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Abstract
Deep neural networks and support vector machines have been shown to accurately predict genome-
wide signals of regulatory activity from raw DNA sequences. These models are appealing in part
because they can learn predictive DNA sequence features without prior assumptions. Several
methods such as in-silico mutagenesis, GradCAM, DeepLIFT, Integrated Gradients and Gkm-
Explain have been developed to reveal these learned features. However, the behavior of these
methods on regulatory genomic data remains an area of active research. Although prior work
has benchmarked these methods on simulated datasets with known ground-truth motifs, these
simulations employed highly simplified regulatory logic that is not representative of the genome. In
this work, we propose a novel pipeline for designing simulated data that comes closer to modeling
the complexity of regulatory genomic DNA. We apply the pipeline to build simulated datasets
based on publicly-available chromatin accessibility experiments and use these datasets to bench-
mark different interpretation methods based on their ability to identify ground-truth motifs. We
find that a GradCAM-based method, which was reported to perform well on a more simplified
dataset, does not do well on this dataset (particularly when using an architecture with shorter
convolutional kernels in the first layer), and we theoretically show that this is expected based on
the nature of regulatory genomic data. We also show that Integrated Gradients sometimes performs
worse than gradient-times-input, likely owing to its linear interpolation path. We additionally
explore the impact of user-defined settings on the interpretation methods, such as the choice of
“reference”/“baseline”, and identify recommended settings for genomics. Our analysis suggests
several promising directions for future research on these model interpretation methods. Code and
links to data are available at https://github.com/kundajelab/interpret-benchmark.

1 Introduction

Complex machine learning models such as deep neural networks (DNNs) and support vector machines
(SVMs) have demonstrated state-of-the-art performance at predicting genome-wide signals of regulatory
activity as a function of the underlying DNA sequence [1, 2, 3, 4, 5]. When applying these models to decipher
the complex cis-regulatory logic of the genome, it is important to understand which base pairs in an underlying
genomic sequence are influential to the model’s prediction. In recent years, several interpretation methods
such as in-silico mutagenesis (ISM) [6], GradCAM [7], DeepLIFT [8], Integrated Gradients [9] (for DNNs)
and GkmExplain [10] (for SVMs) have been developed to answer this question. However, these methods
have yet to be extensively benchmarked on models trained for regulatory genomic sequence prediction tasks,
and our understanding of their relative drawbacks remains incomplete.
To evaluate the quality of the interpretations of models trained on regulatory sequence data, there are two
main types of approaches. The first involves creating a completely simulated dataset by sampling motifs
from position frequency matrices and implanting them uniformly into a randomly generated background
sequence. This approach, which has been applied in several published works [8, 11, 12, 13] has the benefit of
being in control of the exact ground truth. However, the problem with this approach is that these simulated
sequences may lack the complexity of real biological data. Real protein binding is highly cooperative, with
many factors often co-binding and affecting each other, and motifs also tend to exhibit positional preferences
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(for instance, motifs of activating transcription factors typically tend to occur near the center of a regulatory
element). Conclusions drawn from these simplified datasets may not generalize to real data.
The second type of approach that has been used for benchmarking interpretation methods is to train models
on real genomic sequences and use existing knowledge or heuristics to sanity-check the interpretation. For
example, a user might look for relevant motifs that are known to exist in a cell type [2, 1, 5, 14], might verify
that motif instances tend to occur within transcription factor footprints [5], might test for enrichment of
disease-associated SNPs [15], and might even conduct empirical validation [5, 14]. While this approach uses
real, representative data, it is difficult to gain insight into which patterns the interpretation method may have
missed, as the ground truth is not definitively known.

1.1 Our Contributions

We devise a novel pipeline for generating simulated datasets to bridge the complexity gap between simple
simulations and real genomic data. Using our pipeline, we generate 5 synthetic datasets based on chromatin
accessibility data from 5 distinct cell types. On each of the 5 datasets, we train 2 different DNN models
(pre-initialized using weights from DeepSEA Beluga [16] and Basset [2] respectively), as well as a gapped
k-mer SVM [4]. We then benchmark 6 broad types interpretation methods (ISM, gradient-times-input,
DeepLIFT, Integrated Gradients, GradCAM and GkmExplain) and explore multiple variations of DeepLIFT,
Integrated Gradients and GradCAM, for a total of 19 different interpretation algorithms. Our findings can be
summarized as follows:

1. We find that GradCAM-based methods, which were previously found to do well on a simplified simulated
genomic dataset [11], perform poorly on our dataset (Fig. 2), particularly for the better-performing
DeepSEA-like architecture that has shorter convolutional kernels in the first layer). In fact, we find that
GradCAM performs worse than just using gradient-times-activation at the relevant layer (Fig. 4). We
show this pitfall of GradCAM can be theoretically anticipated given the nature of genomic data (Sec.
3.1).

