
Proceedings of Machine Learning Research vol 168:1–12, 2022 4th Annual Conference on Learning for Dynamics and Control

Reinforcement Learning with Almost Sure Constraints

Agustin Castellano ACASTE11@JHU.EDU
Hancheng Min HANCHMIN@JHU.EDU
Johns Hopkins University, Baltimore, MD, USA

Juan Bazerque JBAZERQUE@FING.EDU.UY
Universidad de la República, Montevideo, Uruguay

Enrique Mallada MALLADA@JHU.EDU

Johns Hopkins University, Baltimore, MD, USA

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract
In this work we address the problem of finding feasible policies for Constrained Markov Decision
Processes under probability one constraints. We argue that stationary policies are not sufficient for
solving this problem, and that a rich class of policies can be found by endowing the controller with
a scalar quantity, so called budget, that tracks how close the agent is to violating the constraint. We
show that the minimal budget required to act safely can be obtained as the smallest fixed point of a
Bellman-like operator, for which we analyze its convergence properties. We also show how to learn
this quantity when the true kernel of the Markov decision process is not known, while providing
sample-complexity bounds. The utility of knowing this minimal budget relies in that it can aid in the
search of optimal or near-optimal policies by shrinking down the region of the state space the agent
must navigate. Simulations illustrate the different nature of probability one constraints against the
typically used constraints in expectation.
Keywords: Constrained MDPs, Safe RL, RL for physical systems, sample-efficient learning.

1. Introduction

With the huge availability of data made possible by cheap sensors and widespread telecommuni-
cations, the control paradigm has shifted: the previous-century approach, which relied heavily on
system modeling followed by careful control design is now moving towards an improve-as-you-go
approach, in which controllers are refined on a step by step basis as more data becomes readily
available. One of the main tools aiding in the design of these controllers is Reinforcement Learning
(RL) (Sutton and Barto, 2018; Bertsekas, 2019). This relatively new field has seen a rebirth in recent
years, obtaining outstanding performance in certain domains, particularly when the algorithms are
coupled with deep neural networks (Mnih et al., 2015) and tree-search methods (Silver et al., 2016).
Notwithstanding, this super-human performance has been mostly obtained on setups where i) the do-
main is virtual, ii) transition dynamics are fairly simple and iii) training is computationally-intesive.
There is huge promise, however, in the potential of RL to be extended to complex real-world tasks
such as autonomous transportation or robot manipulation, where safety is paramount.

In the subfield of Safe RL, most of the current corpus relies on adding constraints in expec-
tation to trade-off between the conflicting goals of achieving good performance while satisfying
feasibility (Geibel, 2006; Miryoosefi et al., 2019), and commonly used methods rely on primal-dual
algorithms that take into consideration both the reward function and the constraints to be met (Pa-
ternain et al., 2019; Ding et al., 2020). These methods, however, typically guarantee feasibility only

© 2022 A. Castellano, H. Min, J. Bazerque & E. Mallada.



CASTELLANO MIN BAZERQUE MALLADA

asymptotically—with a possibly unbounded number of constraint violations during training, some-
thing highly undesirable in safety-critical systems. Other approaches include formal verification
methods (Junges et al., 2016), which first deal with computing permissive (ie. feasible) strategies,
restricting the actions agents can take at each step (Jansen et al., 2020).

