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ABSTRACT

Deep learning provides a tool for improving screening of candidates for drug re-
purposing to treat neglected diseases. We show how a new pipeline can be devel-
oped to address the needs of repurposing for Leishmaniasis. In combination with
traditional molecular docking techniques, this allows top candidates to be selected
and analyzed, including for molecular descriptor similarity.

1 INTRODUCTION

Each year, approximately 1 million people are diagnosed with the neglected tropical disease known
as leishmaniasis. The disease is caused by protozoan parasites of the genus Leishmania and it can
manifest in one of three forms: visceral, cutaneous and mucocutaneous. Leishmaniasis is estimated
to cause the loss of 2.4 million disability adjusted life years and primarily affects people living in
countries who do not invest in the development of new treatments (Charlton et al., 2017). Specif-
ically, leishmaniasis is endemic to the Northern Africa, Middle East, Southwest Asia, and Latin
America regions.

Current treatments against leishmaniasis not only are difficult to access, but they can also cause
adverse side affects and may rely on a non-optimal delivery mechanism (Charlton et al., 2017).
Between 2000 and 2017, 0.8% of global investments in infectious disease research went towards
studying leishmaniasis, totalling USD 0.8 Billion which ranks Leishmaniasis in 7th place (out of
34) in terms of research spending per disability-adjusted life year among neglected tropical diseases
(Head et al., 2020). Despite this, very few drugs have been approved for use against Leishmaniasis,
mainly due to the large cost of de novo drug development (average of USD $802 million) (Dickson
& Gagnon, 2004).

Thus, there is a need to develop new treatments against neglected diseases in a cheaper, safer, and
more effective manner. An alternative method for tackling this problem is to repurpose existing
drugs used in a different condition or disease. Drug repurposing, also known as repositioning, can
significantly reduce the time between compound identification and final deployment by many years
while also reducing costs (Li et al., 2016). The goal of drug repurposing is to identify molecules that
have either been approved or that underwent clinical trials for another different disease, and identify
those molecules with high likelihood of efficacy in treating the target condition. As a matter of fact,
a recent success story in this field is the repurposing of Miltefosine, an anticancer agent, as an oral
treatment against visceral and cutaneous leishmaniasis (Sunyoto et al., 2018).

In this work, we present a pipeline for drug repurposing targeting leishmaniasis (github.
com/jajsmith/drug-repurposing-leishmaniasis). We developed our pipeline as
part of our participation at the Indaba Grand Challenge: Curing Leishmanisis hosted by Zindi
(zindi.africa). In this challenge, 3D structural files (.pdb, .smf) of both protein targets and
candidate drug molecules were provided by the competition organizers. We used these structural
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files as well as publicly available protein-compound interaction datasets to train multiple machine
learning models that rank protein-compound pairs according to their likelihood of interacting. We
used the trained models to predict new protein-compound pairs that would be effective at inhibiting
target Leishmania proteins. Pairs with high predicted binding affinity were then passed through a
molecular docking simulation to further assess binding potential and rank them by their predicted
affinity. The top three candidates identified by each team were evaluated separately by the competi-
tion organizers and the best result was considered as the final scored submission.

Among the top drugs identified by our pipeline, we found Lacosamide (go.drugbank.com/
drugs/DB06218) as a potential drug repurposing candidate. Lacosamide is an approved drug for
treating partial onset seizures. This drug received a simulated PyRosetta (Chaudhury et al., 2010)
docking score of -31.751 against the Leishmania enzyme sterol 14-alpha demethylase, an essential
component for membrane biogenesis. Thus, there are many promising avenues for experimental
validation for this and other protein-drug pairs scored by our pipeline that may contribute to finding
novel therapies against leishmaniasis.

2 METHODS

Drug discovery is a long and involved process with many stages prior to clinical evaluation. Initial
research typically focuses on identifying target pathways where the inhibition or activation of a
protein will affect the disease before a drug-like molecule or therapeutic can be found through a
combination of compound screening, secondary assays and in vivo analysis (Hughes et al., 2011).
A candidate can then be evaluated for additional constraints like toxicity and preclinical safety, as
well as delivery mechanism and cost.

