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Abstract
We develop a learning-based control algorithm for unknown dynamical systems under very severe
data limitations. Specifically, the algorithm has access to streaming and noisy data only from a sin-
gle and ongoing trial. It accomplishes such performance by effectively leveraging various forms of
side information on the dynamics to reduce the sample complexity. Such side information typically
comes from elementary laws of physics and qualitative properties of the system. More precisely,
the algorithm approximately solves an optimal control problem encoding the system’s desired be-
havior. To this end, it constructs and iteratively refines a data-driven differential inclusion that
contains the unknown vector field of the dynamics. The differential inclusion, used in an interval
Taylor-based method, enables to over-approximate the set of states the system may reach. Theo-
retically, we establish a bound on the suboptimality of the approximate solution with respect to the
optimal control with known dynamics. We show that the longer the trial or the more side infor-
mation is available, the tighter the bound. Empirically, experiments in a high-fidelity F-16 aircraft
simulator and MuJoCo’s environments illustrate that, despite the scarcity of data, the algorithm
can provide performance comparable to reinforcement learning algorithms trained over millions
of environment interactions. Besides, we show that the algorithm outperforms existing techniques
combining system identification and model predictive control.
Keywords: Physics-informed learning; data-driven control; system identification; reachable sets.

1. Introduction

Learning how to achieve a complex task has found numerous applications ranging from robotics (Lil-
licrap et al., 2016; Schulman et al., 2015; Deisenroth et al., 2013) to fluid dynamics (Kutz, 2017).
However, learning algorithms generally suffer from high sample complexity, often requiring mil-
lions of samples to achieve the desired performance (Nagabandi et al., 2018; Schulman et al., 2015).
Such data requirements limit the practicability of learning algorithms in real-world scenarios where
an excessive number of trials cannot be performed on a physical system. A rather extreme example
of such a scenario is an aircraft trying to retain a certain degree of control after abrupt changes in its
dynamics, e.g., due to the loss of an engine. In such a scenario, there is a need to learn the dynamics
after the abrupt changes using data from only the current trajectory.

We develop a learning-based control algorithm that utilizes data from a single trial and leverages
side information on the unknown dynamics to reduce the sample complexity. The data include
finitely many noisy samples of the states, the states’ derivatives, and the control signals applied.
Under such a severe limitation on the amount of available data, learning can be performed efficiently
only by incorporating already known invariant properties of the dynamical system. We refer to such
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Figure 1: The developed learning-based algorithm can achieve near-optimal control of simulated
robots and an F-16 aircraft using streaming data obtained from the systems’ ongoing
trajectory and side information derived from laws of physics. From left to right, we have
the Reacher, Swimmer, Cheetah, and F-16 aircraft simulator environments.

extra knowledge as side information. The side information, typically derived from elementary laws
of physics, may be a priori knowledge of the regularity of the dynamics, monotonicity or bounds on
the vector field, algebraic constraints on the states, or knowledge of parts of the vector field.

The developed algorithm, using the data and side information available to it, computes an
over-approximation of the set of states the system may reach. Then, it incorporates the over-
approximation into a constrained short-horizon optimal control problem, which is solved on the fly.

Specifically, it leverages a data-driven differential inclusion to compute over-approximations of
the reachable sets of the system. It first constructs a differential inclusion that contains the unknown
vector field. Next, it builds on set contractor programming (Chabert and Jaulin, 2009) to refine the
differential inclusion as more data become available. Then, it computes over-approximations of the
reachable sets of all dynamics described by the differential inclusion through an interval Taylor-
based method (Berz and Makino, 1998; Nedialkov et al., 1999) that can enforce constraints from
the side information to reduce the width of the over-approximations.

The obtained over-approximations enable to formulate the data-driven optimal control problem
as a nonconvex and uncertain optimization problem. Specifically, we encode the control task as the
sequential optimization of a cost function over a time horizon. Even for convex cost functions, the
control problem is typically nonconvex. Besides, the predictions of the states’ values at future times
cannot be computed due to the unknown dynamics. The developed algorithm leverages the obtained
over-approximations to optimize the nonconvex problem under the uncertain states’ predictions.

The algorithm computes approximate solutions to the nonconvex optimization problem through
convex relaxations. We develop a sequential convex optimization scheme (Mao et al., 2019) that
uses the obtained over-approximation and iteratively linearizes its nonconvex constraint around the
previous iteration solution. Thus, each iteration solves a convex optimization problem, and we
leverage trust regions to account for the potential errors due to the linearization.

