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Abstract

Protein engineering is currently being revolutionized by deep learning applications, especially
through natural language processing (NLP) techniques. It has been shown that state-of-the-art
self-supervised language models trained on entire protein databases capture hidden contextual
and structural information in amino acid sequences and are capable of improving sequence-to-
function predictions. Yet, recent studies have reported that current compound-protein modeling
approaches perform poorly on learning interactions between enzymes and substrates of interest
within one protein family. We attribute this to low-grade substrate encoding methods and over-
compressed sequence representations received by downstream predictive models. In this study, we
propose a new substrate-encoding based on Extended Connectivity Fingerprints (ECFPs) and a
convolutional-pooling of the sequence embeddings. Through testing on an activity profiling dataset
of haloalkanoate dehalogenase superfamily that measures activities of 218 phosphatases against
168 substrates, we show substantial improvements in predictive performances of compound-protein
interaction modeling. In addition, we also test the workflow on three other datasets from the
halogenase, kinase and aminotransferase families and show that our pipeline achieves good perfor-
mance on these datasets as well. We further demonstrate the utility of this downstream model
architecture by showing that it achieves good performance with six different protein embeddings,
including ESM-1b (Rives et al., 2021), TAPE (Rao et al., 2019), ProtBert, ProtAlbert, ProtT5,
and ProtXLNet (Elnaggar et al., 2021). This study provides a new workflow for activity prediction
on novel substrates that can be used to engineer new enzymes for sustainability applications.

1. Introduction

Deep learning-guided directed evolution for proteins has largely improved the protein sequence-to-
function predictions and enabled the design of novel sequences with desired features. The growing
High-Performance Computing (HPC) and advances in Natural Language Processing (NLP) have
brought promising techniques which allow researchers to use large protein databases to enhance pre-
dictions of sequence properties (or annotations) with relatively small experimental datasets. These
techniques include (1) self-supervised learning based on advanced NLP models (i.e., Transformer
(Vaswani et al., 2017), BERT (Devlin et al., 2018), etc.) that can extract hidden contextual and
structural patterns in amino acid sequences from a large number of unlabeled protein sequences and
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convert sequences to representations (often referred to as embeddings) that improve downstream
prediction tasks, and (2) transfer-learning, which uses such embeddings as input for subsequent
predictive models trained on a relatively smaller dataset.

Recent literature in this area has reported various approaches of generating sequence embed-
dings; for example, ProtTrans (Elnaggar et al., 2021) alone has presented six models trained on
databases containing up to 2.1 billion sequences. Different types of embeddings have also achieved
some successes in characterizing protein properties with a small amount of data. For example,
the Low-N method (Biswas et al., 2021) has brought the number of experimentally characterized
sequences in training set down to 24. However, a recent study (Goldman et al., 2021) showed that it
is difficult to predict enzyme activity from sequence when substrates are encoded and concatenated
to sequence representations as inputs to the predictive model. This leads to the objective of our
study, which is to better represent the two inputs to the compound-protein interaction (CPI) model,
protein sequence and substrate. Downstream supervised models for predicting properties found in
current literature typically take an average over the position-wise embeddings of sequences as in-
puts (averaging over protein length)(Elnaggar et al., 2021). This leaves out the valuable structural
information captured by the upstream self-supervised training via language models which heavily
rely on the order of the amino acid sequences.

In this study, we use a “convolutional pooling” approach to utilize such information containing
local sequential patterns, which should be useful in downstream prediction tasks. We also propose
a novel substrate encoding method, count-encoding of extended-connectivity fingerprints (ECFPs)
(Rogers and Hahn, 2010), to better characterize substrates as inputs, and compare it with the
Morgan bit vector (Morgan, 1965) used in previous studies. We demonstrate the efficacy of our
approach on phosphatase activities data from Huang et al. (2015), where enzyme assays were
performed to measure activities of 218 phosphatases in haloalkanoate dehalogenase superfamily
against 168 substrates. We also test our methods on three relatively smaller enzyme activity
datasets preprocessed and analyzed in the aforementioned study by Goldman et al. (2021).