In our work we primarily focus on compound screening. Many protein targets from different Leish-
mania species have been validated already, and we used a set of proteins provided by the challenge
organizers as well as public databases of protein-compound interactions were used as training data
for binding prediction models. This approach is similar to that described in Dassi et al. (2021) but
with a larger set of models analyzed and comparisons between different splits of the provided data
based on organism. Below we describe the data used in our work and the models and comparison
methods for evaluating binding affinity prediction.

2.1 DATA

2.1.1 INDABA GRAND CHALLENGE COMPETITION DATA

The challenge provided three sets of protein targets, a set of all potential targets, a set of preferred
targets, and a set of targets found only in Leishmania major. There were a total of 103,207 targets
provided in FASTA format in the all targets set, 8,499 in the Leishmania major set and 34,594 in
the preferred set.

2.1.2 DATA FOR TRAINING DEEP LEARNING MODELS

We experimented with two kinds of models: a multi-objective neural network binding affinity pre-
diction model (MONN) (Li et al., 2020) and the DeepPurpose (Huang et al., 2020) framework.
MONN was trained with data from the PDBBind v2018 database (Wang et al., 2005), while Deep-
Purpose was trained with BindingDB (Gilson et al., 2016).

PDBBind is a collection of 21,382 biomolecular complexes including 17,679 protein-ligand com-
plexes which were used for training MONN.

BindingDB is a database of measured binding affinities. As of July 31, 2021 BindingDB con-
tains 41,300 entries containing 2,303,972 binding data for 8,561 protein targets and 995,797 small
molecules.
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2.2 EVALUATION METRICS

2.2.1 INDABA SCORE

The original competition evaluation of a protein-ligand pair’s binding affinity uses PyRosetta
(Chaudhury et al., 2010) to conduct a simulated docking and record the free energy score, which
is then used to rank submissions. It is important to note that the exact scoring function used by the
challenge organizers to score submissions was not made available to participants upon request until
after the competition was over.

2.2.2 BINDING METRICS (Kd , Ki, IC50)

Kd, the dissociation constant, is an equilibrium constant that describes the tendency of a complex to
break down into smaller pieces. For a general reversible reaction:

AxBy ⇐⇒ xA+ yB. (1)

The dissociation constant is defined as:

Kd =
[A]x[B]y

[AxBy]
, (2)

Where [A], [B] and [AxBy] are the equilibrium concentrations of A, B, and AxBy . Therefore, a
lower Kd indicates better binding affinity. Ki, the inhibitor constant, is a measure of how effective
an inhibitor is. IC50, the half-maximal inhibitory concentration, is an indication of the amount
of a substance in inhibiting a specific biological function by half. These two constants can be
interconverted for competitive agonists and antagonists using the Cheng-Prusoff equation (Cheng &
William, 1973):

Ki =
IC50

1 + [S]
Km

, (3)

where Ki is the inhibitor binding affinity, IC50 is the functional strength of the inhibitor, [S] is
fixed substrate concentration, and Km is the Michaelis-Menten constant. These three parameters,
Kd, Ki, and IC50 were chosen as they are provided as affinity measurements in the BindingDB
database (Gilson et al., 2016).

2.3 MOLECULAR DOCKING AND VIRTUAL SCREENING

We used AutoDock Vina (Trott & Olson, 2010) version 1.1.2 to dock protein-drug pairs. To au-
tomate screening across thousands of candidate pairs, we wrote a pipeline in Python that loads,
preprocesses, and prepares protein/drug structural files in PDB format for docking. Briefly, we first
use Open Babel (version 2.4) to preprocess PDB files to adjust charges, add hydrogens, and remove
water molecules. Then, we use BioPython (Cock et al., 2009) to identify the search box in the pro-
tein 3D structure to run docking over. By default, we set the search box volume to the minimum
cube that includes the entirety of the protein atoms. Finally, we use AutoDock Vina to dock each
protein-drug pair and convert the top predicted pose to a single structural file in PDB format.