In this work we argue that specifying hard constraints actually aids in the development of con-
trollers, since feasible policies are easy to find. This is similar to what some authors have done in
the field of deterministic finite automata, where low-complexity policies can be found rapidly (Ste-
fansson and Johansson, 2021). Once safe policies are learnt—or equivalently, once unsafe states
and actions are identified—the search for good performance can be done over a smaller set. For
real-world applications with physical systems it is critical to keep track of the number of interac-
tions between the agent and the environment. This has led to a drive to develop sample-complexity
bounds (Agarwal et al., 2020), and most recently, sample-complexity bounds for learning policies
with zero and bounded constraint violations (HasanzadeZonuzy et al., 2020; Liu et al., 2021).
Paper outline: In Section 2 we formulate the problem and illustrate why stationary policies are not
sufficient under this setting. Section 3 contains the main results of the paper. We show a bijection
between the original MDP and one that tracks—via a quantity called budget—how close the agent
is to violating the constraint. We show feasible policies can be completely characterized in terms
of the minimal required budget, which can be obtained as the solution of a fixed point iteration.
This requires, however, knowledge of the transition kernel of the MDP. In Section 4 we improve
on this result by showing that the budget can be learned if one knows an approximate kernel, and
give sample-complexity bounds to construct it. Numerical experiments showing the different nature
of our proposed constraint as opposed to the state of the art expectation-based counterparts are
presented in Section 5, and we conclude in Section 6.
Proofs: We provide proof sketches for all our results. Detailed proofs can be found in the appendix
of Castellano et al. (2021b).

2. Problem formulation

Consider a finite state space, finite action space and infinite horizon Constrained Markov Decision
Process (CMDP) defined as a tupleM = (S,A, p, r, d) where S is the set of states, A is the set of
actions, p is the kernel that specifies the conditional transition probability p(s′, r, d|s, a), r ∈ R is
the reward and d ∈ {0, 1} is a binary-valued damage indicator used to model constraint violations.
Consider also a user-specified total damage budget ∆. The goal in this case is to achieve the highest
return while never allowing more than ∆ units of damage in a single trajectory:

max
π∈ΠH

Eπ

[ ∞∑
t=0

Rt+1

∣∣∣∣ S0 = s

]
(1a)

s.t: Pπ

( ∞∑
t=0

Dt+1 ≤ ∆

∣∣∣∣ S0 = s

)
= 1 , (1b)

where the initial state s is fixed and the maximization is carried over the set of general, history-
dependent policies ΠH . We choose to call this framework a CMDP in the literal sense (as it is an
MDP subject to constraints) even though the probability-one constraint (1b) deviates from the usual
expectation-based ones (Altman, 1999). We assume there is an absorbing termination state such
that when the system enters this state it remains there with no further reward. We also assume that

2



RL WITH ALMOST SURE CONSTRAINTS

the structure of the MDP is such that this state is eventually reached under any policy, a common
assumption for stochastic shortest path problems (Bertsekas, 2012).

Recalling that the damage Dt is a binary-valued random variable, in essence the quantity ∆
serves as a tolerance to damage. A feasible policy is one that—almost surely—does not allow for
more than ∆ total damage along a single trajectory. The harshest case requires ∆ = 0, in which no
damage is allowed. When ∆ = 0, it can be shown that the safety of a particular state-action pair can
be encoded in a barrier function akin to the typical action-value function Q, under which feasible
policies and high-return policies can be learned in parallel (Castellano et al., 2021a).

In the original formulation (1) the maximization is carried out over the broad class of history-
dependent policies ΠH . We define the history at time t as the collection of (S,A, S′, R,D) tuples
up to time t, that is ht = (s0, a0, r1, d1, s1, . . . , st−1, at−1, rt, dt, st). Policies in this class induce a
probability distribution over the set of actions conditioned on the history, i.e. π(·|ht) : A → [0, 1].
The class of general policies is a very large set to work with, with the combination of possible
histories growing exponentially as time increases. It is desirable, then, to avoid working with
history-dependent policies and restrict the optimization over a simpler class that still attains op-
timal performance. Generally, the class of stationary policies π(·|st) is considered, in which the
distribution over the actions is just a function of the current state.

It is a well-established fact that for unconstrained problems the stationary policies are complete,
in the sense that they can fully mimic the expected return obtained by any general, history-dependent
policy. This result also carries over to constrained problems where the constraint is cast as the
expected value of a sum (Altman, 1999, Thm 3.1, eq. 3.1). Borrowing from completeness, we
define the notion of adequacy below, better suited to the type of constraint (1b) we are handling.

