ2
w
2

)L−1. Then, we have

sup
x∈E
|K̄L

res(x, x)− K̄∞res(x, x)| = Θ(L−1)

Moreover, there exists a constant λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
x,x′∈Bε

∣∣K̄L
res(x, x

′)− K̄∞res(x, x′)
∣∣ = Θ(L−1 log(L)),

where K̄∞res(x, x
′) =

σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′).

Proof. Let ε ∈ (0, 1), E ⊂ Rd, and x, x′ ∈ Rd. We first prove the result for the diagonal terms KL
res(x, x), we

deal afterwards with off-diagonal terms KL
res(x, x

′).

• Diagonal terms: from fact 12, we have that q̇l(x, x) =
σ2
w
2
f(1) =

σ2
w
2

. Moreover, it is easy to see
that the variance terms for a ResNet follow the recursive formula ql(x, x) = ql−1(x, x) + σ2

w/2×
ql−1(x, x), hence

ql(x, x) = (1 + σ2
w/2)l−1 σ

2
w

d
‖x‖2 (15)
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Recall that the recursive formula of NTK of a ResNet with fully-connected layers is given by (Appendix
Lemma 2)

Kl
res(x, x

′) = Kl−1
res (x, x′)(q̇l(x, x′) + 1) + ql(x, x′)

Hence, for the diagonal terms we obtain

Kl
res(x, x) = Kl−1

res (x, x)

(
σ2
w

2
+ 1

)
+ ql(x, x)

Letting K̂l
res = Kl

res/
(

1 +
σ2
w
l

)l−1

yields

K̂l
res(x, x) = K̂l−1

res (x, x) +
σ2
w

d
‖x‖2

Therefore, K̄l
res(x, x) =

K̂1
res(x,x)

l
+ (1− 1/l)

σ2
w
d
‖x‖2, the conclusion is straightforward since E

is compact and K̂1
res(x, x) is continuous which implies that it is uniformly bounded on E.

• Off-diagonal terms: the argument is similar to that of Theorem 1 with few key differences. From
Appendix Lemma 7 we have that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κσw
l2
− κ′σw

log(l)

l3

∣∣∣∣ = O(l−3)

where κσw , κ
′
σw > 0. Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣∣f ′(cl(x, x′))− 1 +
3(1 + 2

σ2
w

)

l
− κ′′σw

log(l)

l2

∣∣∣∣∣ = O(l−2).

Let α =
σ2
w
2

. We also have q̇l+1(x, x′) = αf ′(cl(x, x′)) where f is the ReLU correlation function
given in fact 12. It follows that for all (x, x′) ∈ Bε

1 + q̇l+1(x, x′) = (1 + α)(1− 3l−1 + ζ
log(l)

l2
+O(l−3))

for some constant ζ 6= 0 that does not depend on x, x′. The bound O does not depend on x, x′ either.

Now let al =
Kl+1
res (x,x′)
(1+α)l

. Using the recursive formula of the NTK, we obtain

al = λlal−1 + bl

where λl = 1 − 3l−1 + ζ log(l)

l2
+ O(l−3), bl =

σ2
w
d

√
‖x‖‖x′‖f(cl(x, x′)) = q(x, x′) + O(l−2)

with q(x, x′) =
σ2
w
d

√
‖x‖‖x′‖ and where we used the fact that cl(x, x′) = 1 +O(l−2) (Appendix

Lemma 1) and the formula for ResNet variance terms given by equation (15). Observe that all bounds
O are independent from the inputs (x, x′). Therefore, using Appendix Lemma 6, we have

sup
x,x′∈Bε

∣∣KL+1
res (x, x′)/L(1 + α)L − K̄∞res(x, x′)

∣∣ = Θ(L−1 log(L)),

which can also be written as

sup
x,x′∈Bε

∣∣KL
res(x, x

′)/(L− 1)(1 + α)L−1 − K̄∞res(x, x′)
∣∣ = Θ(L−1 log(L)),

We conclude by observing that KL
res(x, x

′)/(L − 1)(1 + α)L−1 = KL
res(x, x

′)/L(1 + α)L−1 +
O(L−1) where O can be chosen to depend only on ε.

5.3 Spectral decomposition of the limiting NTK

5.3.1 Review on Spherical Harmonics

We start by giving a brief review of the theory of Spherical Harmonics MacRobert (1967). Let Sd−1 be the unit
sphere in Rd defined by Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. For some k ≥ 1, there exists a set (Yk,j)1≤j≤N(d,k)

of Spherical Harmonics of degree k with N(d, k) = 2k+d−2
k

(
k+d−3
d−2

)
.