2. We investigate different settings for interpretation methods, such as the number of interpolation points
for Integrated Gradients, the effect of different “references”/“baselines”, and the benefit of using the
‘RevealCancel’ variant of DeepLIFT (Sec. 3). We identify recommended settings for practitioners.

3. We occasionally find that Integrated Gradients (IG) performs worse than gradient-times-input (Fig. 2).
Consistent with the findings of Jha et al. [17], we speculate that this is due to IG’s linear interpolation
path, as interpolated inputs can be out-of-distribution. We show empirically that linear interpolation
between the reference and target output can cause the output logits to behave erratically (Fig. S10).

4. We find that for the poorer-performing Basset-initialized model, GkmExplain importance scores perform
close to the best deep-learning-based importance scores, showing the importance of training a SVM as a
strong baseline alongside deep learning models (Fig. 2).

2 Methods

2.1 Description of Interpretation Algorithms Used

We provide a brief overview of the interpretation methods considered in this work. For all these methods, the
“output” we used was the logit of the sigmoid (i.e. the log-odds probability of the positive class).
In-Silico Mutagenesis (ISM) quantifies the importance of individual bases by making in-silico perturbations
to individual bases in the input and observing the change in the output. In our implementation, we first
computed the delta in the output logit when the base at a given position is mutated to the 3 other possible
bases, and then defined the importance of the position as the negative of the average delta (thus, if mutating a
position tends to decrease the logit, the position will be assigned a positive importance). ISM is attractive as
it is a faithful depiction of how the model responds to a perturbation. A key drawback is that it only reflects
the impact of making a single perturbation; if the output has saturated in terms of its sensitivity to an input
feature, then perturbing that feature may not affect the output. Another drawback is that the output has to be
recomputed every time there is a perturbation, though faster implementations exist [18].
Gradient-times-input [19] does an elementwise multiplication of each input feature with the gradients of
the output on the input features. In the context of genomics, where inputs are one-hot encoded, this amounts
to computing the gradient on the bases that are present in the sequence. The advantage of this approach is its
simplicity; the disadvantage is that gradients can saturate [8], and can thus miss important features.
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DeepLIFT [8] is an explanation method for DNNs devised to counter the saturation faced by gradient-
times-input, while retaining some computational efficiency. DeepLIFT works by comparing the activations
of neurons on the actual input to the activations of the neurons on a “reference” or “baseline” input, and
backpropagating an importance signal (“contribution scores”) in such a way that the sum of contributions
across all input features will equal the difference of the output activation from its reference value. A key
drawback of DeepLIFT is that it is a heuristic importance-scoring method backpropagates the importance
signal based on the network’s internal wiring; thus, two identical models with different internal wiring could,
in principle, produce different outputs (i.e. DeepLIFT is not “implementation invariant”).
A note on different variants of DeepLIFT that exist in the literature: the original DeepLIFT paper proposed
two rules for backpropagating importance through a nonlinear activations: the “Rescale” rule and the
“RevealCancel” rule, where the latter rule was designed to reveal cases where different inputs to a neuron
may have canceled each other out (thereby superficially making it appear as though the neuron did not
receive any significant inputs). The authors recommended that, for genomics applications, the RevealCancel
rule be applied to fully-connected layers and the Rescale rule be applied to convolutional layers. Since the
publication of the DeepLIFT paper, several additional repositories have implemented DeepLIFT in a more
extensible way than was done in the original repository [20, 21, 22] - however, at the time of writing, these
implementations do not support the RevealCancel rule and instead use Rescale at all activation layers. Prior
work has not investigated how much benefit is conferred by the RevealCancel rule on real genomic data,
particularly when shuffled sequences (discussed below) are used as a reference.
Like DeepLIFT, the method of Integrated Gradients (IG) [9] also uses a reference-based approach to
address the saturation problem faced by gradient-times-input. IG averages the input feature gradients over
several pseudo input examples that are generated by linearly interpolating between the reference example
and the actual input example, and then multiplies these average gradeints elementwise with the difference
of the actual input features from their reference values. Because IG only relies on model gradients, it is
guaranteed to produce identical outputs for functionally equivalent models irrespective of the internal network
implementation - i.e. it is “implementation invariant”. However, although it is implementation invariant,
it is not invariant to the choice of interpolation path; this is discussed more in Sec. 3.2. Another pitfall of
integrated gradients is computational efficiency, as the runtime is proportional to the number of interpolation
points (though it should be noted that this runtime can be reduced with sampling approaches [23]).
The choice of “reference” is of key importance when using a method like DeepLIFT or IG [24]. In the
original DeepLIFT paper [8], the authors used a reference representing the expected base frequency; for
example, with 40% GC content and base ordering of ACGT, this reference would look like a L× 4 vector
where L is the sequence length and each column is [0.3, 0.2, 0.2, 0.3]. Another commonly-used reference
is the all-zeros reference, which is the default reference in most implementations of DeepLIFT/IG and was
the only reference explored in the original IG paper [9]. However, the supplement of the DeepLIFT paper
showed strong performance using a collection of reference sequences derived by dinucleotide shuffling the
original sequence; in this case, contribution scores are averaged across each reference in the collection. Prior
work has not benchmarked the use of shuffled references extensively. It should be noted that using multiple
references adds computational burden proportional to the number of references.
GradCAM [7] is an explanation method that was developed for computer vision data. When applied to the
sequential inputs used in genomics, the method works as follows: for a given target output task yo, and a
given convolutional layer in the network (the GradCAM paper recommends using the last convolutional
layer), a set of weights αo

