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Abstract
This paper presents a new regularization approach – termed OpReg-Boost – to boost the conver-
gence of online optimization and learning algorithms. In particular, the paper considers online
algorithms for optimization problems with a time-varying (weakly) convex composite cost. For
a given online algorithm, OpReg-Boost learns the closest algorithmic map that yields linear con-
vergence; to this end, the learning procedure hinges on the concept of operator regression. We
show how to formalize the operator regression problem and propose a computationally-efficient
Peaceman-Rachford solver that exploits a closed-form solution of simple quadratically-constrained
quadratic programs (QCQPs). Simulation results showcase the superior properties of OpReg-Boost
w.r.t. the more classical forward-backward algorithm, FISTA, and Anderson acceleration.
Keywords: online optimization, operator regression, acceleration, weakly convex

1. Introduction

In recent years, the increasing volume of streaming data in many engineering and science domains
has stimulated a growing number of research efforts on online optimization and learning (Popkov
(2005); Besbes et al. (2015); Asif and Romberg (2014); Hall and Willett (2015); Jadbabaie et al.
(2015); Mokhtari et al. (2016); Dall’Anese et al. (2020); Li et al. (2020) and many others). In data
processing and machine learning applications, the cost function and the constraints (if present) are
parametrized over data points that arrive sequentially; consequently, cost and constraint are time-
dependent to reflect new data points and possibly time-varying learning objectives. Beyond data
processing and machine learning applications, emerging problems in the context of learning-based
control have stimulated lines of research in online identification of dynamical systems Zheng and
Li (2021), and online optimization for robotics Berkenkamp et al. (2016); Luo et al. (2020), model
predictive control Paternain et al. (2018); Liao-McPherson et al. (2018); Zhang et al. (2021), and
games Belgioioso et al. (2021); Fabiani et al. (2021), to name a few.

Let now k ∈ N and Fk(x) be a time-varying function, then formally we are interested in time-
varying problems of the form

x∗k ∈ argmin
x∈Rn

Fk(x) := fk(x) + gk(x) (1)
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In particular, we assume that fk : Rn → R is closed, proper, and µ-weakly convex1 for each k ∈ N,
and gk : Rn → R ∪ {+∞} is closed, convex and proper uniformly in time (optionally, one can
also consider a setting where gk ≡ 0). The goal is to design an online algorithm Ak : Rn →
Rn, with updates xk = Ak(xk−1), so that the sequence {xk}k∈N exhibits an asymptotic behavior
lim supk→∞ Fk(xk) − F ∗k ≤ B < ∞, for a properly defined sequence of optimal value functions
{F ∗k }k∈N and with B as small as possible. For this result to be feasible, a blanket assumption
common in the online optimization literature is that the variations of problem in time (in terms of
path length or functional variability) can be upper bounded by a sub-linear or a linear function of
k; see e.g., Besbes et al. (2015); Jadbabaie et al. (2015); Dall’Anese et al. (2020); Mokhtari et al.
(2016); Li et al. (2020); Hallak et al. (2020) . If this latter function is linear in k, then it is known
that online algorithms exhibit an asymptotic error.

A key intuition is to use the existence of this error as an advantage: given the presence of an
error due to the dynamics of the cost, one can leverage regularizations in the optimization problem
or modifications of the algorithmic steps to boost the convergence without necessarily sacrificing
performance. Surprisingly, there may be no trade-off between accuracy and convergence; for exam-
ple, algorithms constructed based on the regularized problems may offer superior convergence and
lower asymptotical errors w.r.t. algorithms built based on the original problem, even though the set
of optimal solutions is explicitly perturbed. This line of thought stemmed in the static domain from
the seminal works Nesterov (2005); Koshal et al. (2011); Devolder et al. (2012), and more recently
in the online setting Simonetto and Leus (2014); Bastianello et al. (2020).

By building on this, a natural question is “how to best design a surrogate algorithm that allows
a gain in convergence rate without compromising optimality?”.

To answer this question, one possibility is to modify the cost function by substituting it with a
surrogate function that is, for example, strongly convex and smooth. To fix the idea, consider a non-
convex function f : R → R as in Figure 1. One can evaluate the function at specific points (grey
dots) and fit the functional evaluations with a strongly convex function f̂ . As long as f and f̂ are not
“dramatically different”, the reasoning is that solving the problem of minimizing f̂ instead of f will
then give the algorithm a boost in terms of convergence rate (without leading to a larger asymptotical
error). For this option, which we term Convex Regression, see Bastianello et al. (2021).