Definition 1 (Adequacy) A set of policies Π is adequate if for any history-dependent policy πh
that is feasible for (1) there exists a feasible policy π ∈ Π such that Eπ [

∑∞
t=0Rt+1|S0 = s] =

Eπh
[
∑∞

t=0Rt+1|S0 = s].

It is easy to check that the set of stationary policies is not adequate for solving (1), as argued in the
following proposition.

Proposition 2 (Stationary policies are not adequate forM) The set of stationary policies is not
adequate for solving (1).
Proof As a proof by counterexample, consider the MDP of Figure 1. The episode starts with

Figure 1: Example MDP: the episode starts in the circle state and ends upon reaching the square.

the agent in the white circle state and ends when the black square is reached. The two possible
actions are left and right. The optimal policy picks left ∆ times (accruing both reward
and damage) and then goes right. It is clear that this policy is non-stationary. Moreover, the
only feasible stationary policy is the one that always picks right, obtaining the least return. The
preceding example provides a hint on why general or history-dependent policies work for solving
(1): they keep track of both the rewards (useful for maximization) and the damage incurred so far

3



CASTELLANO MIN BAZERQUE MALLADA

(needed for feasibility). This fact will be used as a building block towards what will be developed
in the next section. Namely, that endowing the controller with memory of the accumulated damage
so far is sufficient for learning optimal behavior.

3. Safe reinforcement learning with memory policies

Throughout this section we argue that in order to learn an optimal policy for (1) it suffices to consider
the class of stationary policies that keep track of the accumulated damage along the trajectory.
To this end, we consider an augmented MDP with a new state variable Kt that incorporates the
accumulated damage so far, which we call budget, and show it to be equivalent to the original MDP.
Tracking this cumulative quantity in the extended MDP is akin to some techniques used to solve
unconstrained MDPs under risk-minimization criteria (Bäuerle and Ott, 2011). We finalize this
section by showing stationary policies in the augmented MDP are adequate.

Definition 3 (Budget) For the original MDPM define the budget at time t as the random variable

Kt = ∆−
t−1∑
ℓ=0

Dℓ+1 , ∀ t ≥ 1 , (2)

with K0 = ∆.

This term can be seen as the remaining damage budget, that is to say, how many more units of
damage the agent can suffer along the trajectory while still satisfying (1b). From the definition in
(2) it follows that Kt+1 = Kt −Dt+1, so the budget between successive time steps either stays the
same or decreases by one only if damage occurs. We argue that this magnitude Kt is a sufficient
statistic for learning an optimal (feasible) policy, in the sense that stationary policies are adequate
for a new MDP M̃ with state variable S̃ = (S,K), which we define next.

Definition 4 (Augmented MDP) Given transition tuples (St, At, St+1, Rt+1, Dt+1) fromM, de-
fine the augmented MDP M̃ as the one with tuples (S̃t, At, S̃t+1, Rt+1, D̃t+1) where

S̃t = (St,Kt) , D̃t+1 = 1{Kt −Dt+1 < 0} . (3)

In M̃ the state space is enlarged so as to consider the remaining damage budget Kt. Therefore
the states S̃ now lie in S̃ = S × {∆,∆ − 1, . . . , 0}. The binary damage signal D̃t+1 is only one
when the system is out of budget—i.e., it signifies failure to comply with (1b). Figure 2 depicts
the structure of this modified MDP. Each blob corresponds to a slice of the state space for fixed K,
with transitions between states on the same slice occurring as long as the original damage signal
Dt+1 = 0. When Dt+1 = 1 in the original MDP, the transition in the augmented MDP corresponds
to decreasing Kt by one. At the slice S × {0} the system is critically compromised—performing
one more unsafe state transition leads to failure (encoded as D̃t+1 = 1 in the augmented MDP).