In addition to examining the basic performance of the model through randomly splitting the
enzyme-substrate pairs to training, validation and test sets, we further curated each dataset into
two different splits to evaluate the performance of characterizing new sequences and new substrates.
The two tasks split the data in a way such that the model was trained and tested on novel sequences
or substrates, not seen in the training set, respectively (hereinafter, referred to as “novel sequences
characterization task” and “novel substrates characterization task”). Good prediction in such tasks
implies capability of identifying enzymes that would act on novel substrates of interest (enzyme
discovery) as well as identifying new sequences that are able to act on known substrates with
potentially improved activity (enzyme engineering).

2. Method

2.1. Overview

Our proposed prediction pipeline starts with extracting “embeddings” (values in latent space) from
large language models pre-trained on massive protein sequence data. Four protein language models
provided by Elnaggar et al. (2021), as well as ESM-1b (Rives et al., 2021) and TAPE (Rao et al.,
2019) models, are utilized in this study. Predictive performance of the pipeline is mainly evaluated
with ESM-1b (Rives et al., 2021) representations, while embeddings generated by other language
models are also used to validate the proposed methods.
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Figure 1: (A) Extended Connectivity Fingerprints of Glycerol-3-Phosphate. Multilevel neighbor-
hoods of atoms (MNAs) substructures are identified surrounding each non-hydrogen atom
before being converted to a set of ECFP identifiers through a numeric identifier conver-
sion algorithm. (B) Count encoding of ECFP identifiers, each dimension in the vector
representation represents the count of occurrence of a different ECFP identifier.

2.2. Count-Encoder of Extended-Connectivity Fingerprints

Extended-connectivity fingerprints (ECFPs) (Rogers and Hahn, 2010) are circular topological de-
scriptors derived using a variant of Morgan algorithm, which was proposed to identify molecular
isomorphism. ECFPs equally takes into account all molecular fragments and encode all groups of
neighboring atoms connected. As shown in Figure 1A, the first level ECFP identifiers (i.e., ECFP2)
simply represent each non-hydrogen atom in the molecule with bonds connected. The substructures
of each successive level are concatenations of the previous level substructures and their immediate
neighboring atoms, which corresponds to higher levels of ECFPs (ECFP4, ECFP6, etc.). The
advantage of using ECFP encoding is that all substructures of a molecule are represented directly
in a vector. This feature distinguishes the ECFP and Morgan algorithm. The ECFP algorithm
collects all identifiers after each iteration, in addition to the initial atom identifiers, into a set and
retains the intermediate atom identifiers that are discarded in Morgan algorithm. The list of ECFP
identifiers are then converted to a vector containing the counts of each distinct ECFPs, as shown
in Figure 1B. Although the structural similarities of substructures are not reflected by ECFP iden-
tifiers themselves, identifiers of all shared substructures representing their common features can
always be found in the count encodings. Different levels of ECFPs are obtained using Chemistry
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Figure 2: Comparison between average pooling and the idea of convolutional pooling. Global aver-
age pooling, which is used in current top models, simply averages over the entire length-
dimension of the last layer of pretrained language models. It converts the representation
to a fixed-length vector with dimension equals to the pretrained language model’s em-
bedding dimension. The idea of convolutional pooling is to apply convolutional filters
along the sequence length direction in order to obtain a same length sequential output
as the protein sequences (padded to the same length).

Development Kit (CDK) (Willighagen et al., 2017), an open source modular Java libraries for
Cheminformatics.

2.3. Pooling the Bulky Sequence Embeddings with Convolutional Neural Networks

Current protein-level predictions typically use a global pooling that averages over the sequence
length in the last hidden state of pretrained language models (Elnaggar et al., 2021). As shown
in Figure 2, this results in a fixed-size vector for each protein of different length. Using average
pooling effectively simplifies the downstream predictive model, while at the same time impairs
informative local patterns and leaves out token-level variance. In this work, we use convolutional
neural networks (CNNs) to leverage the complete position-wise embeddings of amino acids. This
allows the representation to preserve the sequential information of the original protein sequence as
well as the structural patterns extracted by the pretrained language model.

