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Abstract

A well-known but rarely used approach to text categorization uses conditional en-
tropy estimates computed using data compression tools. Text affinity scores derived
from compressed sizes can be used for classification and ranking tasks, but their
success depends on the compression tools used. We use the Zstandard compressor
and strengthen these ideas in several ways, calling the resulting language-agnostic
technique Zest. In applications, this approach simplifies configuration, avoiding
careful feature extraction and large ML models. Our ablation studies confirm the
value of individual enhancements we introduce. We show that Zest complements
and can compete with language-specific multidimensional content embeddings in
production, but cannot outperform other counting methods on public datasets.

1 Motivation

The idea of comparing texts using off-the-shelf lossless data compression tools goes back to [1],
which in 2002 linked entropy estimation and using gzip on text with text similarity metrics. Given
two strings X and Y , one compresses each of them individually and also the string X + Y . Similar
strings compress better after being concatenated. An affinity score for X and Y is computed from
the three resulting bytesizes. This computation is simple, requires little infrastructure, works for
any language, and naturally handles similar words, word forms, typos, etc. It can be easily applied
to multi-class classification (e.g., binning news articles by category) and ranking relative to known
examples.

Following up on [1], the 2004 work in [2] showcased the versatility of compression-based estimators
by demonstrating their practical advantages for (i) clustering time-series and text, (ii) anomaly
detection, (iii) classification for various non-text datasets. These techniques are attractive in practice
because they can handle many data formats without the need to understand their structure, are easy to
configure, and are reasonably efficient in terms of computation. The authors of [2] also emphasize the
“parameter-free” nature of compression-based estimators, in comparison with various ML techniques
that may produce different results depending on parameter settings. In practice, some compression
tools are better than others on certain kinds of inputs (making a choice of a compression tool is a type
of fitting to data), and hyperparameter settings affect compression performance: compression block
size and word size (8/12/16 bits), level of effort, parallel execution, efficient use of CPU instruction
sets, etc. Moreover, compression headers and dictionaries embedded in each compressed file spoil
entropy estimates, especially for small files. In fact, a controversy ensued after the publication of [1]
because zipping could not outperform Naive Bayes [3].

Despite the past controversies and apparent lack of broad adoption, the idea to use data compression
for text classification has become so mainstream today that it appears in a key AI textbook [4, Chapter
23]. There, Russel and Norvig point out that "In effect, compression algorithms are creating a
language model. The LZW algorithm in particular directly models a maximum-entropy probability
distribution." Presumably, compression ratio then estimates the probability that given input was
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generated by the language model. Motivated by this discussion, Halford offers [5] are a recent
(2021) re-evaluation of the idea from [1], using a recent version of gzip compressor on the public
News data set available with sklearn [12]. Indeed, Multinomial Naive Bayes from sklearn clearly
outperforms gzip-based classification by F1 score and "It’s also dramatically faster". Halford
evaluates several other modern compressions — zlib, bz2, and lzma, which show wildly different
results in terms of F1 and runtime. All of these tools are much slower than Multinomial Naive Bayes,
and only lzma shows performance on par with it but at the cost of being several times slower than
other data compressors. In contrast to these recent pessimistic results, we show how to significantly
improve the ML performance and runtime of compression-based text classification.

2 Insights and Overview

We revisit compression-based text affinity scores [1] because modern compressors are faster than tools
from 2002 and produce better entropy estimates. The lossless open-source zstandard compressor
[6, 7, 8], developed by Yann Collet at Facebook around 2016, produces results not far from those
of (slow) arithmetic coding that are considered close to the Shannon bound. The zstandard
compressor offers a dictionary interface, which allows us to improve the approach of [1] and make it
more practical, especially for small and medium-sized strings. Zstandard can build a compression
dictionary and use it to compress many small files, to avoid the overhead of separate dictionaries.
We use the dictionary interface to compress texts to be classified or ranked. This sharpens entropy
estimates and improves speed versus compressing concatenated files (where the same file would be
concatenated with multiple other files). The resulting text affinity scores can be used as inputs to
multimodal classifiers and rankers. The simplicity of this language-agnostic method is attractive
when building ML platforms, especially for product engineers without ML background.