The set of functions (Yk,j)k≥1,j∈[1:N(d,k)] form an orthonormal basis with respect to the uniform measure on
the unit sphere Sd−1.
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For some function g, the Hecke-Funk formula is given by∫
Sd−1

g(〈x,w〉)Yk,j(w)dνd−1(w) =
Ωd−1

Ωd
Yk,j(x)

∫ 1

−1

g(t)P dk (t)(1− t2)(d−3)/2dt

where νd−1 is the uniform measure on the unit sphere Sd−1, Ωd is the volume of the unit sphere Sd−1, and P dk
is the multi-dimensional Legendre polynomials given explicitly by Rodrigues’ formula

P dk (t) =
(
− 1

2

)k Γ( d−1
2

)

Γ(k + d−1
2

)
(1− t2)

3−d
2
( d
dt

)k
(1− t2)k+ d−3

2

(P dk )k≥0 form an orthogonal basis of L2([−1, 1], (1− t2)
d−3
2 dt), i.e.

〈P dk , P dk′〉
L2([−1,1],(1−t2)

d−3
2 dt)

= δk,k′

where δij is the Kronecker symbol. Moreover, we have

‖P dk ‖2
L2([−1,1],(1−t2)

d−3
2 dt)

=
(k + d− 3)!

(d− 3)(k − d+ 3)!

Using the Heck-Funk formula, we can easily conclude that any dot product kernel on the unit sphere Sd−1, i.e.
and kernel of the form κ(x, x′) = g(〈x, x′〉) can be decomposed on the Spherical Harmonics basis. Indeed, for
any x, x′ ∈ Sd−1, the decomposition on the spherical harmonics basis yields

κ(x, x′) =
∑
k≥0

N(d,k)∑
j=1

[∫
Sd−1

g(〈w, x′〉)Yk,j(w)dνd−1(w)

]
Yk,j(x)

Using the Hecke-Funk formula yields

κ(x, x′) =
∑
k≥0

N(d,k)∑
j=1

[
Ωd−1

Ωd

∫ 1

−1

g(t)P dk (t)(1− t2)(d−3)/2dt

]
Yk,j(x)Yk,j(x

′)

we conclude that

κ(x, x′) =
∑
k≥0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′)

where µk =
Ωd−1

Ωd

∫ 1

−1
g(t)P dk (t)(1− t2)(d−3)/2dt.

We use these result in the proof of the next theorem.

Proposition 2 (Spectral decomposition). Let κL be either, the NTK (KL) for an FFNN with L layers initialized
on the Ordered phase, The Average NTK (AKL) for an FFNN with L layers initialized on the EOC, or the
Normalized NTK (K̄L

res) for a ResNet with L layers (Fully Connected). Then, for all L ≥ 1, there exists (µLk )k≥
such that for all x, x′ ∈ Sd−1

κL(x, x′) =
∑
k≥0

µLk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′).

(Yk,j)k≥0,j∈[1:N(d,k)] are spherical harmonics of Sd−1, and N(d, k) is the number of harmonics of order k.

Moreover, we have that 0 < µ∞0 = lim
L→∞

µL0 <∞, and for all k ≥ 1, lim
L→∞

µLk = 0.

Proof. From the recursive formulas of the NTK for FFNN and ResNet architectures, it is straightforward that
on the unit sphere Sd−1, the kernel κL is zonal in the sense that it depends only on the scalar product, more
precisely, for all L ≥ 1, there exists a function gL such that for all x, x′ ∈ Sd−1

κL(x, x′) = gL(〈x, x′〉)

using the previous results on Spherical Harmonics, we have that for all x, x′ ∈ Sd−1

κL(x, x′) =
∑
k≥0

µLk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′)

where µLk =
Ωd−1

Ωd

∫ 1

−1
gL(t)P dk (t)(1− t2)(d−3)/2dt.
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For k = 0, we have that for all L ≥ 1, µL0 =
Ωd−1

Ωd

∫ 1

−1
gL(t)(1 − t2)(d−3)/2dt. By a simple

dominated convergence argument, we have that limL→∞ µ
L
0 = qλ

Ωd−1

Ωd

∫ 1

−1
(1 − t2)(d−3)/2dt > 0,

where q, λ are given in Theorems 1, 2 and Proposition 1 (where we take q = 1 for the Or-
dered/Chaotic phase initialization in Proposition 1). Using the same argument, we have that for
k ≥ 1, limL→∞ µ

L
k = qλ

Ωd−1

Ωd

∫ 1

−1
P dk (t)(1− t2)(d−3)/2dt = qλ

Ωd−1

Ωd
〈P d0 , P dk 〉

L2([−1,1],(1−t2)
d−3
2 dt)

= 0.
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