Figure 3 illustrates “convolutional pooling” in a downstream predictive model. Convolutional
pooling utilizes a combined structure of convolutional layers and a residual block to improve the
flexibility of the model to adapt to the true number of degrees of freedom in the original problem
without significant prior knowledge (He et al., 2016). Embedding dimension (DE) in the architec-
ture is determined by the language model used, which is 1280 for ESM-1b. Substrate encoding
dimension (DS) in Figure 3(A) is 1024 as Morgan bit vector is used, while the value of DS in
Figure 3(B) is 1413 for ECFP6 encoder. Maximum sequence length (DL) ranges from ∼300 to
∼600 across the four datasets analyzed in this work.
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Figure 3: (A) A conventional model for downstream predictions (used as baseline for validating the
performance). The baseline model uses average pooling and Morgan bit vector substrates
encoding. (B) Architecture of the proposed predictive model. One-dimensional convolu-
tional layers together with a residual block were used to parse sequence embeddings. Two
detectors sharing the same initial convolutional layer are used to extract local informa-
tion and global features in parallel: a basal detector that contains two 1-D convolutional
layers with a kernel size of 3 captures local patterns of amino acids, while a superior
detector composed of 3 convolutional layers (using the same kernel size) with a residual
connection effectively formulates global patterns from panoramic view of the sequence
embeddings. The filtered outputs from both detectors were then flattened and concate-
nated with substrate encodings to generate single vector for each sequence-compound
pair, followed by two fully-connected (FC) layers. Dimensions of each block’s output are
shown with ESM-1b embeddings and ECFP6 encoder.

3. Results

3.1. Outline

An overall good predictive capability of the count-encoding of ECFPs can be observed as it is
tested by the “simple task” of random splitting of the ∼35,000 sequence-substrate pairs. The
performance is compared with that of using Morgan bit vector substrates representations examined
by Goldman et al. (2021) on the same dataset. We tested another encoding approach, Junction-Tree
Variational Auto Encoder (JT-VAE) (Jin et al., 2018) mentioned in the same literature and found
that this approach was outperformed by the two former encoding methods. Figure 4 presents a
comparison of Spearman’s correlation (R), area under Precision-Recall curve (AU-PRC), and area
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Figure 4: A simple comparison of different substrates encodings, tested on multilayer perceptron
(MLP) top models using ESM-1b embeddings with average pooling. Figures in the first
row show results of regression models. Scatter plots were used to correlate predicted
values against actual values. A stronger correlation can be observed in both the log-
arithmic values plots (where zeros are removed) and actual values plots for ECFP6 as
compared with the other two encodings (ECFP4, and Morgan bit vector). Binary clas-
sification based on different chemical encodings approaches were also tested. The same
classification labels as Goldman et al. (2021) were used directly. The comparison be-
tween AU-PRC as well as ROC-AUC value also shows the two ECFP’s achieve better
predictions than Morgan bit vector.

Table 1: Results of using different sequence embeddings on downstream predictions (ECFP6 en-
coding used for substrates). R denotes Spearman’s correlation and the best performing
result is highlighted in bold.

Language Models
ESM-1b TAPE ProtBert ProtT5 ProtXLNet ProtAlbert

Embedding Dimension 1280 768 1024 1024 1024 4096
Rconv. pooling 0.816 0.813 0.810 0.818 0.810 0.820
Ravg. pooling 0.788 0.786 0.763 0.763 0.777 0.795

under receiver operating characteristic curve (ROC-AUC) on the simple task of activities regression
and classification using different substrate encodings.

Figure 4 and Table 1 illustrate that, compared to average pooling, convolutional pooling con-
sistently improves the CPI prediction with different substrate encodings and sequence embeddings.
Table 1 shows embedding dimensions and Spearman’s correlations for results on 6 different pre-
trained protein language models (without tuning the predictive model): ESM-1b (Rives et al.,
2021), TAPE (Rao et al., 2019), ProtBert (Elnaggar et al., 2021), ProtT5 (Elnaggar et al., 2021),
ProtXLNet (Elnaggar et al., 2021) and ProtAlbert (Elnaggar et al., 2021). ECFP6 encoding is
used for substrates.
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Table 2: Results of ECFP6 and Morgan substrate encoders on “novel substrates characterization
task”.