k are determined for each channel k in the convolutional layer (the GradCAM paper
refers to channels as “feature maps”) by averaging gradient of the output over all positions in the channel;
thus, if Ak

i represents the activation of channel k at position i, then αo
k = (1/L)

∑
i(∂y

o/∂Ak
i ), where L is

the total length of the conv layer. An importance vector is then computed as ReLU(
∑

k α
o
kA

k); this vector
has length L, and is projected onto the input sequence via linear interpolation (the original GradCAM paper
uses bilinear interpolation as it deals with image-like inputs).
Zheng et al. [11] used a variant of GradCAM where the importance vector was computed at the first conv
layer rather than the last. According to the code released by the authors, this importance vector was mapped
onto the input sequence using a different method than the linear interpolation of GradCAM: the importance
of a sequence position was defined to be the average importance over all conv neurons whose receptive field
overlapped the position. Finally, the sequence-level importance was multiplied elementwise with the input
gradients for finer base-pair-level resolution. Because it is a nonstandard version of GradCAM, we refer to
this approach as the “Zheng et al.” method.
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Figure 1: Summary of our simulation pipeline.

GkmExplain [10] is an explanation method for support vector machines (SVMs) trained on genomic
sequence data with gapped k-mer kernels. GkmExplain decomposes the output of the SVM into contributions
from individual bases, and was shown to produce state-of-the-art results at identifying motifs in regulatory
DNA sequences. It is orders of magnitude more computationally efficient than applying ISM to SVMs.

2.2 Simulation Pipeline

Here is the workflow we used for generating a simulated datasets (summarized in Fig. 1):

1. Given a set of positive and negative sequences (e.g. identified through functional genomic assays),
run a motif discovery algorithm (in our case, HOMER) on the positive set, using the negative set as a
background. This will identify the enriched motifs in the positive sequences.

2. Run a motif calling algorithm (in our case, FIMO) on both the positive and negative set using the motifs
discovered in the previous step, in order to find instances of these motifs in both the positive and negative
sets. It is important to keep track of motif instances in the negative set as negative sets in real genomic
data do contain instances of motifs that may be enriched in the positive set (they are often distinguished
from motif instances in the positive set by positional or motif co-binding patterns). Based on the motif
calling statistics, filter out any motifs that do not pass a particular enrichment threshold. Details about
the enrichment thresholds we used are in Sec. S1.1.

3. For each positive sequence, dinucleotide shuffle the sequence to randomize it, and implant the motif
instances (identified in the previous step) at their known original locations in the sequence (note that the
original motif match is implanted; we do not sample from the motif PWM). The dinucleotide shuffling
is intended to scramble undetected motif instances hidden at unknown positions in the sequence.

4. GC imbalance between positive and negative sets can sometimes confound interpretation; to eliminate
this imbalance, for each negative sequence we randomly choose a sequence from the positive set and
dinucleotide-shuffle it in order to form the “background” for the negative sequence. Then, as is done for
the positive set, we insert motif matches identified by the motif calling algorithm in the negative set at
their original locations in the negative sequence.