In this paper, we focus on a different approach that consists in modifying the algorithmic map
Ak. The idea is to substitute Ak with a surrogate mapping that is the “closest” to Ak (in a well
defined sense) and has given desirable properties; for example, it is a contractive map. In Figure 1,
as an example we consider the case of a gradient descent algorithm in terms of a fixed point operator
Ak = Tk = I − α∇xfk, with α > 0 being the step size. The idea here is to use evaluations of
Tk to fit a mapping T̂k with useful properties (e.g., contractivity). By using T̂k in lieu of Tk, then
one may be able to boost convergence and possibly reduce the asymptotical error. We show in our

1. Notation. We say that a function f : Rn → R is µ-weakly convex if f(x) + µ/2‖x − x0‖22, with µ > 0, is
convex. The set of convex functions on Rn that are L-smooth (i.e., have L-Lipschitz continuous gradient) and µ-
strongly convex is denoted as Sµ,L(Rn), for µ,L > 0; S0,L(Rn) is the set of L-smooth convex functions. An
operator T : Rn → Rn is non-expansive iff ‖T (x) − T (y)‖ ≤ ‖x − y‖, for all x,y ∈ Rn; on the other hand,
T : Rn → Rn is ζ-contractive, with ζ ∈ (0, 1), iff ‖T (x)− T (y)‖ ≤ ζ‖x− y‖, for all x,y ∈ Rn. We denote the
composition of two operators T1, T2 as (T1 ◦ T2)(x) = T1(T2(x)). We denote by I the identity map I(x) = x. We
define as proxαg(y) = argminx

{
g(x) + ‖x− y‖2 /(2α)

}
the proximal operator of a function g with parameter

α > 0, and we denote by projC(·), the projection operator onto the set C. We denote by In the identity matrix of
size n, and by ⊗ the Kronecker product.

2



OPREG-BOOST

x

f

x

f

f̂
learn

x

T

learn

T

Online algorithm
e.g. gradient T = I � ↵rf

Tx=x

x

Tx=xT̂

fu
nc

tio
na

l v
ie

w
op

er
at

or
 v

ie
w

Figure 1: The idea of boosting via projection onto the space of “good” functions or “good” fixed
point operators. One can interpret the evaluation of function f or operator T as noisy
evaluations of an underlying “better” function or operator, f̂ and T̂ , respectively, and
use the latter to solve the problem instead. This gives rise to convex-regression-based
boosting or operation-regression-based boosting (OpReg-Boost).

numerical experiments that this methodology – referred to as OpReg-Boost – outperforms the first
option where one utilizes a surrogate cost. Overall, this paper offers the following contributions.

1. We present a novel OpReg-Boost method to learn-project-and-solve with linear convergence
optimization problems. The method is based on operator regression, and it is designed to
boost convergence without necessarily increasing the asymptotical error. Operator regression
is formulated as a convex quadratically-constrained quadratic programs (QCQPs).

2. We present efficient ways to solve the operator regression problems in dimension n with `
observations via a pertinent reformulation of the Peaceman-Rachford splitting (PRS) method,
see e.g. Bauschke and Combettes (2017). Our PRS method is trivially parallel and allows for
a reduction of the per-iteration complexity from a convex QCQP inO(n`) variables andO(`2)
constraints (i.e., a complexity of at least O((n`)3), to O(`2) 1-constraint convex QCQPs in
O(n) variables. Importantly, we show that these simpler QCQPs admit a closed form solution,
which leads to a per iteration complexity of O(`2n).

3. We test the performance of the proposed method for two optimization problems: i) a linear
regression problem with an ill-conditioned cost [c.f. Mai and Johansson (2020a)]; and, ii) an
online phase retrieval problem, which requires the minimization of a weakly convex function
[c.f. Duchi and Ruan (2018)]. The proposed operator regression method shows promising
performance in both scenarios as compared to forward-backward (with and without back-
tracking line search) and its accelerated variants FISTA Beck and Teboulle (2009) and an
online version of the Anderson acceleration in Mai and Johansson (2020a).

