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Abstract

It is often argued that causal inference is a step that follows probabilistic estimation
in a two step procedure, with a separate statistical estimation and causal inference
step and each step is governed by its own principles. We have argued to the contrary
that Bayesian decision theory is perfectly adequate to do causal inference in a single
step using nothing more than Bayesian conditioning. If true this formulation greatly
simplifies causal inference. We outline this beautifully simple idea and discuss
why some object to it.

1 Introduction

Causal inference is often viewed as its own domain requiring concepts beyond standard probability
and Bayesian decision theory. We think this complicated view is unnecessary. Bayesian decision
theory automatically covers causal inference as a special case. Causal inference is complicated, not
because new principles are needed but because probabilistic modelling in causal settings is difficult.
Here we will show how simple Bayesian conditioning is sufficient to do causal inference and discuss
why not everyone accepts the argument.

2 Bayesian Inference on Exchangeable observations

Imagine we measure an outcome on unit ¢, with binary outcome Y; that received a binary treatment
T;. Furthermore, assume we have access to a dataset consisting of /V different units i.e. our dataset
is Yi.n and T7y.. Furthermore we would like to set some future treatment 7 on another unit in
the future. Our goal is to set T so that it will influence the outcome of Y * and by convention we
consider the outcome Y* = 1 to be preferable to Y* = 0. In other words the goal of our decision
making problem is to determine how the treatment 7™ influences the outcome Y * and to set the
treatment to maximize the probability that Y* = 1.

We argue that the completely general algorithm to compute this probability is rather simple. To
determine if we wish to treat 7" = 1 or not treat 7" = 0 we must specify a probabilistic model
P(Yi.n,Ti.n,Y*|T™), we then condition P(Y*|Y1.n,T1.n,T"). Finally we compute: best t =
argmax,. P(Y* = 1|Y1.n5, T1.n, T* = t*). Notably, this algorithm is a straightforward application
of Bayesian Decision theory, with the introduction of no novel notations or concepts to accommodate
the causal aspect. Causal inference is often viewed as complex and difficult, “causation is not
correlation” is a cliche of statistics. So our claim that causal inference can be reduced to computing a
(Bayesian) conditional probability may be viewed with suspicion.

The point of view we develop here argues that causal inference is indeed difficult, but not because
Bayesian conditioning is insufficient but rather because the task of probabilistically modelling
P(Yi.n,Th.n, Y*|T™) is difficult.

I (Still) Can’t Believe It’s Not Better Workshop at NeurIPS 2021.



This modelling task is also difficult in ways that somebody familiar with using Bayesian modelling
for associations might overlook. Let’s consider some typical modelling assumptions that we might
apply only to the observational part of the model (which is a more familiar problem to many)
ie. P(Yi.n,T1.n) = P(Yi.n, T1.N|T*) = fP(YLN,TLN,Y*|T*)dY*. Usually we will assume
exchangeability (or conditional independence). This is done by introducing parameters, a general
way to do this is:
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Using this model we can “fill in” missing parts of the observational data. e.g. if Yy was missing then
we could compute P(Yx|Y1,..,YN_1,T1, ..., Tn) but equally if Ty were missing we could compute
P(TnY1,.,Yn,T1,...,Tn—1). The conditional probability can be viewed as “causing you to think”
- or as de Finetti puts it:

I do not look for why THE FACT that I forsee will come about, but why I DO
forsee that the fact will come about. It is no longer the facts that need causes; it is
our thought that finds it convenient to imagine causal relations to explain, connect
and forsee the facts. Only thus can science legitimate itself in the face of the
obvious objection that our spirit can only think its thoughts, can only conceive its

conceptions, can only reason its reasoning and cannot encompass anything outside
itself. de Finetti (1975) [7]

The cause to think interpretation allows resolution of certain associations. For example observing
Christmas cards might cause you to think it is Christmas even if they do not “cause” Christmas.