2.4 DEEPPURPOSE

DeepPurpose (Huang et al., 2020) is a deep learning toolkit for molecular modelling and predic-
tion. We used DeepPurpose to predict the interactions between drug candidates and Leishmania
protein targets. DeepPurpose uses BindingDB as one of its training datasets in order to train five
models with various drug-protein encoder pairs. Each of these models can be applied to a highly
customizable classifier for predicting the binding affinity as one of three binding metrics. Among
the five pre-trained DeepPurpose models, there are four drug encoders included in the framework:
Convolutional Neural Network (CNN) (Krizhevsky et al., 2012), Multi-Layer Perceptrons (MLP)
on Morgan (Rogers & Hahn, 2010), Daylight Fingerprint 1 and Message Passing Neural Network
(MPNN) (Gilmer et al., 2017); as well as two protein encoders: CNN and MLP on Amino Acid
Composition (AAC) (Gromiha, 2010) used to train through the BindingDB dataset.

1Daylight Theory Fingerprints: https://www.daylight.com/dayhtml/doc/theory/
theory.finger.html
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Table 1: Pearson Correlations between methods on the top 597 pairs.

Pearson Correlation Vina DeepPurpose Indaba Score MONN
Vina - 0.3412 0.1936 0.3999
DeepPurpose - - 0.5512 -
Indaba Score - - - 0.3684
MONN - - - -

1. CNN encodes SMILES and amino acids with an embedding layer. The CNN convolutions
are then applied, which is followed by a global max-pooling layer.

2. Daylight transforms the SMILES to path-based fingerprints, which is a 2,048-length bits
vector containing followed by a multi-layer perceptron.

3. Morgan fingerprint is similar to Daylight fingerprint but with a 1,024-length and containing
circular radius-2 substructures.

4. MPNN takes chemical descriptors as inputs and generates a molecular graph-level embed-
ding vector.

5. AAC is an 8,420-length vector characterizing amino acid k-mers, the k-length (k≤3) amino
acid subsequences . It also contains the percentage of individual amino acids towards the
entire sequence string.

2.5 MONN

MONN is a deep learning method for predicting binding affinity between proteins and ligands (Li
et al., 2020). It makes further use known 3D binding structures to predict the pairwise non-covalent
interactions for a given pair using a CNN encoder for the protein and an MPNN encoder for the
molecule.. This provides additional ways to explain predictions using the predicted interactions and
the attention layers in the model. The different method also allows us another point of comparison
with the final molecular docking simulations. We trained two different models, one for predicting
binding affinity on new compounds only, and one for predicting binding affinity on new compounds
and new proteins, following the methods described by the original authors. The evaluation perfor-
mance of these models can be seen in Table 4.

Although this approach might seem to leverage more data, since it is making use of the full 3D
structure of the protein, it does limit the amount of data that can be used compared with Deep-
Purpose. The limited data on protein structures for organisms like Leishmania could explain why
this approach ends up with lower correlation on the top predicted compound-ligand pairs as seen
in Table 1 where the Pearson Correlation of MONN with the Indaba Score 0.1828 less than that of
DeepPurpose.

2.6 CLUSTERING OF MOLECULES BY APPLYING PCA OF THEIR MOLECULAR DESCRIPTORS

We use the ‘mordred‘ (Moriwaki et al., 2018) and RDKit (Landrum, 2019) to generate real-value
vector representation for each molecule by 1,613 descriptors. After removing the descriptors whose
returns contain any errors and missing values and standardized the vectors, we obtained the molecule
feature vector associated with 1,080 descriptors.

The distance matrix among drug candidates is computed based on these features. For each protein,
the drugs which are close to the top drugs (i.e. the drugs that have the highest binding affinity
with this protein) are selected for further investigation. Then, we use principal component analysis
(PCA) to reduce the feature dimension to 3 and visualize molecules to investigate clusters. We
further compute the correlation matrix between the Indaba scores and these descriptors.
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Figure 1: Chemical structure of Lacosamide

Table 2: Top 5 drug candidates for the sterol 14-alpha demethylase protein from the DrugBank
database along with the number of Completed or Recruiting clinical trials.