Consider the following optimization problem on M̃:

max
π̃∈Π̃H

Eπ̃,M̃

[ ∞∑
t=0

Rt+1

∣∣∣∣ (S0,K0) = (s,∆)

]
(4a)

s.t: Pπ̃

(
D̃t+1 = 0

)
= 1 ∀t ≥ 0 , (4b)

4



RL WITH ALMOST SURE CONSTRAINTS

Figure 2: Illustration of transition dynamics in M̃. Each disk corresponds to a partition of the state-
space for fixed budget K ∈ {∆, . . . , 0}. At any time step the system either retains the
current budget or decreases it by one (when Dt+1 = 1), depicted by the solid arrows.
Failure occurs when Kt = 0 and the agent encounters damage (D̃t+1 = 1 in red).

where the first component of the initial state S̃0 = (S0,K0) is the same as in (1a) and the sec-
ond component is the total budget ∆ in the original formulation. Maximization in this case is
done over the set of history-dependent policies Π̃H , whose elements are of the form π̃(·|h̃t) with
h̃t = (s̃0, a0, r1, d̃1, s̃1, . . . , s̃t−1, at−1, rt, d̃t, s̃t). We explicitly write Eπ̃,M̃[·] in (4a) to denote that
the expectation is taken with respect to the trajectory induced by M̃. When there is no room for
confusion we use the shorthanded version Eπ̃[·] instead.

3.1. Adequacy of memory policies

We first argue that the problem in the extended and original MDPs are equivalent. Specifically, any
given feasible general policy π̃h for M̃ can be readily mapped to a corresponding policy inM and
vice versa. Secondly, we claim that stationary policies are adequate for M̃. In this sense Kt can be
seen as a low-complexity descriptor of a policy, gathering all the relevant information in h̃t.

Lemma 5 (Equivalence of MDPs) The optimization problem (4) in the augmented MDP M̃ is
equivalent to the optimization problem (1) in the original MDPM .

Proof [Sketch] We show a bijection f : ΠH → Π̃H between the set of history-dependent polices
forM and the one for M̃ such that the expect return is matched under f . Moreover, π ∈ ΠH is
feasible for (1b) if and only if π̃ = f(π) is feasible for (4b). Hence the two optimization problems
are equivalent.

Lemma 6 (Adequacy of stationary policies for M̃) The set of stationary policies of the augmented
MDP M̃ is adequate.
Proof Given the fact that D̃t+1 ∈ {0, 1} almost surely, (4b) can be equivalently represented as
Eπ̃

[∑∞
t=0 D̃t+1

]
= 0. This constraint along with (4a) lie in the usual formulation for shortest path

problems in CMDPs, for which stationary policies are adequate (Ch.6 in Altman (1999)).

We finish the section by decomposing the action-value function that rises from (4) in one term
focused on return and the other focused on feasibility. Then we show that the feasible stationary
policies in M̃—and therefore the 1-memory policies in M—can be completely characterized by
this barrier.

5



CASTELLANO MIN BAZERQUE MALLADA

3.2. Characterizing feasible policies with a barrier function

Consider for a stationary policy π̃ the extended action-value function:

Qπ̃(s, k, a) := Eπ̃

[ ∞∑
ℓ=t

Rℓ+1 + I

{ ∞∑
ℓ=t

Dℓ+1 ≤ Kt

} ∣∣∣∣ St = s,Kt = k,At = a

]
, (5)

where we introduce the barrier-indicator I{x} = 0 if x is true and I{x} = −∞ otherwise. We
can find an optimal policy for (1) by solving maxπ̃∈Π̃S

Ea∼π̃ [Qπ̃(s,∆, a)], where Π̃S is the set
of stationary policies in M̃. For simplicity, it is useful to specify a function that encodes for the
feasibility of the whole state-action space under a policy. This is the barrier action-value function:

Bπ̃(s, k, a) := Eπ̃

[
I

{ ∞∑
l=t

Dl+1 ≤ Kt

} ∣∣∣∣ St = s,Kt = k,At = a

]
. (6)

This function either takes values zero or −∞, with zero indicating that policy π̃ is guaranteed to be
feasible when starting from (s, k, a) and −∞ meaning that, with positive probability, more than k
units of damage will be seen along the trajectory. This might be a consequence of either having too
small a budget or a poor policy. The usefulness for defining Bπ̃ is that Qπ̃ can be decomposed in
terms of itself and Bπ̃, which decouples optimality and feasibility, as is shown next.