5. Run the motif calling algorithm again on the positive and negative sequences in order to identify both
the implanted motif instances as well as motif instances that may have spontaneously appeared in the
dinucleotide-shuffled background sequences.
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The advantages of this approach are: (1) any motifs that were not discovered by motif discovery are scrambled
by dinucleotide shuffling; thus, we have some notion of ‘ground truth’ features; (2) because the background
is similar for the positive and negative sets, we should not expect interpretation to be confounded by GC bias;
(3) because motifs are retained at their original positions, and motif instances can be present in the negative
set too, we challenge the model to learn complex, co-operative TF binding patterns to discern the positive set.

2.3 Datasets

In this work, we generated our simulated positive set based on 400 bp centered around the summits of
ENCODE [25] IDR [26] peaks accessible in one of the Tier 1 cell lines A549, GM12878, H1ESC, HepG2,
or K562 (accession numbers ENCSR149XIL, ENCSR000ELW, ENCSR794OFW, ENCSR000EOT, and
ENCSR000EMT). For our negative set, we compiled a union of IDR peak regions that were accessible in
any cell type and used 400bp regions centered around the summits of these peaks, filtering out regions that
overlapped with peaks from the cell type used as the positive set. Sequences with nonstandard bases (i.e. non
ACGT) were also filtered out. We delegated 20% of the simulated sequences as a testing set.
To sanity check that our datasets contains non-random motif co-occurrence patterns, we visualized a heatmap
of motif-cooccurence for the A549 cell type in Fig. S7. To verify that our dataset contains motif positional
preferences, we visualized the positional distribution for two A549 motifs in both the positive and negative
set in Fig. S8; these distributions show that both motifs are more likely to occupy the center of the 400bp
regions in the positive set as compared to the negative set.

2.4 Model Training

A549 GM12878 H1 HepG2 K562
DeepSEA Beluga auROC: 0.812 0.800 0.845 0.795 0.824

auPRC: 0.475 0.403 0.505 0.417 0.535
Basset auROC: 0.785 0.767 0.806 0.777 0.783

auPRC: 0.443 0.364 0.462 0.417 0.475
Fraction of Positives 0.134 0.0845 0.0947 0.129 0.156

Table 1: Test auROC/auPRC for each finetuned model and cell line.

For each cell type, we pre-
initialized two models us-
ing publicly available weights
from DeepSEA Beluga and
Basset respectively, and fine-
tuned the models on our sim-
ulated data. For both models,
the DeepSEA Beluga and Bas-
set architectures were adapted
to be single-task architectures (we initialized the weights for the output node in the single-task model using
the weights for the corresponding output task in the pre-trained multitasked models), and the available weights
were also trimmed to accomodate our 400 bp input.
During training, we used a custom data loader that sampled each batch to contain 50% positives and 50%
negatives. We used the hyperparameters of learning rate = 0.001, batch size = 300, loss = binary cross-
entropy, optimizer = Adam, and maximum number of training batches = 30,000. Early stopping was done by
evaluating the auROC on a fixed sample of 2,500 positive and 2,500 negative sequences from the test set
every 100 batches, and pausing if there was no improvement over 3 consecutive evaluations (300 batches).
The auROCs and auPRCS achieved by the model on the full test set for each cell line are listed in Tab. 1.
The numbers of positives and negatives sequences are listed in Fig. S6.
For our baseline gkm-SVM models, we used the default settings from the lsgkm package [4] (wgkm kernel
with input length L = 11, k-mer size k = 7, and gaps d = 3).

2.5 Evaluating Interpretation Methods

To calculate an auPRC for motif recovery, we follow Koo and Ploenzke [13] and define positive positions
as sequence positions that fall within motif regions and negative positions as sequence positions that fall
within nonmotif regions. For a given cell line and interpretation method, the auPRC for distinguishing
positive positions from negative positions in a single sequence is found by ranking the positions in descending
order of the absolute value of importance. Due to the computational overhead involved with running some
interpretation methods, we limited our evaluation to the top 10K training-set sequences in each cell line that
were most strongly predicted as positive by the finetuned DeepSEA Beluga model. In our barplots, we show
the mean auPRC across all sequences and report the error bars as the standard error of the mean auPRC.
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Figure 2: Overall omparison of different interpretation methods. Left panel shows scores from deep learning models
initialized with DeepSEA-Beluga weights and fine-tuned on the respective simulated data; right panel used Basset-initialized weights.
GkmExplain scores in both panels are identical as they are derived from the SVMs. ‘IG20’ denotes Integrated Gradients with 20
interpolation points. ‘ShuffRef20’ indicates 20 dinuc shuffled references were used per sequence. For DeepLIFT, ‘RSAll’ indicates
the variant with the Rescale rule applied at all layers, and ‘RSConv’ indicates the variant where Rescale is only applied to the conv
layers. See Sec. 2.1 for more information on the methods.