Generic Name ID Indaba Score DrugBank Group Clinical Trials
Lacosamide DB06218 -31.751 Approved 58
Sarizotan DB06454 -31.942 Investigational 5
7-Deazaguanine DB02245 -32.638 Experimental 0
Roxadustat DB04847 -33.086 Investigational 43
Hydracarbazine DB09243 -34.847 Experimental 0

3 RESULTS

3.1 TOP PREDICTED TARGET-DRUG PAIRS

The highest score we received during the Zindi-Indaba competition was ranked 2nd place in the
final round of the challenge evaluation. This pair comprised the PubChem substance with identifier
SID 56341311, and the Leishmania infantum’s protein Sterol 14-alpha demethylase (PDB 3L4D).
According to PubChem and ChEMBL, SID 56341311 is a legacy, undefined compound deposited
by Thomson Pharma with molecular weight of about 681 Da. This compound does not have any
registered clinical trials as of August 31, 2021. This compound, also registered as PF-02575799,
was developed by modifying dirlotapide, an FDA-approved drug to treat canine obesity by inhibiting
microsomal triglyceride transfer protein. PF-02575799 was developed with improved gut selectivity
and had advanced to human phase 1 trials (Robinson et al., 2011).

Among our other top scored candidates, Lacosamide stands out because it is a drug that has already
received approval as an oral treatment for partial onset seizures in adults. It has a strong predicted
binding score with the sterol 14-alpha demethylase enzyme based on the Indaba Score. Lacosamide
is also identified as PubChem substance SID 175427063 and it has favourable predicted ADMET
features such as being a non-inhibitor of important human enzyme proteins and low acute toxicity
in rats (2.1629 LD50, mol/kg). See it’s structure in Figure 1.

Four of the top five DrugBank chemicals are still under investigation or are experimental, and only
one other one has had a large number of clinical trials. Drugs with relatively little existing literature
will not profer the same speed ups or cost reduction in the development process that drug repurpos-
ing is hoping to achieve. Roxadustat (SID 347827699) has completed phase I single-dose and is
underingoing phase II US studies as a treatment for Anemia. Predicted ADMET characteristics are
not currently available.

As for the target, the sterol 14-alpha demethylase is an enzyme that catalyzes the removal of the
14-alpha-methyl group from sterol precursors. Given that this reaction is essential for membrane
biogenesis, this protein has been studied as a potential target for antileishmanial chemotherapy. We
also present the top 5 drug candidates for this target in Table 2.

5



Table 3: Spearman correlation of predicted binding affinity with label.

Molecule Encoder CNN Daylight Morgan Morgan MPNN Sample sizeProtein Encoder CNN AAC AAC CNN CNN
Leish (Kd) 0.6713 0.7342 0.5244 0.4056 -0.0349 12
Non-Leish (Kd) 0.6502 0.7077 0.6244 0.6459 0.0950 1200
Leish (IC50) 0.3739 0.4593 0.0948 0.1481 0.0895 156
Human (IC50) 0.1617 0.4218 0.2351 -0.1707 0.3179 438
Leish (Ki) 0.3004 0.1688 0.2697 0.3686 0.0455 99
Human (Ki) -0.0613 -0.0007 0.0409 0.2007 -0.0234 404
Rand. Non-Leish (Ki) 0.0765 0.1584 0.1581 0.1819 0.0488 100

Table 4: Performance of MONN models with different cross-validation techniques.