Lemma 7 (Barrier decomposition and Bellman equation) Let M̃ be an MDP with an absorb-
ing state . Let π̃ be a policy inM such that under π̃ the absorbing state is eventually reached. If
rewards Rt+1 are bounded almost surely for all t, then

Qπ̃(s, k, a) = Qπ̃(s, k, a) +Bπ̃(s, k, a) . (7)

Additionally, the optimal barrier function B∗ satisfies the Bellman equation

B∗(s, k, a) = E
[
I{D̃t+1}+max

a′∈A
B∗(St+1,Kt+1, a

′)

]
. (8)

This barrier function satisfies the following monotonicity properties:

Bπ(s, k, a) = 0 =⇒ Bπ(s, k + i, a) = 0 , (Safe and more budget→ safe.) (9)

Bπ(s, k, a) = −∞ =⇒ Bπ(s, k − i, a) = −∞ . (unsafe and less budget→ unsafe.) (10)

3.3. Characterizing feasible policies via minimal budget

As commented previously, B∗ completely characterizes the feasibility of every (s, k, a) triplet. The
safety of a state-action pair (s, a) is conditioned on the agent’s remaining budget k. With this idea
in mind we can define the minimal required budget at each (s, a) as follows.

Definition 8 (Minimal budget) The minimal required budget k∗ that guarantees feasibility for an
(s, a) pair is

k∗(s, a) = min
0≤k≤∞

k s.t.: B∗(s, k, a) = 0 . (11)

This quantity k∗ serves as a proxy for safety. A state-action pair is safe if the agent’s budget k is at
least k∗, and thus k∗ completely characterizes the set of feasible, stationary policies:

6



RL WITH ALMOST SURE CONSTRAINTS

Theorem 9 (Characterization of feasible, stationary policies) The set of feasible, stationary poli-
cies for (4) is

Π̃F
S = {π̃ : π̃(a|s, k) = 0 ∀a : k∗(s, a) > k}. (12)

Proof [Sketch] The proof is straightforward and follows from the definition of k∗ and monotonicity
properties (9)–(10).

Notice that k∗ is intrinsic to the MDP. We focus on learning this quantity, first establishing a
Bellman-like recursion for k∗ and then deriving an Algorithm that provably converges to it.

Theorem 10 (Recursion for k∗) For each (s, a), the minimal budget satisfies the recursion:

k∗(s, a) = max
s′:p(s′|s,a)>0

[
1d(s, a, s

′) + min
a′

k∗(s
′, a′)

]
, (13)

where 1d(s, a, s
′) := 1{p(d = 1 | s, a, s′) > 0} and 1{x} = 1 if x is true and 0 otherwise.

Proof [Sketch.] The proof relies on decomposing B∗(s, k, a) and evaluating it on k∗(s, a).

The recursion in (13) can be seen as a fixed point of an operator Tp that acts on budgets k (for a
given transition kernel p(s′, d|s, a)). We define this operator next and analyze some of its properties.

Definition 11 (The budget operator Tp) Given a transition kernel p, define the operator Tp acting
on the extended natural vector N̄S×A with N̄ = N ∪ {∞} as Tp : N̄(S×A) → N̄(S×A) :

(Tp k)(s, a) := max
s′:p(s′|s,a)>0

[
1d(s, a, s

′) + min
a′

k(s′, a′)

]
, ∀(s, a) ∈ S ×A . (14)

Notice that here we are making explicit the dependency of Tp with the transition kernel p fromM.
Later we will argue that k∗ can be learned even if the learner has no access to p, as long as it knows
a proper surrogate kernel p̂. In that case this notation will allow for the difference of Tp and Tp̂.
However, for the remainder of this section we spare the subscript and speak just of T .