There are also more restrictive assumptions, one is the following construction based on the “regression
assumption”:
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which introduces a further partial exchangeability assumption. According to Equation|l|pairs of Y, T'
may be permuted i.e. The probability remains the same if Y; = y;,T; = t;,Y; = y;,T; = t; orif
Y, =y;,T; =t;,Y; = y;,T; = t; and all other elements are the same. Assuming exchangeability
allows not only exchanging pairs but arbitrary numbers of permutations.

A further exchangeability constraint is implied by Equation[2i.e if T; = T then you may permute
Y; and Y. One way to understand this assumption is that it is only possible to learn about the
association between Y; and T; is by observing pairs of Y and 7" - semi-supervised learning based on
only observing T; without Y is not possible.

If we were to marginalize the model to contain only 7y.5 we have P(Ti.n) =
J P(¢)I1,, P(T,|$)d¢. Which assumes the elements of T} and T} are exchangeable.

A further important remark is that this assumption does not constrain any marginal P(Y;,T;) but
does constrain the joint over P(Y7.n,T1.n5). This will become important when we address critiques
of probability theory as able to solve causal inference problems.

Another possibility is:
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Similar to above this implies partial exchangeability i.e. if Y; = Y} then you can permute T; and T}
and It also implies exchangeability on the marginal P(Y7,..,Yx)

We can consider three different scenarios over P(Y1.n,T1.n):



1. A model that only assumes exchangeability over pairs of Y and 7 wusing the
P(Y,|T,, ¢, 8)P(T,|¢, 8) construction

2. A model that in addition to 1. assumes partial exchangeability of Y if 7" is the same using
the P(Y,,|T,, 8)P(T,|¢) construction

3. A model that reverses the assumptions in 2. i.e. assumes partial exchangeability of T"if Y is
the same using the P(7,,|Y,,, \) P(Y,,|«) construction

It is worth noting these are different probabilistic models even if as N — oo they all converge to
the same P(Yny1,Tn+1|Y1, ..., YN, T1.n), the difference can be seen for example in considering
if semi-supervised learning is possible. In the case of 2. Having access to measurements of 7}
without the corresponding Y; provides no information how Y} is related to T}, and so semi-supervised
learning is impossible [11] in the more general case of 1. semi-supervised learning may indeed be
possible.

3 Causal Inference as Bayesian Inference

At this stage we move from predicting missing elements of Y., 7T4.n and return to the original
causal problem of determining the treatment 7™ in order to induce a preferred outcome on Y *. This
requires us to model: P(Y1.n,T1.n, Y*|T*). We need to connect the new outcome Y™ to the (to be
chosen by us) treatment 7* and the observed data Y;.n, T7.y. If we base our model on Equation
we might arrive at:
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which unfortunately is too general for any firm conclusion to be drawn and the details of the
parameteric forms and priors matter even as N — oco. In contrast this extension of Equation [2] makes
strong partial exchangeability assumptions and as a consequence allows (intersubjective) causal
inference:

Hnmﬂ%YWﬂ:/fwwwWWWTMHPMM%QH%WMM,($

Intersubjectivity refers to the fact that Bayesian models that agree on exchangeability but otherwise
differ can rapidly reach consensus. This is a consequence of the Bayesian law of large numbers i.e.
if two Bayesians agree on exchangeability but otherwise have different priors then both will have a
predictive distribution that rapidly converges to the observed frequency as N — oo.

If we adopt the assumptions in Equation [5| we then assume that if we set 7% = ¢, then Y™ is
exchangeable with any Y} if T; = ¢. In practice this means by the Bayesian law of large numbers,that
as N — oo; P(Y* = 1|Y1.n, T1.n, T*) — empirical average of the subset of Y; where T} = t. This
is the type of assumption we usually want to make when doing causal inference and this assumption
is employed and appropriate after a well executed randomized control trial.

The partial exchangeability in scenario 3. where we use the P(T,,|Y,,, \) P(Y},|«) representation
reverses the exchangeability and results in as N — oo; P(Y* = 1|Y1.n,T1.n,T*) — empirical
average of the of all Y. This is the situation where 7" does not cause Y, which is trivial - but usefully
demonstrates the impact of different partial exchangeability relationships.