Theoretically, we establish a bound on the suboptimality of the approximate solution with re-
spect to the optimal control solution in the case where the dynamics were known. The bound is
proportional to the width of the obtained over-approximations. We show that the longer the trial or
the more the side information available, the tighter the over-approximations. Thus, the algorithm
achieves near-optimal control as more data streams or more side information is available.

Empirically, our preliminary results show that the proposed approach can provide performance
comparable to reinforcement learning (RL) algorithms, such as D4PG (Barth-Maron et al., 2018)
and SAC (Haarnoja et al., 2018), while outperforming a popular system identification technique,
SINDYc, with model predictive control (Brunton et al., 2016; Kaiser et al., 2018). It is worth em-
phasizing that it is unfair to compare the proposed approach with RL algorithms—yet we still do
it to exemplify the potential strengths—because the proposed approach relies on data only from a
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single trajectory, whereas RL algorithms typically rely on excessively large interactions with the en-
vironment. Indeed, in several control tasks from MuJoCo (Todorov et al., 2012; Tassa et al., 2018),
D4PG and SAC were trained over millions of environment interactions before comparing to the pro-
posed approach. Besides, in a ground collision avoidance scenario of an F-16 aircraft (Heidlauf
et al., 2018), we show that SINDYc is unable to avoid the ground collision while being at least two
orders of magnitude computationally slower than the proposed approach.

Related Work. In our prior work (Djeumou et al., 2021, 2020), we described a data-driven al-
gorithm similar to the algorithm developed in this paper. However, the algorithm (Djeumou et al.,
2021, 2020) works only for control-affine dynamics. Further, most of the considered side informa-
tion is not tailored for robotics systems, and only one-step optimal control problems were investi-
gated. In contrast, the algorithm in this paper is applicable for a more general class of dynamics with
polynomial dependency in control. We also evaluate the developed algorithm on highly-complex
systems and consider a larger set of side information, e.g., algebraic constraints on states and un-
known terms. Besides, we investigate short-horizon rather than one-step optimal control problems.

Several approaches for data-driven control combine model predictive control with system iden-
tification or data-driven reachable set estimation. These approaches achieve system identification
through sparse regression over a library of nonlinear functions (Kaiser et al., 2018), regression over
the set of polynomials of fixed degree with physics-based side information (Ahmadi and Khadir,
2020), spectral properties of the collected data (Proctor et al., 2016), Koopman theory (Korda and
Mezić, 2018), or Gaussian processes (Krause and Ong, 2011; Gahlawat et al., 2020). The ap-
proaches (Devonport and Arcak, 2020; Haesaert et al., 2017; Chakrabarty et al., 2018) achieve
data-driven estimation of the reachable sets of partially unknown dynamics using either supervised
learning or Gaussian processes. They provide only probabilistic guarantees of the correctness of
the computed reachable sets while our algorithm computes correct over-approximations. Recent
work (Berberich et al., 2020a,b; Markovsky and Dörfler, 2021; van Waarde et al., 2020; Van Waarde
et al., 2020) and DeePC (Coulson et al., 2019) have proposed data-driven control techniques based
on the behavioral systems theory foundation (Willems et al., 2004), which bypass the system iden-
tification step. These techniques mostly assume linear time-invariant dynamical systems and are
extremely performant in such a setting. Except for Ahmadi and Khadir (2020) that consider limited
side information and build on computationally expensive semidefinite programs solvers, none of
the above approaches (in their current form) can exploit the side information in this paper. Besides,
through extensive comparisons with SINDYc, DeePC, and Gaussian-based approaches, Djeumou
et al. (2021, 2020) empirically demonstrate that: (a) Even for a simple system such as a unicycle,
these techniques achieve significant lower performance (computation time and control suboptimal-
ity) than an approach that can exploit side information; (b) These techniques struggle to learn on
high-dimensional and complex systems. Thus, this paper compares against RL techniques even
though they work in a drastically different data regime and under different assumptions.

Model-free (Mnih et al., 2015; Oh et al., 2016; Lillicrap et al., 2016; Mnih et al., 2016; Schulman
et al., 2016) and model-based (Nagabandi et al., 2018; Deisenroth and Rasmussen, 2011; Gu et al.,
2016; Boedecker et al., 2014; Levine and Abbeel, 2014) RL algorithms have been widely used for
data-driven control. Model-free algorithms can achieve high performance at the expense of high
sample complexity (Schulman et al., 2016) while model-based algorithms are more data-efficient
but generally achieve lower performance than model-free approaches. In contrast, our algorithm can
work with data from only the current trajectory by exploiting side information on the dynamics.
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2. Background

Notation. We denote an interval by [a, b] = {x ∈ R|a ≤ x ≤ b} for some a, b ∈ R such that
a ≤ b, the set {i, . . . , j} by N[i,j] for i, j ∈ N with i ≤ j, the kth component of a vector x and
the (k, j) component of a matrix X by xk and Xk,j , respectively, the weighted norm of a vector
x ∈ Rn by ||x||w =

√∑n
i=1(wixi)2 for some w ∈ Rn+, and the Lipschitz constant of f : X → R

by Lwf = sup{L ∈ R | |f(x)− f(y)| ≤ L‖x− y‖w, x, y ∈ X , x 6= y} for X ⊆ Rn.