The extended version of this manuscript with appendix and proofs can be found in Bastianello
et al. (2021).
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1.1. Related work

Learning to optimize and regularize is a growing research topic; see Meinhardt et al. (2017); Nghiem
et al. (2018); Ongie et al. (2020); Banert et al. (2020); Cohen et al. (2020); Pesquet et al. (2020); Si-
monetto et al. (2019); Chen et al. (2021) as representative works, even though they focus on slightly
different problems. Additional works in the context of learning include the design of convex loss
functions in, e.g., Ramaswamy and Agarwal (2016); Finocchiaro et al. (2021). Interpreting algo-
rithms as mappings and operators (averaged, monotone, etc.) has been extremely fruitful for charac-
terizing their convergence properties Rockafellar (1976); Eckstein (1989); Bauschke and Combettes
(2017); Ryu and Boyd (2016); Sherson et al. (2018).

Convex regression is treated extensively in Seijo and Sen (2011); Lim and Glynn (2012); Mazumder
et al. (2019); Blanchet et al. (2019), while recently being generalized to smooth strongly convex
functions Simonetto (2021) based on A. Taylor’s works Taylor et al. (2017); Taylor (2017); an in-
teresting approach using similar techniques for optimal transport is offered in Paty et al. (2020).
Operator regression is a recent and at the same time old topic. We are going to build on the recent
work Ryu et al. (2020) and the F.A. Valentine’s 1945 paper Valentine (1945).

The Anderson acceleration scheme that we compare with is covered in Mai and Johansson
(2020a) (see also Scieur (2018); Zhang et al. (2020)).

And finally, the class of weakly convex functions is broad and important in optimization Rock-
afellar (1982); Vial (1983); Duchi and Ruan (2018); Davis and Drusvyatskiy (2019); Mai and Jo-
hansson (2020b). Applications featuring this class include robust phase retrieval and many others.
In control theory, this functions extend, e.g., online identification and control to a class on non-linear
dynamical systems, and potential games to hypo-monotone settings.

2. Learning to accelerate with operator regression

Consider the time-varying problem (1) and an associated online algorithmAk, designed to track the
optimizers of the problem. The mapping Ak can be written as sum and/or composition of maps.
To fix the ideas and notation, we provide the following example, which will be used throughout the
paper to concretely convey ideas (although we note that the proposed methodology is more widely
applicable).

Example. Consider an online forward-backward type algorithm with updates xk = Ak(xk−1),
where

Ak = proxαgk ◦Tk, Tk := I − α∇xfk (2)

where proxαgk is the proximal operator (proxαgk(y) = argminx{gk(x) + ‖x − y‖2/(2α)}) and
I the identity map. The properties of this algorithm depend on the map Tk. In case of a generic
smooth non-convex fk or for convex functions, one can show convergence of the regret to a bounded
error Simonetto (2017); Hallak et al. (2020); on the other hand, if fk ∈ Sµ,L(Rn) uniformly in k,
µ > 0, then (2) can obtain a linear convergence for the sequence {xk} to the unique optimizer’s
trajectory of Fk up to a bounded error Dall’Anese et al. (2020). �

Our goal can be formulated as follows: if the algorithmic map Ak is not contractive or is only
locally contractive, is it possible to find an approximate mapping Âk that is globally contractive to
boost the convergence to the optimal solutions (within an error)?

Consider again the proximal-gradient method in the Example, where we recall that Ak =
proxαgk ◦Tk, with Tk := I − α∇xfk. When fk is µ-strongly convex and L-smooth uniformly
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in time, and α < 2/L, the mapping Tk is contractive; i.e., ‖Tk(x) − Tk(y)‖ ≤ ζ‖x − y‖ for
all x,y ∈ Rn and ζ ∈ (0, 1). Thus, the recursion xk = Ak(xk−1) achieves linear convergence.
However, the question we pose here is the following: when fk is not µ-strongly convex, can we still
learn map T̂k, and use the surrogate algorithm Âk = proxαgk ◦T̂k to achieve linear convergence?2

To this end, using Fact 2.2 in Ryu et al. (2020), it follows that a mapping Tk is ζ-contractive
interpolable (and therefore extensible to the whole space) if and only if it satisfies:

‖Tk(xi)− Tk(xj)‖2 ≤ ζ2 ‖xi − xj‖2 , ∀i, j ∈ I`, i 6= j (3)

where I` := {1, . . . , `} is a finite set of indexes for the points {xi ∈ Rn, i ∈ I`}. Therefore, using a
number of evaluations {Tk(xi)} of the mapping Tk at the points {xi}, we pose the following convex
QCQP as our operator regression problem:

t̂ = argmin
Rn`3t=[ti]i∈I`

1

2

∑
i∈I`
‖ti − yi‖2

s.t. ‖ti − tj‖2 ≤ ζ2 ‖xi − xj‖2 ∀i, j ∈ I`, i 6= j,

(4)

where the cost function represents a least-square criterion on the “observations” (i.e., the evaluations
of the mapping) yi := Tk(xi), i ∈ I`, and the constraints enforce contractivity. In particular,
the optimal values t̂ on the data points represent the evaluations of a ζ-contracting operator when
applied to those points, i.e., t̂i = T̂k(xi).

2.1. PRS-based solver

The convex problem (4) can be solved using off-the-shelf solvers for convex programs; however,
the computational complexity may be a limiting factor, since the problem has a number of con-
straints that scales quadratically with the number of data points `. In particular, the computational
complexity of interior-point methods would scale at least as O((n`)3). This is generally the case in
non-parametric regression Mazumder et al. (2019); Aybat and Wang (2014). To resolve this issue,
we propose a parallel algorithm that solves (4) more efficiently based on the so-called Peaceman-
Rachford splitting (PRS), see e.g. Bauschke and Combettes (2017), and that leverages the closed
form solution of particular 1-constraint QCQPs.

To this end, define the following set of pairs V = {e = (i, j) | i, j ∈ I`, i < j} which are or-
dered (that is, for example we take (1, 2) and not (2, 1), to avoid counting the pair twice). We asso-
ciate with each pair e = (i, j) the constraint ‖ti − tj‖2 ≤ ζ2 ‖xi − xj‖2, for a total of `(` − 1)/2
constraints.

Let ti,e and tj,e be copies of ti and tj associated to the e-th pair; then we can equivalently
reformulate problem (4) as

min
ti,e,tj,e

1

2(`− 1)

∑
e∈V

∥∥∥∥[ti,etj,e

]
−
[
yi
yj

]∥∥∥∥2 s.t. ‖ti,e − tj,e‖2 ≤ ζ2 ‖xi − xj‖2
ti,e = ti,e′ ∀e, e′|i ∼ e, e′

, (5)

where we write that i ∼ e if the e-th constraint involves ti, and recall that yi := Tk(xi), i ∈ I`,
i ∈ I`. Problem (5) is a strongly convex problem with convex constraints defined in the variables
ti,e. Problem (5) is in fact a consensus problem which can be decomposed over the pairs V by using
PRS, as defined in the following lemma.

2. Notice that the proximal of gk – which may encode important properties such as sparsity or constraints – is not
subjected to the learning procedure and remains unchanged.
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Lemma 1 Problem (5) can be solved by using Peaceman-Rachford splitting (PRS), yielding the
following iterative procedure. Given the penalty ρ > 0, apply for h ∈ N:[

thi,e
thj,e

]
= argmin

ti,e,tj,e

{
1

2(`− 1)

∥∥∥∥[ti,etj,e

]
−
[
yi
yj

]∥∥∥∥2 + 1

2ρ

∥∥∥∥[ti,etj,e

]
− zhe

∥∥∥∥2
}

(6a)

s.t. ‖ti,e − tj,e‖2 ≤ ζ2 ‖xi − xj‖2

vhi,e =
1

`− 1

∑
e′|i∼e′

(
2thi,e′ − zhe′,i

)
, zh+1

e = zhe +

[
vhi,e − thi,e
vhj,e − thj,e

]
. (6b)

At each iteration, the algorithm solves in parallel `(`− 1)/2 convex QCQPs – each in 2n variables
and 1 constraint – and then aggregates the results. Importantly, the following lemma shows that
1-constraint QCQPs can be solved in closed form with a complexity of O(n), and hence the total
per iteration complexity of (6) is O(`2n).