Unfortunately the assumption in Equation [5] often cannot be applied (or there is disagreement
about if it can be applied) and only Equation 4 might be applied which implies no use-able par-
tial exchangeability relationship. While Equation 4| is sufficient to make causal inference very
dependent on assumptions - an alternative way to demonstrate the breakdown of any useful ex-
changeability result is to introduce a covariate into the model and then to discuss the impact of this
covariate being hidden (an unobserved confounder). Making X the covariate the model becomes:
P(Yi.n, X1.n, Th.n, Y™, X*|T*) If we have:
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but we only observe Yi.n,T1.n - there is no exchangeability result that can be exploited and an
intersubjective treatment effect cannot be learned - it is also reasonable to expect most individual
Bayesians observing Y7.y, X1.571.x Will not learn much about P(Y™* = 1|Y1.n,T1.n,T*). In-
troducing an unobserved variable is just one way to show how exchangeability can break down.
In statistical inference unobserved parameters are introduced to produce exchangeable probability
models and are occasionally referred to as an indulgence in the strict “operational subjective” theory
[10]. In causality unobserved confounders are introduced with the opposite purpose to destroy
exchangeability and partial exchangeability between the the observed and future outcomes, but the
introduction of a latent variable could equally be viewed as an indulgence.

When the covariate X is observed there are two plausible causally relevant ways a future Y*, X*
may partially exchange with Y7.n,X1.n. Which results in Simpson’s paradox [17]. The first of these
is shown in Equation 6 with X observed, the second is given by:
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In the case of Equation 6 a partial exchangeability relationship exists between Y and Y* so long as
X; = X" and T; = T™. In the case of Equation 7 a different partial exchangeability relationship
exists between Y and Y* and X; and X* so long as T; = T™*.

4 Conclusion

Bayesian theory uses reasonable axioms of rational behaviour to show how we can use the knowledge
of observed outcomes to update beliefs about other outcomes. It does not matter in principle if these
observations are free form events, repetitions of a phenomena (allowing exchangeability) or are the
outcome caused by a hypothetical intervention. To argue against this would require a critique of the
axiom systems (See Appendix A).

It is however the case that once exchangeability is assumed as is possible in most purely observational
studies the subtleties around exchangeable and partial exchangeable relationships between records
can be mostly overlooked. When we must consider the causal outcome of an intervention this subtlety
cannot be avoided and the probabilistic specification may be quite subjective. In this case different
researchers will make a different causal inference, which is indeed a common situation when a high
quality randomized control trial is not available.

It is also the case that a separate conditional probability must be compute i.e.
PY*, Yi.n,Ti.n|T* = 0) and P(Y*,Y1.n,T1.n|T* = 1). Probability theory is entirely satis-
factory to a) make causal assumptions and b) do causal inference via conditioning.

Alternative approaches separate statistical and causal inferences into separate steps. These steps
involve estimation of a joint P(Y,T’) and construct a causal effect as a transform of P(Y,T).

As mentioned not everybody accepts this methodology that uses probability (and partial exchange-

ability) both to encode associations and causal assumptions and uses only probabilistic conditioning
to do the causal inference. Instead a two step procedure is adopted involving a statistical estimation of

a (frequentist) distribution e.g. P (Y, T) and a causal step that explains if it is possible to recover the
causal effect from P(Y,T). We argue that reducing the Bayesian P(Y7.n,T1.n, Y *|T*) to the fre-
quentist P(Y,T') obscures the partial exchangeability probability relationships that are fundamental

"'We have no appetite to argue with anyone who sees this as an extension of probability theory.



to causal inference and requires the introduction of non-probabilistic methods both to encode causal
assumptions and do causal reasoning in lieu of the simplicity and generality of probability theory.
Not everyone agrees with us, and while some researchers are enthusiastic about or formulation it is
rejected by key thinkers in the causal community.

In Appendix B we discuss non-probabilistic approaches to causality that separate inference into causal
and statistical steps. Appendix C responds to some of the criticism and provides key references.
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