Interval Analysis. We denote the set of intervals on R by IR = {A = [A,A]|A,A ∈ R,A ≤ A},
the set of n-dimensional interval vectors by IRn, and the set of n×m-dimensional interval matrices
by IRn×m. We carry forward the definitions (Moore, 1966) of arithmetic operations, set inclusion,
and intersections of intervals to interval vectors and matrices by applying them componentwise.
We use the term interval to specify an interval vector or interval matrix when it is clear from the
context. Given f : X 7→ Y with X ⊆ Rn and Y ⊆ Rm, we define an interval extension of f as
f : IRn 7→ IRm satisfying f(A) ⊇ R(f,A) = {f(x) | x ∈ A}, ∀A ⊆ X . Thus, given an interval
A, f(A) is an interval that over-approximates the range of values taken by f over A.

Interval-Based Contractor. Interval-based contractor programming is a mathematical frame-
work to solve constraints involving interval variables. Given an initial over-estimation of the con-
straint’s solutions, a contractor filters such variable domains, i.e., reduces the interval of each vari-
able, without loss of solutions of the constraints. Consider the constraint h(·) ≤ 0. Assume that
A = [A1, . . . ,An] ∈ IRn is a set containing the solutions. Then, the contractor operator computes
ChA = [ChA1

, . . . , ChAn
] ∈ IRn such that ChAi

⊆ Ai, ∀i ∈ N[1,n] and h(x) > 0 for all x ∈ A \ ChA.
Several polynomial-time algorithms (Benhamou et al., 1999; Van Hentenryck et al., 1997; Trom-

bettoni et al., 2010) have been developed to compute contractors associated with a given constraint.
For example, HC4-Revise (Benhamou et al., 1999) is a linear-time algorithm that provides op-
timal contractors when each variable appears only once in the constraint. In the following, we use
ChA to refer to the contracted interval resulting from any of these algorithms.

3. Problem Formulation

This paper considers nonlinear dynamics with polynomial dependency in the control inputs as

ẋ = f(x) +
∑d

p=1
gp(x)u[αp], (1)

where d ∈ N, αp ∈ Nm is known, the state x : R+ 7→ X is a continuous-time signal evolving in
X ∈ IRn, u[αp] = u

αp
1

1 · · ·uα
p
m
m is a monomial with variables from the control signal u : R+ 7→ U

where U ∈ IRm. The vector-valued functions f = [fk] : Rn 7→ Rn and gp = [gp,k] : Rn 7→ Rn are
considered to be nonlinear and unknown. Note that even if the dynamics are not in the class above,
Taylor expansion provides a tight approximation of the dynamics that lies in such a class.

Assumption 1 (LIPSCHITZ SYSTEMS) Given a set A ⊆ Rn, fk and gp,k admit local Lipschitz
constants Lwfk , L

w
gp,k

> 0 on A, for some w ∈ Rn+ and for all k ∈ N[1,n], p ∈ N[1,d].

Assumption 1 is common in the framework of optimal control. We emphasize that even though we
use the weighted norm to define the Lipschitz constants, the results of this paper can be straightfor-
wardly extended to general modulus of continuity assumption on f and gp. The weighted norm has
the advantage of providing information on the relative importance of each variable in the function.
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Besides, the domain X ∈ IRn is bounded. Thus, by Assumption 1, fk and gp,k admit global
Lipschitz constants on X . We exploit such a knowledge by assuming known upper bounds on the
Lipschitz constants. That is, we have access to fk ∈ R+ and gp,k ∈ R+ as known upper bounds
on the Lipschitz constants Lwfk and Lwgp,k , respectively, for k ∈ N[1,n] and p ∈ N[1,d]. We emphasize
that the Lipschitz bounds can be directly estimated from data at the expense of weakening some of
the guarantees in this paper. Our numerical experiments use Lipschitz bounds estimated from data.