Figure 3: Comparison of different DeepLIFT references. ‘ZeroRef’ is an all-zeros reference, BaseFreqRef is a reference with
fractional values representing expected base frequences, ShuffRefX indicates dinuc shuffled references, with X denoting the number
of references used per sequence. Refer to Sec. 2.1 for more information.

3 Results

An overall comparison of different types of interpretation methods is shown in Fig. 2, and importance scores
at example sequences are visualized in Fig. 5, S14 & S13. A few points of interest:

1. We find that DeepLIFT and ISM tend to perform best and second-best; surprisingly, ISM performed
below DeepLIFT, which we discuss more in Sec. 4.

2. The GradCAM-based method of Zheng et al. [11] performed relatively poorly in this simulation,
particularly for the DeepSEA-like architecture (which has shorter kernels in the first convolutional
layer); we explore this in Sec. 3.1 and Fig. 4.

3. IG sometimes performed worse than grad-times-input; we discuss this in Sec. 3.2.
4. We verified that the poorer performance of IG was not due to an insufficient number of interpolation

points; Fig. S9 shows that Integrated Gradients with 20 interpolation steps and 10 interpolation steps
gives nearly identical performance.

5. We find that DeepLIFT with multiple dinuc-shuffled references consistently performs better than an
all-zeros base frequency reference (Fig. 3). We also saw that DeepLIFT performance improves with
more shuffled references, tapering after 20.

6. The Rescale-only variant of DeepLIFT performed similarly to the variant with Rescale on the conv layers
and RevealCancel at the dense layers (with the latter variant doing slightly better on Basset-initialized
models). We note that this difference is small compared to the choice of reference (Fig. 3).

7. GkmExplain interpretations performed well compared to interpretations from the poorer-performing
Basset-initialized model (Tab. 1), demonstrating the value of training SVMs as a baseline.
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Figure 4: Comparison of GradCAM and related methods. ‘DeepLIFT-RSAll-Shuff20’ is the same bar as displayed in Fig. 2.
See Sec. 2.1 & 3.1 for more info on the methods.

3.1 GradCAM-like methods perform relatively poorly, but attributions at convolutional layers
show promise

When investigating GradCAM-like methods, we began by benchmarking the version of GradCAM commonly
used in computer vision: importance was computed at the last conv layer and mapped to the input using
linear interpolation. We found that this achieved poor performance (Fig. 4). To investigate whether this
was because the spatial resolution of the last conv layer was too coarse for genomics, we also computed
GradCAM scores using the 1st conv layer, and further explored the method of Zheng et al. [11] (which
multiplied GradCAM-derived scores from the 1st layer with the input gradients); in both cases, we used the
mapping method of Zheng et al. [11] to map the conv layer scores onto the input, as we found it performed
better at the 1st layer. However, these approaches still achieved poor performance in our simulation (Fig. 4),
particularly for the DeepSEA-like architecture that has shorter convolutions in the first layer. We argue these
findings are to be expected based on the weighting approach used by GradCAM:
Recall from Sec. 2.1 that GradCAM computes “weights” αo