We leverage text affinity estimation in text ranking and classification. For example, given positive and
negative examples for 2-class classification, we first build compression dictionaries for each class. As
an option, the texts can be normalized by removing punctuation within sentences (but not spaces) and
lowercasing the remaining letters (for languages without upper/lower cases, this is a no-op). With
Zstandard, there is no need to concatenate files as in [1], thanks to the dictionary interface.

The original approach has several major weaknesses that we are able to address. To illustrate them,
consider classifying news articles in topics — Politics, Celebrities, and Sports. Some important
words and phrases appear in multiple topics, but with different frequencies, for example, “Arnold
Schwarzenegger”. For a sufficiently large set of examples, such words compress equally well for
each class, and do not contribute useful information. This is particularly detrimental when classifying
or ranking short texts. Downsampling the examples would help with common words and phrases, but
undermine the handling of rare words and phrases (which would not be compressed for any class). To
address this challenge, we use a set of dictionaries of telescoping sizes — this way, common words
are differentiated by smaller dictionaries and rare words are differentiated by larger dictionaries.
Another challenge is the heavier impact of longer words on compression ratios. We address it by word
padding to fixed length, e.g., "hello" padded to 10 characters becomes "hellohello". We configure
zstandard to minimize headers in compressed files and, furthermore, subtract the compressed size
of an empty string from compressed sizes of evaluated pieces of text. For each evaluated text, for each
classification class, we average the byte compression ratio over multiple dictionaries. Subtracting this
number from 1.0 produces an affinity score, for which “greater is better”. In particular, a sentence
that was seen in some class examples may return a value close to 1.0, whereas a sentence in a
different script (e.g., Greek vs Cyrillic) would not compress well, resulting in a value close to 0.0. For
multiclass classification, we subtract the min class score from all scores. This handles words present
in many classes. For ranking applications, affinity scores can be sorted to produce an ordering.

3 Implementation and Empirical Evaluation

Our PyTorch implementation is based on an untrained Torchscript module for Zest. The Python
zstandard library was not supported with TorchScript, so we implemented the Zstandard
interface in C++ as a TorchScript module using the original C library. For comparision with
other linear models and public text datasets, we used the Python zstd library directly. The Zest
transformer takes in lists of text containing the examples per class to train separate dictionaries, as
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well as a list of text features for evaluation. It produces affinity scores per class, which can be used
separately or combined (e.g., by subtraction) into one score.

3.1 Deployment in a production ML Platform

We onboarded Zest to a company-internal ML platform that hosts hundreds of ML models for
prediction, classification, etc. Using production data, we evaluate the use of Zest text affinity scores
as additional features to these models, where we can judge features by their importance values in the
context of various other features. The specific application discussed in this paper uses text features to
rank search results in an internal tool (posts) produced for a given search query. Some model features
provide context: user_id, group_id, and post owner_id. The most useful features in the deployed
ML model include the number of characters, query proximity to the post text, and components of a
multi-dimensional content embedding. In this study, we check if compression-based affinity scores
are comparable in their utility to language-specific content embeddings, which require additional
training and cannot handle text in many languages, or mixed-language text. In contrast, Zest can be
useful where content embeddings are not easily available.

To prepare input for text affinity computation, we feature-engineer the positive and negative post
examples to evaluate the post text. For each user on the internal tool, we fetch the 12 most recent
posts from the 5 groups with which the user interacted most recently. We split these examples
between positive and negative by whether the user viewed them more than once. As most posts end
up being negative examples for a user, we added posts that are trending on the internal tool as positive
examples. On average, a user has 39 negative examples with 851 characters each and 20 positive
examples with 1659 characters each. This way, the number of characters passed into the positive and
negative compression dictionaries balances out.