In a discrete-time setting, we denote the initial time by t1 ≥ 0 and the current time by tj > t1 for
some j > 1. Let Tj = {(x̃i, ˜̇xi, ui)}j−1

i=1 be the finite-length set of observations obtained between
t1 and tj . The dataset Tj contains j − 1 noisy samples of the exact state xi = x(ti), the derivative
ẋi = ẋ(ti) of the state, and the applied input ui = u(ti). We build on the widely-used bounded
noise assumption and consider that |x(t)− x̃(t)| ≤ η, |ẋ(t)− ˜̇x(t)| ≤ η̄ for all t ∈ R+ and for some
vector values η, η̄ ∈ Rn+. Here, the absolute value and the comparison are conducted elementwise.

We seek to control the unknown dynamical system (1) by finding uj , . . . , uj+N ∈ U that are
solutions of the N -step optimal control problem

minimize
uj ,...,uj+N∈U

∑j+N

q=j
c(xq, uq, xq+1 = x(tq+1;xq, uq)), (2)

where N is the planning horizon, c is a known cost function, xj = x(tj) is the known current state
of the system, tq = tj + (q − j)∆t, ∆t is a constant time step, and xq+1 = x(tq+1;xq, uq) is
the state at tq+1, i.e., a solution of the differential equation (1) at tq+1 when xq is the initial state
and uq is the constant control applied between [tq, tq+1]. The optimization problem (2) is generally
nonconvex since the state at tq+1 is nonconvex due to the nonlinear dynamics. Besides, xq+1 cannot
be computed due to the unknown dynamics. Thus, we seek for approximate solutions to (2).

Problem 1 Given the dataset Tj , the current state x̃j , compute an approximate solution to the
N -step optimal control problem (2) and characterize the suboptimality of such approximation.

4. Reachable Set Over-Approximation via Data-Based Differential Inclusions

In this section, we first construct a differential inclusion ẋ ∈ f(x)+
∑d

p=1 gp(x)u[αp] that contains
the unknown vector field. Then, we adapt an interval Taylor-based method to over-approximate the
reachable set of dynamics described by the constructed differential inclusion. Finally, we show how
additional side information constrains the Taylor expansion to provide tighter over-approximations.

Lemma 1 (OVER-APPROXIMATION OF f AND gp) Let the set Ej = {(x̃i, CF i , CGi)}
j−1
i=0 be such

that CF i = [CFi
k
] ∈ IRn and CGi = [CGip,k

] ∈ IRd×n satisfy fk(x̃i) ∈ CF i
k

and gp,k(x̃i) ∈ CGip,k
for all p ∈ N[1,d] and k ∈ N[1,n]. Then, the interval-valued functions f = [fk] : IRn → IRn and
gp = [gp,k] : IRn → IRn, defined by fk(A) =

⋂
(x̃i,CFi ,·)∈Ej

CF i
k

+ [−1, 1]fkη
w(A − x̃i) and

gp,k(A) =
⋂

(x̃i,·,CGi )∈Ej
CGip,k

+ [−1, 1]gp,kη
w(A − x̃i), are such that R(fk,A) ⊆ fk(A) and

R(gp,k,A) ⊆ gp,k(A) for all A ⊆ X . Furthermore, the function ηw : IRn 7→ IR can be any tight
interval extension of the weighted norm || · ||w.

We provide a proof of the lemma and an expression for ηw in the extended version of the
paper (Djeumou and Topcu, 2022). Intuitively, Lemma 1 states that if f and gp can be over-
approximated at a finite set of data points specified by Ej , then it is possible to obtain a formula
to over-approximate f and gp on the entire state space X via the Lipschitz bounds. Lemma 2
enables to construct and refine the bounds of the set Ej based on the data Tj and the noise bounds.
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Lemma 2 (REFINEMENT VIA CONTRACTOR) Given a data point (x̃i, ˜̇xi, ui) ∈ Tj , an interval
F i = [F ik] ∈ IRn such that f(x̃i) ∈ F i, and an interval Gi = [Gip,k] ∈ IRd×n such that gp,k(x̃i) ∈
Gip,k for all p ∈ N[1,d], k ∈ N[1,n]. Let the intervals CF i ∈ IRn and CGi ∈ IRd×n defined by

CFi
k

= F ik ∩

{
Ñ i
k −

d∑
p=1

Gip,kui[αp]

}
, CGi

p,k
=


({
Sp−1,k −

∑d
l=p+1 Gil,kui[αl]

}
∩ Gip,kui[αp]

)
1

ui[αp] ,

if ui[αp] 6= 0,

Gip,k, otherwise,

S0,k =
{
Ñ i
k − CFi

k

}
∩

{
d∑
p=1

Gip,kui[αp]

}
,Sp,k =

{
Sp−1,k − CGi

p,k
ui[αp]

}
∩


d∑

l=p+1

Gil,kui[αl]

 ,

for successive values of k ∈ N[1,n] and for all p ∈ N[1,d] with Ñ i
k = [˜̇xi− η̄, ˜̇xi + η̄]. Then, CF i and

CGi are the smallest intervals enclosing f(x̃i) and gp(x̃i), given only the data (x̃i, ˜̇xi, ui), F i, Gi.