Lemma 2 (Solving 1-constraint QCQPs) Consider the (prototypical) QCQP with one constraint

(t∗i , t
∗
j ) = argmin

1

2

∥∥∥∥[titj
]
−
[
wi

wj

]∥∥∥∥2 s.t.
1

2
‖ti − tj‖2 − b ≤ 0 (7)

where b > 0, which includes as a particular case the update (6a). Problem (7) admits the following
closed form solution

λ∗ = max

{
0,

1

2

(‖wi −wj‖√
2b

− 1

)}
,

[
t∗i
t∗j

]
=

1

1 + 2λ∗

([
1 + λ∗ λ∗

λ∗ 1 + λ∗

]
⊗ In

)[
wi

wj

]
.

(8)

Leveraging Lemma 2, we see that (6a) has the following closed form solution[
wh
i,e

wh
j,e

]
=

1

`−1+ρ

(
ρ

[
yi
yj

]
+ (`−1)zhe

)
,

[
thi,e
thj,e

]
=

1

1+2λhe

([
1+λhe λhe
λhe 1 + λhe

]
⊗In

)[
wh
i,e

wh
j,e

]
,

(9a)

with λhe = max

0,
1

2


∥∥∥wh

i,e −wh
j,e

∥∥∥
ζ ‖xi − xj‖

− 1

 . (9b)

Finally, we discuss how the closed form solution of 1-constraint QCQPs leads to a very low per
iteration complexity.

Lemma 3 (Computational complexity) Consider the Peaceman-Rachford splitting (6) that solves
the operator regression problem (5), and further notice that the 1-constraint QCQPs (6a) have a
closed form solution described in Lemma 2.

Then, the computational complexity of the PRS solver is O(`2n) per iteration. In particular,
when the budget of operator calls ` is much smaller than the dimension of the problem (n � `),
then the complexity reduces to O(n) per iteration.
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3. OpReg-Boost

We are now ready to present our main algorithm. To convey ideas concretely, we focus here on
online algorithms of the forward-backward type as in Example 1, i.e.,3

xk = proxαgk (Tk(xk−1)) , k ∈ N, α > 0. (10)

where we recall that Tk = I −α∇xfk. In particular, we will utilize the operator regression method
on the mapping Tk. We recall that the prox operator is non-expansive; therefore, the Lipschitz
constant of the overall mapping prox ◦Tk depends on the mathematical properties of Tk Bauschke
et al. (2012) and, more specifically, of the function fk. In particular, since fk is not assumed to be
strongly convex in general, Tk may not be contractive and, consequently, prox ◦Tk is not contractive
either. With this in mind, the goal is to learn a contracting mapping T̂k from evaluations of Tk at
some points. The OpReg-Boost algorithm can thus be described as follows.

OpReg-Boost algorithm
Required: number of points `, stepsize α, contraction factor ζ, initial condition x0.
At each time k do:

[S1] Learn the closest contracting operator to Tk, say T̂k by:

[S1.1] Choose `− 1 points {xp} around xk−1 to create the set of points {xi} := {xk−1 ∪{xp}}, i ∈ I`, where
the map Tk is to be evaluated.

[S1.2] Evaluate the mapping at the data points: yi = Tk(xi), i ∈ I`, i.e., yi = xi − α∇xfk(xi).

[S1.3] Solve (4) on {xi,yi}, i ∈ I` with the PRS-based algorithm.

[S1.4] Output t̂k(= T̂k(xk−1)) from the solution of [S1.3].

[S2] Compute xk = proxαgk (t̂k).

A couple of remarks are in order. First, the computational complexity of the overall algorithm
is dominated by the operation regression problem (4) in step [S1.3]; on the other hand, the number
of gradient calls (used to evaluate Tk) is `-times the one of a standard forward-backward algorithm.
At each time k, we perform ` gradient evaluations at the points xk−1∪{xp} (the points {xp} could
be obtained, e.g., by adding a zero-mean Gaussian noise term to xk−1). ` can be as small as 3 in
practice.

Second, as one can see from steps [S1.2]–[S1.4], the operation regression problem (4) directly
provides the evaluation of the regularized operator at the data point xk−1, since we choose xk−1 to
define one of the training points.