Model RMSE Pearson Spearman Avg Pairwise AUC
New Compounds 1.489 0.6893 0.6918 0.9339
New Compounds + New Proteins 1.7512 0.5220 0.5313 0.8149

3.2 PRE-TRAINED DEEPPURPOSE MODEL SELECTION

As the proteins in the training data are human proteins, we hypothesize that understanding the per-
formance of DeepPurpose across different organisms is crucial to understanding the model’s general
applicability. Using protein-chemical pairs from BindingDB which have actual Kd/Ki/IC50 val-
ues, the pre-trained model performance was evaluated by these values. This was done by (1) electing
some BindingDB data in a specific category, (2) running DeepPurpose pre-trained models to gen-
erate an affinity rank, and (3) calculating the Spearman correlation between the produced rank and
the actual rank. Based on the results as shown in Table 3, Daylight-AAC achieved the highest cor-
relation over different species. For Leishmania with a Kd value, the Spearman correlation reached
0.7342, which was the highest among all trials.

3.3 MODEL COMPARISON

We compared the model predictions against the Indaba Scores for the top 597 submitted protein-
compound pairs. The results are shown in Table 1. The MONN model is found to have the highest
correlations with Autodock Vina binding scores, while the DeepPurpose Daylight-AAC model has
the highest correlations with the Indaba Scores (PyRosetta docking).

3.4 CLUSTERING OF MOLECULAR DESCRIPTORS

We hypothesised that the drugs which best inhibit a given protein target may share similar properties.
Molecule clustering based on molecular descriptors is used to select promising subgroups among
massive drug candidates. We first investigated the submitted drugs for the Leishmania major pteri-
dine reductase 1 (PDB 6RXC) and found clear clusters for top drugs (7/34) in the three-dimensional
plot as seen in Figure A.1 2. Then we computed the distance matrix between the drug candidates
in in-trial and drug central database and the top drugs which have an Indaba score smaller than
−25. The drugs ‘ZINC000012503187’ (Conivaptan) and ‘ZINC000100013130’ (Midostaurin) are
very close, and they are both top drugs for Leishmania donovani lanosterol 14-alpha-demethylase
(UniProtKB E9BAU8) as seen in Figure A.2 3.

We further explored the molecular properties which may affect the binding affinity between
molecules and a given protein. According to the correlation matrix between Indaba score and 1080

2https://drive.google.com/file/d/1em6dU6bjfl8Qk3ekpKCGw6bFpeYn2Th_
/view?usp=sharing

3https://drive.google.com/file/d/1GD2FqAIjibyTlyW9tDLkGs2cObidqe4a/
view?usp=sharing
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molecular descriptors 4, the ‘VSA Estate6’ and ‘Estate VSA7’ descriptors show the highest corre-
lation with the Indaba score with the correlation of -0.31 and -0.29 respectively. They are all Hybrid
EState-VSA descriptors. We also present the top 10 descriptors in Table A.1.

4 CONCLUSIONS

In summary, we identified several drug candidates for treatment of Leishmaniasis by applying deep
learning to the task of compound screening for drug repurposing. We compared multiple models
and final scoring evaluations as part of the Indaba Grand Challenge: Curing Leishmaniasis. Finally
we compare our top-scoring candidates through a clustering analysis of their molecular properties.
Further research can be done in the form of in vivo analysis to determine the efficacy of this candidate
and any other toxicity, safety, and delivery constraints.

This work has indicated that there is still room for exploration in drug repurposing techniques to
address neglected diseases. Future work can expand the approach presented here to other neglected
diseases. It is our hope that deep learning models can contribute to the global fight against infectious
diseases.
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A APPENDIX A: CLUSTERING ANALYSIS OF TOP DRUG-PROTEIN PAIRS

Figure A.1: Clusters of top drugs for protein 6RXC by Indaba score
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Figure A.2: Clusters of top drugs from the in-trial and drug central databases
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Table A.1: Top 10 descriptors correlated to Indaba Score.

Descriptor Indaba Score
VSA EState6 -0.3106844173
EState VSA7 -0.291864654
ETA dEpsilon C -0.2750327439
ETA epsilon 4 0.2748963914
BCUTm-1l 0.2654316496
AATSC0v -0.260523509
BCUTZ-1l 0.2603409833
AATSC1pe -0.255892221
AATSC1are -0.2548184261
ETA epsilon 2 0.2544061653
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