Algorithm 1 Construct: Compute Ej re-
quired to over-approximate f and gp at each data
point of a given trajectory.
Input: Dataset Tj and a parameter M > 0.
Output: Ej = {(x̃i, CF i , CGi)}

j−1
i=0 .

1: A ← X ,RfA ,RGA ← [−M,M ]n

2: Define x̃0 ∈ A, CF0 ← RfA , CG0 ← RGA

3: for i ∈ N[1,j] ∧ (x̃i, ˜̇xi, ui) ∈ Tj do
4: Ei ← Refine((x̃i, ˜̇xi, ui),Ei−1,Ti)
5: end for
6: return Ej

Algorithm 2 Refine: Update Ej with data.

Input: A point (x̃j , ˜̇xj , uj), Ej containing past
over-approximations, Tj , and the noise bound η̄.
Output: Ej+1 = {(x̃i, CFi , CGi)}

j
i=0.

1: Compute F j = f(x̃j),Gj = [gp,k(x̃
j)] via

Lemma 1 and Ej
2: Compute CFj , CGj via Lemma 2
3: for (x̃i, ˜̇xi, ui) ∈ Tj+1 do
4: Execute 1–2 with j = i, Ej = Ej+1

5: end for
6: return Ej+1

The proof of the lemma is provided in the extended version of the paper (Djeumou and Topcu,
2022). Lemma 2 provides tighter sets CF i ⊆ F i and CGi ⊆ Gi that prune out from F i and Gi some
values f(x̃i) and gp(x̃i) that do not satisfy the dynamics constraint ẋi = f(xi)+

∑d
p=1 gp(x

i)ui[αp].
Specifically, one can observe that Lemma 2 formalizes the output of HC4-Revise, when contract-
ing F i and Gi under the constraints of the dynamics. Next, we develop Algorithm 1 that utilizes Tj

to construct and refine the set Ej required in Lemma 1 to over-approximate f and gp.

Theorem 1 (DATA-DRIVEN DIFFERENTIAL INCLUSION) Given a dataset Tj , the bounds fk
and gp,k, it holds that the unknown vector field of the dynamics (1) satisfies

ẋ ∈ h(x, u) , f(x) +
∑d

p=1
gp(x)u[αp], (3)

where f and gp are obtained from Lemma 1 with Ej taken as the output of Algorithm 1.

Remark 1 (PERSISTENT EXCITATION) The tightness of the differential inclusion (3) depends on
how much information on f and gp can be obtained from Tj . This is the classical observability
problem, sometimes referred to as persistent excitation (Willems et al., 2004). Thus, the learning
algorithm should sometimes take suboptimal actions through persistent excitations of the system.

Finally, we compute an over-approximation of the reachable sets of all dynamics described by
the differential inclusion (3). Theorem 2 provides a closed-form expression for such a set.
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Theorem 2 (DATA-DRIVEN REACHABLE SET OVER-APPROXIMATION) Given the dataset Tj ,
a constant control signal u : t 7→ uq on the interval [tq, tq+1] with uq ∈ U , and the uncertain set
Rq ∈ IRn of states xq at time tq, a closed-form expression for Rq+1 ⊇ {x(tq+1;uq, xq) ∈ X |xq ∈
Rq}, which over-approximates the reachable set at tq+1 for all xq ∈ Rq, is given by

Rq+1 = Rq + h(Rq, uq)∆t+
(
J f +

∑d

p=1
J gpuq[αp]

)
h(Pq, uq)∆t2/2, (4)

where the matrices J f = [J fk,l] ∈ IRn×n and J gp = [J gpk,l ] ∈ IRn×n, over-approximations of the

Jacobian of f and gp , are such that J fk,l = [−1, 1]wkfk and J gpk,l = [−1, 1]wkgp,k for all p ∈ N[1,d]

and k, l ∈ N[1,n]. Further, the set Pq, a rough enclosure of {x(tq+1;uq, xq) ∈ X |xq ∈ Rq}, is a
solution of the fixpoint equationRq + [0,∆t] h(Pq, uq) ⊆ Pq.