4. Numerical results

We present a number of experiments to evaluate the performance of the proposed method4. We
consider: (i) an ill-conditioned online linear regression with a convex cost (but not strongly con-
vex); (ii) an online phase retrieval problem that is weakly convex, and which is characterized by a
high computational cost per operator evaluation. The first example is rather well-studied, at least

3. Access to an operator is the only requirement for the application of OpReg-Boost. However, it is instructive to fix the
ideas on a concrete mapping by focusing on the forward-backward algorithm.

4. The experiments were implemented in Python and performed on a computer with Intel i7-4790 CPU, 3.60GHz,
and 8GB of RAM, running Linux. Code and data are available. The implementation is serial (possible due to the
manageable size of the regression problems); future work will look at parallel implementations.
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in the well-conditioned region, and it can be used for example to derive control laws under sparsity
requirements Ohlsson et al. (2010); Lin et al. (2013). The second example has important repercus-
sions in adaptive optics, where phase retrieval techniques are used as building blocks to generate
control signals Massioni et al. (2011); Antonello and Verhaegen (2015)

The metric used in the experiments is the tracking error, characterized as the distance from the
ground truth signal yk of the solution output by the solvers. By yk we denote the signal being
tracked via linear regression in section 4.1 or the phase being retrieved in section 4.2. We choose
the tracking error as a proxy for the distance to the optimizer x∗k in line with the work of Duchi and
Ruan (2018), since (i) determining x∗k is in general hard to do computationally in the problems we
are considering and it may not be unique, and (ii) the tracking error very naturally provides insights
on how the methods perform in estimating the real signals.

4.1. Online linear regression

We consider the following time-varying problem:

x∗k ∈ argmin
x∈Rn

1

2
‖Ax− bk‖2 + w ‖x‖1 , (11)

with n = 1000, w = 1000, A ∈ Rn×n such that rank(A) = n/2 and having maximum and
minimum (non-zero) eigenvalues

√
L,
√
µ. The goal is to reconstruct a signal yk with sinusoidal

components, 1/3 of them being zero, from the noisy observations bk = Ayk + ek, and ek ∼
N (000, 10−2I). Due to A being rank deficient, the cost fk is convex but not strongly so, and we
have λmax(∇xxfk)/λ̃min(∇xxfk) = L/µ, where λmax and λ̃min are the maximum and minimum
non-zero eigenvalues of a matrix. The function fk changes every δ = 0.1s.

In Figure 2, we show a comparison of the tracking error attained by the proposed OpReg-
Boost against the forward-backward method, and its accelerated versions FISTA (with and without
backtracking line search) Beck and Teboulle (2009), and (guarded) Anderson Mai and Johansson
(2020a). The methods are given the same computational time budget5, the step-size of forward-
backward is α = 2/(L+µ), and the parameters of OpReg-Boost are ` = 3 and ρ = 10−6. For large
values of L OpReg-Boost outperforms all other methods; in the case L = 104 it performs slightly
worse in terms of asymptotic error, but successfully improves the convergence rate. The reason
behind the performance we observe is that as L grows larger, the allowed step-size for forward-
backward becomes smaller – indeed, we have the bound α < 2/L. We further remark that the
performance of OpReg-Boost can be improved in the case L = 104 by choosing a different value of
ρ, see Bastianello et al. (2021).

Finally, in Table 1 we report the asymptotic error and computational time of OpReg-Boost
as compared to the forward-backward based solvers for three different sizes of the problem with
L = 108 and µ = 1. In terms of asymptotic error – evaluated when all methods are given the
same total computational time – the performance of OpReg-Boost is consistently better than the
other methods. Regarding the computational time per step of the algorithm we see that OpReg-
Boost is comparable with the accelerated methods FISTA with backtracking and Anderson. On the

5. Specifically, we evaluate the computational time required by one iteration of OpReg-Boost, and run the other methods
for the same time. We remark that OpReg-Boost requires at least the time needed by ` iterations of forward-backward
to generate the operator regression data. For example, our experiments show that with the choice ρ = 10−6 during
one iteration of OpReg-Boost we can apply ` + 1 of forward-backward or FISTA, and one or two of Anderson and
FISTA with backtracking.
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Figure 2: Comparison with a fixed computational time budget per time k ∈ N, and for different
values of L, with fixed µ = 1.