We would like to make use of this operator to learn k∗. The idea is straightforward: for a given
kernel p, start from k = 0 and keep applying Tp until reaching a fixed point. But there are many
fixed points of (14). Indeed, one can easily check that if k† is a fixed point so is k† + 1c, c ∈ N̄.
Therefore the question still remains as to whether this procedure converges to k∗. We will show this
is the case, arguing that Algorithm 1 converges to k∗.

Theorem 12 (Convergence to k∗) Define k∞ ∈ N̄S×A as the limit of Algorithm 1, that is k∞(s, a) =
limn→∞ kn(s, a) for all (s, a) ∈ S × A. Let the input of Algorithm 1 be the true transition kernel
p of MDPM. Then the iterates of this algorithm converge to k∗:

k∞(s, a) := lim
n→∞

kn(s, a) = k∗(s, a) , ∀(s, a) ∈ S ×A .

Proof [Sketch] The proof proceeds by induction, starting from the (s, a) pairs for which k∗(s, a) =
0.

Unfortunately, it might be possible that we do not have access to the true kernel p. The next
section focuses on learning k∗ as long as one knows a surrogate kernel p̂.

7



CASTELLANO MIN BAZERQUE MALLADA

Algorithm 1 Fixed point budget iteration
Input: Transition kernel p fromM
Result: k∗ forM
k0(s, a)← 0 ∀(s, a) ∈ S ×A
for n = 0, 1, . . . do

for (s, a) ∈ S ×A do
kn+1(s, a)← maxs′:p(s′|s,a)>0 [1{p(d = 1 | s, a, s′) > 0}+mina′ kn(s

′, a′)]

end
end

4. Sample complexity for learning the minimal budget

We start by defining a consistent kernel p̂ of p and show that Algorithm 1 converges to k∗ under
input p̂.

Definition 13 (Consistent kernel) Given a transition kernel p, p̂ is a consistent kernel of p if and
only if sign

(
p̂(s′, d|s, a)

)
= sign

(
p(s′, d|s, a)

)
∀(s, a, s′, d) ∈ S ×A× S × {0, 1}.

Throughout what follows we assume access to a generative model or a sampler, which allows
to sample transitions (s′, d) ∼ p(·|s, a). By collecting N samples at each state-action pair, we can
build an empirical model p̂ of the transition kernel p, counting the fraction of transitions to each
(s′, d) from (s, a), as depicted in Algorithm 2. The number of samples needed to build a consistent
kernel with arbitrarily high probability is elucidated in Lemma 14.

Algorithm 2 Kernel builder
Input: Transition kernel p fromM, number of sample queries N .
Result: Empirical kernel p̂.
for (s, a) ∈ S ×A do

Sample N transitions (s′, d) ∼ p(·|s, a)
end
Build estimate kernel p̂(s′, d|s, a) = count(s′,d;s,a)

N ∀s′ ∈ S, d ∈ {0, 1}, s ∈ S, a ∈ A

Lemma 14 (Sample complexity for Algorithm 2) Assume that p(s′, d|s, a) = 0 or p(s′, d|s, a) ≥
µ > 0, for every (s, a, s′, d) ∈ S ×A× S × {0, 1}. Then with probability at least 1− δ, Kernel
builder produces a consistent kernel p̂ of p, provided that

N ≥ 1

µ
log

2|S|2|A|
δ

. (15)

Proof [Sketch] Follows from taking a union bound on the probability that Algorithm 2 fails to
produce a consistent kernel.

It turns out building a consistent kernel is sufficient in order to learn k∗ under the true MDPM.

8



RL WITH ALMOST SURE CONSTRAINTS

Lemma 15 (Consistent kernels are enough) Let p be a transition kernel associated with an MDP
M and let p̂ be a consistent kernel of p. Then Algorithm 1 with input p̂ converges to the minimal
budget k∗ ofM.
Proof Tp̂ ≡ Tp if p̂ is consistent with p.