We provide the proof of Theorem 2 in the extended paper (Djeumou and Topcu, 2022). It merges
the differential inclusion with an interval Taylor-based expansion of order 2 to obtain the result. We
note that heuristic algorithms (Nedialkov et al., 1999) can be used to solve the fixpoint equation.

Theorem 2, as it is, does not incorporate side information other the regularity assumption. We
describe in the following how to incorporate a-priori knowledge to tightenRq+1 given by (4).

Side information 1 (PARTIAL DYNAMICS KNOWLEDGE) The vector field of (1) contains both
known and unknown terms. That is, ẋ =

∑S
s=1 fs(x) · f s(x) +

∑d
p=1

∑S
s=1 gsp(x) · gsp(x)u[αp],

where · denotes the elementwise product between vectors, fs and gsp(x) are known differentiable
functions, and f s, gsp are unknown Lipschitz functions satisfying Assumption 1.

Given E s
j containing past over-approximations of fs, gsp and a new data point (x̃j , ˜̇xj , uj), the

refinement (Algorithm 2) is adapted to compute in line 1 over-approximations f s(x̃j) and gsp(x̃
j)

via Lemma 1 and E s
j . Then, line 2 is modified such that each f s(x̃j) and gsp(x̃

j) are contracted
according to the new dynamics’ constraint ẋj =

∑S
s=1 fs(xj) · fs(xj) +

∑d
p=1

∑S
s=1 gsp(x

j) ·
gsp(x

j)uj [αp]. The contracted sets can be obtained straightforwardly by slight changes in the scheme
described by Lemma 2 or by calling an algorithm such as HC4-Revise. Thus, the new differential
inclusion (3) is given by h(x, u) =

∑S
s=1 f

s(x) · f s(x) +
∑d

p=1

∑S
s=1 g

s
p(x) · gsp(x)u[αp], where

f s and gs are interval extensions of known fs and gsp. Furthermore, we compute the new Jacobian
terms J f and J gp used inRq+1 by applying chain rules and exploiting the Lipschitz bounds.

Side information 2 (ALGEBRAIC CONSTRAINTS) We are given a constraint r(ẋ(·), x(·)) ≥ 0
where r is a differentiable function. Such a constraint may derive from conservation laws of physics.

This side information provides tighter over-approximations of f , gp, J f , and J gp locally.
Thus, it enables to obtain a tighter Rq+1. Specifically, this constraint can be formulated as the
new constraint w(f(x), [gp,k(x)], u, x) ≥ 0 by substitution of ẋ with the right hand side of (1).
Under equality constraints, another constraint z(f(x), [gp,k(x)], ∂f∂x (x), [

∂gp,k
∂x (x)], u, x) = 0 can

be derived by differentiating w with respect to x. The new constraints w and z can be incorporated
in the computation of Rq+1 through contractor programming. More specifically, Algorithm 2 is
adapted in line 2 to further contract CFj , CGj with respect to the constraints w and z. Similarly,
the constraint z can be used to contract the interval extensions of the Jacobian J f and J gp .

5. Approximate Optimal Control

In this section, we develop an algorithm that computes approximate solutions to the optimal control
problem (2) using over-approximations of the reachable sets. Further, we characterize the subopti-
mality of the approximate solutions with respect to the case of known dynamics.
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The nonconvexity in (2) is due to the nonconvexity of xq+1 = x(tq+1;xq, uq) and the possibly
nonconvex cost c. We replace xq+1 with xq+1 = ĥθ(xq, uq) ∈ Rq+1, where the function ĥθ,
parameterized with θ ∈ Rn, is a trajectory picked inside Rq+1. For example, a straightforward
choice can be ĥθ(xq, uq) = θRq+1 + (1 − θ)Rq+1, for θ ∈ [0, 1]n or θ can also be optimistically
optimized to minimize the cost. Then, we solve the nonconvex problem by sequentially linearizing
xq+1 and the cost c around the solution of the sth iteration. This results into a convex subproblem
that is solved to full optimality. The obtained solutions are then used at the (s+ 1)th iteration.