k for each convolutional channel k by averaging
the gradient of the output yo over all positions in the channel. By using the same weight for all neurons in a
channel, GradCAM assumes that an activated neuron in the layer has equal importance to the output task
regardless of both the position at which the neuron is activating, as well as the context of which other neurons
in the layer are activating nearby (this loss of information is illustrated in Fig. S11 & S12). In genomics,
where motifs can have different effects depending on whether they occur at the center vs the flanks, and also
co-bind with other motifs, the assumption of positional and contextual independence may not be valid. In
fact, experiments in computer vision have reported that this aspect of GradCAM leads it to fail “anywhere
besides the last convolutional layer” [27], and the GradCAM paper itself states that “localization becomes
progressively worse as we move to shallower convolutional layers. This is because the later convolutional
layers capture high-level semantic information and at the same time retain spatial information, while the
shallower layers have smaller receptive fields and only concentrate on local features that are important for
the next layers” (section 5.2 of the supplement). This perspective is consistent with the fact that GradCAM
performs worse on the DeepSEA-like architecture compared to the Basset-like architecture; the DeepSEA-like
architecture has convolutions of length 8 in the first layer, while the Basset-like architecture has convolutions
of length 19 in the first layer - thus, individual neurons in the first layer of a Basset-like architecture are more
capable of recognizing complete motifs on their own. In other words, when longer filters are used in the first
convolutional layer, the importance of a neuron in the first layer is less likely to depend on the context of
which other neurons in the layer are firing nearby.
While it may be tempting to conclude from this that it is safe to use GradCAM if we confine ourselves
to architectures that have longer filters in the first layer, doing so would come at the expense of model
performance; trends in both computer vision [28] and in regulatory genomics [29] have found that performance
can be improved by “factorizing” layers that have large convolutional kernels into several layers that have
smaller convolutional kernels. While it is tempting to think that we can safely trade of model performance in
exchange for improved interpretability, the reality is that the two are not completely independent; for example,
in our study, we found that the best explanations across all methods were derived from the better-performing
DeepSEA-initialized models (Fig. 2, Tab. 1).
A question that may arise is why the benchmarking of Zheng et al. [11], which used a DeepSEA-like
architecture, did not identify the GradCAM-based method as a poor-performing method. We suspect this is
due to the fact that Zheng et al. [11] benchmarked their method on a variation of the simplified simulation
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used in Shrikumar et al. [8], where the positive set was identifiable by the presence of a TAL1 motif that
was randomly inserted into a 1kb sequence. Because the core TAL1 motif is 6bp long (CAGATG), and the
model was not required to distinguish TAL1 from other very similar motifs, it is possible that individual
convolutional filters in the first layer of the DeepSEA-like architecture were fully capable of recognizing the
TAL1 motif; thus, the model in this simulation was not required to learn complex patterns involving muliple
neurons activating together, allowing GradCAM to perform well. This example highlights the importance of
using realistic simulations to benchmark methods.
As an alternative to GradCAM-based methods, we explored what would happen if we did not sacrifice
any positional information, but rather simply computed standard neuron attributions at the same layer as
GradCAM. We first calculated both gradient-times-activation (grad-times-act) and DeepLIFT scores directly
at the first conv layer, and then transformed these conv-layer scores to the dimensions of the input by using
an analogous method to the one used in Zheng et al. (i.e. we first summed the conv-layer scores along the
channel dimension to get a vector of length equal to the length of the conv layer, and then for each input
position we averaged the importance over all conv-layer positions whose receptive field overlapped the
input position; we did not discard negative scores). Grad-times-act-at-1st-conv substantially outperformed
GradCAM-at-1st-conv-layer by very large margins for the DeepSEA-like architecture. For the Basset-
like architecture, grad-times-act-at-1st-conv outperformed GradCAM-at-1st-conv-layer by large margins
on 3 cell types (A549, H1 and HepG2), outperformed it by a small margin on 1 cell type (GM12878),
and underperformed it by a small margin on 1 cell type (K561). DeepLIFT-at-1st-conv-layer consistently
outperformed grad-times-act-at-1st-conv-layer, which is to be expected given that DeepLIFT was specifically
designed to overcome the limitations of using just gradients.
One striking finding was that DeepLIFT at the 1st conv layer sometimes outperformed DeepLIFT at the input
layer (blue vs. purple bars in Fig. 4), suggesting there is promise to computing importance scores at layers
other than the input layer. We discuss this more in Sec. 4.

3.2 On the performance of Integrated Gradients

We found that IG sometimes performs worse than grad-times-input (Fig. 2, 5 & S14), even though IG was
designed to combat the saturation problem faced by grad-times-input. In Sec. 2.1, we noted that although
Integrated Gradients is “implementation invariant”, it is not invariant to interpolation path that is used between
the reference and the input. By default, the linear interpolation path is used - however, such a path can
produce out-of-distribution examples during interpolation. In the case of genomic data, interpolating between
two one-hot encoded inputs results in an input containing fractional values, which the model has never seen
during training. Jha et al. [17] demonstrated that the linear interpolation of IG performed poorly in the
context of splicing codes, though to our knowledge prior work has not demonstrated that it is a drawback
for regulatory genomic data as well. To support the hypothesis that linear interpolation can cause issues, we
plotted histograms of the sigmoid logits during interpolation between original and reference A549 sequences
in Fig. S10. We found that the logits on interpolated inputs do not smoothly transition from the reference
logits to the actual logits; indeed, they can move further away from the actual logits during interpolation,
confirming that non-one-hot-encoded inputs can produce unexpected model outputs.