3.2 Empirical evaluation within a larger model

We ran a baseline gradient-boosted decision tree (GBDT) workflow with no additional features, a
GBDT workflow with Zest scores as features, and a GBDT workflow with 3-gram affinity scores
(percentage of matched 3-grams) as features. The Zest transformer took roughly 50% longer to
compute affinity scores in our workflows compared to the n-gram transformer (both implemented
by us). However, the Zest classifier code ran much faster with the Python implementation, taking
200-300 seconds to build dictionaries on 25k examples, whereas the transformer would take 40-50
minutes for a few thousands of examples. This could be to due to the memory limits placed on
TorchScript modules when running in production. Feature importance of the top Zest feature was #16
(compared to #201 for the n-gram models), ahead of hundreds of content-embedding dimensions and
behind of only 7 of them.

We then tested removing embedding features to see how well Zest can fill in the missing information.
Based on random removal of embedding dimensions, the new features allow the model to drop 150
dimensions of both the post and query embeddings, while improving normalized entropy (NE) by
7% compared to the baseline model. With half of the embedding features removed, the top Zest
feature was at #8 with only 4 embedding features ahead. An important distinction between Zest and
the embedding features is that the Texas SIF embeddings [9, 10] used in this application can only
support English and Spanish, whereas the Zest transformer is language-agnostic and can handle
mixed-language text. Incidentally, the Texas SIF embeddings are shown be a "Tough-to-Beat Baseline
for Sentence Embeddings" [9]. We also checked feature quality of the Zest transformer by removing
features representing an ID, given that the ID features had high feature importance and could be
affecting model quality. After removing the ID features, feature importance jumped from #16 to #9,
again being outperformed by only 4 embedding dimensions.

Table 1 compares different workflow runs with different configurations along with the offline results
for comparison. There is a distinction in the score distribution between the True and False examples,
with most True examples around 0.03 - 0.11, and most False examples around 0-0.07, indicating that
the feature values can be strong enough to help with classification on its own.

3.3 Standalone comparisons versus linear models

As demonstrated on production data, Zest features can be useful when passed into a model along
with other features. To compare Zest to other text transformers while avoiding non-text features,
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Figure 1: Zest score distribution for True and False examples respectively.

to perform ablation studies, and experiment with ensembling, we worked with various public text
classification and sentiment analysis datasets. We ran Logistic Regression (LR) trained on Bag of
Words (BoW) as a feature, LR trained on Facebook’s InferSent sentence embeddings [11], and the
multi-class version of Zest on a dataset with various categories of news headlines [12] and various
sentiment datasets (Stanford Movie sentiment [13] and IMDB movie review sentiment [14]). We
ran Zest with 1, 2, and 4 telescoping dictionaries each to check performance on the news headlines
dataset. The Zest model with 4 telescoping dictionaries performed significantly better than the
rest. Word padding generally improved accuracy by 0.5-1% based on the dataset. Compared to
sophisticated language models — BERT and such, — Zest has a much smaller resource footprint
and is easier to work with, yet customizable.

The ensemble (averaged) prediction of Zest and LogisticRegression with a BoW performs the best
on the news headline categories dataset. However, BoW as a feature worked well with Logistic
Regression — it ran faster and outperformed standalone Zest by 1-5% in accuracy, depending on the
dataset. The sentiment analysis datasets both had an accuracy of ≈87% with LR and BoW versus
≈78-80% for Zest, no matter how it was ensembled.

Table 1: Comparisons in a production setting
model post emb. query emb. feat. imp. NE

Baseline All All — 0.196
Zest All All 0.29% 0.212
3-gram All All 0.06% 0.216
Zest None None 3.57% 0.448
Zest 150 dims 150 dims 1.54% 0.189
Baseline All All — 0.173
Baseline None All — 0.161
Zest None All 1.14% 0.151
3-gram None All 0.17% 0.151

Table 2: Comparisons for news headlines [12]

model size (MB) train sec. acc.