We conclude the main body of the paper with a couple remarks: firstly that the samples needed
to learn k∗ are small; lastly we discuss the utility of using k∗ to learn optimal policies.

Remark 16 (Learning k∗ is sample-efficient.) The last two lemmas indicate that the minimal bud-
get k∗ can be learned with very few samples. Indeed, the number of interactions with the environ-
ment is Õ

(
|S||A|

µ

)
disregarding logarithmic terms. Contrast this, for example, with the Õ

(
|S||A|

(1−γ)3ϵ2

)
dependency needed to learn an ϵ-optimal policy with a generative model (Agarwal et al., 2020).
There is no accuracy (i.e. ϵ) requirement in our case, nor the sample complexity depends on the
effective horizon (1−γ)−1: the focus is on detecting transitions rather than estimating them, which
makes the problem easier, despite requiring a richer set of policies.

Remark 17 (Using k∗ to learn optimal policies) Throughout this paper we have shown that the
minimal budget k∗ (which is intrinsic to the MDP) can be efficiently learned. The utility of knowing
this quantity is that it characterizes the set of feasible, stationary memory-one policies (as was
argued in Theorem 9), or, to put it in another way, it specifies the region of the state space that is
∆-unsafe:

S∆unsafe = {s ∈ S : k∗(s, a) > ∆ ∀a ∈ A} .

From this point of view knowing k∗ effectively “trims” the region of interest of the MDP, meaning
the search for an optimal policy is now constrained to a smaller state space, and will therefore
require less samples and less computations.

5. Experiments

We illustrate the difference between the proposed constraint (1b) and expectation-like constraints
using the simple MDP of Figure 1. We recall the optimal policy π∗

∆ under (1b) chooses action left
∆ times, getting both ∆ damage and reward, and then goes right. The optimal policy π∗

c under
constraint Eπc [

∑∞
t=0Dt+1] ≤ c chooses action left with probability c

1+c (this is the probability
that makes the expected damage constraint hold with equality). It also achieves c expected return.
The top half of Figure 3 shows a histogram of the total damage per episode for these optimal
policies under different values of c, for fixed ∆ = 5. While the optimal policy for the probability-
one constraint π∗

∆ always achieves ∆ = 5 damage, the damage incurred by the other policy is
highly variable. This hints at one of the shortcomings of this type of constraints: even if an optimal
policy can be learned, when it is deployed it can have very poor performance in terms of safety.
As a second example, consider a modified version of the same MDP in which the probability of
observing damage is P (d = 1|s,left) = 0.6. While the optimal policy π∗

∆ remains unchanged,
now π∗

c takes left more frequently, now with probability c
P (d=1|left)+c . The bottom half of

Figure 3 shows the return (sum of rewards in the episode) under both optimal policies. Notice that
π∗
c is essentially insensitive to c, the only difference being that slightly longer tails (not shown on

the figure) are observed as c gets larger. The results for the observed damage are similar to those of
Experiment I, so we omit them.

9



CASTELLANO MIN BAZERQUE MALLADA

Figure 3: Top: Damage per episode for the optimal policies of the MDP of Figure 1 under different
types of constraints. For each panel, the red histogram corresponds to the violations per
episode for π∗

c under constraint Eπc [
∑∞

t=0Dt+1] ≤ c. The assured policy π∗
∆ with (1b)

always attains ∆ = 5 total damage. Bottom: Returns per episode for the optimal policies
of the (modified) MDP of Figure 1 where P (d = 1|s,left) = 0.6. The policy under
our proposed scheme (in blue) always achieves a return of at least 5, with returns tightly
concentrated around 10.