Linearization. Let x = [xj+1; . . . ;xj+N+1] ∈ RnN and u = [uj ; . . . ;uj+N ] ∈ RmN . We denote
the solutions of the sth iteration by xs = [xj+1,s; . . . ;xj+N+1,s] and us = [uj,s; . . . ;xj+N,s]. Then,
we can approximate the gradient of hθ (or x(tq+1;xq, uq)) around xs,us as follows:

Aq,s =
∂hθ(xq, uq)

∂xq

∣∣∣
xq,s,uq,s

∈ I +
(
J f (xq,s) +

∑d

p=1
J gp(xq,s)uq,s[αp]

)
∆t = Aq,s,

Bq,s =
∂hθ(xq, uq)

∂uq

∣∣∣
xq,s,uq,s

∈
∑d

p=1

[
∆tgp,k(x

q,s)
∂u[αp]

∂ul

∣∣∣
uq,s

]
k,l

= Bq,s,

where I is the identity matrix of appropriate dimensions. The jacobian J f (xq,s),J gp(xq,s) are
exactly J f and J gp when no extra side information is given. With side information, the matrices
are computed through chain rules as described in side information 1. Note that since we neglect the
term in ∆t2, Aq,s and Bq,s are approximations of the actual range of the gradients of hθ for all θ.

Next, we define the variables ∆x = x−xs, ∆xq = xq−xq,s, ∆u = u−us, and ∆uq = uq−uq,s
in terms of the unknown solutions of the current iteration x and u. Thus, at the (s + 1)th iteration,
the first-order approximation of xq+1 = ĥθ(xq, uq) around the previous solution (xq,s, uq,s) is

xq+1,s + ∆xq+1 ∈ hθ(xq,s, uq,s) +Aq,s∆xq + Bq,s∆uq + vq, (5)
where v = [vj ; . . . ; vj+N ] are penalty variables that enable the linearization to be always feasible.
Further, to ensure that the variable vq is used only when necessary, we augment the cost function
with the sufficiently large penalization weight λ > 0. Thus, the solution for the (s+ 1)th iteration,
optimizes the penalized and linearized cost given by Ls(∆x,∆u) =

∑j+N
q=j (c(xq,s, uq,s, xq+1,s) +

∇c(xq,s, uq,s, xq+1,s)[∆x; ∆u]) + λ
∑j+N

q=j ‖vq‖, where we also linearize the possibly nonconvex
function c given that ∇c is its gradient, and ‖ · ‖ can be either the infinity norm or 1-norm. In
order to verify the linearization accuracy, we also define the nonlinear realized cost J(x,u) =∑j+N

q=j c(x
q, uq, xq+1) + λ

∑j+N
q=j ‖xq+1 − hθ(xq, uq)‖.

Trust region constraints and linearized problem. We impose the trust region constraint ‖∆u‖ ≤
rs to ensure that u does not deviate significantly from the control input us obtained in the previous
iteration, where rs will be updated at each iteration so that the x remains close to xs. This up-
date rule enables to keep the solutions within the region where the linearization is accurate. As a
consequence, each iteration of our algorithm solves the following linear optimization problem:

minimize
∆u,∆x

Ls(∆x,∆u) (6)

subject to (5), ‖∆u‖ ≤ rs, us + ∆u ∈ UN , xs + ∆x ∈ XN .

The optimal solution of the linearized problem is either accepted and used in the next iteration or
rejected until convergence. When the linearization is considered accurate, i.e., the realized cost
J and linearized cost Ls are similar, the solution is accepted and the trust region is expanded.
Otherwise, the solution is rejected and the trust region is contracted.
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Theorem 3 (SUBOPTIMALITY BOUND) Assume that Lc with the 2-norm is the Lipschitz constant
of the cost c on X ×U ×X . Let C?j and Ĉj be the optimal costs of the control problem (2) following
the sequential optimization scheme when the dynamics are known, e.g., xq+1 = x(·, xq, uq) is
known, and the dynamics are unknown, e.g., xq+1 = hθ(xq, uq) ∈ Rq+1. Then, |C∗j − Cj | ≤
Lc

(
‖wd(Rj+N+1

U )‖2 +
∑j+N

q=j+1 2‖wd(RqU )‖2
)

holds with wd(A) = A − A being the width of

the interval A. The intervalRq+1
U is the over-approximation of the reachable set at time index tq+1

from the initial uncertain setRqU (withRjU = x̃j) and for all uq ∈ U .
We provide the proof of Theorem 3 in the extended paper (Djeumou and Topcu, 2022). Theo-

rem 3 provides that the suboptimality bound is proportional to the width of the over-approximation
of the reachable set. Thus, our algorithm achieves near-optimal control with more data along the
trajectory and more side information, as the over-approximations become tighter.