NB/BoW 3.34 0.170 0.926
LR/BoW 1.67 26.53 0.947
LR/InferSent 777 822.3 0.874
Zest 4D 3.04 74.43 0.924
Zest 4D/LR-BoW 4.71 100.9 0.951
Zest 2D 1.02 60.49 0.886
Zest 2D/LR-BoW 2.69 87.02 0.946
Zest 1D 0.02 49.83 0.741
Zest 1D/LR-BoW 1.69 76.36 0.938

The baseline model is a GBDT. Alternatively, we pass either Zest or the 3-gram counter in as
additional features to the baseline model. BoWs are also compared to Zest and also passed in
as features, to a Logistic Regression (LR) or Naive Bayes (NB). Zest is ablated with 1, 2 and 4
telescoping dictionaries. Additional sentiment analysis datasets (not shown) exhibit similar trends.

3.4 Comparisons with other compression algorithms

As discussed in Section 1, Halford [5] compares various compression algorithms by speed and quality
of results on a categorical newsgroups dataset. While zstd is not included, the LZMA algorithm
performs the best but takes over 30 minutes for 4,000 documents. We extend Halford’s work by
including zstd in two ways — as a regular compressor (without using its dictionary mode) and via
Zest. Such comparisons can clarify if (1) other compression algorithms are competitive and (2) if
our improvements help with performance and speed.
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Halford uses the Newsgroups dataset [16] that contains 20,000 documents from 20 newsgroups. GZip,
Zlib, and BZ2 all underperform, with an average of 0.65-0.75 for both precision and recall. The
best-performing algorithm, LZMA, attains both a precision and recall of 0.897 and takes 30 minutes
to complete. zstd used as a regular compressor achieves a precision 0.857 and completes in under
a minute. Zest takes only 40 seconds to train and test the documents, with FOM 0.899. Zest is a
significant improvement over using compression algorithms on its own, likely due to the telescoping
dictionaries.

4 Conclusions and Future Work

We have demonstrated model-free language-agnostic text features based on data compression that
can be useful to text rankers and classifiers. In addition to using a modern data compression tool, our
implementation goes beyond the ideas in [1] by leveraging the dictionary mode in zstandard, using
telescoping dictionaries and performing word padding. Empirical performance of TorchScript
module on a production ML platform is competitive with that of content-embedding features. How-
ever, for some simpler datasets with clear distinction between text classes, BoW shows better ML
performance, while being simple and fast.

Evidence from Section 3 allows us to conclude the following:

1. Compression-based methods can be significantly improved by telescoping dictionaries and
word padding.

2. Counting methods can achieve strong performance in some cases.

3. Ability to handle synonyms via embeddings offers no advantage on some practical datasets.

4. Different datasets and classification types favor different models.

5. Zest is competitive with trained sentence embeddings in production settings.

6. Zest outperforms other counting methods such as n-grams in production datasets.

Although Zest performance is strong and can be an adequate replacement for content embeddings in
a production environment, BoWs as features consistently performed the best on all public datasets
that we used to evaluate Zest. Cursory analysis suggests that these datasets allow identifying each
class by a small set of words, making explicit counting more accurate than compression-based
methods and trained word/content embeddings. However, in a production environment as the one
described in Section 3, frequent class-specific words are less common, allowing methods like Zest
to be on par with competition but with no training. We also evaluated (Markov-chain) language
models that estimate the probability that a given text was generated by a given language [4, 15]. In
our experiments (not shown), they produce slightly more accurate classifiers than Zest, but tend to
be more complex and consume greater resources. Compression-based methods using compression
algorithms out of the box do not perform well either, with the exception of lzma. zstd slightly
underperforms in comparison with lzma, but can cut the compression time significantly. Zest with
its telescoping dictionaries is efficient and performs well in our compression-based experiments.

Our findings are useful when designing ML platforms that need to deal with text features with-
out asking product engineers to write ML code. They suggest maintaining several lightweight,
language-agnostic text features including compression-based ones, and letting the model-training
process choose which features are helpful. In many applications, such low-hanging features provide
performance that is close to or better than more sophisticated word/content embeddings, while using
a much smaller resource and latency footprint. Unlike more sophisticated methods, lightweight
methods tend to be language agnostic and can be implemented without language detection.

It is straightforward to generalize our methods to the applications explored in [2], and we believe that
many of our conclusions are going to generalize as well.

Our code and experiments are available at https://github.com/facebookresearch/zest.
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