Table 1: Comparison for different values of n; for each algorithm we report the asymptotic error
(as. err.) and the average computational time per step of the algorithm (t. / s.). We remark
that in the simulations all methods are given the same computational time budget, so
we apply one or more steps of the algorithm. The simulations are for L = 108 and µ = 1.

n = 10 n = 100 n = 1000

Algorithm as. err. t. / s. [s] as. err. t. / s. [s] as. err. t. / s. [s]

Forward-backward 30.00 3.76× 10−5 64.88 3.91× 10−5 221.36 8.55× 10−4

FISTA 29.69 3.44× 10−5 62.15 4.20× 10−5 221.00 8.41× 10−4

FISTA (backtr.) 29.69 6.33× 10−4 62.15 8.27× 10−4 220.98 1.77× 10−2

Anderson 29.69 1.07× 10−4 62.16 1.27× 10−4 221.01 1.71× 10−3

OpReg-Boost 2.11 2.48× 10−4 6.14 2.98× 10−4 18.72 2.88× 10−3

other hand, the computationally lighter forward-backward and FISTA require less time per step, but,
again, when given the same computational time the performance of OpReg-Boost is still better.

4.2. Online phase retrieval

We consider now the following phase retrieval problem presented in Duchi and Ruan (2018):

x∗k ∈ argmin
x∈Rn

1

m

m∑
i=1

∣∣〈ai,x〉2 − bi,k∣∣ , (12)

where the goal is to reconstruct the time-varying signal yk ∈ Sn−1, n = 50, from the noisy mea-
surements bi,k = 〈ai,yk〉+ ξi,k, i = 1, . . . ,m and m = 100. The signal yk is piece-wise constant,
with the value of each constant piece being independently drawn. The additive noises are i.i.d.
Laplace with zero mean and scale parameter 1. The ai are the rows of A ∈ Rm×n, constructed as
A = UD, with U ∈ Rm×n an orthogonal matrix, and D ∈ Rn×n a diagonal one with elements

9
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L = 102, µ = 1 (hence the condition number of A is 102), and the remaining n − 2 drawn from
U [µ,L]. The problem changes every δ = 1s.

We consider the prox-linear solver proposed in the work of Drusvyatskiy and Lewis (2018) (see
also Duchi and Ruan (2018)), characterized by Tk(y) = proxαfk,y(y), where fk,y denotes the fol-
lowing linearized version of the cost in (12): fk,y(x) = 1

m

∑m
i=1

∣∣〈ai,y〉2 + 2〈ai,y〉〈ai,x− y〉 − bi,k
∣∣ .

We choose the step-size of the prox-linear solver as α = 10−3, which empirically led to conver-
gence (at least in the initial transient) without the need for line search. Notice that the proximal
operator Tk does not have a closed form, and each operator call requires the solution of a quadratic
program, which takes 0.177± 0.0052s.
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Figure 3: Comparison of the tracking error evolution for prox-linear Drusvyatskiy and Lewis (2018)
and OpReg-Boost. The methods are tasked with retrieving phase signals that are piece-
wise continuous, with different number of pieces in each.

We also consider our OpReg-Boost algorithm applied to the operator6 projSn−1 ◦Tk, and which
regularizes the operator Tk to a ζ-contractive operator, yielding then projSn−1 ◦T̂k. The solution of
an operator regression problem requires 1.35× 10−3 ± 0.011s. In the results, then, during the time
before the arrival of a new problem (δ = 1s), we perform either 4 steps of the prox-linear solver, or
one step of OpReg-Boost with 3 training points (and choosing the PRS parameter ρ = 10−4).

In Figure 3, we show the tracking error of prox-linear compared with OpReg-Boost when the
signal has different numbers of constant pieces (from being static – one constant value – to being
highly dynamic – changing every 5s). As we can see, OpReg-Boost consistently outperforms prox-
linear, including in the static case, in which OpReg-Boost quickly converges to the (approximate)
fixed point, while prox-linear converges more slowly.

6. This shows better performance in practice rather than regularizing Tk alone. Strictly speaking, with this choice,
function gk in (1) would be the indicator function of a non-convex set. The good performance of the proposed
approach however suggests that it can be applied to more general problems than (1).
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