6. Numerical Experiments

In this section, we empirically demonstrate that the algorithm, using data from only the current trial
and the least amount of side information necessary to learn, can achieve performance comparable to
the highly-tuned implementations of D4PG (Hoffman et al., 2020) and SAC (Yarats and Kostrikov,
2020) trained over ten million of interactions with the environments. We emphasize that the compar-
ison is unfair to our algorithm since, at each evaluating episode, it learns from only the thousand data
obtained during the episode. Further, we show in an F-16 aircraft simulator, a 13-states and 4-control
inputs nonlinear dynamics with polynomial control, that (a) The algorithm outperforms system iden-
tification approaches such as SINDYc (Kaiser et al., 2018); (b) The algorithm can meet real-time
requirements. We provide further details on the numerical experiments in the extended paper (Djeu-
mou and Topcu, 2022). A video of the simulations is at https://tinyurl.com/hdem8x76,
and the code at https://github.com/wuwushrek/datacontrolreach.git.

Experiments in MuJoCo. The equations of motion for multi-joint dynamical systems in the Mu-
JoCo environment are as follows: M(q)q̈ + b(q̇, q) = h(u) + JT

c (q)Fc(q̇, q, u), where q is the
system’s state, M(q) is the inertial matrix, b(q̇, q) contains Coriolis, centrifugal, gravitational and
passive forces, JT

c (q) is the contact Jacobian matrix, and Fc(q̇, q, u) is the contact force.
For each environment, the cost function is provided by MuJoCo, and we perform numeric dif-

ferentiation in order to find its gradient. The Lipschitz bounds are under-estimated using only 1000
data points obtained prior to the on-the-fly control. The Reacher environment does not consider any
side information other than the Lipschitz bounds, while Swimmer and Cheetah consider that M(q)
is known (Side information 1) in order to start learning. Indeed, without such side information, our
algorithm fails to learn to control due to the large over-approximations of reachable sets. M(q) is
typically obtained for a robot through Euler-Lagrange formulation that uses the kinetic and poten-
tial energy. Further, we reduce the over-approximation of the contact force Fc by considering the
Coulomb law of friction. That is, via Side information 2, we impose the constraints F 1

c ≥ 0 and
F 1
c ≥

√
(F 2

c )2µ1 + (F 3
c )2µ2 at each contact point, where F 1

c is the normal force value, F 2
c and F 3

c

are the tangential forces, and µ1, µ2 are the friction coefficients.
Figure 2 demonstrates that it is possible to learn to control with only data from a single episode

by leveraging side information. In Cheetah, more side information can improve our algorithm’s per-
formance. We reduced the time-step value of Reacher to accommodate our algorithm and observed
that D4PG was unable to learn the task solely due to such a change, while SAC was not affected.
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Figure 2: From left to right, we plot the (average) immediate reward over 100 episodes. The exper-
iments show that our algorithm can yield performance comparable to D4PG and SAC.

Data-driven control of an F-16 aircraft. We consider a scenario involving an F-16 aircraft (Hei-
dlauf et al., 2018) diving towards the ground at a low altitude and a high downward pitch angle.
We show how our algorithm can prevent a ground collision using only the measurements obtained
during the dive and elementary laws of physics as side information. We compare our algorithm with
the linear-quadratic regulator (LQR) of the simulator, a pre-trained neural network for the task, and
SINDYc achieving sparse system identification from a library of functions.
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Figure 3: Our algorithm enables the F-16 to avoid the
ground collision while the embedded LQR
controller and SINDYc fail to avoid the
crash. Further, it can be applied in real time
since the compute time is less than the con-
trol time step enforced by the simulator.

Our algorithm considers the structural
knowledge of rigid-body dynamics while
assuming that the aerodynamics forces and
moments are completely unknown. In
other words, the effect of the control in-
puts on the aircraft is unknown. For ex-
ample, from the first principles, the lat-
eral velocity’s derivative is given by rv −
qw − g sin θ + Fu/m, where the struc-
ture is generic but the aerodynamic force
Fu (specific to the aircraft) is unknown.
We use the library PySINDY (de Silva
et al., 2020) for the comparison with sys-
tem identification. We considered mono-
mials (up to degree 6), sines and cosines of
the state, and the products of these func-
tions with the control inputs as the library functions. We provide the noisy measurements of the
state and its derivatives to both SINDYc and our algorithm. Our algorithm uses Lipschitz bounds
estimated using 1000 data points. Finally, the neural network baseline was trained via policy opti-
mization. Figure 3 empirically demonstrates the effectiveness of the proposed approach.

7. Conclusion

This paper develops a learning-based, data-efficient control algorithm for unknown systems using
streaming data from an ongoing trial and available side information. The experiments demonstrate
that it is possible, with data from a single episode and side information, to achieve performance
comparable to learning algorithms trained over millions of environment interactions. Further, we
empirically show that the algorithm is fast and can be used in a scenario with real-time constraints.
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