ECFP6 Morgan

Rconv. pooling 0.681 0.658
Ravg. pooling 0.654 0.649
AU-PRC (convolutional pooling) 0.588 0.562
ROC-AUC (convolutional pooling) 0.858 0.853

3.2. Substrate Discovery: Prediction of Activity on Novel Substrates

We also evaluated our models on the “novel substrates characterization task”, which examined,
using a different split of the dataset, the potential of applying our workflow to predict activities
on novel substrates. Table 2 reports the performance comparison between ECFP6 and baseline
Morgan encoding algorithms on predicting the enzyme activities on novel substrates. ECFP6 was
found to offer superior robustness of characterizing unseen substrates over Morgan fingerprint due
to its ability to interpret all substructures of the substrates. The classification results also confirms
the robustness of the ECFP6 and convolutional pooling pipeline in identifying the presence of
enzyme activity on novel substrates, as shown by an increased AU-PRC value. Table 3 shows
extended results of the “novel substrates characterization task” covering the performance of this
pipeline on three other datasets presented in Goldman et al. (2021). These datasets include activity
data from halogenase family (62 substrates on 42 sequences) (Fisher et al., 2019), kinase family (72
substrates on 318 sequences) (Davis et al., 2011) and the aminotransferase family (18 substrates on
25 sequences) (Li et al., 2020). Due to fewer substrates presented, the regression results for these
three datasets were not comparable to that for the phosphatases dataset, but the classification
models resulted in fairly good metric scores (i.e., AU-PRC and ROC-AUC), which are higher than
that reported in Goldman et al. (2021).

3.3. Enzyme Discovery: Prediction of Activity for Novel Sequences

The “novel sequences characterization task” was also performed on all four datasets mentioned
in the previous section, with results shown in Table 3. The use of convolutional pooling and
ECFP encoding consistently outperformed the baseline model on the first three enzyme datasets.
However, the proposed pipeline seemed not able to earn a better result than the baseline in the
aminotransferase case, likely due to the limited number of substrates and sequences.

For the phosphatase dataset, while we ensured that the same sequences do not appear in both
the training and the test sets, we did not exclude sequences in the training set that may potentially
be similar to sequences in the test set. The phosphatase data was from the original paper (Huang
et al., 2015), where enzyme sequences with greater than 40 percent identity were clustered and
different sequences from diverse clusters were experimentally characterized. We note that several
enzymes from the same cluster were similar in sequence and eliminating them would have resulted
in a smaller training set. Further characterizing phosphatases to obtain additional sequences will be
valuable to explore the diversity of this family and such a dataset would offer a more comprehensive
test of our workflow.
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Table 3: Full regression and classification results of three characterization tasks on the four enzyme
datasets. Baseline model here used Morgan bit vector encoding and two layers of fully
connected MLPs.

Tasks Dataset Phosphatase Halogenase Kinasea Aminotransferase
#Seq. × #Subs. 218 × 168 42 × 62 318 × 72 25 × 18

Simple task RConv+ECFP6 0.816 0.892 0.845 0.838
RBaseline 0.728 0.838 0.805 0.808
AU-PRC 0.710 0.732 0.809 0.867
ROC-AUC 0.901 0.937 0.905 0.905

Substrates task RConv+ECFP6 0.681 0.545 0.335 0.470
RBaseline 0.649 0.521 0.205 0.322
AU-PRC 0.588 0.606 0.403 0.756
ROC-AUC 0.858 0.931 0.730 0.697

Sequence task RConv+ECFP6 0.465 0.673 0.735 0.790
RBaseline 0.422 0.581 0.716 0.796
AU-PRC 0.418 0.743 0.745 0.790
ROC-AUC 0.695 0.909 0.889 0.842

aClassification performed to Kinase dataset uses self-defined labels.

4. Conclusion

In this study, we encode the substrates using a new approach that enables a better characterization
of substructural information. We also mitigate the problem of information loss resulting from
averaging the position-wise embeddings, by learning a convolutional pooling of those embeddings
to retain the information captured by language models. The proposed new approaches of encoding
substrates and pooling the sequence embeddings are tested on four high-quality enzyme activity
datasets and compared with recent studies. Taken together, the results suggest that our proposed
compound-protein interaction modeling pipeline achieves better predictions compared to current
methods. These results also set the stage for using our proposed workflows for enzyme discovery by
identifying potential novel substrates for existing sequences in these families and also for identifying
new sequence variants that can have improved activity through generative modeling, paving the
way for enzyme engineering for these families. Finally, our results also demonstrate the potential
for applying these methods to other enzyme families that have been characterized to the same
extent as the datasets studied here. All our models and results are available through https:

//github.com/LMSE/CmpdEnzymPred.
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