4 Discussion

Our results with GradCAM demonstrate the value of realistic simulations; while a GradCAM-based method
performed well on the simplified simulation in Zheng et al. [11], it performed relatively poorly on our more
complex simulation (particularly for the DeepSEA-based architecture). This is consistent with GradCAM’s
use of position-invariant weights αo

k. Interestingly, while several refinements of GradCAM exist [30, 31, 32],
they all share in common this use of position-invariant weights - for example, LIFT-CAM [31] uses DeepLIFT
rather than gradients to compute αo

k. CAM-based methods are popular in computer vision because they tend
to be less noisy than computing importance scores directly at the input layer - however, to our knowledge, no
work has demonstrated that CAM-based methods outperform simply computing the importance scores at the
same layer that the CAM method is applied to. In fact, Rebuffi et al. [27] found gradient-times-activation
(which they call “linear approximation”) tends to outperform GradCAM (see Table 3 in their paper), raising
questions about whether the benefit of CAM is primarily due to the layer at which the importance scores are
calculated, as opposed to the postion-invariant channel-weighting approach that CAM uses. Consistent with
this hypothesis, we found that DeepLIFT computed at the 1st conv layer sometimes outperforms DeepLIFT
computed at the input (Fig. 4). This suggests that a promising future direction may be to improve motif
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identification by combining importance scores computed at multiple different layers, similar to the approaches
taken by [11], [27] and [33]. It is also worth investigating why importance scores can become worse at
highlighting key features when computed closer to the input layer.

IG with 20 Interpolations and 20 Shuffled Refs

DeepLIFT (Rescale rule only) with 20 Shuffled Refs

Grad-times-Input

In-Silico Mutagenesis (ISM)

GkmExplain

Zheng et al. (GradCAM@1stLayer x InputGrad)

Figure 5: Visualization of importance scores. Shown are scores from
GkmExplain and the finetuned Basset model for the simulated sequence corre-
sponding to chr14:64937697-64938097 in A549. Blue boxes represent locations
of embedded motifs.

We also showed that IG sometimes per-
forms worse than gradient-times-input de-
spite having been developed to address
the gradient saturation problem. Our in-
vestigations into the output logits suggest
the nonlinear interpolation paths used by
Jha et al. [17] in the context of splicing
codes could prove useful in regulatory
genomics as well.
Our experiments found that ISM (con-
ducted at a per-base resolution) performs
slightly worse than DeepLIFT at identi-
fying positions within embedded motifs
Fig. 2 & 5. We suggest two explana-
tions for this: one is that base-resolution
ISM may be susceptible to saturation ef-
fects [8] - for example, mutating a sin-
gle base may not be enough to substan-
tially disrupt some motif instances; fu-
ture work could explore the effectiveness
of calculating ISM by perturbing sliding
windows, rather than one base at a time.
Another explanation is that this is a limita-
tion of using a motif discovery method to
define ‘ground-truth’ in our simulations;
perhaps some motifs identified in the pos-
itive set are not in fact bound due to miss-
ing contextual features, and ISM correctly
reflects this. In this case, a more advanced
simulation that explicitly defines contex-
tual features could be a way to go.
Finally, we note that our simulated
dataset can be applied not just for bench-
marking interpretation, but also for understanding and debugging the learning dynamics of machine learning
models applied to regulatory DNA - for instance, are there specific motifs that the models tend to miss? What
dataset sizes are needed before a model learns all the motifs that are present? To what extent does pretraining
help identify motifs that would have been missed otherwise? Is there an architecture that can learn all the
motifs present without needing pretraining? We anticipate that this approach may lay the groundwork for
future systematic investigations into the training and interpretation of complex machine learning models in
regulatory genomics.
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S1 Supplementary Methods

S1.1 Enrichment thresholds used for filtering motifs

The set of motifs found by HOMER was further filtered based on the hits identified by FIMO. We set the
minimum number of positive motif hits to be 1,000, and also computed an “enrichment score” for the motifs
as follows: we assign each motif hit a weight that is inversely proportional to the square of the distance of the
hit from the center of the sequence. We then define the “weighted hit density” of a motif in a given set of
sequences as the total sum of hit weights over all motif instances in the set divided by the total number of
sequences in the set; the “enrichment score” is defined as the weighted hit density on the positive sequences
divided by the weighted hit density on the negative sequence. We set the enrichment score threshold to be a
minimum of 1.25.