6. Conclusions

In this work we formulate the problem of Safe Reinforcement Learning under constraints that must
be satisfied with probability one. The type of constraint in consideration being that the agent en-
counters less than ∆ units of damage along a trajectory, where damage is a binary signal. We show
that i) stationary policies are not adequate for solving this type of problems, ii) a sufficiently rich
class of policies can be learned if one tracks the damage incurred along the trajectory. The minimal
required budget (which is intrinsic to each MDP) can be learned by solving for the fixed point of a
newly defined operator, provided one knows a consistent approximation of the transition probabili-
ties. Learning this minimal budget is essentially the same as learning a set of feasible policies. Thus
it simplifies the exploration for optimal or near-optimal policies, reducing it to a search within the
smaller set of feasible states and actions. Our experiments illustrate in a simple setup the different
nature of probability one constraints as contrasted with expectation-like constraints.

Acknowledgments

This work was supported by NSF through grants CAREER 1752362, CPS 2136324, and TRIPODS
1934979, and Johns Hopkins University Catalyst Award, and by ANII-Uruguay through grant
FSE 1 2019 1 159457.

10



RL WITH ALMOST SURE CONSTRAINTS

References

Alekh Agarwal, Sham Kakade, and Lin F. Yang. Model-based reinforcement learning with a gener-
ative model is minimax optimal, 2020.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Nicole Bäuerle and Jonathan Ott. Markov decision processes with average-value-at-risk criteria.
Mathematical Methods of Operations Research, 74(3):361–379, 2011.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena scien-
tific, 2012.

Dimitri Bertsekas. Reinforcement learning and optimal control. Athena Scientific, 2019.

Agustin Castellano, Hancheng Min, Juan Bazerque, and Enrique Mallada. Learning to act safely
with limited exposure and almost sure certainty. arXiv preprint arXiv:2105.08748, 2021a.

Agustin Castellano, Hancheng Min, Enrique Mallada, and Juan Bazerque. Reinforcement learn-
ing with almost sure constraints. 2021b. URL HTTP://mallada.ece.jhu.edu/pubs/
2021-Preprint-CMBMb.pdf.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo R Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. In NeurIPS, 2020.

Peter Geibel. Reinforcement learning for mdps with constraints. In European Conference on Ma-
chine Learning, pages 646–653. Springer, 2006.

Aria HasanzadeZonuzy, Dileep M Kalathil, and Srinivas Shakkottai. Learning with safety con-
straints: Sample complexity of reinforcement learning for constrained mdps. arXiv preprint
arXiv:2008.00311, 2020.

Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick Bloem. Safe Re-
inforcement Learning Using Probabilistic Shields (Invited Paper). In 31st International Confer-
ence on Concurrency Theory (CONCUR 2020), volume 171 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 3:1–3:16, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen. Safety-
constrained reinforcement learning for mdps. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 130–146. Springer, 2016.

Tao Liu, Ruida Zhou, Dileep Kalathil, P. R. Kumar, and Chao Tian. Learning policies with zero or
bounded constraint violation for constrained mdps, 2021.

Sobhan Miryoosefi, Kianté Brantley, Hal Daume III, Miro Dudik, and Robert E Schapire. Re-
inforcement learning with convex constraints. In Advances in Neural Information Processing
Systems, pages 14070–14079, 2019.

11

HTTP://mallada.ece.jhu.edu/pubs/2021-Preprint-CMBMb.pdf
HTTP://mallada.ece.jhu.edu/pubs/2021-Preprint-CMBMb.pdf


CASTELLANO MIN BAZERQUE MALLADA

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Santiago Paternain, Miguel Calvo-Fullana, Luiz FO Chamon, and Alejandro Ribeiro. Learning
safe policies via primal-dual methods. In 2019 IEEE 58th Conference on Decision and Control
(CDC), pages 6491–6497. IEEE, 2019.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Elis Stefansson and Karl H Johansson. Computing complexity-aware plans using kolmogorov com-
plexity. arXiv preprint arXiv:2109.10303, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

12


	Introduction
	Problem formulation
	Safe reinforcement learning with memory policies
	Adequacy of memory policies
	Characterizing feasible policies with a barrier function
	Characterizing feasible policies via minimal budget

	Sample complexity for learning the minimal budget
	Experiments
	Conclusions