S1.2 Number of pos/neg sequences in train/test sets

Figure S6: Number of sequences in positive and negative train and test sets in each cell line.
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S2 Supplementary Figures

Figure S7: Heatmap of log base 2 fold change (indicated by color intensity) for A549 cell line HOMER
accessible sequence motifs called with FIMO. Color indicates fold increase of motif co-occurrence relative to
a null where motifs are distributed randomly across sequences.
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Figure S8: Histograms of positional densities of two A549 motifs.

Figure S9: Comparison of number of interpolation points for Integrated Gradients. ‘IG10‘ and ‘IG20’
indicated Integrated Gradients with 10 and 20 interpolation points respectively. ‘ShuffRef20’ indicates 20
dinucleotide-shuffled references were used per sequence.
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Figure S10: Histograms of sigmoid logits during interpolation between original and dinucleotide shuffled
A549 sequences. α, which ranges from 0 to 1, indicates the point along the interpolation, with α = 0.5 being
the halfway point between the shuffled and original sequences.

S16



GradCAM@1stLayer

Grad-times-input

Zheng et al. (GradCAM@1stLayer x InputGrad)

Figure S11: GradCAM discards positional and contextual information (example 1). Each figure depicts a different step in
the calculation of importance scores for GradCAM/Zheng et al. Scores are shown for the finetuned Basset model for the simulated
sequence corresponding to chr14:64937697-64938097 in A549. Blue boxes represent locations of embedded motifs. Top figure
(step 1): heatmap of 1st conv layer activations. Second from top: conv layer gradients. Third from top: gradient averaged across
the positional axis for each convolutional channel (there are the α values in GradCAM). Fourth from top: product of conv layer
activations with the corresponding α value for each channel; for ease of visualization, negative values are not shown here. Fifth from
the top: GradCAM scores (derived by summing the activation-times-alpha across all channels at each position, taking only positive
scores, and projecting the values onto the input layer using the mapping method of Zheng et al.). Sixth from top: gradients on the
input bases. Bottom: Zheng et al. scores for the sequence (gradcam scores at the first layer multiplied by the input gradients). Note
the loss of positional and contextual information in the fourth step, caused by using the alpha values rather than directly using the
conv layer gradients. S17



GradCAM@1stLayer

Grad-times-input

Zheng et al. (GradCAM@1stLayer x InputGrad)

Figure S12: GradCAM discards positional and contextual information (example 2). Similar to Fig. S11, but for the finetuned
DeepSEA Beluga model for the simulated sequence corresponding to chr19:58543990-58544390 in A549.
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IG with 20 Interpolations and 20 Shuffled Refs

DeepLIFT (Rescale rule only) with 20 Shuffled Refs

Grad-times-Input

In-Silico Mutagenesis (ISM)

GradCAM@1stLayer

GradxAct@1stLayer

GkmExplain

DeepLIFT@1stLayer

Zheng et al. (GradCAM@1stLayer x InputGrad)

Figure S13: Visualization of importance scores for chr4:74933265-74933665 in A549 for GkmExplain and the finetuned
DeepSEA Beluga model. Corresponding scores for the Basset model are in S14. Blue boxes represent locations of embedded
motifs. The “GradxAct1stLayer” and “DeepLIFT1stLayer” rows mapped the scores to the input level as described in Sec. 3.1.
“DeepLIFT1stLayer” used DeepLIFT with the Rescale rule and 20 shuffled references.
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IG with 20 Interpolations and 20 Shuffled Refs

DeepLIFT (Rescale rule only) with 20 Shuffled Refs

Grad-times-Input

In-Silico Mutagenesis (ISM)

GradCAM@1stLayer

GradxAct@1stLayer

GkmExplain

DeepLIFT@1stLayer

Zheng et al. (GradCAM@1stLayer x InputGrad)

Figure S14: Visualization of importance scores for chr4:74933265-74933665 in A549 for GkmExplain and the finetuned
Basset model. Corresponding scores for the DeepSEA Beluga model are in Fig. S13. Blue boxes represent locations of embedded
motifs. The “GradxAct1stLayer” and “DeepLIFT1stLayer” rows mapped the scores to the input level as described in Sec. 3.1.
“DeepLIFT1stLayer” used DeepLIFT with the Rescale rule and 20 shuffled references.
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